The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/swap_state.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  linux/mm/swap_state.c
    3  *
    4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
    5  *  Swap reorganised 29.12.95, Stephen Tweedie
    6  *
    7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
    8  */
    9 #include <linux/mm.h>
   10 #include <linux/gfp.h>
   11 #include <linux/kernel_stat.h>
   12 #include <linux/swap.h>
   13 #include <linux/swapops.h>
   14 #include <linux/init.h>
   15 #include <linux/pagemap.h>
   16 #include <linux/backing-dev.h>
   17 #include <linux/blkdev.h>
   18 #include <linux/pagevec.h>
   19 #include <linux/migrate.h>
   20 #include <linux/page_cgroup.h>
   21 
   22 #include <asm/pgtable.h>
   23 
   24 /*
   25  * swapper_space is a fiction, retained to simplify the path through
   26  * vmscan's shrink_page_list.
   27  */
   28 static const struct address_space_operations swap_aops = {
   29         .writepage      = swap_writepage,
   30         .set_page_dirty = swap_set_page_dirty,
   31         .migratepage    = migrate_page,
   32 };
   33 
   34 static struct backing_dev_info swap_backing_dev_info = {
   35         .name           = "swap",
   36         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
   37 };
   38 
   39 struct address_space swapper_space = {
   40         .page_tree      = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
   41         .tree_lock      = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
   42         .a_ops          = &swap_aops,
   43         .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
   44         .backing_dev_info = &swap_backing_dev_info,
   45 };
   46 
   47 #define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
   48 
   49 static struct {
   50         unsigned long add_total;
   51         unsigned long del_total;
   52         unsigned long find_success;
   53         unsigned long find_total;
   54 } swap_cache_info;
   55 
   56 void show_swap_cache_info(void)
   57 {
   58         printk("%lu pages in swap cache\n", total_swapcache_pages);
   59         printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
   60                 swap_cache_info.add_total, swap_cache_info.del_total,
   61                 swap_cache_info.find_success, swap_cache_info.find_total);
   62         printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
   63         printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
   64 }
   65 
   66 /*
   67  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
   68  * but sets SwapCache flag and private instead of mapping and index.
   69  */
   70 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
   71 {
   72         int error;
   73 
   74         VM_BUG_ON(!PageLocked(page));
   75         VM_BUG_ON(PageSwapCache(page));
   76         VM_BUG_ON(!PageSwapBacked(page));
   77 
   78         page_cache_get(page);
   79         SetPageSwapCache(page);
   80         set_page_private(page, entry.val);
   81 
   82         spin_lock_irq(&swapper_space.tree_lock);
   83         error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
   84         if (likely(!error)) {
   85                 total_swapcache_pages++;
   86                 __inc_zone_page_state(page, NR_FILE_PAGES);
   87                 INC_CACHE_INFO(add_total);
   88         }
   89         spin_unlock_irq(&swapper_space.tree_lock);
   90 
   91         if (unlikely(error)) {
   92                 /*
   93                  * Only the context which have set SWAP_HAS_CACHE flag
   94                  * would call add_to_swap_cache().
   95                  * So add_to_swap_cache() doesn't returns -EEXIST.
   96                  */
   97                 VM_BUG_ON(error == -EEXIST);
   98                 set_page_private(page, 0UL);
   99                 ClearPageSwapCache(page);
  100                 page_cache_release(page);
  101         }
  102 
  103         return error;
  104 }
  105 
  106 
  107 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  108 {
  109         int error;
  110 
  111         error = radix_tree_preload(gfp_mask);
  112         if (!error) {
  113                 error = __add_to_swap_cache(page, entry);
  114                 radix_tree_preload_end();
  115         }
  116         return error;
  117 }
  118 
  119 /*
  120  * This must be called only on pages that have
  121  * been verified to be in the swap cache.
  122  */
  123 void __delete_from_swap_cache(struct page *page)
  124 {
  125         VM_BUG_ON(!PageLocked(page));
  126         VM_BUG_ON(!PageSwapCache(page));
  127         VM_BUG_ON(PageWriteback(page));
  128 
  129         radix_tree_delete(&swapper_space.page_tree, page_private(page));
  130         set_page_private(page, 0);
  131         ClearPageSwapCache(page);
  132         total_swapcache_pages--;
  133         __dec_zone_page_state(page, NR_FILE_PAGES);
  134         INC_CACHE_INFO(del_total);
  135 }
  136 
  137 /**
  138  * add_to_swap - allocate swap space for a page
  139  * @page: page we want to move to swap
  140  *
  141  * Allocate swap space for the page and add the page to the
  142  * swap cache.  Caller needs to hold the page lock. 
