The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/truncate.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * mm/truncate.c - code for taking down pages from address_spaces
    3  *
    4  * Copyright (C) 2002, Linus Torvalds
    5  *
    6  * 10Sep2002    Andrew Morton
    7  *              Initial version.
    8  */
    9 
   10 #include <linux/kernel.h>
   11 #include <linux/backing-dev.h>
   12 #include <linux/gfp.h>
   13 #include <linux/mm.h>
   14 #include <linux/swap.h>
   15 #include <linux/export.h>
   16 #include <linux/pagemap.h>
   17 #include <linux/highmem.h>
   18 #include <linux/pagevec.h>
   19 #include <linux/task_io_accounting_ops.h>
   20 #include <linux/buffer_head.h>  /* grr. try_to_release_page,
   21                                    do_invalidatepage */
   22 #include <linux/cleancache.h>
   23 #include "internal.h"
   24 
   25 
   26 /**
   27  * do_invalidatepage - invalidate part or all of a page
   28  * @page: the page which is affected
   29  * @offset: the index of the truncation point
   30  *
   31  * do_invalidatepage() is called when all or part of the page has become
   32  * invalidated by a truncate operation.
   33  *
   34  * do_invalidatepage() does not have to release all buffers, but it must
   35  * ensure that no dirty buffer is left outside @offset and that no I/O
   36  * is underway against any of the blocks which are outside the truncation
   37  * point.  Because the caller is about to free (and possibly reuse) those
   38  * blocks on-disk.
   39  */
   40 void do_invalidatepage(struct page *page, unsigned long offset)
   41 {
   42         void (*invalidatepage)(struct page *, unsigned long);
   43         invalidatepage = page->mapping->a_ops->invalidatepage;
   44 #ifdef CONFIG_BLOCK
   45         if (!invalidatepage)
   46                 invalidatepage = block_invalidatepage;
   47 #endif
   48         if (invalidatepage)
   49                 (*invalidatepage)(page, offset);
   50 }
   51 
   52 static inline void truncate_partial_page(struct page *page, unsigned partial)
   53 {
   54         zero_user_segment(page, partial, PAGE_CACHE_SIZE);
   55         cleancache_invalidate_page(page->mapping, page);
   56         if (page_has_private(page))
   57                 do_invalidatepage(page, partial);
   58 }
   59 
   60 /*
   61  * This cancels just the dirty bit on the kernel page itself, it
   62  * does NOT actually remove dirty bits on any mmap's that may be
   63  * around. It also leaves the page tagged dirty, so any sync
   64  * activity will still find it on the dirty lists, and in particular,
   65  * clear_page_dirty_for_io() will still look at the dirty bits in
   66  * the VM.
   67  *
   68  * Doing this should *normally* only ever be done when a page
   69  * is truncated, and is not actually mapped anywhere at all. However,
   70  * fs/buffer.c does this when it notices that somebody has cleaned
   71  * out all the buffers on a page without actually doing it through
   72  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
   73  */
   74 void cancel_dirty_page(struct page *page, unsigned int account_size)
   75 {
   76         if (TestClearPageDirty(page)) {
   77                 struct address_space *mapping = page->mapping;
   78                 if (mapping && mapping_cap_account_dirty(mapping)) {
   79                         dec_zone_page_state(page, NR_FILE_DIRTY);
   80                         dec_bdi_stat(mapping->backing_dev_info,
   81                                         BDI_RECLAIMABLE);
   82                         if (account_size)
   83                                 task_io_account_cancelled_write(account_size);
   84                 }
   85         }
   86 }
   87 EXPORT_SYMBOL(cancel_dirty_page);
   88 
   89 /*
   90  * If truncate cannot remove the fs-private metadata from the page, the page
   91  * becomes orphaned.  It will be left on the LRU and may even be mapped into
   92  * user pagetables if we're racing with filemap_fault().
   93  *
   94  * We need to bale out if page->mapping is no longer equal to the original
   95  * mapping.  This happens a) when the VM reclaimed the page while we waited on
   96  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
   97  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
   98  */
   99 static int
  100 truncate_complete_page(struct address_space *mapping, struct page *page)
  101 {
  102         if (page->mapping != mapping)
  103                 return -EIO;
  104 
  105         if (page_has_private(page))
  106                 do_invalidatepage(page, 0);
  107 
  108         cancel_dirty_page(page, PAGE_CACHE_SIZE);
  109 
  110         ClearPageMappedToDisk(page);
  111         delete_from_page_cache(page);
  112         return 0;
  113 }
  114 
  115 /*
  116  * This is for invalidate_mapping_pages().  That function can be called at
  117  * any time, and is not supposed to throw away dirty pages.  But pages can
  118  * be marked dirty at any time too, so use remove_mapping which safely
  119  * discards clean, unused pages.
  120  *
  121  * Returns non-zero if the page was successfully invalidated.
