The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/swapfile.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  linux/mm/swapfile.c
    3  *
    4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
    5  *  Swap reorganised 29.12.95, Stephen Tweedie
    6  */
    7 
    8 #include <linux/mm.h>
    9 #include <linux/hugetlb.h>
   10 #include <linux/mman.h>
   11 #include <linux/slab.h>
   12 #include <linux/kernel_stat.h>
   13 #include <linux/swap.h>
   14 #include <linux/vmalloc.h>
   15 #include <linux/pagemap.h>
   16 #include <linux/namei.h>
   17 #include <linux/shmem_fs.h>
   18 #include <linux/blkdev.h>
   19 #include <linux/random.h>
   20 #include <linux/writeback.h>
   21 #include <linux/proc_fs.h>
   22 #include <linux/seq_file.h>
   23 #include <linux/init.h>
   24 #include <linux/ksm.h>
   25 #include <linux/rmap.h>
   26 #include <linux/security.h>
   27 #include <linux/backing-dev.h>
   28 #include <linux/mutex.h>
   29 #include <linux/capability.h>
   30 #include <linux/syscalls.h>
   31 #include <linux/memcontrol.h>
   32 #include <linux/poll.h>
   33 #include <linux/oom.h>
   34 #include <linux/frontswap.h>
   35 #include <linux/swapfile.h>
   36 #include <linux/export.h>
   37 
   38 #include <asm/pgtable.h>
   39 #include <asm/tlbflush.h>
   40 #include <linux/swapops.h>
   41 #include <linux/page_cgroup.h>
   42 
   43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
   44                                  unsigned char);
   45 static void free_swap_count_continuations(struct swap_info_struct *);
   46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
   47 
   48 DEFINE_SPINLOCK(swap_lock);
   49 static unsigned int nr_swapfiles;
   50 long nr_swap_pages;
   51 long total_swap_pages;
   52 static int least_priority;
   53 
   54 static const char Bad_file[] = "Bad swap file entry ";
   55 static const char Unused_file[] = "Unused swap file entry ";
   56 static const char Bad_offset[] = "Bad swap offset entry ";
   57 static const char Unused_offset[] = "Unused swap offset entry ";
   58 
   59 struct swap_list_t swap_list = {-1, -1};
   60 
   61 struct swap_info_struct *swap_info[MAX_SWAPFILES];
   62 
   63 static DEFINE_MUTEX(swapon_mutex);
   64 
   65 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
   66 /* Activity counter to indicate that a swapon or swapoff has occurred */
   67 static atomic_t proc_poll_event = ATOMIC_INIT(0);
   68 
   69 static inline unsigned char swap_count(unsigned char ent)
   70 {
   71         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
   72 }
   73 
   74 /* returns 1 if swap entry is freed */
   75 static int
   76 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
   77 {
   78         swp_entry_t entry = swp_entry(si->type, offset);
   79         struct page *page;
   80         int ret = 0;
   81 
   82         page = find_get_page(&swapper_space, entry.val);
   83         if (!page)
   84                 return 0;
   85         /*
   86          * This function is called from scan_swap_map() and it's called
   87          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
   88          * We have to use trylock for avoiding deadlock. This is a special
   89          * case and you should use try_to_free_swap() with explicit lock_page()
   90          * in usual operations.
   91          */
   92         if (trylock_page(page)) {
   93                 ret = try_to_free_swap(page);
   94                 unlock_page(page);
   95         }
   96         page_cache_release(page);
   97         return ret;
   98 }
   99 
  100 /*
  101  * swapon tell device that all the old swap contents can be discarded,
  102  * to allow the swap device to optimize its wear-levelling.
  103  */
  104 static int discard_swap(struct swap_info_struct *si)
  105 {
  106         struct swap_extent *se;
  107         sector_t start_block;
  108         sector_t nr_blocks;
  109         int err = 0;
  110 
  111         /* Do not discard the swap header page! */
  112         se = &si->first_swap_extent;
  113         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
  114         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
  115         if (nr_blocks) {
  116                 err = blkdev_issue_discard(si->bdev, start_block,
  117                                 nr_blocks, GFP_KERNEL, 0);
  118                 if (err)
  119                         return err;
  120                 cond_resched();
  121         }
  122 
  123         list_for_each_entry(se, &si->first_swap_extent.list, list) {
  124                 start_block = se->start_block << (PAGE_SHIFT - 9);
  125                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
  126 
  127                 err = blkdev_issue_discard(si->bdev, start_block,
  128                                 nr_blocks, GFP_KERNEL, 0);
  129                 if (err)
  130                         break;
  131 
  132                 cond_resched();
  133         }
  134         return err;             /* That will often be -EOPNOTSUPP */
  135 }
  136 
  137 /*
  138  * swap allocation tell device that a cluster of swap can now be discarded,
  139  * to allow the swap device to optimize its wear-levelling.
  140  */
  141 static void discard_swap_cluster(struct swap_info_struct *si,
  142                                  pgoff_t start_page, pgoff_t nr_pages)
  143 {
  144         struct swap_extent *se = si->curr_swap_extent;
  145         int found_extent = 0;
  146 
  147         while (nr_pages) {
  148                 struct list_head *lh;
  149 
  150                 if (se->start_page <= start_page &&
  151                     start_page < se->start_page + se->nr_pages) {
  152                         pgoff_t offset = start_page - se->start_page;
  153                         sector_t start_block = se->start_block + offset;
  154                         sector_t nr_blocks = se->nr_pages - offset;
  155 
  156                         if (nr_blocks > nr_pages)
  157                                 nr_blocks = nr_pages;
  158                         start_page += nr_blocks;
  159                         nr_pages -= nr_blocks;
  160 
  161                         if (!found_extent++)
  162                                 si->curr_swap_extent = se;
  163 
  164                         start_block <<= PAGE_SHIFT - 9;
  165                         nr_blocks <<= PAGE_SHIFT - 9;
  166                         if (blkdev_issue_discard(si->bdev, start_block,
  167                                     nr_blocks, GFP_NOIO, 0))
  168                                 break;
  169                 }
  170 
  171                 lh = se->list.next;
  172                 se = list_entry(lh, struct swap_extent, list);
  173         }
  174 }
  175 
  176 static int wait_for_discard(void *word)
  177 {
  178         schedule();
  179         return 0;
  180 }
  181 
  182 #define SWAPFILE_CLUSTER        256
  183 #define LATENCY_LIMIT           256
  184 
  185 static unsigned long scan_swap_map(struct swap_info_struct *si,
  186                                    unsigned char usage)
  187 {
  188         unsigned long offset;
  189         unsigned long scan_base;
  190         unsigned long last_in_cluster = 0;
  191         int latency_ration = LATENCY_LIMIT;
  192         int found_free_cluster = 0;
  193 
  194         /*
  195          * We try to cluster swap pages by allocating them sequentially
  196          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
  197          * way, however, we resort to first-free allocation, starting
  198          * a new cluster.  This prevents us from scattering swap pages
  199          * all over the entire swap partition, so that we reduce
  200          * overall disk seek times between swap pages.  -- sct
  201          * But we do now try to find an empty cluster.  -Andrea
  202          * And we let swap pages go all over an SSD partition.  Hugh
  203          */
  204 
  205         si->flags += SWP_SCANNING;
  206         scan_base = offset = si->cluster_next;
  207 
  208         if (unlikely(!si->cluster_nr--)) {
  209                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
  210                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
  211                         goto checks;
  212                 }
  213                 if (si->flags & SWP_DISCARDABLE) {
  214                         /*
  215                          * Start range check on racing allocations, in case
  216                          * they overlap the cluster we eventually decide on
  217                          * (we scan without swap_lock to allow preemption).
  218                          * It's hardly conceivable that cluster_nr could be
  219                          * wrapped during our scan, but don't depend on it.
  220                          */
  221                         if (si->lowest_alloc)
  222                                 goto checks;
  223                         si->lowest_alloc = si->max;
  224                         si->highest_alloc = 0;
  225                 }
  226                 spin_unlock(&swap_lock);
  227 
  228                 /*
  229                  * If seek is expensive, start searching for new cluster from
  230                  * start of partition, to minimize the span of allocated swap.
  231                  * But if seek is cheap, search from our current position, so
  232                  * that swap is allocated from all over the partition: if the
  233                  * Flash Translation Layer only remaps within limited zones,
  234                  * we don't want to wear out the first zone too quickly.
  235                  */
  236                 if (!(si->flags & SWP_SOLIDSTATE))
  237                         scan_base = offset = si->lowest_bit;
  238                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  239 
  240                 /* Locate the first empty (unaligned) cluster */
  241                 for (; last_in_cluster <= si->highest_bit; offset++) {
  242                         if (si->swap_map[offset])
  243                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
  244                         else if (offset == last_in_cluster) {
  245                                 spin_lock(&swap_lock);
  246                                 offset -= SWAPFILE_CLUSTER - 1;
  247                                 si->cluster_next = offset;
  248                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
  249                                 found_free_cluster = 1;
  250                                 goto checks;
  251                         }
  252                         if (unlikely(--latency_ration < 0)) {
  253                                 cond_resched();
  254                                 latency_ration = LATENCY_LIMIT;
  255                         }
  256                 }
  257 
  258                 offset = si->lowest_bit;
  259                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  260 
  261                 /* Locate the first empty (unaligned) cluster */
  262                 for (; last_in_cluster < scan_base; offset++) {
  263                         if (si->swap_map[offset])
  264                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
  265                         else if (offset == last_in_cluster) {
  266                                 spin_lock(&swap_lock);
  267                                 offset -= SWAPFILE_CLUSTER - 1;
  268                                 si->cluster_next = offset;
  269                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
  270                                 found_free_cluster = 1;
  271                                 goto checks;
  272                         }
  273                         if (unlikely(--latency_ration < 0)) {
  274                                 cond_resched();
  275                                 latency_ration = LATENCY_LIMIT;
  276                         }
  277                 }
  278 
  279                 offset = scan_base;
  280                 spin_lock(&swap_lock);
  281                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
  282                 si->lowest_alloc = 0;
  283         }
  284 
  285 checks:
  286         if (!(si->flags & SWP_WRITEOK))
  287                 goto no_page;
  288         if (!si->highest_bit)
  289                 goto no_page;
  290         if (offset > si->highest_bit)
  291                 scan_base = offset = si->lowest_bit;
  292 
  293         /* reuse swap entry of cache-only swap if not busy. */
  294         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  295                 int swap_was_freed;
  296                 spin_unlock(&swap_lock);
  297                 swap_was_freed = __try_to_reclaim_swap(si, offset);
  298                 spin_lock(&swap_lock);
  299                 /* entry was freed successfully, try to use this again */
  300                 if (swap_was_freed)
  301                         goto checks;
  302                 goto scan; /* check next one */
  303         }
  304 
  305         if (si->swap_map[offset])
  306                 goto scan;
  307 
  308         if (offset == si->lowest_bit)
  309                 si->lowest_bit++;
  310         if (offset == si->highest_bit)
  311                 si->highest_bit--;
  312         si->inuse_pages++;
  313         if (si->inuse_pages == si->pages) {
  314                 si->lowest_bit = si->max;
  315                 si->highest_bit = 0;
  316         }
  317         si->swap_map[offset] = usage;
  318         si->cluster_next = offset + 1;
  319         si->flags -= SWP_SCANNING;
  320 
  321         if (si->lowest_alloc) {
  322                 /*
  323                  * Only set when SWP_DISCARDABLE, and there's a scan
  324                  * for a free cluster in progress or just completed.