  143  */
  144 int add_to_swap(struct page *page)
  145 {
  146         swp_entry_t entry;
  147         int err;
  148 
  149         VM_BUG_ON(!PageLocked(page));
  150         VM_BUG_ON(!PageUptodate(page));
  151 
  152         entry = get_swap_page();
  153         if (!entry.val)
  154                 return 0;
  155 
  156         if (unlikely(PageTransHuge(page)))
  157                 if (unlikely(split_huge_page(page))) {
  158                         swapcache_free(entry, NULL);
  159                         return 0;
  160                 }
  161 
  162         /*
  163          * Radix-tree node allocations from PF_MEMALLOC contexts could
  164          * completely exhaust the page allocator. __GFP_NOMEMALLOC
  165          * stops emergency reserves from being allocated.
  166          *
  167          * TODO: this could cause a theoretical memory reclaim
  168          * deadlock in the swap out path.
  169          */
  170         /*
  171          * Add it to the swap cache and mark it dirty
  172          */
  173         err = add_to_swap_cache(page, entry,
  174                         __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  175 
  176         if (!err) {     /* Success */
  177                 SetPageDirty(page);
  178                 return 1;
  179         } else {        /* -ENOMEM radix-tree allocation failure */
  180                 /*
  181                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  182                  * clear SWAP_HAS_CACHE flag.
  183                  */
  184                 swapcache_free(entry, NULL);
  185                 return 0;
  186         }
  187 }
  188 
  189 /*
  190  * This must be called only on pages that have
  191  * been verified to be in the swap cache and locked.
  192  * It will never put the page into the free list,
  193  * the caller has a reference on the page.
  194  */
  195 void delete_from_swap_cache(struct page *page)
  196 {
  197         swp_entry_t entry;
  198 
  199         entry.val = page_private(page);
  200 
  201         spin_lock_irq(&swapper_space.tree_lock);
  202         __delete_from_swap_cache(page);
  203         spin_unlock_irq(&swapper_space.tree_lock);
  204 
  205         swapcache_free(entry, page);
  206         page_cache_release(page);
  207 }
  208 
  209 /* 
  210  * If we are the only user, then try to free up the swap cache. 
  211  * 
  212  * Its ok to check for PageSwapCache without the page lock
  213  * here because we are going to recheck again inside
  214  * try_to_free_swap() _with_ the lock.
  215  *                                      - Marcelo
  216  */
  217 static inline void free_swap_cache(struct page *page)
  218 {
  219         if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  220                 try_to_free_swap(page);
  221                 unlock_page(page);
  222         }
  223 }
  224 
  225 /* 
  226  * Perform a free_page(), also freeing any swap cache associated with
  227  * this page if it is the last user of the page.
  228  */
  229 void free_page_and_swap_cache(struct page *page)
  230 {
  231         free_swap_cache(page);
  232         page_cache_release(page);
  233 }
  234 
  235 /*
  236  * Passed an array of pages, drop them all from swapcache and then release
  237  * them.  They are removed from the LRU and freed if this is their last use.
  238  */
  239 void free_pages_and_swap_cache(struct page **pages, int nr)
  240 {
  241         struct page **pagep = pages;
  242 
  243         lru_add_drain();
  244         while (nr) {
  245                 int todo = min(nr, PAGEVEC_SIZE);
  246                 int i;
  247 
  248                 for (i = 0; i < todo; i++)
  249                         free_swap_cache(pagep[i]);
  250                 release_pages(pagep, todo, 0);
  251                 pagep += todo;
  252                 nr -= todo;
  253         }
  254 }
  255 
  256 /*
  257  * Lookup a swap entry in the swap cache. A found page will be returned
  258  * unlocked and with its refcount incremented - we rely on the kernel
  259  * lock getting page table operations atomic even if we drop the page
  260  * lock before returning.
  261  */
  262 struct page * lookup_swap_cache(swp_entry_t entry)
  263 {
  264         struct page *page;
  265 
  266         page = find_get_page(&swapper_space, entry.val);
  267 
  268         if (page)
  269                 INC_CACHE_INFO(find_success);
  270 
  271         INC_CACHE_INFO(find_total);
  272         return page;
  273 }
  274 
  275 /* 
  276  * Locate a page of swap in physical memory, reserving swap cache space
  277  * and reading the disk if it is not already cached.
