The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/slab.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * linux/mm/slab.c
    3  * Written by Mark Hemment, 1996/97.
    4  * (markhe@nextd.demon.co.uk)
    5  *
    6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
    7  *
    8  * Major cleanup, different bufctl logic, per-cpu arrays
    9  *      (c) 2000 Manfred Spraul
   10  *
   11  * An implementation of the Slab Allocator as described in outline in;
   12  *      UNIX Internals: The New Frontiers by Uresh Vahalia
   13  *      Pub: Prentice Hall      ISBN 0-13-101908-2
   14  * or with a little more detail in;
   15  *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
   16  *      Jeff Bonwick (Sun Microsystems).
   17  *      Presented at: USENIX Summer 1994 Technical Conference
   18  *
   19  *
   20  * The memory is organized in caches, one cache for each object type.
   21  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
   22  * Each cache consists out of many slabs (they are small (usually one
   23  * page long) and always contiguous), and each slab contains multiple
   24  * initialized objects.
   25  *
   26  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
   27  * normal). If you need a special memory type, then must create a new
   28  * cache for that memory type.
   29  *
   30  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
   31  *   full slabs with 0 free objects
   32  *   partial slabs
   33  *   empty slabs with no allocated objects
   34  *
   35  * If partial slabs exist, then new allocations come from these slabs,
   36  * otherwise from empty slabs or new slabs are allocated.
   37  *
   38  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
   39  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
   40  *
   41  * On SMP systems, each cache has a short per-cpu head array, most allocs
   42  * and frees go into that array, and if that array overflows, then 1/2
   43  * of the entries in the array are given back into the global cache.
   44  * This reduces the number of spinlock operations.
   45  *
   46  * The c_cpuarray may not be read with enabled local interrupts.
   47  *
   48  * SMP synchronization:
   49  *  constructors and destructors are called without any locking.
   50  *  Several members in kmem_cache_t and slab_t never change, they
   51  *      are accessed without any locking.
   52  *  The per-cpu arrays are never accessed from the wrong cpu, no locking.
   53  *  The non-constant members are protected with a per-cache irq spinlock.
   54  *
   55  * Further notes from the original documentation:
   56  *
   57  * 11 April '97.  Started multi-threading - markhe
   58  *      The global cache-chain is protected by the semaphore 'cache_chain_sem'.
   59  *      The sem is only needed when accessing/extending the cache-chain, which
   60  *      can never happen inside an interrupt (kmem_cache_create(),
   61  *      kmem_cache_shrink() and kmem_cache_reap()).
   62  *
   63  *      To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
   64  *      maybe be sleeping and therefore not holding the semaphore/lock), the
   65  *      growing field is used.  This also prevents reaping from a cache.
   66  *
   67  *      At present, each engine can be growing a cache.  This should be blocked.
   68  *
   69  */
   70 
   71 #include        <linux/config.h>
   72 #include        <linux/slab.h>
   73 #include        <linux/interrupt.h>
   74 #include        <linux/init.h>
   75 #include        <linux/compiler.h>
   76 #include        <linux/seq_file.h>
   77 #include        <asm/uaccess.h>
   78 
   79 /*
   80  * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
   81  *                SLAB_RED_ZONE & SLAB_POISON.
   82  *                0 for faster, smaller code (especially in the critical paths).
   83  *
   84  * STATS        - 1 to collect stats for /proc/slabinfo.
   85  *                0 for faster, smaller code (especially in the critical paths).
   86  *
   87  * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
   88  */
   89 
   90 #ifdef CONFIG_DEBUG_SLAB
   91 #define DEBUG           1
   92 #define STATS           1
   93 #define FORCED_DEBUG    1
   94 #else
   95 #define DEBUG           0
   96 #define STATS           0
   97 #define FORCED_DEBUG    0
   98 #endif
   99 
  100 /*
  101  * Parameters for kmem_cache_reap
  102  */
  103 #define REAP_SCANLEN    10
  104 #define REAP_PERFECT    10
  105 
  106 /* Shouldn't this be in a header file somewhere? */
  107 #define BYTES_PER_WORD          sizeof(void *)
  108 
  109 /* Legal flag mask for kmem_cache_create(). */
  110 #if DEBUG
  111 # define CREATE_MASK    (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  112                          SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  113                          SLAB_NO_REAP | SLAB_CACHE_DMA | \
  114                          SLAB_MUST_HWCACHE_ALIGN)
  115 #else
  116 # define CREATE_MASK    (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
  117                          SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN)
  118 #endif
  119 
  120 /*
  121  * kmem_bufctl_t:
  122  *
  123  * Bufctl's are used for linking objs within a slab
  124  * linked offsets.
  125  *
  126  * This implementation relies on "struct page" for locating the cache &
  127  * slab an object belongs to.
  128  * This allows the bufctl structure to be small (one int), but limits
  129  * the number of objects a slab (not a cache) can contain when off-slab
  130  * bufctls are used. The limit is the size of the largest general cache
  131  * that does not use off-slab slabs.
  132  * For 32bit archs with 4 kB pages, is this 56.
  133  * This is not serious, as it is only for large objects, when it is unwise
  134  * to have too many per slab.
  135  * Note: This limit can be raised by introducing a general cache whose size
  136  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  137  */
  138 
  139 #define BUFCTL_END 0xffffFFFF
  140 #define SLAB_LIMIT 0xffffFFFE
  141 typedef unsigned int kmem_bufctl_t;
  142 
  143 /* Max number of objs-per-slab for caches which use off-slab slabs.
  144  * Needed to avoid a possible looping condition in kmem_cache_grow().
  145  */
  146 static unsigned long offslab_limit;
  147 
  148 /*
  149  * slab_t
  150  *
  151  * Manages the objs in a slab. Placed either at the beginning of mem allocated
  152  * for a slab, or allocated from an general cache.
  153  * Slabs are chained into three list: fully used, partial, fully free slabs.
  154  */
  155 typedef struct slab_s {
  156         struct list_head        list;
  157         unsigned long           colouroff;
  158         void                    *s_mem;         /* including colour offset */
  159         unsigned int            inuse;          /* num of objs active in slab */
  160         kmem_bufctl_t           free;
  161 } slab_t;
  162 
  163 #define slab_bufctl(slabp) \
  164         ((kmem_bufctl_t *)(((slab_t*)slabp)+1))
  165 
  166 /*
  167  * cpucache_t
  168  *
  169  * Per cpu structures
  170  * The limit is stored in the per-cpu structure to reduce the data cache
  171  * footprint.
  172  */
  173 typedef struct cpucache_s {
  174         unsigned int avail;
  175         unsigned int limit;
  176 } cpucache_t;
  177 
  178 #define cc_entry(cpucache) \
  179         ((void **)(((cpucache_t*)(cpucache))+1))
  180 #define cc_data(cachep) \
  181         ((cachep)->cpudata[smp_processor_id()])
  182 /*
  183  * kmem_cache_t
  184  *
  185  * manages a cache.
  186  */
  187 
  188 #define CACHE_NAMELEN   20      /* max name length for a slab cache */
  189 
  190 struct kmem_cache_s {
  191 /* 1) each alloc & free */
  192         /* full, partial first, then free */
  193         struct list_head        slabs_full;
  194         struct list_head        slabs_partial;
  195         struct list_head        slabs_free;
  196         unsigned int            objsize;
  197         unsigned int            flags;  /* constant flags */
  198         unsigned int            num;    /* # of objs per slab */
  199         spinlock_t              spinlock;
  200 #ifdef CONFIG_SMP
  201         unsigned int            batchcount;
  202 #endif
  203 
  204 /* 2) slab additions /removals */
  205         /* order of pgs per slab (2^n) */
  206         unsigned int            gfporder;
  207 
  208         /* force GFP flags, e.g. GFP_DMA */
  209         unsigned int            gfpflags;
  210 
  211         size_t                  colour;         /* cache colouring range */
  212         unsigned int            colour_off;     /* colour offset */
  213         unsigned int            colour_next;    /* cache colouring */
  214         kmem_cache_t            *slabp_cache;
  215         unsigned int            growing;
  216         unsigned int            dflags;         /* dynamic flags */
  217 
  218         /* constructor func */
  219         void (*ctor)(void *, kmem_cache_t *, unsigned long);
  220 
  221         /* de-constructor func */
  222         void (*dtor)(void *, kmem_cache_t *, unsigned long);
  223 
  224         unsigned long           failures;
  225 
  226 /* 3) cache creation/removal */
  227         char                    name[CACHE_NAMELEN];
  228         struct list_head        next;
  229 #ifdef CONFIG_SMP
  230 /* 4) per-cpu data */
  231         cpucache_t              *cpudata[NR_CPUS];
  232 #endif
  233 #if STATS
  234         unsigned long           num_active;
  235         unsigned long           num_allocations;
  236         unsigned long           high_mark;
  237         unsigned long           grown;
  238         unsigned long           reaped;
  239         unsigned long           errors;
  240 #ifdef CONFIG_SMP
  241         atomic_t                allochit;
  242         atomic_t                allocmiss;
  243         atomic_t                freehit;
  244         atomic_t                freemiss;
  245 #endif
  246 #endif
  247 };
  248 
  249 /* internal c_flags */
  250 #define CFLGS_OFF_SLAB  0x010000UL      /* slab management in own cache */
  251 #define CFLGS_OPTIMIZE  0x020000UL      /* optimized slab lookup */
  252 
  253 /* c_dflags (dynamic flags). Need to hold the spinlock to access this member */
  254 #define DFLGS_GROWN     0x000001UL      /* don't reap a recently grown */
  255 
  256 #define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
  257 #define OPTIMIZE(x)     ((x)->flags & CFLGS_OPTIMIZE)
  258 #define GROWN(x)        ((x)->dlags & DFLGS_GROWN)
  259 
  260 #if STATS
  261 #define STATS_INC_ACTIVE(x)     ((x)->num_active++)
  262 #define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
  263 #define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
  264 #define STATS_INC_GROWN(x)      ((x)->grown++)
  265 #define STATS_INC_REAPED(x)     ((x)->reaped++)
  266 #define STATS_SET_HIGH(x)       do { if ((x)->num_active > (x)->high_mark) \
  267                                         (x)->high_mark = (x)->num_active; \
  268                                 } while (0)
  269 #define STATS_INC_ERR(x)        ((x)->errors++)
  270 #else
  271 #define STATS_INC_ACTIVE(x)     do { } while (0)
  272 #define STATS_DEC_ACTIVE(x)     do { } while (0)
  273 #define STATS_INC_ALLOCED(x)    do { } while (0)
  274 #define STATS_INC_GROWN(x)      do { } while (0)
  275 #define STATS_INC_REAPED(x)     do { } while (0)
  276 #define STATS_SET_HIGH(x)       do { } while (0)
  277 #define STATS_INC_ERR(x)        do { } while (0)
  278 #endif
  279 
  280 #if STATS && defined(CONFIG_SMP)
  281 #define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
  282 #define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
  283 #define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
  284 #define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
  285 #else
  286 #define STATS_INC_ALLOCHIT(x)   do { } while (0)
  287 #define STATS_INC_ALLOCMISS(x)  do { } while (0)
  288 #define STATS_INC_FREEHIT(x)    do { } while (0)
  289 #define STATS_INC_FREEMISS(x)   do { } while (0)
  290 #endif
  291 
  292 #if DEBUG
  293 /* Magic nums for obj red zoning.