  325                  */
  326                 if (found_free_cluster) {
  327                         /*
  328                          * To optimize wear-levelling, discard the
  329                          * old data of the cluster, taking care not to
  330                          * discard any of its pages that have already
  331                          * been allocated by racing tasks (offset has
  332                          * already stepped over any at the beginning).
  333                          */
  334                         if (offset < si->highest_alloc &&
  335                             si->lowest_alloc <= last_in_cluster)
  336                                 last_in_cluster = si->lowest_alloc - 1;
  337                         si->flags |= SWP_DISCARDING;
  338                         spin_unlock(&swap_lock);
  339 
  340                         if (offset < last_in_cluster)
  341                                 discard_swap_cluster(si, offset,
  342                                         last_in_cluster - offset + 1);
  343 
  344                         spin_lock(&swap_lock);
  345                         si->lowest_alloc = 0;
  346                         si->flags &= ~SWP_DISCARDING;
  347 
  348                         smp_mb();       /* wake_up_bit advises this */
  349                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
  350 
  351                 } else if (si->flags & SWP_DISCARDING) {
  352                         /*
  353                          * Delay using pages allocated by racing tasks
  354                          * until the whole discard has been issued. We
  355                          * could defer that delay until swap_writepage,
  356                          * but it's easier to keep this self-contained.
  357                          */
  358                         spin_unlock(&swap_lock);
  359                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
  360                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
  361                         spin_lock(&swap_lock);
  362                 } else {
  363                         /*
  364                          * Note pages allocated by racing tasks while
  365                          * scan for a free cluster is in progress, so
  366                          * that its final discard can exclude them.
  367                          */
  368                         if (offset < si->lowest_alloc)
  369                                 si->lowest_alloc = offset;
  370                         if (offset > si->highest_alloc)
  371                                 si->highest_alloc = offset;
  372                 }
  373         }
  374         return offset;
  375 
  376 scan:
  377         spin_unlock(&swap_lock);
  378         while (++offset <= si->highest_bit) {
  379                 if (!si->swap_map[offset]) {
  380                         spin_lock(&swap_lock);
  381                         goto checks;
  382                 }
  383                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  384                         spin_lock(&swap_lock);
  385                         goto checks;
  386                 }
  387                 if (unlikely(--latency_ration < 0)) {
  388                         cond_resched();
  389                         latency_ration = LATENCY_LIMIT;
  390                 }
  391         }
  392         offset = si->lowest_bit;
  393         while (++offset < scan_base) {
  394                 if (!si->swap_map[offset]) {
  395                         spin_lock(&swap_lock);
  396                         goto checks;
  397                 }
  398                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  399                         spin_lock(&swap_lock);
  400                         goto checks;
  401                 }
  402                 if (unlikely(--latency_ration < 0)) {
  403                         cond_resched();
  404                         latency_ration = LATENCY_LIMIT;
  405                 }
  406         }
  407         spin_lock(&swap_lock);
  408 
  409 no_page:
  410         si->flags -= SWP_SCANNING;
  411         return 0;
  412 }
  413 
  414 swp_entry_t get_swap_page(void)
  415 {
  416         struct swap_info_struct *si;
  417         pgoff_t offset;
  418         int type, next;
  419         int wrapped = 0;
  420 
  421         spin_lock(&swap_lock);
  422         if (nr_swap_pages <= 0)
  423                 goto noswap;
  424         nr_swap_pages--;
  425 
  426         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
  427                 si = swap_info[type];
  428                 next = si->next;
  429                 if (next < 0 ||
  430                     (!wrapped && si->prio != swap_info[next]->prio)) {
  431                         next = swap_list.head;
  432                         wrapped++;
  433                 }
  434 
  435                 if (!si->highest_bit)
  436                         continue;
  437                 if (!(si->flags & SWP_WRITEOK))
  438                         continue;
  439 
  440                 swap_list.next = next;
  441                 /* This is called for allocating swap entry for cache */
  442                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
  443                 if (offset) {
  444                         spin_unlock(&swap_lock);
  445                         return swp_entry(type, offset);
  446                 }
  447                 next = swap_list.next;
  448         }
  449 
  450         nr_swap_pages++;
  451 noswap:
  452         spin_unlock(&swap_lock);
  453         return (swp_entry_t) {0};
  454 }
  455 
  456 /* The only caller of this function is now susupend routine */
  457 swp_entry_t get_swap_page_of_type(int type)
  458 {
  459         struct swap_info_struct *si;
  460         pgoff_t offset;
  461 
  462         spin_lock(&swap_lock);
  463         si = swap_info[type];
  464         if (si && (si->flags & SWP_WRITEOK)) {
  465                 nr_swap_pages--;
  466                 /* This is called for allocating swap entry, not cache */
  467                 offset = scan_swap_map(si, 1);
  468                 if (offset) {
  469                         spin_unlock(&swap_lock);
  470                         return swp_entry(type, offset);
  471                 }
  472                 nr_swap_pages++;
  473         }
  474         spin_unlock(&swap_lock);
  475         return (swp_entry_t) {0};
  476 }
  477 
  478 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
  479 {
  480         struct swap_info_struct *p;
  481         unsigned long offset, type;
  482 
  483         if (!entry.val)
  484                 goto out;
  485         type = swp_type(entry);
  486         if (type >= nr_swapfiles)
  487                 goto bad_nofile;
  488         p = swap_info[type];
  489         if (!(p->flags & SWP_USED))
  490                 goto bad_device;
  491         offset = swp_offset(entry);
  492         if (offset >= p->max)
  493                 goto bad_offset;
  494         if (!p->swap_map[offset])
  495                 goto bad_free;
  496         spin_lock(&swap_lock);
  497         return p;
  498 
  499 bad_free:
  500         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
  501         goto out;
  502 bad_offset:
  503         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
  504         goto out;
  505 bad_device:
  506         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
  507         goto out;
  508 bad_nofile:
  509         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
  510 out:
  511         return NULL;
  512 }
  513 
  514 static unsigned char swap_entry_free(struct swap_info_struct *p,
  515                                      swp_entry_t entry, unsigned char usage)
  516 {
  517         unsigned long offset = swp_offset(entry);
  518         unsigned char count;
  519         unsigned char has_cache;
  520 
  521         count = p->swap_map[offset];
  522         has_cache = count & SWAP_HAS_CACHE;
  523         count &= ~SWAP_HAS_CACHE;
  524 
  525         if (usage == SWAP_HAS_CACHE) {
  526                 VM_BUG_ON(!has_cache);
  527                 has_cache = 0;
  528         } else if (count == SWAP_MAP_SHMEM) {
  529                 /*
  530                  * Or we could insist on shmem.c using a special
  531                  * swap_shmem_free() and free_shmem_swap_and_cache()...
  532                  */
  533                 count = 0;
  534         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
  535                 if (count == COUNT_CONTINUED) {
  536                         if (swap_count_continued(p, offset, count))
  537                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
  538                         else
  539                                 count = SWAP_MAP_MAX;
  540                 } else
  541                         count--;
  542         }
  543 
  544         if (!count)
  545                 mem_cgroup_uncharge_swap(entry);
  546 
  547         usage = count | has_cache;
  548         p->swap_map[offset] = usage;
  549 
  550         /* free if no reference */
  551         if (!usage) {
  552                 if (offset < p->lowest_bit)
  553                         p->lowest_bit = offset;
  554                 if (offset > p->highest_bit)
  555                         p->highest_bit = offset;
  556                 if (swap_list.next >= 0 &&
  557                     p->prio > swap_info[swap_list.next]->prio)
  558                         swap_list.next = p->type;
  559                 nr_swap_pages++;
  560                 p->inuse_pages--;
  561                 frontswap_invalidate_page(p->type, offset);
  562                 if (p->flags & SWP_BLKDEV) {
  563                         struct gendisk *disk = p->bdev->bd_disk;
  564                         if (disk->fops->swap_slot_free_notify)
  565                                 disk->fops->swap_slot_free_notify(p->bdev,
  566                                                                   offset);
  567                 }
  568         }
  569 
  570         return usage;
  571 }
  572 
  573 /*
  574  * Caller has made sure that the swapdevice corresponding to entry
  575  * is still around or has not been recycled.
  576  */
  577 void swap_free(swp_entry_t entry)
  578 {
  579         struct swap_info_struct *p;
  580 
  581         p = swap_info_get(entry);
  582         if (p) {
  583                 swap_entry_free(p, entry, 1);
  584                 spin_unlock(&swap_lock);
  585         }
  586 }
  587 
  588 /*
  589  * Called after dropping swapcache to decrease refcnt to swap entries.
  590  */
  591 void swapcache_free(swp_entry_t entry, struct page *page)
  592 {
  593         struct swap_info_struct *p;
  594         unsigned char count;
  595 
  596         p = swap_info_get(entry);
  597         if (p) {
  598                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
  599                 if (page)
  600                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
  601                 spin_unlock(&swap_lock);
  602         }
  603 }
  604 
  605 /*
  606  * How many references to page are currently swapped out?
  607  * This does not give an exact answer when swap count is continued,
  608  * but does include the high COUNT_CONTINUED flag to allow for that.
  609  */
  610 int page_swapcount(struct page *page)
  611 {
  612         int count = 0;
  613         struct swap_info_struct *p;
  614         swp_entry_t entry;
  615 
  616         entry.val = page_private(page);
  617         p = swap_info_get(entry);
  618         if (p) {
  619                 count = swap_count(p->swap_map[swp_offset(entry)]);
  620                 spin_unlock(&swap_lock);
  621         }
  622         return count;
  623 }
  624 
  625 /*
  626  * We can write to an anon page without COW if there are no other references
  627  * to it.  And as a side-effect, free up its swap: because the old content
  628  * on disk will never be read, and seeking back there to write new content
  629  * later would only waste time away from clustering.