  122  */
  123 static int
  124 invalidate_complete_page(struct address_space *mapping, struct page *page)
  125 {
  126         int ret;
  127 
  128         if (page->mapping != mapping)
  129                 return 0;
  130 
  131         if (page_has_private(page) && !try_to_release_page(page, 0))
  132                 return 0;
  133 
  134         ret = remove_mapping(mapping, page);
  135 
  136         return ret;
  137 }
  138 
  139 int truncate_inode_page(struct address_space *mapping, struct page *page)
  140 {
  141         if (page_mapped(page)) {
  142                 unmap_mapping_range(mapping,
  143                                    (loff_t)page->index << PAGE_CACHE_SHIFT,
  144                                    PAGE_CACHE_SIZE, 0);
  145         }
  146         return truncate_complete_page(mapping, page);
  147 }
  148 
  149 /*
  150  * Used to get rid of pages on hardware memory corruption.
  151  */
  152 int generic_error_remove_page(struct address_space *mapping, struct page *page)
  153 {
  154         if (!mapping)
  155                 return -EINVAL;
  156         /*
  157          * Only punch for normal data pages for now.
  158          * Handling other types like directories would need more auditing.
  159          */
  160         if (!S_ISREG(mapping->host->i_mode))
  161                 return -EIO;
  162         return truncate_inode_page(mapping, page);
  163 }
  164 EXPORT_SYMBOL(generic_error_remove_page);
  165 
  166 /*
  167  * Safely invalidate one page from its pagecache mapping.
  168  * It only drops clean, unused pages. The page must be locked.
  169  *
  170  * Returns 1 if the page is successfully invalidated, otherwise 0.
  171  */
  172 int invalidate_inode_page(struct page *page)
  173 {
  174         struct address_space *mapping = page_mapping(page);
  175         if (!mapping)
  176                 return 0;
  177         if (PageDirty(page) || PageWriteback(page))
  178                 return 0;
  179         if (page_mapped(page))
  180                 return 0;
  181         return invalidate_complete_page(mapping, page);
  182 }
  183 
  184 /**
  185  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
  186  * @mapping: mapping to truncate
  187  * @lstart: offset from which to truncate
  188  * @lend: offset to which to truncate
  189  *
  190  * Truncate the page cache, removing the pages that are between
  191  * specified offsets (and zeroing out partial page
  192  * (if lstart is not page aligned)).
  193  *
  194  * Truncate takes two passes - the first pass is nonblocking.  It will not
  195  * block on page locks and it will not block on writeback.  The second pass
  196  * will wait.  This is to prevent as much IO as possible in the affected region.
  197  * The first pass will remove most pages, so the search cost of the second pass
  198  * is low.
  199  *
  200  * We pass down the cache-hot hint to the page freeing code.  Even if the
  201  * mapping is large, it is probably the case that the final pages are the most
  202  * recently touched, and freeing happens in ascending file offset order.
  203  */
  204 void truncate_inode_pages_range(struct address_space *mapping,
  205                                 loff_t lstart, loff_t lend)
  206 {
  207         const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
  208         const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
  209         struct pagevec pvec;
  210         pgoff_t index;
  211         pgoff_t end;
  212         int i;
  213 
  214         cleancache_invalidate_inode(mapping);
  215         if (mapping->nrpages == 0)
  216                 return;
  217 
  218         BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
  219         end = (lend >> PAGE_CACHE_SHIFT);
  220 
  221         pagevec_init(&pvec, 0);
  222         index = start;
  223         while (index <= end && pagevec_lookup(&pvec, mapping, index,
  224                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
  225                 mem_cgroup_uncharge_start();
  226                 for (i = 0; i < pagevec_count(&pvec); i++) {
  227                         struct page *page = pvec.pages[i];
  228 
  229                         /* We rely upon deletion not changing page->index */
  230                         index = page->index;
  231                         if (index > end)
  232                                 break;
  233 
  234                         if (!trylock_page(page))
  235                                 continue;
  236                         WARN_ON(page->index != index);
  237                         if (PageWriteback(page)) {
  238                                 unlock_page(page);
  239                                 continue;
  240                         }
  241                         truncate_inode_page(mapping, page);
  242                         unlock_page(page);
  243                 }
  244                 pagevec_release(&pvec);
  245                 mem_cgroup_uncharge_end();
  246                 cond_resched();
  247                 index++;
  248         }
  249 
  250         if (partial) {
  251                 struct page *page = find_lock_page(mapping, start - 1);
  252                 if (page) {
  253                         wait_on_page_writeback(page);
  254                         truncate_partial_page(page, partial);
  255                         unlock_page(page);
  256                         page_cache_release(page);
  257                 }
  258         }
  259 
  260         index = start;
  261         for ( ; ; ) {
  262                 cond_resched();
  263                 if (!pagevec_lookup(&pvec, mapping, index,
  264                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
  265                         if (index == start)
  266                                 break;
  267                         index = start;
  268                         continue;
  269                 }
  270                 if (index == start && pvec.pages[0]->index > end) {
  271                         pagevec_release(&pvec);
  272                         break;
  273                 }
  274                 mem_cgroup_uncharge_start();
  275                 for (i = 0; i < pagevec_count(&pvec); i++) {
  276                         struct page *page = pvec.pages[i];
  277 
  278                         /* We rely upon deletion not changing page->index */
  279                         index = page->index;
  280                         if (index > end)
  281                                 break;
  282 
  283                         lock_page(page);
  284                         WARN_ON(page->index != index);
  285                         wait_on_page_writeback(page);
  286                         truncate_inode_page(mapping, page);
  287                         unlock_page(page);
  288                 }
  289                 pagevec_release(&pvec);
  290                 mem_cgroup_uncharge_end();
  291                 index++;
  292         }
  293         cleancache_invalidate_inode(mapping);
  294 }
  295 EXPORT_SYMBOL(truncate_inode_pages_range);
  296 
  297 /**
  298  * truncate_inode_pages - truncate *all* the pages from an offset
  299  * @mapping: mapping to truncate
  300  * @lstart: offset from which to truncate
  301  *
  302  * Called under (and serialised by) inode->i_mutex.