  294  * Placed in the first word before and the first word after an obj.
  295  */
  296 #define RED_MAGIC1      0x5A2CF071UL    /* when obj is active */
  297 #define RED_MAGIC2      0x170FC2A5UL    /* when obj is inactive */
  298 
  299 /* ...and for poisoning */
  300 #define POISON_BYTE     0x5a            /* byte value for poisoning */
  301 #define POISON_END      0xa5            /* end-byte of poisoning */
  302 
  303 #endif
  304 
  305 /* maximum size of an obj (in 2^order pages) */
  306 #define MAX_OBJ_ORDER   5       /* 32 pages */
  307 
  308 /*
  309  * Do not go above this order unless 0 objects fit into the slab.
  310  */
  311 #define BREAK_GFP_ORDER_HI      2
  312 #define BREAK_GFP_ORDER_LO      1
  313 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  314 
  315 /*
  316  * Absolute limit for the gfp order
  317  */
  318 #define MAX_GFP_ORDER   5       /* 32 pages */
  319 
  320 
  321 /* Macros for storing/retrieving the cachep and or slab from the
  322  * global 'mem_map'. These are used to find the slab an obj belongs to.
  323  * With kfree(), these are used to find the cache which an obj belongs to.
  324  */
  325 #define SET_PAGE_CACHE(pg,x)  ((pg)->list.next = (struct list_head *)(x))
  326 #define GET_PAGE_CACHE(pg)    ((kmem_cache_t *)(pg)->list.next)
  327 #define SET_PAGE_SLAB(pg,x)   ((pg)->list.prev = (struct list_head *)(x))
  328 #define GET_PAGE_SLAB(pg)     ((slab_t *)(pg)->list.prev)
  329 
  330 /* Size description struct for general caches. */
  331 typedef struct cache_sizes {
  332         size_t           cs_size;
  333         kmem_cache_t    *cs_cachep;
  334         kmem_cache_t    *cs_dmacachep;
  335 } cache_sizes_t;
  336 
  337 static cache_sizes_t cache_sizes[] = {
  338 #if PAGE_SIZE == 4096
  339         {    32,        NULL, NULL},
  340 #endif
  341         {    64,        NULL, NULL},
  342         {   128,        NULL, NULL},
  343         {   256,        NULL, NULL},
  344         {   512,        NULL, NULL},
  345         {  1024,        NULL, NULL},
  346         {  2048,        NULL, NULL},
  347         {  4096,        NULL, NULL},
  348         {  8192,        NULL, NULL},
  349         { 16384,        NULL, NULL},
  350         { 32768,        NULL, NULL},
  351         { 65536,        NULL, NULL},
  352         {131072,        NULL, NULL},
  353         {     0,        NULL, NULL}
  354 };
  355 
  356 /* internal cache of cache description objs */
  357 static kmem_cache_t cache_cache = {
  358         slabs_full:     LIST_HEAD_INIT(cache_cache.slabs_full),
  359         slabs_partial:  LIST_HEAD_INIT(cache_cache.slabs_partial),
  360         slabs_free:     LIST_HEAD_INIT(cache_cache.slabs_free),
  361         objsize:        sizeof(kmem_cache_t),
  362         flags:          SLAB_NO_REAP,
  363         spinlock:       SPIN_LOCK_UNLOCKED,
  364         colour_off:     L1_CACHE_BYTES,
  365         name:           "kmem_cache",
  366 };
  367 
  368 /* Guard access to the cache-chain. */
  369 static struct semaphore cache_chain_sem;
  370 
  371 /* Place maintainer for reaping. */
  372 static kmem_cache_t *clock_searchp = &cache_cache;
  373 
  374 #define cache_chain (cache_cache.next)
  375 
  376 #ifdef CONFIG_SMP
  377 /*
  378  * chicken and egg problem: delay the per-cpu array allocation
  379  * until the general caches are up.
  380  */
  381 static int g_cpucache_up;
  382 
  383 static void enable_cpucache (kmem_cache_t *cachep);
  384 static void enable_all_cpucaches (void);
  385 #endif
  386 
  387 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
  388 static void kmem_cache_estimate (unsigned long gfporder, size_t size,
  389                  int flags, size_t *left_over, unsigned int *num)
  390 {
  391         int i;
  392         size_t wastage = PAGE_SIZE<<gfporder;
  393         size_t extra = 0;
  394         size_t base = 0;
  395 
  396         if (!(flags & CFLGS_OFF_SLAB)) {
  397                 base = sizeof(slab_t);
  398                 extra = sizeof(kmem_bufctl_t);
  399         }
  400         i = 0;
  401         while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)
  402                 i++;
  403         if (i > 0)
  404                 i--;
  405 
  406         if (i > SLAB_LIMIT)
  407                 i = SLAB_LIMIT;
  408 
  409         *num = i;
  410         wastage -= i*size;
  411         wastage -= L1_CACHE_ALIGN(base+i*extra);
  412         *left_over = wastage;
  413 }
  414 
  415 /* Initialisation - setup the `cache' cache. */
  416 void __init kmem_cache_init(void)
  417 {
  418         size_t left_over;
  419 
  420         init_MUTEX(&cache_chain_sem);
  421         INIT_LIST_HEAD(&cache_chain);
  422 
  423         kmem_cache_estimate(0, cache_cache.objsize, 0,
  424                         &left_over, &cache_cache.num);
  425         if (!cache_cache.num)
  426                 BUG();
  427 
  428         cache_cache.colour = left_over/cache_cache.colour_off;
  429         cache_cache.colour_next = 0;
  430 }
  431 
  432 
  433 /* Initialisation - setup remaining internal and general caches.
  434  * Called after the gfp() functions have been enabled, and before smp_init().
  435  */
  436 void __init kmem_cache_sizes_init(void)
  437 {
  438         cache_sizes_t *sizes = cache_sizes;
  439         char name[20];
  440         /*
  441          * Fragmentation resistance on low memory - only use bigger
  442          * page orders on machines with more than 32MB of memory.
  443          */
  444         if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  445                 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  446         do {
  447                 /* For performance, all the general caches are L1 aligned.
  448                  * This should be particularly beneficial on SMP boxes, as it
  449                  * eliminates "false sharing".
  450                  * Note for systems short on memory removing the alignment will
  451                  * allow tighter packing of the smaller caches. */
  452                 snprintf(name, sizeof(name), "size-%Zd",sizes->cs_size);
  453                 if (!(sizes->cs_cachep =
  454                         kmem_cache_create(name, sizes->cs_size,
  455                                         0, SLAB_HWCACHE_ALIGN, NULL, NULL))) {
  456                         BUG();
  457                 }
  458 
  459                 /* Inc off-slab bufctl limit until the ceiling is hit. */
  460                 if (!(OFF_SLAB(sizes->cs_cachep))) {
  461                         offslab_limit = sizes->cs_size-sizeof(slab_t);
  462                         offslab_limit /= 2;
  463                 }
  464                 snprintf(name, sizeof(name), "size-%Zd(DMA)",sizes->cs_size);
  465                 sizes->cs_dmacachep = kmem_cache_create(name, sizes->cs_size, 0,
  466                               SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN, NULL, NULL);
  467                 if (!sizes->cs_dmacachep)
  468                         BUG();
  469                 sizes++;
  470         } while (sizes->cs_size);
  471 }
  472 
  473 int __init kmem_cpucache_init(void)
  474 {
  475 #ifdef CONFIG_SMP
  476         g_cpucache_up = 1;
  477         enable_all_cpucaches();
  478 #endif
  479         return 0;
  480 }
  481 
  482 __initcall(kmem_cpucache_init);
  483 
  484 /* Interface to system's page allocator. No need to hold the cache-lock.
  485  */
  486 static inline void * kmem_getpages (kmem_cache_t *cachep, unsigned long flags)
  487 {
  488         void    *addr;
  489 
  490         /*
  491          * If we requested dmaable memory, we will get it. Even if we
  492          * did not request dmaable memory, we might get it, but that
  493          * would be relatively rare and ignorable.
  494          */
  495         flags |= cachep->gfpflags;
  496         addr = (void*) __get_free_pages(flags, cachep->gfporder);
  497         /* Assume that now we have the pages no one else can legally
  498          * messes with the 'struct page's.