  630  */
  631 int reuse_swap_page(struct page *page)
  632 {
  633         int count;
  634 
  635         VM_BUG_ON(!PageLocked(page));
  636         if (unlikely(PageKsm(page)))
  637                 return 0;
  638         count = page_mapcount(page);
  639         if (count <= 1 && PageSwapCache(page)) {
  640                 count += page_swapcount(page);
  641                 if (count == 1 && !PageWriteback(page)) {
  642                         delete_from_swap_cache(page);
  643                         SetPageDirty(page);
  644                 }
  645         }
  646         return count <= 1;
  647 }
  648 
  649 /*
  650  * If swap is getting full, or if there are no more mappings of this page,
  651  * then try_to_free_swap is called to free its swap space.
  652  */
  653 int try_to_free_swap(struct page *page)
  654 {
  655         VM_BUG_ON(!PageLocked(page));
  656 
  657         if (!PageSwapCache(page))
  658                 return 0;
  659         if (PageWriteback(page))
  660                 return 0;
  661         if (page_swapcount(page))
  662                 return 0;
  663 
  664         /*
  665          * Once hibernation has begun to create its image of memory,
  666          * there's a danger that one of the calls to try_to_free_swap()
  667          * - most probably a call from __try_to_reclaim_swap() while
  668          * hibernation is allocating its own swap pages for the image,
  669          * but conceivably even a call from memory reclaim - will free
  670          * the swap from a page which has already been recorded in the
  671          * image as a clean swapcache page, and then reuse its swap for
  672          * another page of the image.  On waking from hibernation, the
  673          * original page might be freed under memory pressure, then
  674          * later read back in from swap, now with the wrong data.
  675          *
  676          * Hibration suspends storage while it is writing the image
  677          * to disk so check that here.
  678          */
  679         if (pm_suspended_storage())
  680                 return 0;
  681 
  682         delete_from_swap_cache(page);
  683         SetPageDirty(page);
  684         return 1;
  685 }
  686 
  687 /*
  688  * Free the swap entry like above, but also try to
  689  * free the page cache entry if it is the last user.
  690  */
  691 int free_swap_and_cache(swp_entry_t entry)
  692 {
  693         struct swap_info_struct *p;
  694         struct page *page = NULL;
  695 
  696         if (non_swap_entry(entry))
  697                 return 1;
  698 
  699         p = swap_info_get(entry);
  700         if (p) {
  701                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
  702                         page = find_get_page(&swapper_space, entry.val);
  703                         if (page && !trylock_page(page)) {
  704                                 page_cache_release(page);
  705                                 page = NULL;
  706                         }
  707                 }
  708                 spin_unlock(&swap_lock);
  709         }
  710         if (page) {
  711                 /*
  712                  * Not mapped elsewhere, or swap space full? Free it!
  713                  * Also recheck PageSwapCache now page is locked (above).
  714                  */
  715                 if (PageSwapCache(page) && !PageWriteback(page) &&
  716                                 (!page_mapped(page) || vm_swap_full())) {
  717                         delete_from_swap_cache(page);
  718                         SetPageDirty(page);
  719                 }
  720                 unlock_page(page);
  721                 page_cache_release(page);
  722         }
  723         return p != NULL;
  724 }
  725 
  726 #ifdef CONFIG_HIBERNATION
  727 /*
  728  * Find the swap type that corresponds to given device (if any).
  729  *
  730  * @offset - number of the PAGE_SIZE-sized block of the device, starting
  731  * from 0, in which the swap header is expected to be located.
  732  *
  733  * This is needed for the suspend to disk (aka swsusp).
  734  */
  735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
  736 {
  737         struct block_device *bdev = NULL;
  738         int type;
  739 
  740         if (device)
  741                 bdev = bdget(device);
  742 
  743         spin_lock(&swap_lock);
  744         for (type = 0; type < nr_swapfiles; type++) {
  745                 struct swap_info_struct *sis = swap_info[type];
  746 
  747                 if (!(sis->flags & SWP_WRITEOK))
  748                         continue;
  749 
  750                 if (!bdev) {
  751                         if (bdev_p)
  752                                 *bdev_p = bdgrab(sis->bdev);
  753 
  754                         spin_unlock(&swap_lock);
  755                         return type;
  756                 }
  757                 if (bdev == sis->bdev) {
  758                         struct swap_extent *se = &sis->first_swap_extent;
  759 
  760                         if (se->start_block == offset) {
  761                                 if (bdev_p)
  762                                         *bdev_p = bdgrab(sis->bdev);
  763 
  764                                 spin_unlock(&swap_lock);
  765                                 bdput(bdev);
  766                                 return type;
  767                         }
  768                 }
  769         }
  770         spin_unlock(&swap_lock);
  771         if (bdev)
  772                 bdput(bdev);
  773 
  774         return -ENODEV;
  775 }
  776 
  777 /*
  778  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
  779  * corresponding to given index in swap_info (swap type).
  780  */
  781 sector_t swapdev_block(int type, pgoff_t offset)
  782 {
  783         struct block_device *bdev;
  784 
  785         if ((unsigned int)type >= nr_swapfiles)
  786                 return 0;
  787         if (!(swap_info[type]->flags & SWP_WRITEOK))
  788                 return 0;
  789         return map_swap_entry(swp_entry(type, offset), &bdev);
  790 }
  791 
  792 /*
  793  * Return either the total number of swap pages of given type, or the number
  794  * of free pages of that type (depending on @free)
  795  *
  796  * This is needed for software suspend
  797  */
  798 unsigned int count_swap_pages(int type, int free)
  799 {
  800         unsigned int n = 0;
  801 
  802         spin_lock(&swap_lock);
  803         if ((unsigned int)type < nr_swapfiles) {
  804                 struct swap_info_struct *sis = swap_info[type];
  805 
  806                 if (sis->flags & SWP_WRITEOK) {
  807                         n = sis->pages;
  808                         if (free)
  809                                 n -= sis->inuse_pages;
  810                 }
  811         }
  812         spin_unlock(&swap_lock);
  813         return n;
  814 }
  815 #endif /* CONFIG_HIBERNATION */
  816 
  817 /*
  818  * No need to decide whether this PTE shares the swap entry with others,
  819  * just let do_wp_page work it out if a write is requested later - to
  820  * force COW, vm_page_prot omits write permission from any private vma.
  821  */
  822 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
  823                 unsigned long addr, swp_entry_t entry, struct page *page)
  824 {
  825         struct mem_cgroup *memcg;
  826         spinlock_t *ptl;
  827         pte_t *pte;
  828         int ret = 1;
  829 
  830         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
  831                                          GFP_KERNEL, &memcg)) {
  832                 ret = -ENOMEM;
  833                 goto out_nolock;
  834         }
  835 
  836         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  837         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
  838                 mem_cgroup_cancel_charge_swapin(memcg);
  839                 ret = 0;
  840                 goto out;
  841         }
  842 
  843         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
  844         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
  845         get_page(page);
  846         set_pte_at(vma->vm_mm, addr, pte,
  847                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
  848         page_add_anon_rmap(page, vma, addr);
  849         mem_cgroup_commit_charge_swapin(page, memcg);
  850         swap_free(entry);
  851         /*
  852          * Move the page to the active list so it is not
  853          * immediately swapped out again after swapon.
  854          */
  855         activate_page(page);
  856 out:
  857         pte_unmap_unlock(pte, ptl);
  858 out_nolock:
  859         return ret;
  860 }
  861 
  862 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  863                                 unsigned long addr, unsigned long end,
  864                                 swp_entry_t entry, struct page *page)
  865 {
  866         pte_t swp_pte = swp_entry_to_pte(entry);
  867         pte_t *pte;
  868         int ret = 0;
  869 
  870         /*
  871          * We don't actually need pte lock while scanning for swp_pte: since
  872          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
  873          * page table while we're scanning; though it could get zapped, and on
  874          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
  875          * of unmatched parts which look like swp_pte, so unuse_pte must
  876          * recheck under pte lock.  Scanning without pte lock lets it be
  877          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
  878          */
  879         pte = pte_offset_map(pmd, addr);
  880         do {
  881                 /*
  882                  * swapoff spends a _lot_ of time in this loop!
  883                  * Test inline before going to call unuse_pte.
  884                  */
  885                 if (unlikely(pte_same(*pte, swp_pte))) {
  886                         pte_unmap(pte);
  887                         ret = unuse_pte(vma, pmd, addr, entry, page);
  888                         if (ret)
  889                                 goto out;
  890                         pte = pte_offset_map(pmd, addr);
  891                 }
  892         } while (pte++, addr += PAGE_SIZE, addr != end);
  893         pte_unmap(pte - 1);
  894 out:
  895         return ret;
  896 }
  897 
  898 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  899                                 unsigned long addr, unsigned long end,
  900                                 swp_entry_t entry, struct page *page)
  901 {
  902         pmd_t *pmd;
  903         unsigned long next;
  904         int ret;
  905 
  906         pmd = pmd_offset(pud, addr);
  907         do {
  908                 next = pmd_addr_end(addr, end);
  909                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  910                         continue;
  911                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
  912                 if (ret)
  913                         return ret;
  914         } while (pmd++, addr = next, addr != end);
  915         return 0;
  916 }
  917 
  918 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  919                                 unsigned long addr, unsigned long end,
  920                                 swp_entry_t entry, struct page *page)
  921 {
  922         pud_t *pud;
  923         unsigned long next;
  924         int ret;
  925 
  926         pud = pud_offset(pgd, addr);
  927         do {
  928                 next = pud_addr_end(addr, end);
  929                 if (pud_none_or_clear_bad(pud))
  930                         continue;
  931                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
  932                 if (ret)
  933                         return ret;
  934         } while (pud++, addr = next, addr != end);
  935         return 0;
  936 }
  937 
  938 static int unuse_vma(struct vm_area_struct *vma,
  939                                 swp_entry_t entry, struct page *page)
  940 {
  941         pgd_t *pgd;
  942         unsigned long addr, end, next;
  943         int ret;
  944 
  945         if (page_anon_vma(page)) {
  946                 addr = page_address_in_vma(page, vma);
  947                 if (addr == -EFAULT)
  948                         return 0;
  949                 else
  950                         end = addr + PAGE_SIZE;
  951         } else {
  952                 addr = vma->vm_start;
  953                 end = vma->vm_end;
  954         }
  955 
  956         pgd = pgd_offset(vma->vm_mm, addr);
  957         do {
  958                 next = pgd_addr_end(addr, end);
  959                 if (pgd_none_or_clear_bad(pgd))
  960                         continue;
  961                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
  962                 if (ret)
  963                         return ret;
  964         } while (pgd++, addr = next, addr != end);
  965         return 0;
  966 }
  967 
  968 static int unuse_mm(struct mm_struct *mm,
  969                                 swp_entry_t entry, struct page *page)
  970 {
  971         struct vm_area_struct *vma;
  972         int ret = 0;
  973 
  974         if (!down_read_trylock(&mm->mmap_sem)) {
  975                 /*
  976                  * Activate page so shrink_inactive_list is unlikely to unmap
  977                  * its ptes while lock is dropped, so swapoff can make progress.