  278  * A failure return means that either the page allocation failed or that
  279  * the swap entry is no longer in use.
  280  */
  281 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  282                         struct vm_area_struct *vma, unsigned long addr)
  283 {
  284         struct page *found_page, *new_page = NULL;
  285         int err;
  286 
  287         do {
  288                 /*
  289                  * First check the swap cache.  Since this is normally
  290                  * called after lookup_swap_cache() failed, re-calling
  291                  * that would confuse statistics.
  292                  */
  293                 found_page = find_get_page(&swapper_space, entry.val);
  294                 if (found_page)
  295                         break;
  296 
  297                 /*
  298                  * Get a new page to read into from swap.
  299                  */
  300                 if (!new_page) {
  301                         new_page = alloc_page_vma(gfp_mask, vma, addr);
  302                         if (!new_page)
  303                                 break;          /* Out of memory */
  304                 }
  305 
  306                 /*
  307                  * call radix_tree_preload() while we can wait.
  308                  */
  309                 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
  310                 if (err)
  311                         break;
  312 
  313                 /*
  314                  * Swap entry may have been freed since our caller observed it.
  315                  */
  316                 err = swapcache_prepare(entry);
  317                 if (err == -EEXIST) {   /* seems racy */
  318                         radix_tree_preload_end();
  319                         continue;
  320                 }
  321                 if (err) {              /* swp entry is obsolete ? */
  322                         radix_tree_preload_end();
  323                         break;
  324                 }
  325 
  326                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
  327                 __set_page_locked(new_page);
  328                 SetPageSwapBacked(new_page);
  329                 err = __add_to_swap_cache(new_page, entry);
  330                 if (likely(!err)) {
  331                         radix_tree_preload_end();
  332                         /*
  333                          * Initiate read into locked page and return.
  334                          */
  335                         lru_cache_add_anon(new_page);
  336                         swap_readpage(new_page);
  337                         return new_page;
  338                 }
  339                 radix_tree_preload_end();
  340                 ClearPageSwapBacked(new_page);
  341                 __clear_page_locked(new_page);
  342                 /*
  343                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  344                  * clear SWAP_HAS_CACHE flag.
  345                  */
  346                 swapcache_free(entry, NULL);
  347         } while (err != -ENOMEM);
  348 
  349         if (new_page)
  350                 page_cache_release(new_page);
  351         return found_page;
  352 }
  353 
  354 /**
  355  * swapin_readahead - swap in pages in hope we need them soon
  356  * @entry: swap entry of this memory
  357  * @gfp_mask: memory allocation flags
  358  * @vma: user vma this address belongs to
  359  * @addr: target address for mempolicy
  360  *
  361  * Returns the struct page for entry and addr, after queueing swapin.
  362  *
  363  * Primitive swap readahead code. We simply read an aligned block of
  364  * (1 << page_cluster) entries in the swap area. This method is chosen
  365  * because it doesn't cost us any seek time.  We also make sure to queue
  366  * the 'original' request together with the readahead ones...
  367  *
  368  * This has been extended to use the NUMA policies from the mm triggering
  369  * the readahead.
  370  *
  371  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  372  */
  373 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  374                         struct vm_area_struct *vma, unsigned long addr)
  375 {
  376         struct page *page;
  377         unsigned long offset = swp_offset(entry);
  378         unsigned long start_offset, end_offset;
  379         unsigned long mask = (1UL << page_cluster) - 1;
  380         struct blk_plug plug;
  381 
  382         /* Read a page_cluster sized and aligned cluster around offset. */
  383         start_offset = offset & ~mask;
  384         end_offset = offset | mask;
  385         if (!start_offset)      /* First page is swap header. */
  386                 start_offset++;
  387 
  388         blk_start_plug(&plug);
  389         for (offset = start_offset; offset <= end_offset ; offset++) {
  390                 /* Ok, do the async read-ahead now */
  391                 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  392                                                 gfp_mask, vma, addr);
  393                 if (!page)
  394                         continue;
  395                 page_cache_release(page);
  396         }
  397         blk_finish_plug(&plug);
  398 
  399         lru_add_drain();        /* Push any new pages onto the LRU now */
  400         return read_swap_cache_async(entry, gfp_mask, vma, addr);
  401 }

Cache object: cbef8132a88ee458ac0b4cab8b2068de


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.