  499          * However vm_scan() might try to test the structure to see if
  500          * it is a named-page or buffer-page.  The members it tests are
  501          * of no interest here.....
  502          */
  503         return addr;
  504 }
  505 
  506 /* Interface to system's page release. */
  507 static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)
  508 {
  509         unsigned long i = (1<<cachep->gfporder);
  510         struct page *page = virt_to_page(addr);
  511 
  512         /* free_pages() does not clear the type bit - we do that.
  513          * The pages have been unlinked from their cache-slab,
  514          * but their 'struct page's might be accessed in
  515          * vm_scan(). Shouldn't be a worry.
  516          */
  517         while (i--) {
  518                 PageClearSlab(page);
  519                 page++;
  520         }
  521         free_pages((unsigned long)addr, cachep->gfporder);
  522 }
  523 
  524 #if DEBUG
  525 static inline void kmem_poison_obj (kmem_cache_t *cachep, void *addr)
  526 {
  527         int size = cachep->objsize;
  528         if (cachep->flags & SLAB_RED_ZONE) {
  529                 addr += BYTES_PER_WORD;
  530                 size -= 2*BYTES_PER_WORD;
  531         }
  532         memset(addr, POISON_BYTE, size);
  533         *(unsigned char *)(addr+size-1) = POISON_END;
  534 }
  535 
  536 static inline int kmem_check_poison_obj (kmem_cache_t *cachep, void *addr)
  537 {
  538         int size = cachep->objsize;
  539         void *end;
  540         if (cachep->flags & SLAB_RED_ZONE) {
  541                 addr += BYTES_PER_WORD;
  542                 size -= 2*BYTES_PER_WORD;
  543         }
  544         end = memchr(addr, POISON_END, size);
  545         if (end != (addr+size-1))
  546                 return 1;
  547         return 0;
  548 }
  549 #endif
  550 
  551 /* Destroy all the objs in a slab, and release the mem back to the system.
  552  * Before calling the slab must have been unlinked from the cache.
  553  * The cache-lock is not held/needed.
  554  */
  555 static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)
  556 {
  557         if (cachep->dtor
  558 #if DEBUG
  559                 || cachep->flags & (SLAB_POISON | SLAB_RED_ZONE)
  560 #endif
  561         ) {
  562                 int i;
  563                 for (i = 0; i < cachep->num; i++) {
  564                         void* objp = slabp->s_mem+cachep->objsize*i;
  565 #if DEBUG
  566                         if (cachep->flags & SLAB_RED_ZONE) {
  567                                 if (*((unsigned long*)(objp)) != RED_MAGIC1)
  568                                         BUG();
  569                                 if (*((unsigned long*)(objp + cachep->objsize
  570                                                 -BYTES_PER_WORD)) != RED_MAGIC1)
  571                                         BUG();
  572                                 objp += BYTES_PER_WORD;
  573                         }
  574 #endif
  575                         if (cachep->dtor)
  576                                 (cachep->dtor)(objp, cachep, 0);
  577 #if DEBUG
  578                         if (cachep->flags & SLAB_RED_ZONE) {
  579                                 objp -= BYTES_PER_WORD;
  580                         }       
  581                         if ((cachep->flags & SLAB_POISON)  &&
  582                                 kmem_check_poison_obj(cachep, objp))
  583                                 BUG();
  584 #endif
  585                 }
  586         }
  587 
  588         kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
  589         if (OFF_SLAB(cachep))
  590                 kmem_cache_free(cachep->slabp_cache, slabp);
  591 }
  592 
  593 /**
  594  * kmem_cache_create - Create a cache.
  595  * @name: A string which is used in /proc/slabinfo to identify this cache.
  596  * @size: The size of objects to be created in this cache.
  597  * @offset: The offset to use within the page.
  598  * @flags: SLAB flags
  599  * @ctor: A constructor for the objects.
  600  * @dtor: A destructor for the objects.
  601  *
  602  * Returns a ptr to the cache on success, NULL on failure.
  603  * Cannot be called within a int, but can be interrupted.
  604  * The @ctor is run when new pages are allocated by the cache
  605  * and the @dtor is run before the pages are handed back.
  606  * The flags are
  607  *
  608  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  609  * to catch references to uninitialised memory.
  610  *
  611  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  612  * for buffer overruns.
  613  *
  614  * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
  615  * memory pressure.
  616  *
  617  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  618  * cacheline.  This can be beneficial if you're counting cycles as closely
  619  * as davem.
  620  */
  621 kmem_cache_t *
  622 kmem_cache_create (const char *name, size_t size, size_t offset,
  623         unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
  624         void (*dtor)(void*, kmem_cache_t *, unsigned long))
  625 {
  626         const char *func_nm = KERN_ERR "kmem_create: ";
  627         size_t left_over, align, slab_size;
  628         kmem_cache_t *cachep = NULL;
  629 
  630         /*
  631          * Sanity checks... these are all serious usage bugs.
  632          */
  633         if ((!name) ||
  634                 ((strlen(name) >= CACHE_NAMELEN - 1)) ||
  635                 in_interrupt() ||
  636                 (size < BYTES_PER_WORD) ||
  637                 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
  638                 (dtor && !ctor) ||
  639                 (offset < 0 || offset > size))
  640                         BUG();
  641 
  642 #if DEBUG
  643         if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  644                 /* No constructor, but inital state check requested */
  645                 printk("%sNo con, but init state check requested - %s\n", func_nm, name);
  646                 flags &= ~SLAB_DEBUG_INITIAL;
  647         }
  648 
  649         if ((flags & SLAB_POISON) && ctor) {
  650                 /* request for poisoning, but we can't do that with a constructor */
  651                 printk("%sPoisoning requested, but con given - %s\n", func_nm, name);
  652                 flags &= ~SLAB_POISON;
  653         }
  654 #if FORCED_DEBUG
  655         if ((size < (PAGE_SIZE>>3)) && !(flags & SLAB_MUST_HWCACHE_ALIGN))
  656                 /*
  657                  * do not red zone large object, causes severe
  658                  * fragmentation.
  659                  */
  660                 flags |= SLAB_RED_ZONE;
  661         if (!ctor)
  662                 flags |= SLAB_POISON;
  663 #endif
  664 #endif
  665 
  666         /*
  667          * Always checks flags, a caller might be expecting debug
  668          * support which isn't available.
  669          */
  670         BUG_ON(flags & ~CREATE_MASK);
  671 
  672         /* Get cache's description obj. */
  673         cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
  674         if (!cachep)
  675                 goto opps;
  676         memset(cachep, 0, sizeof(kmem_cache_t));
  677 
  678         /* Check that size is in terms of words.  This is needed to avoid
  679          * unaligned accesses for some archs when redzoning is used, and makes
  680          * sure any on-slab bufctl's are also correctly aligned.
  681          */
  682         if (size & (BYTES_PER_WORD-1)) {
  683                 size += (BYTES_PER_WORD-1);
  684                 size &= ~(BYTES_PER_WORD-1);
  685                 printk("%sForcing size word alignment - %s\n", func_nm, name);
  686         }
  687         
  688 #if DEBUG
  689         if (flags & SLAB_RED_ZONE) {
  690                 /*
  691                  * There is no point trying to honour cache alignment
  692                  * when redzoning.
  693                  */
  694                 flags &= ~SLAB_HWCACHE_ALIGN;
  695                 size += 2*BYTES_PER_WORD;       /* words for redzone */
  696         }
  697 #endif
  698         align = BYTES_PER_WORD;
  699         if (flags & SLAB_HWCACHE_ALIGN)
  700                 align = L1_CACHE_BYTES;
  701 
  702         /* Determine if the slab management is 'on' or 'off' slab. */
  703         if (size >= (PAGE_SIZE>>3))
  704                 /*
  705                  * Size is large, assume best to place the slab management obj
  706                  * off-slab (should allow better packing of objs).
  707                  */
  708                 flags |= CFLGS_OFF_SLAB;
  709 
  710         if (flags & SLAB_HWCACHE_ALIGN) {
  711                 /* Need to adjust size so that objs are cache aligned. */
  712                 /* Small obj size, can get at least two per cache line. */
  713                 /* FIXME: only power of 2 supported, was better */
  714                 while (size < align/2)
  715                         align /= 2;
  716                 size = (size+align-1)&(~(align-1));
  717         }
  718 
  719         /* Cal size (in pages) of slabs, and the num of objs per slab.
  720          * This could be made much more intelligent.  For now, try to avoid
  721          * using high page-orders for slabs.  When the gfp() funcs are more
  722          * friendly towards high-order requests, this should be changed.
  723          */
  724         do {
  725                 unsigned int break_flag = 0;
  726 cal_wastage:
  727                 kmem_cache_estimate(cachep->gfporder, size, flags,
  728                                                 &left_over, &cachep->num);
  729                 if (break_flag)
  730                         break;
  731                 if (cachep->gfporder >= MAX_GFP_ORDER)
  732                         break;
  733                 if (!cachep->num)
  734                         goto next;
  735                 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit) {
  736                         /* Oops, this num of objs will cause problems. */
  737                         cachep->gfporder--;
  738                         break_flag++;
  739                         goto cal_wastage;
  740                 }
  741 
  742                 /*
  743                  * Large num of objs is good, but v. large slabs are currently
  744                  * bad for the gfp()s.
  745                  */
  746                 if (cachep->gfporder >= slab_break_gfp_order)
  747                         break;
  748 
  749                 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
  750                         break;  /* Acceptable internal fragmentation. */
  751 next:
  752                 cachep->gfporder++;
  753         } while (1);
  754 
  755         if (!cachep->num) {
  756                 printk("kmem_cache_create: couldn't create cache %s.\n", name);
  757                 kmem_cache_free(&cache_cache, cachep);
  758                 cachep = NULL;
  759                 goto opps;
  760         }
  761         slab_size = L1_CACHE_ALIGN(cachep->num*sizeof(kmem_bufctl_t)+sizeof(slab_t));
  762 
  763         /*
  764          * If the slab has been placed off-slab, and we have enough space then
  765          * move it on-slab. This is at the expense of any extra colouring.