  978                  */
  979                 activate_page(page);
  980                 unlock_page(page);
  981                 down_read(&mm->mmap_sem);
  982                 lock_page(page);
  983         }
  984         for (vma = mm->mmap; vma; vma = vma->vm_next) {
  985                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
  986                         break;
  987         }
  988         up_read(&mm->mmap_sem);
  989         return (ret < 0)? ret: 0;
  990 }
  991 
  992 /*
  993  * Scan swap_map (or frontswap_map if frontswap parameter is true)
  994  * from current position to next entry still in use.
  995  * Recycle to start on reaching the end, returning 0 when empty.
  996  */
  997 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  998                                         unsigned int prev, bool frontswap)
  999 {
 1000         unsigned int max = si->max;
 1001         unsigned int i = prev;
 1002         unsigned char count;
 1003 
 1004         /*
 1005          * No need for swap_lock here: we're just looking
 1006          * for whether an entry is in use, not modifying it; false
 1007          * hits are okay, and sys_swapoff() has already prevented new
 1008          * allocations from this area (while holding swap_lock).
 1009          */
 1010         for (;;) {
 1011                 if (++i >= max) {
 1012                         if (!prev) {
 1013                                 i = 0;
 1014                                 break;
 1015                         }
 1016                         /*
 1017                          * No entries in use at top of swap_map,
 1018                          * loop back to start and recheck there.
 1019                          */
 1020                         max = prev + 1;
 1021                         prev = 0;
 1022                         i = 1;
 1023                 }
 1024                 if (frontswap) {
 1025                         if (frontswap_test(si, i))
 1026                                 break;
 1027                         else
 1028                                 continue;
 1029                 }
 1030                 count = si->swap_map[i];
 1031                 if (count && swap_count(count) != SWAP_MAP_BAD)
 1032                         break;
 1033         }
 1034         return i;
 1035 }
 1036 
 1037 /*
 1038  * We completely avoid races by reading each swap page in advance,
 1039  * and then search for the process using it.  All the necessary
 1040  * page table adjustments can then be made atomically.
 1041  *
 1042  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
 1043  * pages_to_unuse==0 means all pages; ignored if frontswap is false
 1044  */
 1045 int try_to_unuse(unsigned int type, bool frontswap,
 1046                  unsigned long pages_to_unuse)
 1047 {
 1048         struct swap_info_struct *si = swap_info[type];
 1049         struct mm_struct *start_mm;
 1050         unsigned char *swap_map;
 1051         unsigned char swcount;
 1052         struct page *page;
 1053         swp_entry_t entry;
 1054         unsigned int i = 0;
 1055         int retval = 0;
 1056 
 1057         /*
 1058          * When searching mms for an entry, a good strategy is to
 1059          * start at the first mm we freed the previous entry from
 1060          * (though actually we don't notice whether we or coincidence
 1061          * freed the entry).  Initialize this start_mm with a hold.
 1062          *
 1063          * A simpler strategy would be to start at the last mm we
 1064          * freed the previous entry from; but that would take less
 1065          * advantage of mmlist ordering, which clusters forked mms
 1066          * together, child after parent.  If we race with dup_mmap(), we
 1067          * prefer to resolve parent before child, lest we miss entries
 1068          * duplicated after we scanned child: using last mm would invert
 1069          * that.
 1070          */
 1071         start_mm = &init_mm;
 1072         atomic_inc(&init_mm.mm_users);
 1073 
 1074         /*
 1075          * Keep on scanning until all entries have gone.  Usually,
 1076          * one pass through swap_map is enough, but not necessarily:
 1077          * there are races when an instance of an entry might be missed.
 1078          */
 1079         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
 1080                 if (signal_pending(current)) {
 1081                         retval = -EINTR;
 1082                         break;
 1083                 }
 1084 
 1085                 /*
 1086                  * Get a page for the entry, using the existing swap
 1087                  * cache page if there is one.  Otherwise, get a clean
 1088                  * page and read the swap into it.
 1089                  */
 1090                 swap_map = &si->swap_map[i];
 1091                 entry = swp_entry(type, i);
 1092                 page = read_swap_cache_async(entry,
 1093                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
 1094                 if (!page) {
 1095                         /*
 1096                          * Either swap_duplicate() failed because entry
 1097                          * has been freed independently, and will not be
 1098                          * reused since sys_swapoff() already disabled
 1099                          * allocation from here, or alloc_page() failed.
 1100                          */
 1101                         if (!*swap_map)
 1102                                 continue;
 1103                         retval = -ENOMEM;
 1104                         break;
 1105                 }
 1106 
 1107                 /*
 1108                  * Don't hold on to start_mm if it looks like exiting.
 1109                  */
 1110                 if (atomic_read(&start_mm->mm_users) == 1) {
 1111                         mmput(start_mm);
 1112                         start_mm = &init_mm;
 1113                         atomic_inc(&init_mm.mm_users);
 1114                 }
 1115 
 1116                 /*
 1117                  * Wait for and lock page.  When do_swap_page races with
 1118                  * try_to_unuse, do_swap_page can handle the fault much
 1119                  * faster than try_to_unuse can locate the entry.  This
 1120                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
 1121                  * defer to do_swap_page in such a case - in some tests,
 1122                  * do_swap_page and try_to_unuse repeatedly compete.
 1123                  */
 1124                 wait_on_page_locked(page);
 1125                 wait_on_page_writeback(page);
 1126                 lock_page(page);
 1127                 wait_on_page_writeback(page);
 1128 
 1129                 /*
 1130                  * Remove all references to entry.
 1131                  */
 1132                 swcount = *swap_map;
 1133                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
 1134                         retval = shmem_unuse(entry, page);
 1135                         /* page has already been unlocked and released */
 1136                         if (retval < 0)
 1137                                 break;
 1138                         continue;
 1139                 }
 1140                 if (swap_count(swcount) && start_mm != &init_mm)
 1141                         retval = unuse_mm(start_mm, entry, page);
 1142 
 1143                 if (swap_count(*swap_map)) {
 1144                         int set_start_mm = (*swap_map >= swcount);
 1145                         struct list_head *p = &start_mm->mmlist;
 1146                         struct mm_struct *new_start_mm = start_mm;
 1147                         struct mm_struct *prev_mm = start_mm;
 1148                         struct mm_struct *mm;
 1149 
 1150                         atomic_inc(&new_start_mm->mm_users);
 1151                         atomic_inc(&prev_mm->mm_users);
 1152                         spin_lock(&mmlist_lock);
 1153                         while (swap_count(*swap_map) && !retval &&
 1154                                         (p = p->next) != &start_mm->mmlist) {
 1155                                 mm = list_entry(p, struct mm_struct, mmlist);
 1156                                 if (!atomic_inc_not_zero(&mm->mm_users))
 1157                                         continue;
 1158                                 spin_unlock(&mmlist_lock);
 1159                                 mmput(prev_mm);
 1160                                 prev_mm = mm;
 1161 
 1162                                 cond_resched();
 1163 
 1164                                 swcount = *swap_map;
 1165                                 if (!swap_count(swcount)) /* any usage ? */
 1166                                         ;
 1167                                 else if (mm == &init_mm)
 1168                                         set_start_mm = 1;
 1169                                 else
 1170                                         retval = unuse_mm(mm, entry, page);
 1171 
 1172                                 if (set_start_mm && *swap_map < swcount) {
 1173                                         mmput(new_start_mm);
 1174                                         atomic_inc(&mm->mm_users);
 1175                                         new_start_mm = mm;
 1176                                         set_start_mm = 0;
 1177                                 }
 1178                                 spin_lock(&mmlist_lock);
 1179                         }
 1180                         spin_unlock(&mmlist_lock);
 1181                         mmput(prev_mm);
 1182                         mmput(start_mm);
 1183                         start_mm = new_start_mm;
 1184                 }
 1185                 if (retval) {
 1186                         unlock_page(page);
 1187                         page_cache_release(page);
 1188                         break;
 1189                 }
 1190 
 1191                 /*
 1192                  * If a reference remains (rare), we would like to leave
 1193                  * the page in the swap cache; but try_to_unmap could
 1194                  * then re-duplicate the entry once we drop page lock,
 1195                  * so we might loop indefinitely; also, that page could
 1196                  * not be swapped out to other storage meanwhile.  So:
 1197                  * delete from cache even if there's another reference,
 1198                  * after ensuring that the data has been saved to disk -
 1199                  * since if the reference remains (rarer), it will be
 1200                  * read from disk into another page.  Splitting into two
 1201                  * pages would be incorrect if swap supported "shared
 1202                  * private" pages, but they are handled by tmpfs files.
 1203                  *
 1204                  * Given how unuse_vma() targets one particular offset
 1205                  * in an anon_vma, once the anon_vma has been determined,
 1206                  * this splitting happens to be just what is needed to
 1207                  * handle where KSM pages have been swapped out: re-reading
 1208                  * is unnecessarily slow, but we can fix that later on.
 1209                  */
 1210                 if (swap_count(*swap_map) &&
 1211                      PageDirty(page) && PageSwapCache(page)) {
 1212                         struct writeback_control wbc = {
 1213                                 .sync_mode = WB_SYNC_NONE,
 1214                         };
 1215 
 1216                         swap_writepage(page, &wbc);
 1217                         lock_page(page);
 1218                         wait_on_page_writeback(page);
 1219                 }
 1220 
 1221                 /*
 1222                  * It is conceivable that a racing task removed this page from
 1223                  * swap cache just before we acquired the page lock at the top,
 1224                  * or while we dropped it in unuse_mm().  The page might even
 1225                  * be back in swap cache on another swap area: that we must not
 1226                  * delete, since it may not have been written out to swap yet.
 1227                  */
 1228                 if (PageSwapCache(page) &&
 1229                     likely(page_private(page) == entry.val))
 1230                         delete_from_swap_cache(page);
 1231 
 1232                 /*
 1233                  * So we could skip searching mms once swap count went
 1234                  * to 1, we did not mark any present ptes as dirty: must
 1235                  * mark page dirty so shrink_page_list will preserve it.
 1236                  */
 1237                 SetPageDirty(page);
 1238                 unlock_page(page);
 1239                 page_cache_release(page);
 1240 
 1241                 /*
 1242                  * Make sure that we aren't completely killing
 1243                  * interactive performance.
 1244                  */
 1245                 cond_resched();
 1246                 if (frontswap && pages_to_unuse > 0) {
 1247                         if (!--pages_to_unuse)
 1248                                 break;
 1249                 }
 1250         }
 1251 
 1252         mmput(start_mm);
 1253         return retval;
 1254 }
 1255 
 1256 /*
 1257  * After a successful try_to_unuse, if no swap is now in use, we know
 1258  * we can empty the mmlist.  swap_lock must be held on entry and exit.
