The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/sparse.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * sparse memory mappings.
    3  */
    4 #include <linux/mm.h>
    5 #include <linux/slab.h>
    6 #include <linux/mmzone.h>
    7 #include <linux/bootmem.h>
    8 #include <linux/highmem.h>
    9 #include <linux/export.h>
   10 #include <linux/spinlock.h>
   11 #include <linux/vmalloc.h>
   12 #include "internal.h"
   13 #include <asm/dma.h>
   14 #include <asm/pgalloc.h>
   15 #include <asm/pgtable.h>
   16 
   17 /*
   18  * Permanent SPARSEMEM data:
   19  *
   20  * 1) mem_section       - memory sections, mem_map's for valid memory
   21  */
   22 #ifdef CONFIG_SPARSEMEM_EXTREME
   23 struct mem_section *mem_section[NR_SECTION_ROOTS]
   24         ____cacheline_internodealigned_in_smp;
   25 #else
   26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
   27         ____cacheline_internodealigned_in_smp;
   28 #endif
   29 EXPORT_SYMBOL(mem_section);
   30 
   31 #ifdef NODE_NOT_IN_PAGE_FLAGS
   32 /*
   33  * If we did not store the node number in the page then we have to
   34  * do a lookup in the section_to_node_table in order to find which
   35  * node the page belongs to.
   36  */
   37 #if MAX_NUMNODES <= 256
   38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
   39 #else
   40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
   41 #endif
   42 
   43 int page_to_nid(const struct page *page)
   44 {
   45         return section_to_node_table[page_to_section(page)];
   46 }
   47 EXPORT_SYMBOL(page_to_nid);
   48 
   49 static void set_section_nid(unsigned long section_nr, int nid)
   50 {
   51         section_to_node_table[section_nr] = nid;
   52 }
   53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
   54 static inline void set_section_nid(unsigned long section_nr, int nid)
   55 {
   56 }
   57 #endif
   58 
   59 #ifdef CONFIG_SPARSEMEM_EXTREME
   60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
   61 {
   62         struct mem_section *section = NULL;
   63         unsigned long array_size = SECTIONS_PER_ROOT *
   64                                    sizeof(struct mem_section);
   65 
   66         if (slab_is_available()) {
   67                 if (node_state(nid, N_HIGH_MEMORY))
   68                         section = kzalloc_node(array_size, GFP_KERNEL, nid);
   69                 else
   70                         section = kzalloc(array_size, GFP_KERNEL);
   71         } else {
   72                 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
   73         }
   74 
   75         return section;
   76 }
   77 
   78 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
   79 {
   80         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
   81         struct mem_section *section;
   82         int ret = 0;
   83 
   84         if (mem_section[root])
   85                 return -EEXIST;
   86 
   87         section = sparse_index_alloc(nid);
   88         if (!section)
   89                 return -ENOMEM;
   90 
   91         mem_section[root] = section;
   92 
   93         return ret;
   94 }
   95 #else /* !SPARSEMEM_EXTREME */
   96 static inline int sparse_index_init(unsigned long section_nr, int nid)
   97 {
   98         return 0;
   99 }
  100 #endif
  101 
  102 /*
  103  * Although written for the SPARSEMEM_EXTREME case, this happens
  104  * to also work for the flat array case because
  105  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
  106  */
  107 int __section_nr(struct mem_section* ms)
  108 {
  109         unsigned long root_nr;
  110         struct mem_section* root;
  111 
  112         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
  113                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
  114                 if (!root)
  115                         continue;
  116 
  117                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
  118                      break;
  119         }
  120 
  121         VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
  122 
  123         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
  124 }
  125 
  126 /*
  127  * During early boot, before section_mem_map is used for an actual
  128  * mem_map, we use section_mem_map to store the section's NUMA
  129  * node.  This keeps us from having to use another data structure.  The
  130  * node information is cleared just before we store the real mem_map.