  766          */
  767         if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  768                 flags &= ~CFLGS_OFF_SLAB;
  769                 left_over -= slab_size;
  770         }
  771 
  772         /* Offset must be a multiple of the alignment. */
  773         offset += (align-1);
  774         offset &= ~(align-1);
  775         if (!offset)
  776                 offset = L1_CACHE_BYTES;
  777         cachep->colour_off = offset;
  778         cachep->colour = left_over/offset;
  779 
  780         /* init remaining fields */
  781         if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))
  782                 flags |= CFLGS_OPTIMIZE;
  783 
  784         cachep->flags = flags;
  785         cachep->gfpflags = 0;
  786         if (flags & SLAB_CACHE_DMA)
  787                 cachep->gfpflags |= GFP_DMA;
  788         spin_lock_init(&cachep->spinlock);
  789         cachep->objsize = size;
  790         INIT_LIST_HEAD(&cachep->slabs_full);
  791         INIT_LIST_HEAD(&cachep->slabs_partial);
  792         INIT_LIST_HEAD(&cachep->slabs_free);
  793 
  794         if (flags & CFLGS_OFF_SLAB)
  795                 cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
  796         cachep->ctor = ctor;
  797         cachep->dtor = dtor;
  798         /* Copy name over so we don't have problems with unloaded modules */
  799         strcpy(cachep->name, name);
  800 
  801 #ifdef CONFIG_SMP
  802         if (g_cpucache_up)
  803                 enable_cpucache(cachep);
  804 #endif
  805         /* Need the semaphore to access the chain. */
  806         down(&cache_chain_sem);
  807         {
  808                 struct list_head *p;
  809 
  810                 list_for_each(p, &cache_chain) {
  811                         kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
  812 
  813                         /* The name field is constant - no lock needed. */
  814                         if (!strcmp(pc->name, name))
  815                                 BUG();
  816                 }
  817         }
  818 
  819         /* There is no reason to lock our new cache before we
  820          * link it in - no one knows about it yet...
  821          */
  822         list_add(&cachep->next, &cache_chain);
  823         up(&cache_chain_sem);
  824 opps:
  825         return cachep;
  826 }
  827 
  828 
  829 #if DEBUG
  830 /*
  831  * This check if the kmem_cache_t pointer is chained in the cache_cache
  832  * list. -arca
  833  */
  834 static int is_chained_kmem_cache(kmem_cache_t * cachep)
  835 {
  836         struct list_head *p;
  837         int ret = 0;
  838 
  839         /* Find the cache in the chain of caches. */
  840         down(&cache_chain_sem);
  841         list_for_each(p, &cache_chain) {
  842                 if (p == &cachep->next) {
  843                         ret = 1;
  844                         break;
  845                 }
  846         }
  847         up(&cache_chain_sem);
  848 
  849         return ret;
  850 }
  851 #else
  852 #define is_chained_kmem_cache(x) 1
  853 #endif
  854 
  855 #ifdef CONFIG_SMP
  856 /*
  857  * Waits for all CPUs to execute func().
  858  */
  859 static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
  860 {
  861         local_irq_disable();
  862         func(arg);
  863         local_irq_enable();
  864 
  865         if (smp_call_function(func, arg, 1, 1))
  866                 BUG();
  867 }
  868 typedef struct ccupdate_struct_s
  869 {
  870         kmem_cache_t *cachep;
  871         cpucache_t *new[NR_CPUS];
  872 } ccupdate_struct_t;
  873 
  874 static void do_ccupdate_local(void *info)
  875 {
  876         ccupdate_struct_t *new = (ccupdate_struct_t *)info;
  877         cpucache_t *old = cc_data(new->cachep);
  878         
  879         cc_data(new->cachep) = new->new[smp_processor_id()];
  880         new->new[smp_processor_id()] = old;
  881 }
  882 
  883 static void free_block (kmem_cache_t* cachep, void** objpp, int len);
  884 
  885 static void drain_cpu_caches(kmem_cache_t *cachep)
  886 {
  887         ccupdate_struct_t new;
  888         int i;
  889 
  890         memset(&new.new,0,sizeof(new.new));
  891 
  892         new.cachep = cachep;
  893 
  894         down(&cache_chain_sem);
  895         smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
  896 
  897         for (i = 0; i < smp_num_cpus; i++) {
  898                 cpucache_t* ccold = new.new[cpu_logical_map(i)];
  899                 if (!ccold || (ccold->avail == 0))
  900                         continue;
  901                 local_irq_disable();
  902                 free_block(cachep, cc_entry(ccold), ccold->avail);
  903                 local_irq_enable();
  904                 ccold->avail = 0;
  905         }
  906         smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
  907         up(&cache_chain_sem);
  908 }
  909 
  910 #else
  911 #define drain_cpu_caches(cachep)        do { } while (0)
  912 #endif
  913 
  914 /*
  915  * Called with the &cachep->spinlock held, returns number of slabs released
  916  */
  917 static int __kmem_cache_shrink_locked(kmem_cache_t *cachep)
  918 {
  919         slab_t *slabp;
  920         int ret = 0;
  921 
  922         /* If the cache is growing, stop shrinking. */
  923         while (!cachep->growing) {
  924                 struct list_head *p;
  925 
  926                 p = cachep->slabs_free.prev;
  927                 if (p == &cachep->slabs_free)
  928                         break;
  929 
  930                 slabp = list_entry(cachep->slabs_free.prev, slab_t, list);
  931 #if DEBUG
  932                 if (slabp->inuse)
  933                         BUG();
  934 #endif
  935                 list_del(&slabp->list);
  936 
  937                 spin_unlock_irq(&cachep->spinlock);
  938                 kmem_slab_destroy(cachep, slabp);
  939                 ret++;
  940                 spin_lock_irq(&cachep->spinlock);
  941         }
  942         return ret;
  943 }
  944 
  945 static int __kmem_cache_shrink(kmem_cache_t *cachep)
  946 {
  947         int ret;
  948 
  949         drain_cpu_caches(cachep);
  950 
  951         spin_lock_irq(&cachep->spinlock);
  952         __kmem_cache_shrink_locked(cachep);
  953         ret = !list_empty(&cachep->slabs_full) ||
  954                 !list_empty(&cachep->slabs_partial);
  955         spin_unlock_irq(&cachep->spinlock);
  956         return ret;
  957 }
  958 
  959 /**
  960  * kmem_cache_shrink - Shrink a cache.
  961  * @cachep: The cache to shrink.
  962  *
  963  * Releases as many slabs as possible for a cache.
  964  * Returns number of pages released.
  965  */
  966 int kmem_cache_shrink(kmem_cache_t *cachep)
  967 {
  968         int ret;
  969 
  970         if (!cachep || in_interrupt() || !is_chained_kmem_cache(cachep))
  971                 BUG();
  972 
  973         spin_lock_irq(&cachep->spinlock);
  974         ret = __kmem_cache_shrink_locked(cachep);
  975         spin_unlock_irq(&cachep->spinlock);
  976 
  977         return ret << cachep->gfporder;
  978 }
  979 
  980 /**
  981  * kmem_cache_destroy - delete a cache
  982  * @cachep: the cache to destroy
  983  *
  984  * Remove a kmem_cache_t object from the slab cache.
  985  * Returns 0 on success.
  986  *
  987  * It is expected this function will be called by a module when it is
  988  * unloaded.  This will remove the cache completely, and avoid a duplicate
  989  * cache being allocated each time a module is loaded and unloaded, if the
  990  * module doesn't have persistent in-kernel storage across loads and unloads.
  991  *
  992  * The cache must be empty before calling this function.
  993  *
  994  * The caller must guarantee that noone will allocate memory from the cache
  995  * during the kmem_cache_destroy().
  996  */
  997 int kmem_cache_destroy (kmem_cache_t * cachep)
  998 {
  999         if (!cachep || in_interrupt() || cachep->growing)
 1000                 BUG();
 1001 
 1002         /* Find the cache in the chain of caches. */
 1003         down(&cache_chain_sem);
 1004         /* the chain is never empty, cache_cache is never destroyed */
 1005         if (clock_searchp == cachep)
 1006                 clock_searchp = list_entry(cachep->next.next,
 1007                                                 kmem_cache_t, next);
 1008         list_del(&cachep->next);
 1009         up(&cache_chain_sem);
 1010 
 1011         if (__kmem_cache_shrink(cachep)) {
 1012                 printk(KERN_ERR "kmem_cache_destroy: Can't free all objects %p\n",
 1013                        cachep);
 1014                 down(&cache_chain_sem);
 1015                 list_add(&cachep->next,&cache_chain);
 1016                 up(&cache_chain_sem);
 1017                 return 1;
 1018         }
 1019 #ifdef CONFIG_SMP
 1020         {
 1021                 int i;
 1022                 for (i = 0; i < NR_CPUS; i++)
 1023                         kfree(cachep->cpudata[i]);
 1024         }
 1025 #endif
 1026         kmem_cache_free(&cache_cache, cachep);
 1027 
 1028         return 0;
 1029 }
 1030 
 1031 /* Get the memory for a slab management obj. */
 1032 static inline slab_t * kmem_cache_slabmgmt (kmem_cache_t *cachep,
 1033                         void *objp, int colour_off, int local_flags)
 1034 {
 1035         slab_t *slabp;
 1036         
 1037         if (OFF_SLAB(cachep)) {
 1038                 /* Slab management obj is off-slab. */
 1039                 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
 1040                 if (!slabp)
 1041                         return NULL;
 1042         } else {
 1043                 /* FIXME: change to
 1044                         slabp = objp
 1045                  * if you enable OPTIMIZE
 1046                  */
 1047                 slabp = objp+colour_off;
 1048                 colour_off += L1_CACHE_ALIGN(cachep->num *
 1049                                 sizeof(kmem_bufctl_t) + sizeof(slab_t));
 1050         }
 1051         slabp->inuse = 0;
 1052         slabp->colouroff = colour_off;
 1053         slabp->s_mem = objp+colour_off;
 1054 
 1055         return slabp;
 1056 }
 1057 
 1058 static inline void kmem_cache_init_objs (kmem_cache_t * cachep,
 1059                         slab_t * slabp, unsigned long ctor_flags)
 1060 {
 1061         int i;
 1062 
 1063         for (i = 0; i < cachep->num; i++) {
 1064                 void* objp = slabp->s_mem+cachep->objsize*i;
 1065 #if DEBUG
 1066                 if (cachep->flags & SLAB_RED_ZONE) {
 1067                         *((unsigned long*)(objp)) = RED_MAGIC1;
 1068                         *((unsigned long*)(objp + cachep->objsize -
 1069                                         BYTES_PER_WORD)) = RED_MAGIC1;
 1070                         objp += BYTES_PER_WORD;
 1071                 }
 1072 #endif
 1073 
 1074                 /*
 1075                  * Constructors are not allowed to allocate memory from
 1076                  * the same cache which they are a constructor for.
