The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/slab_common.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Slab allocator functions that are independent of the allocator strategy
    3  *
    4  * (C) 2012 Christoph Lameter <cl@linux.com>
    5  */
    6 #include <linux/slab.h>
    7 
    8 #include <linux/mm.h>
    9 #include <linux/poison.h>
   10 #include <linux/interrupt.h>
   11 #include <linux/memory.h>
   12 #include <linux/compiler.h>
   13 #include <linux/module.h>
   14 #include <linux/cpu.h>
   15 #include <linux/uaccess.h>
   16 #include <linux/seq_file.h>
   17 #include <linux/proc_fs.h>
   18 #include <asm/cacheflush.h>
   19 #include <asm/tlbflush.h>
   20 #include <asm/page.h>
   21 #include <linux/memcontrol.h>
   22 
   23 #include "slab.h"
   24 
   25 enum slab_state slab_state;
   26 LIST_HEAD(slab_caches);
   27 DEFINE_MUTEX(slab_mutex);
   28 struct kmem_cache *kmem_cache;
   29 
   30 #ifdef CONFIG_DEBUG_VM
   31 static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
   32                                    size_t size)
   33 {
   34         struct kmem_cache *s = NULL;
   35 
   36         if (!name || in_interrupt() || size < sizeof(void *) ||
   37                 size > KMALLOC_MAX_SIZE) {
   38                 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
   39                 return -EINVAL;
   40         }
   41 
   42         list_for_each_entry(s, &slab_caches, list) {
   43                 char tmp;
   44                 int res;
   45 
   46                 /*
   47                  * This happens when the module gets unloaded and doesn't
   48                  * destroy its slab cache and no-one else reuses the vmalloc
   49                  * area of the module.  Print a warning.
   50                  */
   51                 res = probe_kernel_address(s->name, tmp);
   52                 if (res) {
   53                         pr_err("Slab cache with size %d has lost its name\n",
   54                                s->object_size);
   55                         continue;
   56                 }
   57 
   58                 /*
   59                  * For simplicity, we won't check this in the list of memcg
   60                  * caches. We have control over memcg naming, and if there
   61                  * aren't duplicates in the global list, there won't be any
   62                  * duplicates in the memcg lists as well.
   63                  */
   64                 if (!memcg && !strcmp(s->name, name)) {
   65                         pr_err("%s (%s): Cache name already exists.\n",
   66                                __func__, name);
   67                         dump_stack();
   68                         s = NULL;
   69                         return -EINVAL;
   70                 }
   71         }
   72 
   73         WARN_ON(strchr(name, ' '));     /* It confuses parsers */
   74         return 0;
   75 }
   76 #else
   77 static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
   78                                           const char *name, size_t size)
   79 {
   80         return 0;
   81 }
   82 #endif
   83 
   84 #ifdef CONFIG_MEMCG_KMEM
   85 int memcg_update_all_caches(int num_memcgs)
   86 {
   87         struct kmem_cache *s;
   88         int ret = 0;
   89         mutex_lock(&slab_mutex);
   90 
   91         list_for_each_entry(s, &slab_caches, list) {
   92                 if (!is_root_cache(s))
   93                         continue;
   94 
   95                 ret = memcg_update_cache_size(s, num_memcgs);
   96                 /*
   97                  * See comment in memcontrol.c, memcg_update_cache_size:
   98                  * Instead of freeing the memory, we'll just leave the caches
   99                  * up to this point in an updated state.
  100                  */
  101                 if (ret)
  102                         goto out;
  103         }
  104 
  105         memcg_update_array_size(num_memcgs);
  106 out:
  107         mutex_unlock(&slab_mutex);
  108         return ret;
  109 }
  110 #endif
  111 
  112 /*
  113  * Figure out what the alignment of the objects will be given a set of
  114  * flags, a user specified alignment and the size of the objects.
  115  */
  116 unsigned long calculate_alignment(unsigned long flags,
  117                 unsigned long align, unsigned long size)
  118 {
  119         /*
  120          * If the user wants hardware cache aligned objects then follow that
  121          * suggestion if the object is sufficiently large.
  122          *
  123          * The hardware cache alignment cannot override the specified
  124          * alignment though. If that is greater then use it.
  125          */
  126         if (flags & SLAB_HWCACHE_ALIGN) {
  127                 unsigned long ralign = cache_line_size();
  128                 while (size <= ralign / 2)
  129                         ralign /= 2;
  130                 align = max(align, ralign);
  131         }
  132 
  133         if (align < ARCH_SLAB_MINALIGN)
  134                 align = ARCH_SLAB_MINALIGN;
  135 
  136         return ALIGN(align, sizeof(void *));
  137 }
  138 
  139 
  140 /*
  141  * kmem_cache_create - Create a cache.
  142  * @name: A string which is used in /proc/slabinfo to identify this cache.
  143  * @size: The size of objects to be created in this cache.
  144  * @align: The required alignment for the objects.