  131  */
  132 static inline unsigned long sparse_encode_early_nid(int nid)
  133 {
  134         return (nid << SECTION_NID_SHIFT);
  135 }
  136 
  137 static inline int sparse_early_nid(struct mem_section *section)
  138 {
  139         return (section->section_mem_map >> SECTION_NID_SHIFT);
  140 }
  141 
  142 /* Validate the physical addressing limitations of the model */
  143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
  144                                                 unsigned long *end_pfn)
  145 {
  146         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
  147 
  148         /*
  149          * Sanity checks - do not allow an architecture to pass
  150          * in larger pfns than the maximum scope of sparsemem:
  151          */
  152         if (*start_pfn > max_sparsemem_pfn) {
  153                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
  154                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
  155                         *start_pfn, *end_pfn, max_sparsemem_pfn);
  156                 WARN_ON_ONCE(1);
  157                 *start_pfn = max_sparsemem_pfn;
  158                 *end_pfn = max_sparsemem_pfn;
  159         } else if (*end_pfn > max_sparsemem_pfn) {
  160                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
  161                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
  162                         *start_pfn, *end_pfn, max_sparsemem_pfn);
  163                 WARN_ON_ONCE(1);
  164                 *end_pfn = max_sparsemem_pfn;
  165         }
  166 }
  167 
  168 /* Record a memory area against a node. */
  169 void __init memory_present(int nid, unsigned long start, unsigned long end)
  170 {
  171         unsigned long pfn;
  172 
  173         start &= PAGE_SECTION_MASK;
  174         mminit_validate_memmodel_limits(&start, &end);
  175         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
  176                 unsigned long section = pfn_to_section_nr(pfn);
  177                 struct mem_section *ms;
  178 
  179                 sparse_index_init(section, nid);
  180                 set_section_nid(section, nid);
  181 
  182                 ms = __nr_to_section(section);
  183                 if (!ms->section_mem_map)
  184                         ms->section_mem_map = sparse_encode_early_nid(nid) |
  185                                                         SECTION_MARKED_PRESENT;
  186         }
  187 }
  188 
  189 /*
  190  * Only used by the i386 NUMA architecures, but relatively
  191  * generic code.
  192  */
  193 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
  194                                                      unsigned long end_pfn)
  195 {
  196         unsigned long pfn;
  197         unsigned long nr_pages = 0;
  198 
  199         mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  200         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  201                 if (nid != early_pfn_to_nid(pfn))
  202                         continue;
  203 
  204                 if (pfn_present(pfn))
  205                         nr_pages += PAGES_PER_SECTION;
  206         }
  207 
  208         return nr_pages * sizeof(struct page);
  209 }
  210 
  211 /*
  212  * Subtle, we encode the real pfn into the mem_map such that
  213  * the identity pfn - section_mem_map will return the actual
  214  * physical page frame number.
  215  */
  216 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
  217 {
  218         return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
  219 }
  220 
  221 /*
  222  * Decode mem_map from the coded memmap
  223  */
  224 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
  225 {
  226         /* mask off the extra low bits of information */
  227         coded_mem_map &= SECTION_MAP_MASK;
  228         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
  229 }
  230 
  231 static int __meminit sparse_init_one_section(struct mem_section *ms,
  232                 unsigned long pnum, struct page *mem_map,
  233                 unsigned long *pageblock_bitmap)
  234 {
  235         if (!present_section(ms))
  236                 return -EINVAL;
  237 
  238         ms->section_mem_map &= ~SECTION_MAP_MASK;
  239         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
  240                                                         SECTION_HAS_MEM_MAP;
  241         ms->pageblock_flags = pageblock_bitmap;
  242 
  243         return 1;
  244 }
  245 
  246 unsigned long usemap_size(void)
  247 {
  248         unsigned long size_bytes;
  249         size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
  250         size_bytes = roundup(size_bytes, sizeof(unsigned long));
  251         return size_bytes;
  252 }
  253 
  254 #ifdef CONFIG_MEMORY_HOTPLUG
  255 static unsigned long *__kmalloc_section_usemap(void)
  256 {
  257         return kmalloc(usemap_size(), GFP_KERNEL);
  258 }
  259 #endif /* CONFIG_MEMORY_HOTPLUG */
  260 
  261 #ifdef CONFIG_MEMORY_HOTREMOVE
  262 static unsigned long * __init
  263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
  264                                          unsigned long size)
  265 {
  266         unsigned long goal, limit;
  267         unsigned long *p;
  268         int nid;
  269         /*
  270          * A page may contain usemaps for other sections preventing the
  271          * page being freed and making a section unremovable while
  272          * other sections referencing the usemap retmain active. Similarly,
  273          * a pgdat can prevent a section being removed. If section A
  274          * contains a pgdat and section B contains the usemap, both
  275          * sections become inter-dependent. This allocates usemaps
  276          * from the same section as the pgdat where possible to avoid
  277          * this problem.