 1077                  * Otherwise, deadlock. They must also be threaded.
 1078                  */
 1079                 if (cachep->ctor)
 1080                         cachep->ctor(objp, cachep, ctor_flags);
 1081 #if DEBUG
 1082                 if (cachep->flags & SLAB_RED_ZONE)
 1083                         objp -= BYTES_PER_WORD;
 1084                 if (cachep->flags & SLAB_POISON)
 1085                         /* need to poison the objs */
 1086                         kmem_poison_obj(cachep, objp);
 1087                 if (cachep->flags & SLAB_RED_ZONE) {
 1088                         if (*((unsigned long*)(objp)) != RED_MAGIC1)
 1089                                 BUG();
 1090                         if (*((unsigned long*)(objp + cachep->objsize -
 1091                                         BYTES_PER_WORD)) != RED_MAGIC1)
 1092                                 BUG();
 1093                 }
 1094 #endif
 1095                 slab_bufctl(slabp)[i] = i+1;
 1096         }
 1097         slab_bufctl(slabp)[i-1] = BUFCTL_END;
 1098         slabp->free = 0;
 1099 }
 1100 
 1101 /*
 1102  * Grow (by 1) the number of slabs within a cache.  This is called by
 1103  * kmem_cache_alloc() when there are no active objs left in a cache.
 1104  */
 1105 static int kmem_cache_grow (kmem_cache_t * cachep, int flags)
 1106 {
 1107         slab_t  *slabp;
 1108         struct page     *page;
 1109         void            *objp;
 1110         size_t           offset;
 1111         unsigned int     i, local_flags;
 1112         unsigned long    ctor_flags;
 1113         unsigned long    save_flags;
 1114 
 1115         /* Be lazy and only check for valid flags here,
 1116          * keeping it out of the critical path in kmem_cache_alloc().
 1117          */
 1118         if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
 1119                 BUG();
 1120         if (flags & SLAB_NO_GROW)
 1121                 return 0;
 1122 
 1123         /*
 1124          * The test for missing atomic flag is performed here, rather than
 1125          * the more obvious place, simply to reduce the critical path length
 1126          * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
 1127          * will eventually be caught here (where it matters).
 1128          */
 1129         if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC)
 1130                 BUG();
 1131 
 1132         ctor_flags = SLAB_CTOR_CONSTRUCTOR;
 1133         local_flags = (flags & SLAB_LEVEL_MASK);
 1134         if (local_flags == SLAB_ATOMIC)
 1135                 /*
 1136                  * Not allowed to sleep.  Need to tell a constructor about
 1137                  * this - it might need to know...
 1138                  */
 1139                 ctor_flags |= SLAB_CTOR_ATOMIC;
 1140 
 1141         /* About to mess with non-constant members - lock. */
 1142         spin_lock_irqsave(&cachep->spinlock, save_flags);
 1143 
 1144         /* Get colour for the slab, and cal the next value. */
 1145         offset = cachep->colour_next;
 1146         cachep->colour_next++;
 1147         if (cachep->colour_next >= cachep->colour)
 1148                 cachep->colour_next = 0;
 1149         offset *= cachep->colour_off;
 1150         cachep->dflags |= DFLGS_GROWN;
 1151 
 1152         cachep->growing++;
 1153         spin_unlock_irqrestore(&cachep->spinlock, save_flags);
 1154 
 1155         /* A series of memory allocations for a new slab.
 1156          * Neither the cache-chain semaphore, or cache-lock, are
 1157          * held, but the incrementing c_growing prevents this
 1158          * cache from being reaped or shrunk.
 1159          * Note: The cache could be selected in for reaping in
 1160          * kmem_cache_reap(), but when the final test is made the
 1161          * growing value will be seen.
 1162          */
 1163 
 1164         /* Get mem for the objs. */
 1165         if (!(objp = kmem_getpages(cachep, flags)))
 1166                 goto failed;
 1167 
 1168         /* Get slab management. */
 1169         if (!(slabp = kmem_cache_slabmgmt(cachep, objp, offset, local_flags)))
 1170                 goto opps1;
 1171 
 1172         /* Nasty!!!!!! I hope this is OK. */
 1173         i = 1 << cachep->gfporder;
 1174         page = virt_to_page(objp);
 1175         do {
 1176                 SET_PAGE_CACHE(page, cachep);
 1177                 SET_PAGE_SLAB(page, slabp);
 1178                 PageSetSlab(page);
 1179                 page++;
 1180         } while (--i);
 1181 
 1182         kmem_cache_init_objs(cachep, slabp, ctor_flags);
 1183 
 1184         spin_lock_irqsave(&cachep->spinlock, save_flags);
 1185         cachep->growing--;
 1186 
 1187         /* Make slab active. */
 1188         list_add_tail(&slabp->list, &cachep->slabs_free);
 1189         STATS_INC_GROWN(cachep);
 1190         cachep->failures = 0;
 1191 
 1192         spin_unlock_irqrestore(&cachep->spinlock, save_flags);
 1193         return 1;
 1194 opps1:
 1195         kmem_freepages(cachep, objp);
 1196 failed:
 1197         spin_lock_irqsave(&cachep->spinlock, save_flags);
 1198         cachep->growing--;
 1199         spin_unlock_irqrestore(&cachep->spinlock, save_flags);
 1200         return 0;
 1201 }
 1202 
 1203 /*
 1204  * Perform extra freeing checks:
 1205  * - detect double free
 1206  * - detect bad pointers.
 1207  * Called with the cache-lock held.
 1208  */
 1209 
 1210 #if DEBUG
 1211 static int kmem_extra_free_checks (kmem_cache_t * cachep,
 1212                         slab_t *slabp, void * objp)
 1213 {
 1214         int i;
 1215         unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
 1216 
 1217         if (objnr >= cachep->num)
 1218                 BUG();
 1219         if (objp != slabp->s_mem + objnr*cachep->objsize)
 1220                 BUG();
 1221 
 1222         /* Check slab's freelist to see if this obj is there. */
 1223         for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
 1224                 if (i == objnr)
 1225                         BUG();
 1226         }
 1227         return 0;
 1228 }
 1229 #endif
 1230 
 1231 static inline void kmem_cache_alloc_head(kmem_cache_t *cachep, int flags)
 1232 {
 1233         if (flags & SLAB_DMA) {
 1234                 if (!(cachep->gfpflags & GFP_DMA))
 1235                         BUG();
 1236         } else {
 1237                 if (cachep->gfpflags & GFP_DMA)
 1238                         BUG();
 1239         }
 1240 }
 1241 
 1242 static inline void * kmem_cache_alloc_one_tail (kmem_cache_t *cachep,
 1243                                                 slab_t *slabp)
 1244 {
 1245         void *objp;
 1246 
 1247         STATS_INC_ALLOCED(cachep);
 1248         STATS_INC_ACTIVE(cachep);
 1249         STATS_SET_HIGH(cachep);
 1250 
 1251         /* get obj pointer */
 1252         slabp->inuse++;
 1253         objp = slabp->s_mem + slabp->free*cachep->objsize;
 1254         slabp->free=slab_bufctl(slabp)[slabp->free];
 1255 
 1256         if (unlikely(slabp->free == BUFCTL_END)) {
 1257                 list_del(&slabp->list);
 1258                 list_add(&slabp->list, &cachep->slabs_full);
 1259         }
 1260 #if DEBUG
 1261         if (cachep->flags & SLAB_POISON)
 1262                 if (kmem_check_poison_obj(cachep, objp))
 1263                         BUG();
 1264         if (cachep->flags & SLAB_RED_ZONE) {
 1265                 /* Set alloc red-zone, and check old one. */
 1266                 if (xchg((unsigned long *)objp, RED_MAGIC2) !=
 1267                                                          RED_MAGIC1)
 1268                         BUG();
 1269                 if (xchg((unsigned long *)(objp+cachep->objsize -
 1270                           BYTES_PER_WORD), RED_MAGIC2) != RED_MAGIC1)
 1271                         BUG();
 1272                 objp += BYTES_PER_WORD;
 1273         }
 1274 #endif
 1275         return objp;
 1276 }
 1277 
 1278 /*
 1279  * Returns a ptr to an obj in the given cache.