 1259  * Note that mmlist_lock nests inside swap_lock, and an mm must be
 1260  * added to the mmlist just after page_duplicate - before would be racy.
 1261  */
 1262 static void drain_mmlist(void)
 1263 {
 1264         struct list_head *p, *next;
 1265         unsigned int type;
 1266 
 1267         for (type = 0; type < nr_swapfiles; type++)
 1268                 if (swap_info[type]->inuse_pages)
 1269                         return;
 1270         spin_lock(&mmlist_lock);
 1271         list_for_each_safe(p, next, &init_mm.mmlist)
 1272                 list_del_init(p);
 1273         spin_unlock(&mmlist_lock);
 1274 }
 1275 
 1276 /*
 1277  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
 1278  * corresponds to page offset for the specified swap entry.
 1279  * Note that the type of this function is sector_t, but it returns page offset
 1280  * into the bdev, not sector offset.
 1281  */
 1282 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
 1283 {
 1284         struct swap_info_struct *sis;
 1285         struct swap_extent *start_se;
 1286         struct swap_extent *se;
 1287         pgoff_t offset;
 1288 
 1289         sis = swap_info[swp_type(entry)];
 1290         *bdev = sis->bdev;
 1291 
 1292         offset = swp_offset(entry);
 1293         start_se = sis->curr_swap_extent;
 1294         se = start_se;
 1295 
 1296         for ( ; ; ) {
 1297                 struct list_head *lh;
 1298 
 1299                 if (se->start_page <= offset &&
 1300                                 offset < (se->start_page + se->nr_pages)) {
 1301                         return se->start_block + (offset - se->start_page);
 1302                 }
 1303                 lh = se->list.next;
 1304                 se = list_entry(lh, struct swap_extent, list);
 1305                 sis->curr_swap_extent = se;
 1306                 BUG_ON(se == start_se);         /* It *must* be present */
 1307         }
 1308 }
 1309 
 1310 /*
 1311  * Returns the page offset into bdev for the specified page's swap entry.
 1312  */
 1313 sector_t map_swap_page(struct page *page, struct block_device **bdev)
 1314 {
 1315         swp_entry_t entry;
 1316         entry.val = page_private(page);
 1317         return map_swap_entry(entry, bdev);
 1318 }
 1319 
 1320 /*
 1321  * Free all of a swapdev's extent information
 1322  */
 1323 static void destroy_swap_extents(struct swap_info_struct *sis)
 1324 {
 1325         while (!list_empty(&sis->first_swap_extent.list)) {
 1326                 struct swap_extent *se;
 1327 
 1328                 se = list_entry(sis->first_swap_extent.list.next,
 1329                                 struct swap_extent, list);
 1330                 list_del(&se->list);
 1331                 kfree(se);
 1332         }
 1333 
 1334         if (sis->flags & SWP_FILE) {
 1335                 struct file *swap_file = sis->swap_file;
 1336                 struct address_space *mapping = swap_file->f_mapping;
 1337 
 1338                 sis->flags &= ~SWP_FILE;
 1339                 mapping->a_ops->swap_deactivate(swap_file);
 1340         }
 1341 }
 1342 
 1343 /*
 1344  * Add a block range (and the corresponding page range) into this swapdev's
 1345  * extent list.  The extent list is kept sorted in page order.
 1346  *
 1347  * This function rather assumes that it is called in ascending page order.
 1348  */
 1349 int
 1350 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
 1351                 unsigned long nr_pages, sector_t start_block)
 1352 {
 1353         struct swap_extent *se;
 1354         struct swap_extent *new_se;
 1355         struct list_head *lh;
 1356 
 1357         if (start_page == 0) {
 1358                 se = &sis->first_swap_extent;
 1359                 sis->curr_swap_extent = se;
 1360                 se->start_page = 0;
 1361                 se->nr_pages = nr_pages;
 1362                 se->start_block = start_block;
 1363                 return 1;
 1364         } else {
 1365                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
 1366                 se = list_entry(lh, struct swap_extent, list);
 1367                 BUG_ON(se->start_page + se->nr_pages != start_page);
 1368                 if (se->start_block + se->nr_pages == start_block) {
 1369                         /* Merge it */
 1370                         se->nr_pages += nr_pages;
 1371                         return 0;
 1372                 }
 1373         }
 1374 
 1375         /*
 1376          * No merge.  Insert a new extent, preserving ordering.
 1377          */
 1378         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
 1379         if (new_se == NULL)
 1380                 return -ENOMEM;
 1381         new_se->start_page = start_page;
 1382         new_se->nr_pages = nr_pages;
 1383         new_se->start_block = start_block;
 1384 
 1385         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 1386         return 1;
 1387 }
 1388 
 1389 /*
 1390  * A `swap extent' is a simple thing which maps a contiguous range of pages
 1391  * onto a contiguous range of disk blocks.  An ordered list of swap extents
 1392  * is built at swapon time and is then used at swap_writepage/swap_readpage
 1393  * time for locating where on disk a page belongs.
 1394  *
 1395  * If the swapfile is an S_ISBLK block device, a single extent is installed.
 1396  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
 1397  * swap files identically.
 1398  *
 1399  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
 1400  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
 1401  * swapfiles are handled *identically* after swapon time.
 1402  *
 1403  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
 1404  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
 1405  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
 1406  * requirements, they are simply tossed out - we will never use those blocks
 1407  * for swapping.
 1408  *
 1409  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
 1410  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
 1411  * which will scribble on the fs.
 1412  *
 1413  * The amount of disk space which a single swap extent represents varies.
 1414  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
 1415  * extents in the list.  To avoid much list walking, we cache the previous
 1416  * search location in `curr_swap_extent', and start new searches from there.
 1417  * This is extremely effective.  The average number of iterations in
 1418  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
 1419  */
 1420 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
 1421 {
 1422         struct file *swap_file = sis->swap_file;
 1423         struct address_space *mapping = swap_file->f_mapping;
 1424         struct inode *inode = mapping->host;
 1425         int ret;
 1426 
 1427         if (S_ISBLK(inode->i_mode)) {
 1428                 ret = add_swap_extent(sis, 0, sis->max, 0);
 1429                 *span = sis->pages;
 1430                 return ret;
 1431         }
 1432 
 1433         if (mapping->a_ops->swap_activate) {
 1434                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
 1435                 if (!ret) {
 1436                         sis->flags |= SWP_FILE;
 1437                         ret = add_swap_extent(sis, 0, sis->max, 0);
 1438                         *span = sis->pages;
 1439                 }
 1440                 return ret;
 1441         }
 1442 
 1443         return generic_swapfile_activate(sis, swap_file, span);
 1444 }
 1445 
 1446 static void _enable_swap_info(struct swap_info_struct *p, int prio,
 1447                                 unsigned char *swap_map,
 1448                                 unsigned long *frontswap_map)
 1449 {
 1450         int i, prev;
 1451 
 1452         if (prio >= 0)
 1453                 p->prio = prio;
 1454         else
 1455                 p->prio = --least_priority;
 1456         p->swap_map = swap_map;
 1457         frontswap_map_set(p, frontswap_map);
 1458         p->flags |= SWP_WRITEOK;
 1459         nr_swap_pages += p->pages;
 1460         total_swap_pages += p->pages;
 1461 
 1462         /* insert swap space into swap_list: */
 1463         prev = -1;
 1464         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
 1465                 if (p->prio >= swap_info[i]->prio)
 1466                         break;
 1467                 prev = i;
 1468         }
 1469         p->next = i;
 1470         if (prev < 0)
 1471                 swap_list.head = swap_list.next = p->type;
 1472         else
 1473                 swap_info[prev]->next = p->type;
 1474 }
 1475 
 1476 static void enable_swap_info(struct swap_info_struct *p, int prio,
 1477                                 unsigned char *swap_map,
 1478                                 unsigned long *frontswap_map)
 1479 {
 1480         spin_lock(&swap_lock);
 1481         _enable_swap_info(p, prio, swap_map, frontswap_map);
 1482         frontswap_init(p->type);
 1483         spin_unlock(&swap_lock);
 1484 }
 1485 
 1486 static void reinsert_swap_info(struct swap_info_struct *p)
 1487 {
 1488         spin_lock(&swap_lock);
 1489         _enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
 1490         spin_unlock(&swap_lock);
 1491 }
 1492 
 1493 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
 1494 {
 1495         struct swap_info_struct *p = NULL;
 1496         unsigned char *swap_map;
 1497         struct file *swap_file, *victim;
 1498         struct address_space *mapping;
 1499         struct inode *inode;
 1500         struct filename *pathname;
 1501         int i, type, prev;
 1502         int err;
 1503 
 1504         if (!capable(CAP_SYS_ADMIN))
 1505                 return -EPERM;
 1506 
 1507         BUG_ON(!current->mm);
 1508 
 1509         pathname = getname(specialfile);
 1510         if (IS_ERR(pathname))
 1511                 return PTR_ERR(pathname);
 1512 
 1513         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 1514         err = PTR_ERR(victim);
 1515         if (IS_ERR(victim))
 1516                 goto out;
 1517 
 1518         mapping = victim->f_mapping;
 1519         prev = -1;
 1520         spin_lock(&swap_lock);
 1521         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
 1522                 p = swap_info[type];
 1523                 if (p->flags & SWP_WRITEOK) {
 1524                         if (p->swap_file->f_mapping == mapping)
 1525                                 break;
 1526                 }
 1527                 prev = type;
 1528         }
 1529         if (type < 0) {
 1530                 err = -EINVAL;
 1531                 spin_unlock(&swap_lock);
 1532                 goto out_dput;
 1533         }
 1534         if (!security_vm_enough_memory_mm(current->mm, p->pages))
 1535                 vm_unacct_memory(p->pages);
 1536         else {
 1537                 err = -ENOMEM;
 1538                 spin_unlock(&swap_lock);
 1539                 goto out_dput;
 1540         }
 1541         if (prev < 0)
 1542                 swap_list.head = p->next;
 1543         else
 1544                 swap_info[prev]->next = p->next;
 1545         if (type == swap_list.next) {
 1546                 /* just pick something that's safe... */
 1547                 swap_list.next = swap_list.head;
 1548         }
 1549         if (p->prio < 0) {
 1550                 for (i = p->next; i >= 0; i = swap_info[i]->next)
 1551                         swap_info[i]->prio = p->prio--;
 1552                 least_priority++;
 1553         }
 1554         nr_swap_pages -= p->pages;
 1555         total_swap_pages -= p->pages;
 1556         p->flags &= ~SWP_WRITEOK;
 1557         spin_unlock(&swap_lock);
 1558 