  278          */
  279         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
  280         limit = goal + (1UL << PA_SECTION_SHIFT);
  281         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
  282 again:
  283         p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
  284                                           SMP_CACHE_BYTES, goal, limit);
  285         if (!p && limit) {
  286                 limit = 0;
  287                 goto again;
  288         }
  289         return p;
  290 }
  291 
  292 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
  293 {
  294         unsigned long usemap_snr, pgdat_snr;
  295         static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
  296         static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
  297         struct pglist_data *pgdat = NODE_DATA(nid);
  298         int usemap_nid;
  299 
  300         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
  301         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
  302         if (usemap_snr == pgdat_snr)
  303                 return;
  304 
  305         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
  306                 /* skip redundant message */
  307                 return;
  308 
  309         old_usemap_snr = usemap_snr;
  310         old_pgdat_snr = pgdat_snr;
  311 
  312         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
  313         if (usemap_nid != nid) {
  314                 printk(KERN_INFO
  315                        "node %d must be removed before remove section %ld\n",
  316                        nid, usemap_snr);
  317                 return;
  318         }
  319         /*
  320          * There is a circular dependency.
  321          * Some platforms allow un-removable section because they will just
  322          * gather other removable sections for dynamic partitioning.
  323          * Just notify un-removable section's number here.
  324          */
  325         printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
  326                pgdat_snr, nid);
  327         printk(KERN_CONT
  328                " have a circular dependency on usemap and pgdat allocations\n");
  329 }
  330 #else
  331 static unsigned long * __init
  332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
  333                                          unsigned long size)
  334 {
  335         return alloc_bootmem_node_nopanic(pgdat, size);
  336 }
  337 
  338 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
  339 {
  340 }
  341 #endif /* CONFIG_MEMORY_HOTREMOVE */
  342 
  343 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
  344                                  unsigned long pnum_begin,
  345                                  unsigned long pnum_end,
  346                                  unsigned long usemap_count, int nodeid)
  347 {
  348         void *usemap;
  349         unsigned long pnum;
  350         int size = usemap_size();
  351 
  352         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
  353                                                           size * usemap_count);
  354         if (!usemap) {
  355                 printk(KERN_WARNING "%s: allocation failed\n", __func__);
  356                 return;
  357         }
  358 
  359         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  360                 if (!present_section_nr(pnum))
  361                         continue;
  362                 usemap_map[pnum] = usemap;
  363                 usemap += size;
  364                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
  365         }
  366 }
  367 
  368 #ifndef CONFIG_SPARSEMEM_VMEMMAP
  369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
  370 {
  371         struct page *map;
  372         unsigned long size;
  373 
  374         map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
  375         if (map)
  376                 return map;
  377 
  378         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
  379         map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
  380                                          PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  381         return map;
  382 }
  383 void __init sparse_mem_maps_populate_node(struct page **map_map,
  384                                           unsigned long pnum_begin,
  385                                           unsigned long pnum_end,
  386                                           unsigned long map_count, int nodeid)
  387 {
  388         void *map;
  389         unsigned long pnum;
  390         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
  391 
  392         map = alloc_remap(nodeid, size * map_count);
  393         if (map) {
  394                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  395                         if (!present_section_nr(pnum))
  396                                 continue;
  397                         map_map[pnum] = map;
  398                         map += size;
  399                 }
  400                 return;
  401         }
  402 
  403         size = PAGE_ALIGN(size);
  404         map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
  405                                          PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  406         if (map) {
  407                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  408                         if (!present_section_nr(pnum))