 1280  * caller must guarantee synchronization
 1281  * #define for the goto optimization 8-)
 1282  */
 1283 #define kmem_cache_alloc_one(cachep)                            \
 1284 ({                                                              \
 1285         struct list_head * slabs_partial, * entry;              \
 1286         slab_t *slabp;                                          \
 1287                                                                 \
 1288         slabs_partial = &(cachep)->slabs_partial;               \
 1289         entry = slabs_partial->next;                            \
 1290         if (unlikely(entry == slabs_partial)) {                 \
 1291                 struct list_head * slabs_free;                  \
 1292                 slabs_free = &(cachep)->slabs_free;             \
 1293                 entry = slabs_free->next;                       \
 1294                 if (unlikely(entry == slabs_free))              \
 1295                         goto alloc_new_slab;                    \
 1296                 list_del(entry);                                \
 1297                 list_add(entry, slabs_partial);                 \
 1298         }                                                       \
 1299                                                                 \
 1300         slabp = list_entry(entry, slab_t, list);                \
 1301         kmem_cache_alloc_one_tail(cachep, slabp);               \
 1302 })
 1303 
 1304 #ifdef CONFIG_SMP
 1305 void* kmem_cache_alloc_batch(kmem_cache_t* cachep, cpucache_t* cc, int flags)
 1306 {
 1307         int batchcount = cachep->batchcount;
 1308 
 1309         spin_lock(&cachep->spinlock);
 1310         while (batchcount--) {
 1311                 struct list_head * slabs_partial, * entry;
 1312                 slab_t *slabp;
 1313                 /* Get slab alloc is to come from. */
 1314                 slabs_partial = &(cachep)->slabs_partial;
 1315                 entry = slabs_partial->next;
 1316                 if (unlikely(entry == slabs_partial)) {
 1317                         struct list_head * slabs_free;
 1318                         slabs_free = &(cachep)->slabs_free;
 1319                         entry = slabs_free->next;
 1320                         if (unlikely(entry == slabs_free))
 1321                                 break;
 1322                         list_del(entry);
 1323                         list_add(entry, slabs_partial);
 1324                 }
 1325 
 1326                 slabp = list_entry(entry, slab_t, list);
 1327                 cc_entry(cc)[cc->avail++] =
 1328                                 kmem_cache_alloc_one_tail(cachep, slabp);
 1329         }
 1330         spin_unlock(&cachep->spinlock);
 1331 
 1332         if (cc->avail)
 1333                 return cc_entry(cc)[--cc->avail];
 1334         return NULL;
 1335 }
 1336 #endif
 1337 
 1338 static inline void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)
 1339 {
 1340         unsigned long save_flags;
 1341         void* objp;
 1342 
 1343         kmem_cache_alloc_head(cachep, flags);
 1344 try_again:
 1345         local_irq_save(save_flags);
 1346 #ifdef CONFIG_SMP
 1347         {
 1348                 cpucache_t *cc = cc_data(cachep);
 1349 
 1350                 if (cc) {
 1351                         if (cc->avail) {
 1352                                 STATS_INC_ALLOCHIT(cachep);
 1353                                 objp = cc_entry(cc)[--cc->avail];
 1354                         } else {
 1355                                 STATS_INC_ALLOCMISS(cachep);
 1356                                 objp = kmem_cache_alloc_batch(cachep,cc,flags);
 1357                                 if (!objp)
 1358                                         goto alloc_new_slab_nolock;
 1359                         }
 1360                 } else {
 1361                         spin_lock(&cachep->spinlock);
 1362                         objp = kmem_cache_alloc_one(cachep);
 1363                         spin_unlock(&cachep->spinlock);
 1364                 }
 1365         }
 1366 #else
 1367         objp = kmem_cache_alloc_one(cachep);
 1368 #endif
 1369         local_irq_restore(save_flags);
 1370         return objp;
 1371 alloc_new_slab:
 1372 #ifdef CONFIG_SMP
 1373         spin_unlock(&cachep->spinlock);
 1374 alloc_new_slab_nolock:
 1375 #endif
 1376         local_irq_restore(save_flags);
 1377         if (kmem_cache_grow(cachep, flags))
 1378                 /* Someone may have stolen our objs.  Doesn't matter, we'll
 1379                  * just come back here again.
 1380                  */
 1381                 goto try_again;
 1382         return NULL;
 1383 }
 1384 
 1385 /*
 1386  * Release an obj back to its cache. If the obj has a constructed
 1387  * state, it should be in this state _before_ it is released.
 1388  * - caller is responsible for the synchronization
 1389  */
 1390 
 1391 #if DEBUG
 1392 # define CHECK_NR(pg)                                           \
 1393         do {                                                    \
 1394                 if (!VALID_PAGE(pg)) {                          \
 1395                         printk(KERN_ERR "kfree: out of range ptr %lxh.\n", \
 1396                                 (unsigned long)objp);           \
 1397                         BUG();                                  \
 1398                 } \
 1399         } while (0)
 1400 # define CHECK_PAGE(page)                                       \
 1401         do {                                                    \
 1402                 CHECK_NR(page);                                 \
 1403                 if (!PageSlab(page)) {                          \
 1404                         printk(KERN_ERR "kfree: bad ptr %lxh.\n", \
 1405                                 (unsigned long)objp);           \
 1406                         BUG();                                  \
 1407                 }                                               \
 1408         } while (0)
 1409 
 1410 #else
 1411 # define CHECK_PAGE(pg) do { } while (0)
 1412 #endif
 1413 
 1414 static inline void kmem_cache_free_one(kmem_cache_t *cachep, void *objp)
 1415 {
 1416         slab_t* slabp;
 1417 
 1418         CHECK_PAGE(virt_to_page(objp));
 1419         /* reduces memory footprint
 1420          *
 1421         if (OPTIMIZE(cachep))
 1422                 slabp = (void*)((unsigned long)objp&(~(PAGE_SIZE-1)));
 1423          else
 1424          */
 1425         slabp = GET_PAGE_SLAB(virt_to_page(objp));
 1426 
 1427 #if DEBUG
 1428         if (cachep->flags & SLAB_DEBUG_INITIAL)
 1429                 /* Need to call the slab's constructor so the
 1430                  * caller can perform a verify of its state (debugging).
 1431                  * Called without the cache-lock held.
 1432                  */
 1433                 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
 1434 
 1435         if (cachep->flags & SLAB_RED_ZONE) {
 1436                 objp -= BYTES_PER_WORD;
 1437                 if (xchg((unsigned long *)objp, RED_MAGIC1) != RED_MAGIC2)
 1438                         /* Either write before start, or a double free. */
 1439                         BUG();
 1440                 if (xchg((unsigned long *)(objp+cachep->objsize -
 1441                                 BYTES_PER_WORD), RED_MAGIC1) != RED_MAGIC2)
 1442                         /* Either write past end, or a double free. */
 1443                         BUG();
 1444         }
 1445         if (cachep->flags & SLAB_POISON)
 1446                 kmem_poison_obj(cachep, objp);
 1447         if (kmem_extra_free_checks(cachep, slabp, objp))
 1448                 return;
 1449 #endif
 1450         {
 1451                 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
 1452 
 1453                 slab_bufctl(slabp)[objnr] = slabp->free;
 1454                 slabp->free = objnr;
 1455         }
 1456         STATS_DEC_ACTIVE(cachep);
 1457         
 1458         /* fixup slab chains */
 1459         {
 1460                 int inuse = slabp->inuse;
 1461                 if (unlikely(!--slabp->inuse)) {
 1462                         /* Was partial or full, now empty. */
 1463                         list_del(&slabp->list);
 1464                         list_add(&slabp->list, &cachep->slabs_free);
 1465                 } else if (unlikely(inuse == cachep->num)) {
 1466                         /* Was full. */
 1467                         list_del(&slabp->list);
 1468                         list_add(&slabp->list, &cachep->slabs_partial);
 1469                 }
 1470         }
 1471 }
 1472 
 1473 #ifdef CONFIG_SMP
 1474 static inline void __free_block (kmem_cache_t* cachep,
 1475                                                         void** objpp, int len)
 1476 {
 1477         for ( ; len > 0; len--, objpp++)
 1478                 kmem_cache_free_one(cachep, *objpp);
 1479 }
 1480 
 1481 static void free_block (kmem_cache_t* cachep, void** objpp, int len)
 1482 {
 1483         spin_lock(&cachep->spinlock);
 1484         __free_block(cachep, objpp, len);
 1485         spin_unlock(&cachep->spinlock);
 1486 }
 1487 #endif
 1488 
 1489 /*
 1490  * __kmem_cache_free
 1491  * called with disabled ints
 1492  */
 1493 static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)
 1494 {
 1495 #ifdef CONFIG_SMP
 1496         cpucache_t *cc = cc_data(cachep);
 1497 
 1498         CHECK_PAGE(virt_to_page(objp));
 1499         if (cc) {
 1500                 int batchcount;
 1501                 if (cc->avail < cc->limit) {
 1502                         STATS_INC_FREEHIT(cachep);
 1503                         cc_entry(cc)[cc->avail++] = objp;
 1504                         return;
 1505                 }
 1506                 STATS_INC_FREEMISS(cachep);
 1507                 batchcount = cachep->batchcount;
 1508                 cc->avail -= batchcount;
 1509                 free_block(cachep,
 1510                                         &cc_entry(cc)[cc->avail],batchcount);
 1511                 cc_entry(cc)[cc->avail++] = objp;
 1512                 return;
 1513         } else {
 1514                 free_block(cachep, &objp, 1);
 1515         }
 1516 #else
 1517         kmem_cache_free_one(cachep, objp);
 1518 #endif
 1519 }
 1520 
 1521 /**
 1522  * kmem_cache_alloc - Allocate an object
 1523  * @cachep: The cache to allocate from.
 1524  * @flags: See kmalloc().
 1525  *
 1526  * Allocate an object from this cache.  The flags are only relevant
 1527  * if the cache has no available objects.