 1559         set_current_oom_origin();
 1560         err = try_to_unuse(type, false, 0); /* force all pages to be unused */
 1561         clear_current_oom_origin();
 1562 
 1563         if (err) {
 1564                 /* re-insert swap space back into swap_list */
 1565                 reinsert_swap_info(p);
 1566                 goto out_dput;
 1567         }
 1568 
 1569         destroy_swap_extents(p);
 1570         if (p->flags & SWP_CONTINUED)
 1571                 free_swap_count_continuations(p);
 1572 
 1573         mutex_lock(&swapon_mutex);
 1574         spin_lock(&swap_lock);
 1575         drain_mmlist();
 1576 
 1577         /* wait for anyone still in scan_swap_map */
 1578         p->highest_bit = 0;             /* cuts scans short */
 1579         while (p->flags >= SWP_SCANNING) {
 1580                 spin_unlock(&swap_lock);
 1581                 schedule_timeout_uninterruptible(1);
 1582                 spin_lock(&swap_lock);
 1583         }
 1584 
 1585         swap_file = p->swap_file;
 1586         p->swap_file = NULL;
 1587         p->max = 0;
 1588         swap_map = p->swap_map;
 1589         p->swap_map = NULL;
 1590         p->flags = 0;
 1591         frontswap_invalidate_area(type);
 1592         spin_unlock(&swap_lock);
 1593         mutex_unlock(&swapon_mutex);
 1594         vfree(swap_map);
 1595         vfree(frontswap_map_get(p));
 1596         /* Destroy swap account informatin */
 1597         swap_cgroup_swapoff(type);
 1598 
 1599         inode = mapping->host;
 1600         if (S_ISBLK(inode->i_mode)) {
 1601                 struct block_device *bdev = I_BDEV(inode);
 1602                 set_blocksize(bdev, p->old_block_size);
 1603                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 1604         } else {
 1605                 mutex_lock(&inode->i_mutex);
 1606                 inode->i_flags &= ~S_SWAPFILE;
 1607                 mutex_unlock(&inode->i_mutex);
 1608         }
 1609         filp_close(swap_file, NULL);
 1610         err = 0;
 1611         atomic_inc(&proc_poll_event);
 1612         wake_up_interruptible(&proc_poll_wait);
 1613 
 1614 out_dput:
 1615         filp_close(victim, NULL);
 1616 out:
 1617         putname(pathname);
 1618         return err;
 1619 }
 1620 
 1621 #ifdef CONFIG_PROC_FS
 1622 static unsigned swaps_poll(struct file *file, poll_table *wait)
 1623 {
 1624         struct seq_file *seq = file->private_data;
 1625 
 1626         poll_wait(file, &proc_poll_wait, wait);
 1627 
 1628         if (seq->poll_event != atomic_read(&proc_poll_event)) {
 1629                 seq->poll_event = atomic_read(&proc_poll_event);
 1630                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
 1631         }
 1632 
 1633         return POLLIN | POLLRDNORM;
 1634 }
 1635 
 1636 /* iterator */
 1637 static void *swap_start(struct seq_file *swap, loff_t *pos)
 1638 {
 1639         struct swap_info_struct *si;
 1640         int type;
 1641         loff_t l = *pos;
 1642 
 1643         mutex_lock(&swapon_mutex);
 1644 
 1645         if (!l)
 1646                 return SEQ_START_TOKEN;
 1647 
 1648         for (type = 0; type < nr_swapfiles; type++) {
 1649                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
 1650                 si = swap_info[type];
 1651                 if (!(si->flags & SWP_USED) || !si->swap_map)
 1652                         continue;
 1653                 if (!--l)
 1654                         return si;
 1655         }
 1656 
 1657         return NULL;
 1658 }
 1659 
 1660 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
 1661 {
 1662         struct swap_info_struct *si = v;
 1663         int type;
 1664 
 1665         if (v == SEQ_START_TOKEN)
 1666                 type = 0;
 1667         else
 1668                 type = si->type + 1;
 1669 
 1670         for (; type < nr_swapfiles; type++) {
 1671                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
 1672                 si = swap_info[type];
 1673                 if (!(si->flags & SWP_USED) || !si->swap_map)
 1674                         continue;
 1675                 ++*pos;
 1676                 return si;
 1677         }
 1678 
 1679         return NULL;
 1680 }
 1681 
 1682 static void swap_stop(struct seq_file *swap, void *v)
 1683 {
 1684         mutex_unlock(&swapon_mutex);
 1685 }
 1686 
 1687 static int swap_show(struct seq_file *swap, void *v)
 1688 {
 1689         struct swap_info_struct *si = v;
 1690         struct file *file;
 1691         int len;
 1692 
 1693         if (si == SEQ_START_TOKEN) {
 1694                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
 1695                 return 0;
 1696         }
 1697 
 1698         file = si->swap_file;
 1699         len = seq_path(swap, &file->f_path, " \t\n\\");
 1700         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
 1701                         len < 40 ? 40 - len : 1, " ",
 1702                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
 1703                                 "partition" : "file\t",
 1704                         si->pages << (PAGE_SHIFT - 10),
 1705                         si->inuse_pages << (PAGE_SHIFT - 10),
 1706                         si->prio);
 1707         return 0;
 1708 }
 1709 
 1710 static const struct seq_operations swaps_op = {
 1711         .start =        swap_start,
 1712         .next =         swap_next,
 1713         .stop =         swap_stop,
 1714         .show =         swap_show
 1715 };
 1716 
 1717 static int swaps_open(struct inode *inode, struct file *file)
 1718 {
 1719         struct seq_file *seq;
 1720         int ret;
 1721 
 1722         ret = seq_open(file, &swaps_op);
 1723         if (ret)
 1724                 return ret;
 1725 
 1726         seq = file->private_data;
 1727         seq->poll_event = atomic_read(&proc_poll_event);
 1728         return 0;
 1729 }
 1730 
 1731 static const struct file_operations proc_swaps_operations = {
 1732         .open           = swaps_open,
 1733         .read           = seq_read,
 1734         .llseek         = seq_lseek,
 1735         .release        = seq_release,
 1736         .poll           = swaps_poll,
 1737 };
 1738 
 1739 static int __init procswaps_init(void)
 1740 {
 1741         proc_create("swaps", 0, NULL, &proc_swaps_operations);
 1742         return 0;
 1743 }
 1744 __initcall(procswaps_init);
 1745 #endif /* CONFIG_PROC_FS */
 1746 
 1747 #ifdef MAX_SWAPFILES_CHECK
 1748 static int __init max_swapfiles_check(void)
 1749 {
 1750         MAX_SWAPFILES_CHECK();
 1751         return 0;
 1752 }
 1753 late_initcall(max_swapfiles_check);
 1754 #endif
 1755 
 1756 static struct swap_info_struct *alloc_swap_info(void)
 1757 {
 1758         struct swap_info_struct *p;
 1759         unsigned int type;
 1760 
 1761         p = kzalloc(sizeof(*p), GFP_KERNEL);
 1762         if (!p)
 1763                 return ERR_PTR(-ENOMEM);
 1764 
 1765         spin_lock(&swap_lock);
 1766         for (type = 0; type < nr_swapfiles; type++) {
 1767                 if (!(swap_info[type]->flags & SWP_USED))
 1768                         break;
 1769         }
 1770         if (type >= MAX_SWAPFILES) {
 1771                 spin_unlock(&swap_lock);
 1772                 kfree(p);
 1773                 return ERR_PTR(-EPERM);
 1774         }
 1775         if (type >= nr_swapfiles) {
 1776                 p->type = type;
 1777                 swap_info[type] = p;
 1778                 /*
 1779                  * Write swap_info[type] before nr_swapfiles, in case a
 1780                  * racing procfs swap_start() or swap_next() is reading them.
 1781                  * (We never shrink nr_swapfiles, we never free this entry.)
 1782                  */
 1783                 smp_wmb();
 1784                 nr_swapfiles++;
 1785         } else {
 1786                 kfree(p);
 1787                 p = swap_info[type];
 1788                 /*
 1789                  * Do not memset this entry: a racing procfs swap_next()
 1790                  * would be relying on p->type to remain valid.
 1791                  */
 1792         }
 1793         INIT_LIST_HEAD(&p->first_swap_extent.list);
 1794         p->flags = SWP_USED;
 1795         p->next = -1;
 1796         spin_unlock(&swap_lock);
 1797 
 1798         return p;
 1799 }
 1800 
 1801 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
 1802 {
 1803         int error;
 1804 
 1805         if (S_ISBLK(inode->i_mode)) {
 1806                 p->bdev = bdgrab(I_BDEV(inode));
 1807                 error = blkdev_get(p->bdev,
 1808                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
 1809                                    sys_swapon);
 1810                 if (error < 0) {
 1811                         p->bdev = NULL;
 1812                         return -EINVAL;
 1813                 }
 1814                 p->old_block_size = block_size(p->bdev);
 1815                 error = set_blocksize(p->bdev, PAGE_SIZE);
 1816                 if (error < 0)
 1817                         return error;
 1818                 p->flags |= SWP_BLKDEV;
 1819         } else if (S_ISREG(inode->i_mode)) {
 1820                 p->bdev = inode->i_sb->s_bdev;
 1821                 mutex_lock(&inode->i_mutex);
 1822                 if (IS_SWAPFILE(inode))
 1823                         return -EBUSY;
 1824         } else
 1825                 return -EINVAL;
 1826 
 1827         return 0;
 1828 }
 1829 
 1830 static unsigned long read_swap_header(struct swap_info_struct *p,
 1831                                         union swap_header *swap_header,
 1832                                         struct inode *inode)
 1833 {
 1834         int i;
 1835         unsigned long maxpages;
 1836         unsigned long swapfilepages;
 1837 
 1838         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
 1839                 printk(KERN_ERR "Unable to find swap-space signature\n");
 1840                 return 0;
 1841         }
 1842 
 1843         /* swap partition endianess hack... */
 1844         if (swab32(swap_header->info.version) == 1) {
 1845                 swab32s(&swap_header->info.version);
 1846                 swab32s(&swap_header->info.last_page);
 1847                 swab32s(&swap_header->info.nr_badpages);
 1848                 for (i = 0; i < swap_header->info.nr_badpages; i++)
 1849                         swab32s(&swap_header->info.badpages[i]);
 1850         }
 1851         /* Check the swap header's sub-version */
 1852         if (swap_header->info.version != 1) {
 1853                 printk(KERN_WARNING
 1854                        "Unable to handle swap header version %d\n",
 1855                        swap_header->info.version);
 1856                 return 0;
 1857         }
 1858 
 1859         p->lowest_bit  = 1;
 1860         p->cluster_next = 1;
 1861         p->cluster_nr = 0;
 1862 
 1863         /*
 1864          * Find out how many pages are allowed for a single swap
 1865          * device. There are two limiting factors: 1) the number
 1866          * of bits for the swap offset in the swp_entry_t type, and
 1867          * 2) the number of bits in the swap pte as defined by the
 1868          * different architectures. In order to find the
 1869          * largest possible bit mask, a swap entry with swap type 0
 1870          * and swap offset ~0UL is created, encoded to a swap pte,
 1871          * decoded to a swp_entry_t again, and finally the swap
 1872          * offset is extracted. This will mask all the bits from
 1873          * the initial ~0UL mask that can't be encoded in either
 1874          * the swp_entry_t or the architecture definition of a
 1875          * swap pte.