  409                                 continue;
  410                         map_map[pnum] = map;
  411                         map += size;
  412                 }
  413                 return;
  414         }
  415 
  416         /* fallback */
  417         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  418                 struct mem_section *ms;
  419 
  420                 if (!present_section_nr(pnum))
  421                         continue;
  422                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
  423                 if (map_map[pnum])
  424                         continue;
  425                 ms = __nr_to_section(pnum);
  426                 printk(KERN_ERR "%s: sparsemem memory map backing failed "
  427                         "some memory will not be available.\n", __func__);
  428                 ms->section_mem_map = 0;
  429         }
  430 }
  431 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
  432 
  433 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  434 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
  435                                  unsigned long pnum_begin,
  436                                  unsigned long pnum_end,
  437                                  unsigned long map_count, int nodeid)
  438 {
  439         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
  440                                          map_count, nodeid);
  441 }
  442 #else
  443 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
  444 {
  445         struct page *map;
  446         struct mem_section *ms = __nr_to_section(pnum);
  447         int nid = sparse_early_nid(ms);
  448 
  449         map = sparse_mem_map_populate(pnum, nid);
  450         if (map)
  451                 return map;
  452 
  453         printk(KERN_ERR "%s: sparsemem memory map backing failed "
  454                         "some memory will not be available.\n", __func__);
  455         ms->section_mem_map = 0;
  456         return NULL;
  457 }
  458 #endif
  459 
  460 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
  461 {
  462 }
  463 
  464 /*
  465  * Allocate the accumulated non-linear sections, allocate a mem_map
  466  * for each and record the physical to section mapping.
  467  */
  468 void __init sparse_init(void)
  469 {
  470         unsigned long pnum;
  471         struct page *map;
  472         unsigned long *usemap;
  473         unsigned long **usemap_map;
  474         int size;
  475         int nodeid_begin = 0;
  476         unsigned long pnum_begin = 0;
  477         unsigned long usemap_count;
  478 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  479         unsigned long map_count;
  480         int size2;
  481         struct page **map_map;
  482 #endif
  483 
  484         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
  485         set_pageblock_order();
  486 
  487         /*
  488          * map is using big page (aka 2M in x86 64 bit)
  489          * usemap is less one page (aka 24 bytes)
  490          * so alloc 2M (with 2M align) and 24 bytes in turn will
  491          * make next 2M slip to one more 2M later.
  492          * then in big system, the memory will have a lot of holes...
  493          * here try to allocate 2M pages continuously.
  494          *
  495          * powerpc need to call sparse_init_one_section right after each
  496          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
  497          */
  498         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
  499         usemap_map = alloc_bootmem(size);
  500         if (!usemap_map)
  501                 panic("can not allocate usemap_map\n");
  502 
  503         for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
  504                 struct mem_section *ms;
  505 
  506                 if (!present_section_nr(pnum))
  507                         continue;
  508                 ms = __nr_to_section(pnum);
  509                 nodeid_begin = sparse_early_nid(ms);
  510                 pnum_begin = pnum;
  511                 break;
  512         }
  513         usemap_count = 1;
  514         for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
  515                 struct mem_section *ms;
  516                 int nodeid;
  517 
  518                 if (!present_section_nr(pnum))
  519                         continue;
  520                 ms = __nr_to_section(pnum);
  521                 nodeid = sparse_early_nid(ms);
  522                 if (nodeid == nodeid_begin) {
  523                         usemap_count++;
  524                         continue;
  525                 }
  526                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
  527                 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
  528                                                  usemap_count, nodeid_begin);
  529                 /* new start, update count etc*/
  530                 nodeid_begin = nodeid;
  531                 pnum_begin = pnum;
  532                 usemap_count = 1;
  533         }
  534         /* ok, last chunk */
  535         sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
  536                                          usemap_count, nodeid_begin);
  537 
  538 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  539         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