 1528  */
 1529 void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
 1530 {
 1531         return __kmem_cache_alloc(cachep, flags);
 1532 }
 1533 
 1534 /**
 1535  * kmalloc - allocate memory
 1536  * @size: how many bytes of memory are required.
 1537  * @flags: the type of memory to allocate.
 1538  *
 1539  * kmalloc is the normal method of allocating memory
 1540  * in the kernel.
 1541  *
 1542  * The @flags argument may be one of:
 1543  *
 1544  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 1545  *
 1546  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 1547  *
 1548  * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 1549  *
 1550  * Additionally, the %GFP_DMA flag may be set to indicate the memory
 1551  * must be suitable for DMA.  This can mean different things on different
 1552  * platforms.  For example, on i386, it means that the memory must come
 1553  * from the first 16MB.
 1554  */
 1555 void * kmalloc (size_t size, int flags)
 1556 {
 1557         cache_sizes_t *csizep = cache_sizes;
 1558 
 1559         for (; csizep->cs_size; csizep++) {
 1560                 if (size > csizep->cs_size)
 1561                         continue;
 1562                 return __kmem_cache_alloc(flags & GFP_DMA ?
 1563                          csizep->cs_dmacachep : csizep->cs_cachep, flags);
 1564         }
 1565         return NULL;
 1566 }
 1567 
 1568 /**
 1569  * kmem_cache_free - Deallocate an object
 1570  * @cachep: The cache the allocation was from.
 1571  * @objp: The previously allocated object.
 1572  *
 1573  * Free an object which was previously allocated from this
 1574  * cache.
 1575  */
 1576 void kmem_cache_free (kmem_cache_t *cachep, void *objp)
 1577 {
 1578         unsigned long flags;
 1579 #if DEBUG
 1580         CHECK_PAGE(virt_to_page(objp));
 1581         if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))
 1582                 BUG();
 1583 #endif
 1584 
 1585         local_irq_save(flags);
 1586         __kmem_cache_free(cachep, objp);
 1587         local_irq_restore(flags);
 1588 }
 1589 
 1590 /**
 1591  * kfree - free previously allocated memory
 1592  * @objp: pointer returned by kmalloc.
 1593  *
 1594  * Don't free memory not originally allocated by kmalloc()
 1595  * or you will run into trouble.
 1596  */
 1597 void kfree (const void *objp)
 1598 {
 1599         kmem_cache_t *c;
 1600         unsigned long flags;
 1601 
 1602         if (!objp)
 1603                 return;
 1604         local_irq_save(flags);
 1605         CHECK_PAGE(virt_to_page(objp));
 1606         c = GET_PAGE_CACHE(virt_to_page(objp));
 1607         __kmem_cache_free(c, (void*)objp);
 1608         local_irq_restore(flags);
 1609 }
 1610 
 1611 unsigned int kmem_cache_size(kmem_cache_t *cachep)
 1612 {
 1613 #if DEBUG
 1614         if (cachep->flags & SLAB_RED_ZONE)
 1615                 return (cachep->objsize - 2*BYTES_PER_WORD);
 1616 #endif
 1617         return cachep->objsize;
 1618 }
 1619 
 1620 kmem_cache_t * kmem_find_general_cachep (size_t size, int gfpflags)
 1621 {
 1622         cache_sizes_t *csizep = cache_sizes;
 1623 
 1624         /* This function could be moved to the header file, and
 1625          * made inline so consumers can quickly determine what
 1626          * cache pointer they require.
 1627          */
 1628         for ( ; csizep->cs_size; csizep++) {
 1629                 if (size > csizep->cs_size)
 1630                         continue;
 1631                 break;
 1632         }
 1633         return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep;
 1634 }
 1635 
 1636 #ifdef CONFIG_SMP
 1637 
 1638 /* called with cache_chain_sem acquired.  */
 1639 static int kmem_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount)
 1640 {
 1641         ccupdate_struct_t new;
 1642         int i;
 1643 
 1644         /*
 1645          * These are admin-provided, so we are more graceful.
 1646          */
 1647         if (limit < 0)
 1648                 return -EINVAL;
 1649         if (batchcount < 0)
 1650                 return -EINVAL;
 1651         if (batchcount > limit)
 1652                 return -EINVAL;
 1653         if (limit != 0 && !batchcount)
 1654                 return -EINVAL;
 1655 
 1656         memset(&new.new,0,sizeof(new.new));
 1657         if (limit) {
 1658                 for (i = 0; i< smp_num_cpus; i++) {
 1659                         cpucache_t* ccnew;
 1660 
 1661                         ccnew = kmalloc(sizeof(void*)*limit+
 1662                                         sizeof(cpucache_t), GFP_KERNEL);
 1663                         if (!ccnew)
 1664                                 goto oom;
 1665                         ccnew->limit = limit;
 1666                         ccnew->avail = 0;
 1667                         new.new[cpu_logical_map(i)] = ccnew;
 1668                 }
 1669         }
 1670         new.cachep = cachep;
 1671         spin_lock_irq(&cachep->spinlock);
 1672         cachep->batchcount = batchcount;
 1673         spin_unlock_irq(&cachep->spinlock);
 1674 
 1675         smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
 1676 
 1677         for (i = 0; i < smp_num_cpus; i++) {
 1678                 cpucache_t* ccold = new.new[cpu_logical_map(i)];
 1679                 if (!ccold)
 1680                         continue;
 1681                 local_irq_disable();
 1682                 free_block(cachep, cc_entry(ccold), ccold->avail);
 1683                 local_irq_enable();
 1684                 kfree(ccold);
 1685         }
 1686         return 0;
 1687 oom:
 1688         for (i--; i >= 0; i--)
 1689                 kfree(new.new[cpu_logical_map(i)]);
 1690         return -ENOMEM;
 1691 }
 1692 
 1693 static void enable_cpucache (kmem_cache_t *cachep)
 1694 {
 1695         int err;
 1696         int limit;
 1697 
 1698         /* FIXME: optimize */
 1699         if (cachep->objsize > PAGE_SIZE)
 1700                 return;
 1701         if (cachep->objsize > 1024)
 1702                 limit = 60;
 1703         else if (cachep->objsize > 256)
 1704                 limit = 124;
 1705         else
 1706                 limit = 252;
 1707 
 1708         err = kmem_tune_cpucache(cachep, limit, limit/2);
 1709         if (err)
 1710                 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
 1711                                         cachep->name, -err);
 1712 }
 1713 
 1714 static void enable_all_cpucaches (void)
 1715 {
 1716         struct list_head* p;
 1717 
 1718         down(&cache_chain_sem);
 1719 
 1720         p = &cache_cache.next;
 1721         do {
 1722                 kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
 1723 
 1724                 enable_cpucache(cachep);
 1725                 p = cachep->next.next;
 1726         } while (p != &cache_cache.next);
 1727 
 1728         up(&cache_chain_sem);
 1729 }
 1730 #endif
 1731 
 1732 /**
 1733  * kmem_cache_reap - Reclaim memory from caches.
 1734  * @gfp_mask: the type of memory required.
 1735  *
 1736  * Called from do_try_to_free_pages() and __alloc_pages()
 1737  */
 1738 int kmem_cache_reap (int gfp_mask)
 1739 {
 1740         slab_t *slabp;
 1741         kmem_cache_t *searchp;
 1742         kmem_cache_t *best_cachep;
 1743         unsigned int best_pages;
 1744         unsigned int best_len;
 1745         unsigned int scan;
 1746         int ret = 0;
 1747 
 1748         if (gfp_mask & __GFP_WAIT)
 1749                 down(&cache_chain_sem);
 1750         else
 1751                 if (down_trylock(&cache_chain_sem))
 1752                         return 0;
 1753 
 1754         scan = REAP_SCANLEN;
 1755         best_len = 0;
 1756         best_pages = 0;
 1757         best_cachep = NULL;
 1758         searchp = clock_searchp;
 1759         do {
 1760                 unsigned int pages;
 1761                 struct list_head* p;
 1762                 unsigned int full_free;
 1763 
 1764                 /* It's safe to test this without holding the cache-lock. */
 1765                 if (searchp->flags & SLAB_NO_REAP)
 1766                         goto next;
 1767                 spin_lock_irq(&searchp->spinlock);
 1768                 if (searchp->growing)
 1769                         goto next_unlock;
 1770                 if (searchp->dflags & DFLGS_GROWN) {
 1771                         searchp->dflags &= ~DFLGS_GROWN;
 1772                         goto next_unlock;
 1773                 }
 1774 #ifdef CONFIG_SMP
 1775                 {
 1776                         cpucache_t *cc = cc_data(searchp);
 1777                         if (cc && cc->avail) {
 1778                                 __free_block(searchp, cc_entry(cc), cc->avail);
 1779                                 cc->avail = 0;
 1780                         }
 1781                 }
 1782 #endif
 1783 
 1784                 full_free = 0;
 1785                 p = searchp->slabs_free.next;
 1786                 while (p != &searchp->slabs_free) {
 1787                         slabp = list_entry(p, slab_t, list);
 1788 #if DEBUG
 1789                         if (slabp->inuse)
 1790                                 BUG();
 1791 #endif
 1792                         full_free++;
 1793                         p = p->next;
 1794                 }
 1795 
 1796                 /*
 1797                  * Try to avoid slabs with constructors and/or
 1798                  * more than one page per slab (as it can be difficult
 1799                  * to get high orders from gfp()).