 1876          */
 1877         maxpages = swp_offset(pte_to_swp_entry(
 1878                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
 1879         if (maxpages > swap_header->info.last_page) {
 1880                 maxpages = swap_header->info.last_page + 1;
 1881                 /* p->max is an unsigned int: don't overflow it */
 1882                 if ((unsigned int)maxpages == 0)
 1883                         maxpages = UINT_MAX;
 1884         }
 1885         p->highest_bit = maxpages - 1;
 1886 
 1887         if (!maxpages)
 1888                 return 0;
 1889         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
 1890         if (swapfilepages && maxpages > swapfilepages) {
 1891                 printk(KERN_WARNING
 1892                        "Swap area shorter than signature indicates\n");
 1893                 return 0;
 1894         }
 1895         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
 1896                 return 0;
 1897         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
 1898                 return 0;
 1899 
 1900         return maxpages;
 1901 }
 1902 
 1903 static int setup_swap_map_and_extents(struct swap_info_struct *p,
 1904                                         union swap_header *swap_header,
 1905                                         unsigned char *swap_map,
 1906                                         unsigned long maxpages,
 1907                                         sector_t *span)
 1908 {
 1909         int i;
 1910         unsigned int nr_good_pages;
 1911         int nr_extents;
 1912 
 1913         nr_good_pages = maxpages - 1;   /* omit header page */
 1914 
 1915         for (i = 0; i < swap_header->info.nr_badpages; i++) {
 1916                 unsigned int page_nr = swap_header->info.badpages[i];
 1917                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
 1918                         return -EINVAL;
 1919                 if (page_nr < maxpages) {
 1920                         swap_map[page_nr] = SWAP_MAP_BAD;
 1921                         nr_good_pages--;
 1922                 }
 1923         }
 1924 
 1925         if (nr_good_pages) {
 1926                 swap_map[0] = SWAP_MAP_BAD;
 1927                 p->max = maxpages;
 1928                 p->pages = nr_good_pages;
 1929                 nr_extents = setup_swap_extents(p, span);
 1930                 if (nr_extents < 0)
 1931                         return nr_extents;
 1932                 nr_good_pages = p->pages;
 1933         }
 1934         if (!nr_good_pages) {
 1935                 printk(KERN_WARNING "Empty swap-file\n");
 1936                 return -EINVAL;
 1937         }
 1938 
 1939         return nr_extents;
 1940 }
 1941 
 1942 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
 1943 {
 1944         struct swap_info_struct *p;
 1945         struct filename *name;
 1946         struct file *swap_file = NULL;
 1947         struct address_space *mapping;
 1948         int i;
 1949         int prio;
 1950         int error;
 1951         union swap_header *swap_header;
 1952         int nr_extents;
 1953         sector_t span;
 1954         unsigned long maxpages;
 1955         unsigned char *swap_map = NULL;
 1956         unsigned long *frontswap_map = NULL;
 1957         struct page *page = NULL;
 1958         struct inode *inode = NULL;
 1959 
 1960         if (swap_flags & ~SWAP_FLAGS_VALID)
 1961                 return -EINVAL;
 1962 
 1963         if (!capable(CAP_SYS_ADMIN))
 1964                 return -EPERM;
 1965 
 1966         p = alloc_swap_info();
 1967         if (IS_ERR(p))
 1968                 return PTR_ERR(p);
 1969 
 1970         name = getname(specialfile);
 1971         if (IS_ERR(name)) {
 1972                 error = PTR_ERR(name);
 1973                 name = NULL;
 1974                 goto bad_swap;
 1975         }
 1976         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
 1977         if (IS_ERR(swap_file)) {
 1978                 error = PTR_ERR(swap_file);
 1979                 swap_file = NULL;
 1980                 goto bad_swap;
 1981         }
 1982 
 1983         p->swap_file = swap_file;
 1984         mapping = swap_file->f_mapping;
 1985 
 1986         for (i = 0; i < nr_swapfiles; i++) {
 1987                 struct swap_info_struct *q = swap_info[i];
 1988 
 1989                 if (q == p || !q->swap_file)
 1990                         continue;
 1991                 if (mapping == q->swap_file->f_mapping) {
 1992                         error = -EBUSY;
 1993                         goto bad_swap;
 1994                 }
 1995         }
 1996 
 1997         inode = mapping->host;
 1998         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
 1999         error = claim_swapfile(p, inode);
 2000         if (unlikely(error))
 2001                 goto bad_swap;
 2002 
 2003         /*
 2004          * Read the swap header.
 2005          */
 2006         if (!mapping->a_ops->readpage) {
 2007                 error = -EINVAL;
 2008                 goto bad_swap;
 2009         }
 2010         page = read_mapping_page(mapping, 0, swap_file);
 2011         if (IS_ERR(page)) {
 2012                 error = PTR_ERR(page);
 2013                 goto bad_swap;
 2014         }
 2015         swap_header = kmap(page);
 2016 
 2017         maxpages = read_swap_header(p, swap_header, inode);
 2018         if (unlikely(!maxpages)) {
 2019                 error = -EINVAL;
 2020                 goto bad_swap;
 2021         }
 2022 
 2023         /* OK, set up the swap map and apply the bad block list */
 2024         swap_map = vzalloc(maxpages);
 2025         if (!swap_map) {
 2026                 error = -ENOMEM;
 2027                 goto bad_swap;
 2028         }
 2029 
 2030         error = swap_cgroup_swapon(p->type, maxpages);
 2031         if (error)
 2032                 goto bad_swap;
 2033 
 2034         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
 2035                 maxpages, &span);
 2036         if (unlikely(nr_extents < 0)) {
 2037                 error = nr_extents;
 2038                 goto bad_swap;
 2039         }
 2040         /* frontswap enabled? set up bit-per-page map for frontswap */
 2041         if (frontswap_enabled)
 2042                 frontswap_map = vzalloc(maxpages / sizeof(long));
 2043 
 2044         if (p->bdev) {
 2045                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
 2046                         p->flags |= SWP_SOLIDSTATE;
 2047                         p->cluster_next = 1 + (random32() % p->highest_bit);
 2048                 }
 2049                 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
 2050                         p->flags |= SWP_DISCARDABLE;
 2051         }
 2052 
 2053         mutex_lock(&swapon_mutex);
 2054         prio = -1;
 2055         if (swap_flags & SWAP_FLAG_PREFER)
 2056                 prio =
 2057                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
 2058         enable_swap_info(p, prio, swap_map, frontswap_map);
 2059 
 2060         printk(KERN_INFO "Adding %uk swap on %s.  "
 2061                         "Priority:%d extents:%d across:%lluk %s%s%s\n",
 2062                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
 2063                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
 2064                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
 2065                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
 2066                 (frontswap_map) ? "FS" : "");
 2067 
 2068         mutex_unlock(&swapon_mutex);
 2069         atomic_inc(&proc_poll_event);
 2070         wake_up_interruptible(&proc_poll_wait);
 2071 
 2072         if (S_ISREG(inode->i_mode))
 2073                 inode->i_flags |= S_SWAPFILE;
 2074         error = 0;
 2075         goto out;
 2076 bad_swap:
 2077         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
 2078                 set_blocksize(p->bdev, p->old_block_size);
 2079                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 2080         }
 2081         destroy_swap_extents(p);
 2082         swap_cgroup_swapoff(p->type);
 2083         spin_lock(&swap_lock);
 2084         p->swap_file = NULL;
 2085         p->flags = 0;
 2086         spin_unlock(&swap_lock);
 2087         vfree(swap_map);
 2088         if (swap_file) {
 2089                 if (inode && S_ISREG(inode->i_mode)) {
 2090                         mutex_unlock(&inode->i_mutex);
 2091                         inode = NULL;
 2092                 }
 2093                 filp_close(swap_file, NULL);
 2094         }
 2095 out:
 2096         if (page && !IS_ERR(page)) {
 2097                 kunmap(page);
 2098                 page_cache_release(page);
 2099         }
 2100         if (name)
 2101                 putname(name);
 2102         if (inode && S_ISREG(inode->i_mode))
 2103                 mutex_unlock(&inode->i_mutex);
 2104         return error;
 2105 }
 2106 
 2107 void si_swapinfo(struct sysinfo *val)
 2108 {
 2109         unsigned int type;
 2110         unsigned long nr_to_be_unused = 0;
 2111 
 2112         spin_lock(&swap_lock);
 2113         for (type = 0; type < nr_swapfiles; type++) {
 2114                 struct swap_info_struct *si = swap_info[type];
 2115 
 2116                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
 2117                         nr_to_be_unused += si->inuse_pages;
 2118         }
 2119         val->freeswap = nr_swap_pages + nr_to_be_unused;
 2120         val->totalswap = total_swap_pages + nr_to_be_unused;
 2121         spin_unlock(&swap_lock);
 2122 }
 2123 
 2124 /*
 2125  * Verify that a swap entry is valid and increment its swap map count.
 2126  *
 2127  * Returns error code in following case.
 2128  * - success -> 0
 2129  * - swp_entry is invalid -> EINVAL
 2130  * - swp_entry is migration entry -> EINVAL
 2131  * - swap-cache reference is requested but there is already one. -> EEXIST
 2132  * - swap-cache reference is requested but the entry is not used. -> ENOENT
 2133  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
 2134  */
 2135 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
 2136 {
 2137         struct swap_info_struct *p;
 2138         unsigned long offset, type;
 2139         unsigned char count;
 2140         unsigned char has_cache;
 2141         int err = -EINVAL;
 2142 
 2143         if (non_swap_entry(entry))
 2144                 goto out;
 2145 
 2146         type = swp_type(entry);
 2147         if (type >= nr_swapfiles)
 2148                 goto bad_file;
 2149         p = swap_info[type];
 2150         offset = swp_offset(entry);
 2151 
 2152         spin_lock(&swap_lock);
 2153         if (unlikely(offset >= p->max))
 2154                 goto unlock_out;
 2155 
 2156         count = p->swap_map[offset];
 2157         has_cache = count & SWAP_HAS_CACHE;
 2158         count &= ~SWAP_HAS_CACHE;
 2159         err = 0;
 2160 
 2161         if (usage == SWAP_HAS_CACHE) {
 2162 
 2163                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
 2164                 if (!has_cache && count)
 2165                         has_cache = SWAP_HAS_CACHE;
 2166                 else if (has_cache)             /* someone else added cache */
 2167                         err = -EEXIST;
 2168                 else                            /* no users remaining */
 2169                         err = -ENOENT;
 2170 
 2171         } else if (count || has_cache) {
 2172 
 2173                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
 2174                         count += usage;
 2175                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
 2176                         err = -EINVAL;
 2177                 else if (swap_count_continued(p, offset, count))
 2178                         count = COUNT_CONTINUED;
 2179                 else
 2180                         err = -ENOMEM;
 2181         } else
 2182                 err = -ENOENT;                  /* unused swap entry */
 2183 
 2184         p->swap_map[offset] = count | has_cache;
 2185 
 2186 unlock_out:
 2187         spin_unlock(&swap_lock);
 2188 out:
 2189         return err;
 2190 
 2191 bad_file:
 2192         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
 2193         goto out;
 2194 }
 2195 
 2196 /*
 2197  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
 2198  * (in which case its reference count is never incremented).