  540         map_map = alloc_bootmem(size2);
  541         if (!map_map)
  542                 panic("can not allocate map_map\n");
  543 
  544         for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
  545                 struct mem_section *ms;
  546 
  547                 if (!present_section_nr(pnum))
  548                         continue;
  549                 ms = __nr_to_section(pnum);
  550                 nodeid_begin = sparse_early_nid(ms);
  551                 pnum_begin = pnum;
  552                 break;
  553         }
  554         map_count = 1;
  555         for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
  556                 struct mem_section *ms;
  557                 int nodeid;
  558 
  559                 if (!present_section_nr(pnum))
  560                         continue;
  561                 ms = __nr_to_section(pnum);
  562                 nodeid = sparse_early_nid(ms);
  563                 if (nodeid == nodeid_begin) {
  564                         map_count++;
  565                         continue;
  566                 }
  567                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
  568                 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
  569                                                  map_count, nodeid_begin);
  570                 /* new start, update count etc*/
  571                 nodeid_begin = nodeid;
  572                 pnum_begin = pnum;
  573                 map_count = 1;
  574         }
  575         /* ok, last chunk */
  576         sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
  577                                          map_count, nodeid_begin);
  578 #endif
  579 
  580         for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
  581                 if (!present_section_nr(pnum))
  582                         continue;
  583 
  584                 usemap = usemap_map[pnum];
  585                 if (!usemap)
  586                         continue;
  587 
  588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  589                 map = map_map[pnum];
  590 #else
  591                 map = sparse_early_mem_map_alloc(pnum);
  592 #endif
  593                 if (!map)
  594                         continue;
  595 
  596                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
  597                                                                 usemap);
  598         }
  599 
  600         vmemmap_populate_print_last();
  601 
  602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  603         free_bootmem(__pa(map_map), size2);
  604 #endif
  605         free_bootmem(__pa(usemap_map), size);
  606 }
  607 
  608 #ifdef CONFIG_MEMORY_HOTPLUG
  609 #ifdef CONFIG_SPARSEMEM_VMEMMAP
  610 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
  611                                                  unsigned long nr_pages)
  612 {
  613         /* This will make the necessary allocations eventually. */
  614         return sparse_mem_map_populate(pnum, nid);
  615 }
  616 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
  617 {
  618         return; /* XXX: Not implemented yet */
  619 }
  620 static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
  621 {
  622 }
  623 #else
  624 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
  625 {
  626         struct page *page, *ret;
  627         unsigned long memmap_size = sizeof(struct page) * nr_pages;
  628 
  629         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
  630         if (page)
  631                 goto got_map_page;
  632 
  633         ret = vmalloc(memmap_size);
  634         if (ret)
  635                 goto got_map_ptr;
  636 
  637         return NULL;
  638 got_map_page:
  639         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
  640 got_map_ptr:
  641 
  642         return ret;
  643 }
  644 
  645 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
  646                                                   unsigned long nr_pages)
  647 {
  648         return __kmalloc_section_memmap(nr_pages);
  649 }
  650 
  651 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
  652 {
  653         if (is_vmalloc_addr(memmap))
  654                 vfree(memmap);
  655         else
  656                 free_pages((unsigned long)memmap,
  657                            get_order(sizeof(struct page) * nr_pages));
  658 }
  659 
  660 static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
  661 {
  662         unsigned long maps_section_nr, removing_section_nr, i;
  663         unsigned long magic;
  664         struct page *page = virt_to_page(memmap);
  665 
  666         for (i = 0; i < nr_pages; i++, page++) {
  667                 magic = (unsigned long) page->lru.next;
  668 
  669                 BUG_ON(magic == NODE_INFO);
  670 
  671                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
  672                 removing_section_nr = page->private;
  673 
  674                 /*
  675                  * When this function is called, the removing section is
  676                  * logical offlined state. This means all pages are isolated
  677                  * from page allocator. If removing section's memmap is placed
  678                  * on the same section, it must not be freed.
  679                  * If it is freed, page allocator may allocate it which will
  680                  * be removed physically soon.