 1800                  */
 1801                 pages = full_free * (1<<searchp->gfporder);
 1802                 if (searchp->ctor)
 1803                         pages = (pages*4+1)/5;
 1804                 if (searchp->gfporder)
 1805                         pages = (pages*4+1)/5;
 1806                 if (pages > best_pages) {
 1807                         best_cachep = searchp;
 1808                         best_len = full_free;
 1809                         best_pages = pages;
 1810                         if (pages >= REAP_PERFECT) {
 1811                                 clock_searchp = list_entry(searchp->next.next,
 1812                                                         kmem_cache_t,next);
 1813                                 goto perfect;
 1814                         }
 1815                 }
 1816 next_unlock:
 1817                 spin_unlock_irq(&searchp->spinlock);
 1818 next:
 1819                 searchp = list_entry(searchp->next.next,kmem_cache_t,next);
 1820         } while (--scan && searchp != clock_searchp);
 1821 
 1822         clock_searchp = searchp;
 1823 
 1824         if (!best_cachep)
 1825                 /* couldn't find anything to reap */
 1826                 goto out;
 1827 
 1828         spin_lock_irq(&best_cachep->spinlock);
 1829 perfect:
 1830         /* free only 50% of the free slabs */
 1831         best_len = (best_len + 1)/2;
 1832         for (scan = 0; scan < best_len; scan++) {
 1833                 struct list_head *p;
 1834 
 1835                 if (best_cachep->growing)
 1836                         break;
 1837                 p = best_cachep->slabs_free.prev;
 1838                 if (p == &best_cachep->slabs_free)
 1839                         break;
 1840                 slabp = list_entry(p,slab_t,list);
 1841 #if DEBUG
 1842                 if (slabp->inuse)
 1843                         BUG();
 1844 #endif
 1845                 list_del(&slabp->list);
 1846                 STATS_INC_REAPED(best_cachep);
 1847 
 1848                 /* Safe to drop the lock. The slab is no longer linked to the
 1849                  * cache.
 1850                  */
 1851                 spin_unlock_irq(&best_cachep->spinlock);
 1852                 kmem_slab_destroy(best_cachep, slabp);
 1853                 spin_lock_irq(&best_cachep->spinlock);
 1854         }
 1855         spin_unlock_irq(&best_cachep->spinlock);
 1856         ret = scan * (1 << best_cachep->gfporder);
 1857 out:
 1858         up(&cache_chain_sem);
 1859         return ret;
 1860 }
 1861 
 1862 #ifdef CONFIG_PROC_FS
 1863 
 1864 static void *s_start(struct seq_file *m, loff_t *pos)
 1865 {
 1866         loff_t n = *pos;
 1867         struct list_head *p;
 1868 
 1869         down(&cache_chain_sem);
 1870         if (!n)
 1871                 return (void *)1;
 1872         p = &cache_cache.next;
 1873         while (--n) {
 1874                 p = p->next;
 1875                 if (p == &cache_cache.next)
 1876                         return NULL;
 1877         }
 1878         return list_entry(p, kmem_cache_t, next);
 1879 }
 1880 
 1881 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
 1882 {
 1883         kmem_cache_t *cachep = p;
 1884         ++*pos;
 1885         if (p == (void *)1)
 1886                 return &cache_cache;
 1887         cachep = list_entry(cachep->next.next, kmem_cache_t, next);
 1888         return cachep == &cache_cache ? NULL : cachep;
 1889 }
 1890 
 1891 static void s_stop(struct seq_file *m, void *p)
 1892 {
 1893         up(&cache_chain_sem);
 1894 }
 1895 
 1896 static int s_show(struct seq_file *m, void *p)
 1897 {
 1898         kmem_cache_t *cachep = p;
 1899         struct list_head *q;
 1900         slab_t          *slabp;
 1901         unsigned long   active_objs;
 1902         unsigned long   num_objs;
 1903         unsigned long   active_slabs = 0;
 1904         unsigned long   num_slabs;
 1905         const char *name; 
 1906 
 1907         if (p == (void*)1) {
 1908                 /*
 1909                  * Output format version, so at least we can change it
 1910                  * without _too_ many complaints.
 1911                  */
 1912                 seq_puts(m, "slabinfo - version: 1.1"
 1913 #if STATS
 1914                                 " (statistics)"
 1915 #endif
 1916 #ifdef CONFIG_SMP
 1917                                 " (SMP)"
 1918 #endif
 1919                                 "\n");
 1920                 return 0;
 1921         }
 1922 
 1923         spin_lock_irq(&cachep->spinlock);
 1924         active_objs = 0;
 1925         num_slabs = 0;
 1926         list_for_each(q,&cachep->slabs_full) {
 1927                 slabp = list_entry(q, slab_t, list);
 1928                 if (slabp->inuse != cachep->num)
 1929                         BUG();
 1930                 active_objs += cachep->num;
 1931                 active_slabs++;
 1932         }
 1933         list_for_each(q,&cachep->slabs_partial) {
 1934                 slabp = list_entry(q, slab_t, list);
 1935                 if (slabp->inuse == cachep->num || !slabp->inuse)
 1936                         BUG();
 1937                 active_objs += slabp->inuse;
 1938                 active_slabs++;
 1939         }
 1940         list_for_each(q,&cachep->slabs_free) {
 1941                 slabp = list_entry(q, slab_t, list);
 1942                 if (slabp->inuse)
 1943                         BUG();
 1944                 num_slabs++;
 1945         }
 1946         num_slabs+=active_slabs;
 1947         num_objs = num_slabs*cachep->num;
 1948 
 1949         name = cachep->name; 
 1950         {
 1951         char tmp; 
 1952         mm_segment_t    old_fs;
 1953         old_fs = get_fs();
 1954         set_fs(KERNEL_DS);
 1955         if (__get_user(tmp, name)) 
 1956                 name = "broken"; 
 1957         set_fs(old_fs);
 1958         }       
 1959 
 1960         seq_printf(m, "%-17s %6lu %6lu %6u %4lu %4lu %4u",
 1961                 name, active_objs, num_objs, cachep->objsize,
 1962                 active_slabs, num_slabs, (1<<cachep->gfporder));
 1963 
 1964 #if STATS
 1965         {
 1966                 unsigned long errors = cachep->errors;
 1967                 unsigned long high = cachep->high_mark;
 1968                 unsigned long grown = cachep->grown;
 1969                 unsigned long reaped = cachep->reaped;
 1970                 unsigned long allocs = cachep->num_allocations;
 1971 
 1972                 seq_printf(m, " : %6lu %7lu %5lu %4lu %4lu",
 1973                                 high, allocs, grown, reaped, errors);
 1974         }
 1975 #endif
 1976 #ifdef CONFIG_SMP
 1977         {
 1978                 cpucache_t *cc = cc_data(cachep);
 1979                 unsigned int batchcount = cachep->batchcount;
 1980                 unsigned int limit;
 1981 
 1982                 if (cc)
 1983                         limit = cc->limit;
 1984                 else
 1985                         limit = 0;
 1986                 seq_printf(m, " : %4u %4u",
 1987                                 limit, batchcount);
 1988         }
 1989 #endif
 1990 #if STATS && defined(CONFIG_SMP)
 1991         {
 1992                 unsigned long allochit = atomic_read(&cachep->allochit);
 1993                 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
 1994                 unsigned long freehit = atomic_read(&cachep->freehit);
 1995                 unsigned long freemiss = atomic_read(&cachep->freemiss);
 1996                 seq_printf(m, " : %6lu %6lu %6lu %6lu",
 1997                                 allochit, allocmiss, freehit, freemiss);
 1998         }
 1999 #endif
 2000         spin_unlock_irq(&cachep->spinlock);
 2001         seq_putc(m, '\n');
 2002         return 0;
 2003 }
 2004 
 2005 /**
 2006  * slabinfo_op - iterator that generates /proc/slabinfo
 2007  *
 2008  * Output layout:
 2009  * cache-name
 2010  * num-active-objs
 2011  * total-objs
 2012  * object size
 2013  * num-active-slabs
 2014  * total-slabs
 2015  * num-pages-per-slab
 2016  * + further values on SMP and with statistics enabled
 2017  */
 2018 
 2019 struct seq_operations slabinfo_op = {
 2020         start:  s_start,
 2021         next:   s_next,
 2022         stop:   s_stop,
 2023         show:   s_show
 2024 };
 2025 
 2026 #define MAX_SLABINFO_WRITE 128
 2027 /**
 2028  * slabinfo_write - SMP tuning for the slab allocator
 2029  * @file: unused
 2030  * @buffer: user buffer
 2031  * @count: data len
 2032  * @data: unused
 2033  */
 2034 ssize_t slabinfo_write(struct file *file, const char *buffer,
 2035                                 size_t count, loff_t *ppos)
 2036 {
 2037 #ifdef CONFIG_SMP
 2038         char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
 2039         int limit, batchcount, res;
 2040         struct list_head *p;
 2041         
 2042         if (count > MAX_SLABINFO_WRITE)
 2043                 return -EINVAL;
 2044         if (copy_from_user(&kbuf, buffer, count))
 2045                 return -EFAULT;
 2046         kbuf[MAX_SLABINFO_WRITE] = '\0'; 
 2047 
 2048         tmp = strchr(kbuf, ' ');
 2049         if (!tmp)
 2050                 return -EINVAL;
 2051         *tmp = '\0';
 2052         tmp++;
 2053         limit = simple_strtol(tmp, &tmp, 10);
 2054         while (*tmp == ' ')
 2055                 tmp++;
 2056         batchcount = simple_strtol(tmp, &tmp, 10);
 2057 
 2058         /* Find the cache in the chain of caches. */
 2059         down(&cache_chain_sem);
 2060         res = -EINVAL;
 2061         list_for_each(p,&cache_chain) {
 2062                 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
 2063 
 2064                 if (!strcmp(cachep->name, kbuf)) {
 2065                         res = kmem_tune_cpucache(cachep, limit, batchcount);
 2066                         break;
 2067                 }
 2068         }
 2069         up(&cache_chain_sem);
 2070         if (res >= 0)
 2071                 res = count;
 2072         return res;
 2073 #else
 2074         return -EINVAL;
 2075 #endif
 2076 }
 2077 #endif

Cache object: 6dbd8aa4b0df8d1f805d9a1ba4c283e4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.