  145  * @flags: SLAB flags
  146  * @ctor: A constructor for the objects.
  147  *
  148  * Returns a ptr to the cache on success, NULL on failure.
  149  * Cannot be called within a interrupt, but can be interrupted.
  150  * The @ctor is run when new pages are allocated by the cache.
  151  *
  152  * The flags are
  153  *
  154  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  155  * to catch references to uninitialised memory.
  156  *
  157  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  158  * for buffer overruns.
  159  *
  160  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  161  * cacheline.  This can be beneficial if you're counting cycles as closely
  162  * as davem.
  163  */
  164 
  165 struct kmem_cache *
  166 kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
  167                         size_t align, unsigned long flags, void (*ctor)(void *),
  168                         struct kmem_cache *parent_cache)
  169 {
  170         struct kmem_cache *s = NULL;
  171         int err = 0;
  172 
  173         get_online_cpus();
  174         mutex_lock(&slab_mutex);
  175 
  176         if (!kmem_cache_sanity_check(memcg, name, size) == 0)
  177                 goto out_locked;
  178 
  179         /*
  180          * Some allocators will constraint the set of valid flags to a subset
  181          * of all flags. We expect them to define CACHE_CREATE_MASK in this
  182          * case, and we'll just provide them with a sanitized version of the
  183          * passed flags.
  184          */
  185         flags &= CACHE_CREATE_MASK;
  186 
  187         s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
  188         if (s)
  189                 goto out_locked;
  190 
  191         s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
  192         if (s) {
  193                 s->object_size = s->size = size;
  194                 s->align = calculate_alignment(flags, align, size);
  195                 s->ctor = ctor;
  196 
  197                 if (memcg_register_cache(memcg, s, parent_cache)) {
  198                         kmem_cache_free(kmem_cache, s);
  199                         err = -ENOMEM;
  200                         goto out_locked;
  201                 }
  202 
  203                 s->name = kstrdup(name, GFP_KERNEL);
  204                 if (!s->name) {
  205                         kmem_cache_free(kmem_cache, s);
  206                         err = -ENOMEM;
  207                         goto out_locked;
  208                 }
  209 
  210                 err = __kmem_cache_create(s, flags);
  211                 if (!err) {
  212                         s->refcount = 1;
  213                         list_add(&s->list, &slab_caches);
  214                         memcg_cache_list_add(memcg, s);
  215                 } else {
  216                         kfree(s->name);
  217                         kmem_cache_free(kmem_cache, s);
  218                 }
  219         } else
  220                 err = -ENOMEM;
  221 
  222 out_locked:
  223         mutex_unlock(&slab_mutex);
  224         put_online_cpus();
  225 
  226         if (err) {
  227 
  228                 if (flags & SLAB_PANIC)
  229                         panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
  230                                 name, err);
  231                 else {
  232                         printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
  233                                 name, err);
  234                         dump_stack();
  235                 }
  236 
  237                 return NULL;
  238         }
  239 
  240         return s;
  241 }
  242 
  243 struct kmem_cache *
  244 kmem_cache_create(const char *name, size_t size, size_t align,
  245                   unsigned long flags, void (*ctor)(void *))
  246 {
  247         return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
  248 }
  249 EXPORT_SYMBOL(kmem_cache_create);
  250 
  251 void kmem_cache_destroy(struct kmem_cache *s)
  252 {
  253         /* Destroy all the children caches if we aren't a memcg cache */
  254         kmem_cache_destroy_memcg_children(s);
  255 
  256         get_online_cpus();
  257         mutex_lock(&slab_mutex);
  258         s->refcount--;
  259         if (!s->refcount) {
  260                 list_del(&s->list);
  261 
  262                 if (!__kmem_cache_shutdown(s)) {
  263                         mutex_unlock(&slab_mutex);
  264                         if (s->flags & SLAB_DESTROY_BY_RCU)
  265                                 rcu_barrier();
  266 
  267                         memcg_release_cache(s);
  268                         kfree(s->name);
  269                         kmem_cache_free(kmem_cache, s);
  270                 } else {
  271                         list_add(&s->list, &slab_caches);
  272                         mutex_unlock(&slab_mutex);
  273                         printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
  274                                 s->name);
  275                         dump_stack();
  276                 }
  277         } else {
  278                 mutex_unlock(&slab_mutex);
  279         }
  280         put_online_cpus();
  281 }
  282 EXPORT_SYMBOL(kmem_cache_destroy);
  283 
  284 int slab_is_available(void)
  285 {
  286         return slab_state >= UP;
  287 }
  288 
  289 #ifndef CONFIG_SLOB
  290 /* Create a cache during boot when no slab services are available yet */
  291 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
  292                 unsigned long flags)
  293 {
  294         int err;
  295 
  296         s->name = name;
  297         s->size = s->object_size = size;
  298         s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
  299         err = __kmem_cache_create(s, flags);
  300 
  301         if (err)
  302                 panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n",
  303                                         name, size, err);
  304 
  305         s->refcount = -1;       /* Exempt from merging for now */
  306 }
  307 
  308 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
  309                                 unsigned long flags)
  310 {
  311         struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  312 
  313         if (!s)
  314                 panic("Out of memory when creating slab %s\n", name);
  315 
  316         create_boot_cache(s, name, size, flags);
  317         list_add(&s->list, &slab_caches);
  318         s->refcount = 1;
  319         return s;
  320 }
  321 
  322 #endif /* !CONFIG_SLOB */
  323 
  324 
  325 #ifdef CONFIG_SLABINFO
  326 void print_slabinfo_header(struct seq_file *m)
  327 {
  328         /*
  329          * Output format version, so at least we can change it
  330          * without _too_ many complaints.