  681                  */
  682                 if (maps_section_nr != removing_section_nr)
  683                         put_page_bootmem(page);
  684         }
  685 }
  686 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  687 
  688 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
  689 {
  690         struct page *usemap_page;
  691         unsigned long nr_pages;
  692 
  693         if (!usemap)
  694                 return;
  695 
  696         usemap_page = virt_to_page(usemap);
  697         /*
  698          * Check to see if allocation came from hot-plug-add
  699          */
  700         if (PageSlab(usemap_page)) {
  701                 kfree(usemap);
  702                 if (memmap)
  703                         __kfree_section_memmap(memmap, PAGES_PER_SECTION);
  704                 return;
  705         }
  706 
  707         /*
  708          * The usemap came from bootmem. This is packed with other usemaps
  709          * on the section which has pgdat at boot time. Just keep it as is now.
  710          */
  711 
  712         if (memmap) {
  713                 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
  714                         >> PAGE_SHIFT;
  715 
  716                 free_map_bootmem(memmap, nr_pages);
  717         }
  718 }
  719 
  720 /*
  721  * returns the number of sections whose mem_maps were properly
  722  * set.  If this is <=0, then that means that the passed-in
  723  * map was not consumed and must be freed.
  724  */
  725 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
  726                            int nr_pages)
  727 {
  728         unsigned long section_nr = pfn_to_section_nr(start_pfn);
  729         struct pglist_data *pgdat = zone->zone_pgdat;
  730         struct mem_section *ms;
  731         struct page *memmap;
  732         unsigned long *usemap;
  733         unsigned long flags;
  734         int ret;
  735 
  736         /*
  737          * no locking for this, because it does its own
  738          * plus, it does a kmalloc
  739          */
  740         ret = sparse_index_init(section_nr, pgdat->node_id);
  741         if (ret < 0 && ret != -EEXIST)
  742                 return ret;
  743         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
  744         if (!memmap)
  745                 return -ENOMEM;
  746         usemap = __kmalloc_section_usemap();
  747         if (!usemap) {
  748                 __kfree_section_memmap(memmap, nr_pages);
  749                 return -ENOMEM;
  750         }
  751 
  752         pgdat_resize_lock(pgdat, &flags);
  753 
  754         ms = __pfn_to_section(start_pfn);
  755         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
  756                 ret = -EEXIST;
  757                 goto out;
  758         }
  759 
  760         memset(memmap, 0, sizeof(struct page) * nr_pages);
  761 
  762         ms->section_mem_map |= SECTION_MARKED_PRESENT;
  763 
  764         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
  765 
  766 out:
  767         pgdat_resize_unlock(pgdat, &flags);
  768         if (ret <= 0) {
  769                 kfree(usemap);
  770                 __kfree_section_memmap(memmap, nr_pages);
  771         }
  772         return ret;
  773 }
  774 
  775 #ifdef CONFIG_MEMORY_FAILURE
  776 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
  777 {
  778         int i;
  779 
  780         if (!memmap)
  781                 return;
  782 
  783         for (i = 0; i < PAGES_PER_SECTION; i++) {
  784                 if (PageHWPoison(&memmap[i])) {
  785                         atomic_long_sub(1, &mce_bad_pages);
  786                         ClearPageHWPoison(&memmap[i]);
  787                 }
  788         }
  789 }
  790 #else
  791 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
  792 {
  793 }
  794 #endif
  795 
  796 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
  797 {
  798         struct page *memmap = NULL;
  799         unsigned long *usemap = NULL;
  800 
  801         if (ms->section_mem_map) {
  802                 usemap = ms->pageblock_flags;
  803                 memmap = sparse_decode_mem_map(ms->section_mem_map,
  804                                                 __section_nr(ms));
  805                 ms->section_mem_map = 0;
  806                 ms->pageblock_flags = NULL;
  807         }
  808 
  809         clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
  810         free_section_usemap(memmap, usemap);
  811 }
  812 #endif

Cache object: 14888d42bf1cbd352f83c36caf3ddd6d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.