 2199  */
 2200 void swap_shmem_alloc(swp_entry_t entry)
 2201 {
 2202         __swap_duplicate(entry, SWAP_MAP_SHMEM);
 2203 }
 2204 
 2205 /*
 2206  * Increase reference count of swap entry by 1.
 2207  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
 2208  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
 2209  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
 2210  * might occur if a page table entry has got corrupted.
 2211  */
 2212 int swap_duplicate(swp_entry_t entry)
 2213 {
 2214         int err = 0;
 2215 
 2216         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
 2217                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
 2218         return err;
 2219 }
 2220 
 2221 /*
 2222  * @entry: swap entry for which we allocate swap cache.
 2223  *
 2224  * Called when allocating swap cache for existing swap entry,
 2225  * This can return error codes. Returns 0 at success.
 2226  * -EBUSY means there is a swap cache.
 2227  * Note: return code is different from swap_duplicate().
 2228  */
 2229 int swapcache_prepare(swp_entry_t entry)
 2230 {
 2231         return __swap_duplicate(entry, SWAP_HAS_CACHE);
 2232 }
 2233 
 2234 struct swap_info_struct *page_swap_info(struct page *page)
 2235 {
 2236         swp_entry_t swap = { .val = page_private(page) };
 2237         BUG_ON(!PageSwapCache(page));
 2238         return swap_info[swp_type(swap)];
 2239 }
 2240 
 2241 /*
 2242  * out-of-line __page_file_ methods to avoid include hell.
 2243  */
 2244 struct address_space *__page_file_mapping(struct page *page)
 2245 {
 2246         VM_BUG_ON(!PageSwapCache(page));
 2247         return page_swap_info(page)->swap_file->f_mapping;
 2248 }
 2249 EXPORT_SYMBOL_GPL(__page_file_mapping);
 2250 
 2251 pgoff_t __page_file_index(struct page *page)
 2252 {
 2253         swp_entry_t swap = { .val = page_private(page) };
 2254         VM_BUG_ON(!PageSwapCache(page));
 2255         return swp_offset(swap);
 2256 }
 2257 EXPORT_SYMBOL_GPL(__page_file_index);
 2258 
 2259 /*
 2260  * add_swap_count_continuation - called when a swap count is duplicated
 2261  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
 2262  * page of the original vmalloc'ed swap_map, to hold the continuation count
 2263  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
 2264  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
 2265  *
 2266  * These continuation pages are seldom referenced: the common paths all work
 2267  * on the original swap_map, only referring to a continuation page when the
 2268  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
 2269  *
 2270  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
 2271  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
 2272  * can be called after dropping locks.
 2273  */
 2274 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
 2275 {
 2276         struct swap_info_struct *si;
 2277         struct page *head;
 2278         struct page *page;
 2279         struct page *list_page;
 2280         pgoff_t offset;
 2281         unsigned char count;
 2282 
 2283         /*
 2284          * When debugging, it's easier to use __GFP_ZERO here; but it's better
 2285          * for latency not to zero a page while GFP_ATOMIC and holding locks.
 2286          */
 2287         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
 2288 
 2289         si = swap_info_get(entry);
 2290         if (!si) {
 2291                 /*
 2292                  * An acceptable race has occurred since the failing
 2293                  * __swap_duplicate(): the swap entry has been freed,
 2294                  * perhaps even the whole swap_map cleared for swapoff.
 2295                  */
 2296                 goto outer;
 2297         }
 2298 
 2299         offset = swp_offset(entry);
 2300         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
 2301 
 2302         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
 2303                 /*
 2304                  * The higher the swap count, the more likely it is that tasks
 2305                  * will race to add swap count continuation: we need to avoid
 2306                  * over-provisioning.
 2307                  */
 2308                 goto out;
 2309         }
 2310 
 2311         if (!page) {
 2312                 spin_unlock(&swap_lock);
 2313                 return -ENOMEM;
 2314         }
 2315 
 2316         /*
 2317          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
 2318          * no architecture is using highmem pages for kernel pagetables: so it
 2319          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
 2320          */
 2321         head = vmalloc_to_page(si->swap_map + offset);
 2322         offset &= ~PAGE_MASK;
 2323 
 2324         /*
 2325          * Page allocation does not initialize the page's lru field,
 2326          * but it does always reset its private field.
 2327          */
 2328         if (!page_private(head)) {
 2329                 BUG_ON(count & COUNT_CONTINUED);
 2330                 INIT_LIST_HEAD(&head->lru);
 2331                 set_page_private(head, SWP_CONTINUED);
 2332                 si->flags |= SWP_CONTINUED;
 2333         }
 2334 
 2335         list_for_each_entry(list_page, &head->lru, lru) {
 2336                 unsigned char *map;
 2337 
 2338                 /*
 2339                  * If the previous map said no continuation, but we've found
 2340                  * a continuation page, free our allocation and use this one.
 2341                  */
 2342                 if (!(count & COUNT_CONTINUED))
 2343                         goto out;
 2344 
 2345                 map = kmap_atomic(list_page) + offset;
 2346                 count = *map;
 2347                 kunmap_atomic(map);
 2348 
 2349                 /*
 2350                  * If this continuation count now has some space in it,
 2351                  * free our allocation and use this one.
 2352                  */
 2353                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
 2354                         goto out;
 2355         }
 2356 
 2357         list_add_tail(&page->lru, &head->lru);
 2358         page = NULL;                    /* now it's attached, don't free it */
 2359 out:
 2360         spin_unlock(&swap_lock);
 2361 outer:
 2362         if (page)
 2363                 __free_page(page);
 2364         return 0;
 2365 }
 2366 
 2367 /*
 2368  * swap_count_continued - when the original swap_map count is incremented
 2369  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
 2370  * into, carry if so, or else fail until a new continuation page is allocated;
 2371  * when the original swap_map count is decremented from 0 with continuation,
 2372  * borrow from the continuation and report whether it still holds more.
 2373  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 2374  */
 2375 static bool swap_count_continued(struct swap_info_struct *si,
 2376                                  pgoff_t offset, unsigned char count)
 2377 {
 2378         struct page *head;
 2379         struct page *page;
 2380         unsigned char *map;
 2381 
 2382         head = vmalloc_to_page(si->swap_map + offset);
 2383         if (page_private(head) != SWP_CONTINUED) {
 2384                 BUG_ON(count & COUNT_CONTINUED);
 2385                 return false;           /* need to add count continuation */
 2386         }
 2387 
 2388         offset &= ~PAGE_MASK;
 2389         page = list_entry(head->lru.next, struct page, lru);
 2390         map = kmap_atomic(page) + offset;
 2391 
 2392         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
 2393                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
 2394 
 2395         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
 2396                 /*
 2397                  * Think of how you add 1 to 999
 2398                  */
 2399                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
 2400                         kunmap_atomic(map);
 2401                         page = list_entry(page->lru.next, struct page, lru);
 2402                         BUG_ON(page == head);
 2403                         map = kmap_atomic(page) + offset;
 2404                 }
 2405                 if (*map == SWAP_CONT_MAX) {
 2406                         kunmap_atomic(map);
 2407                         page = list_entry(page->lru.next, struct page, lru);
 2408                         if (page == head)
 2409                                 return false;   /* add count continuation */
 2410                         map = kmap_atomic(page) + offset;
 2411 init_map:               *map = 0;               /* we didn't zero the page */
 2412                 }
 2413                 *map += 1;
 2414                 kunmap_atomic(map);
 2415                 page = list_entry(page->lru.prev, struct page, lru);
 2416                 while (page != head) {
 2417                         map = kmap_atomic(page) + offset;
 2418                         *map = COUNT_CONTINUED;
 2419                         kunmap_atomic(map);
 2420                         page = list_entry(page->lru.prev, struct page, lru);
 2421                 }
 2422                 return true;                    /* incremented */
 2423 
 2424         } else {                                /* decrementing */
 2425                 /*
 2426                  * Think of how you subtract 1 from 1000
 2427                  */
 2428                 BUG_ON(count != COUNT_CONTINUED);
 2429                 while (*map == COUNT_CONTINUED) {
 2430                         kunmap_atomic(map);
 2431                         page = list_entry(page->lru.next, struct page, lru);
 2432                         BUG_ON(page == head);
 2433                         map = kmap_atomic(page) + offset;
 2434                 }
 2435                 BUG_ON(*map == 0);
 2436                 *map -= 1;
 2437                 if (*map == 0)
 2438                         count = 0;
 2439                 kunmap_atomic(map);
 2440                 page = list_entry(page->lru.prev, struct page, lru);
 2441                 while (page != head) {
 2442                         map = kmap_atomic(page) + offset;
 2443                         *map = SWAP_CONT_MAX | count;
 2444                         count = COUNT_CONTINUED;
 2445                         kunmap_atomic(map);
 2446                         page = list_entry(page->lru.prev, struct page, lru);
 2447                 }
 2448                 return count == COUNT_CONTINUED;
 2449         }
 2450 }
 2451 
 2452 /*
 2453  * free_swap_count_continuations - swapoff free all the continuation pages
 2454  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
 2455  */
 2456 static void free_swap_count_continuations(struct swap_info_struct *si)
 2457 {
 2458         pgoff_t offset;
 2459 
 2460         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
 2461                 struct page *head;
 2462                 head = vmalloc_to_page(si->swap_map + offset);
 2463                 if (page_private(head)) {
 2464                         struct list_head *this, *next;
 2465                         list_for_each_safe(this, next, &head->lru) {
 2466                                 struct page *page;
 2467                                 page = list_entry(this, struct page, lru);
 2468                                 list_del(this);
 2469                                 __free_page(page);
 2470                         }
 2471                 }
 2472         }
 2473 }

Cache object: 5889c8e20895c4e9755d92bc5e33f40c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.