  331          */
  332 #ifdef CONFIG_DEBUG_SLAB
  333         seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  334 #else
  335         seq_puts(m, "slabinfo - version: 2.1\n");
  336 #endif
  337         seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
  338                  "<objperslab> <pagesperslab>");
  339         seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  340         seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  341 #ifdef CONFIG_DEBUG_SLAB
  342         seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  343                  "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  344         seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  345 #endif
  346         seq_putc(m, '\n');
  347 }
  348 
  349 static void *s_start(struct seq_file *m, loff_t *pos)
  350 {
  351         loff_t n = *pos;
  352 
  353         mutex_lock(&slab_mutex);
  354         if (!n)
  355                 print_slabinfo_header(m);
  356 
  357         return seq_list_start(&slab_caches, *pos);
  358 }
  359 
  360 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  361 {
  362         return seq_list_next(p, &slab_caches, pos);
  363 }
  364 
  365 static void s_stop(struct seq_file *m, void *p)
  366 {
  367         mutex_unlock(&slab_mutex);
  368 }
  369 
  370 static void
  371 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
  372 {
  373         struct kmem_cache *c;
  374         struct slabinfo sinfo;
  375         int i;
  376 
  377         if (!is_root_cache(s))
  378                 return;
  379 
  380         for_each_memcg_cache_index(i) {
  381                 c = cache_from_memcg(s, i);
  382                 if (!c)
  383                         continue;
  384 
  385                 memset(&sinfo, 0, sizeof(sinfo));
  386                 get_slabinfo(c, &sinfo);
  387 
  388                 info->active_slabs += sinfo.active_slabs;
  389                 info->num_slabs += sinfo.num_slabs;
  390                 info->shared_avail += sinfo.shared_avail;
  391                 info->active_objs += sinfo.active_objs;
  392                 info->num_objs += sinfo.num_objs;
  393         }
  394 }
  395 
  396 int cache_show(struct kmem_cache *s, struct seq_file *m)
  397 {
  398         struct slabinfo sinfo;
  399 
  400         memset(&sinfo, 0, sizeof(sinfo));
  401         get_slabinfo(s, &sinfo);
  402 
  403         memcg_accumulate_slabinfo(s, &sinfo);
  404 
  405         seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  406                    cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
  407                    sinfo.objects_per_slab, (1 << sinfo.cache_order));
  408 
  409         seq_printf(m, " : tunables %4u %4u %4u",
  410                    sinfo.limit, sinfo.batchcount, sinfo.shared);
  411         seq_printf(m, " : slabdata %6lu %6lu %6lu",
  412                    sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
  413         slabinfo_show_stats(m, s);
  414         seq_putc(m, '\n');
  415         return 0;
  416 }
  417 
  418 static int s_show(struct seq_file *m, void *p)
  419 {
  420         struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
  421 
  422         if (!is_root_cache(s))
  423                 return 0;
  424         return cache_show(s, m);
  425 }
  426 
  427 /*
  428  * slabinfo_op - iterator that generates /proc/slabinfo
  429  *
  430  * Output layout:
  431  * cache-name
  432  * num-active-objs
  433  * total-objs
  434  * object size
  435  * num-active-slabs
  436  * total-slabs
  437  * num-pages-per-slab
  438  * + further values on SMP and with statistics enabled
  439  */
  440 static const struct seq_operations slabinfo_op = {
  441         .start = s_start,
  442         .next = s_next,
  443         .stop = s_stop,
  444         .show = s_show,
  445 };
  446 
  447 static int slabinfo_open(struct inode *inode, struct file *file)
  448 {
  449         return seq_open(file, &slabinfo_op);
  450 }
  451 
  452 static const struct file_operations proc_slabinfo_operations = {
  453         .open           = slabinfo_open,
  454         .read           = seq_read,
  455         .write          = slabinfo_write,
  456         .llseek         = seq_lseek,
  457         .release        = seq_release,
  458 };
  459 
  460 static int __init slab_proc_init(void)
  461 {
  462         proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  463         return 0;
  464 }
  465 module_init(slab_proc_init);
  466 #endif /* CONFIG_SLABINFO */

Cache object: 88ffbcc4076729c5b68b64699a23aa0a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.