  303  *
  304  * Note: When this function returns, there can be a page in the process of
  305  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
  306  * mapping->nrpages can be non-zero when this function returns even after
  307  * truncation of the whole mapping.
  308  */
  309 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
  310 {
  311         truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
  312 }
  313 EXPORT_SYMBOL(truncate_inode_pages);
  314 
  315 /**
  316  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
  317  * @mapping: the address_space which holds the pages to invalidate
  318  * @start: the offset 'from' which to invalidate
  319  * @end: the offset 'to' which to invalidate (inclusive)
  320  *
  321  * This function only removes the unlocked pages, if you want to
  322  * remove all the pages of one inode, you must call truncate_inode_pages.
  323  *
  324  * invalidate_mapping_pages() will not block on IO activity. It will not
  325  * invalidate pages which are dirty, locked, under writeback or mapped into
  326  * pagetables.
  327  */
  328 unsigned long invalidate_mapping_pages(struct address_space *mapping,
  329                 pgoff_t start, pgoff_t end)
  330 {
  331         struct pagevec pvec;
  332         pgoff_t index = start;
  333         unsigned long ret;
  334         unsigned long count = 0;
  335         int i;
  336 
  337         /*
  338          * Note: this function may get called on a shmem/tmpfs mapping:
  339          * pagevec_lookup() might then return 0 prematurely (because it
  340          * got a gangful of swap entries); but it's hardly worth worrying
  341          * about - it can rarely have anything to free from such a mapping
  342          * (most pages are dirty), and already skips over any difficulties.
  343          */
  344 
  345         pagevec_init(&pvec, 0);
  346         while (index <= end && pagevec_lookup(&pvec, mapping, index,
  347                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
  348                 mem_cgroup_uncharge_start();
  349                 for (i = 0; i < pagevec_count(&pvec); i++) {
  350                         struct page *page = pvec.pages[i];
  351 
  352                         /* We rely upon deletion not changing page->index */
  353                         index = page->index;
  354                         if (index > end)
  355                                 break;
  356 
  357                         if (!trylock_page(page))
  358                                 continue;
  359                         WARN_ON(page->index != index);
  360                         ret = invalidate_inode_page(page);
  361                         unlock_page(page);
  362                         /*
  363                          * Invalidation is a hint that the page is no longer
  364                          * of interest and try to speed up its reclaim.
  365                          */
  366                         if (!ret)
  367                                 deactivate_page(page);
  368                         count += ret;
  369                 }
  370                 pagevec_release(&pvec);
  371                 mem_cgroup_uncharge_end();
  372                 cond_resched();
  373                 index++;
  374         }
  375         return count;
  376 }
  377 EXPORT_SYMBOL(invalidate_mapping_pages);
  378 
  379 /*
  380  * This is like invalidate_complete_page(), except it ignores the page's
  381  * refcount.  We do this because invalidate_inode_pages2() needs stronger
  382  * invalidation guarantees, and cannot afford to leave pages behind because
  383  * shrink_page_list() has a temp ref on them, or because they're transiently
  384  * sitting in the lru_cache_add() pagevecs.
  385  */
  386 static int
  387 invalidate_complete_page2(struct address_space *mapping, struct page *page)
  388 {
  389         if (page->mapping != mapping)
  390                 return 0;
  391 
  392         if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
  393                 return 0;
  394 
  395         spin_lock_irq(&mapping->tree_lock);
  396         if (PageDirty(page))
  397                 goto failed;
  398 
  399         BUG_ON(page_has_private(page));
  400         __delete_from_page_cache(page);
  401         spin_unlock_irq(&mapping->tree_lock);
  402         mem_cgroup_uncharge_cache_page(page);
  403 
  404         if (mapping->a_ops->freepage)
  405                 mapping->a_ops->freepage(page);
  406 
  407         page_cache_release(page);       /* pagecache ref */
  408         return 1;
  409 failed:
  410         spin_unlock_irq(&mapping->tree_lock);
  411         return 0;
  412 }
  413 
  414 static int do_launder_page(struct address_space *mapping, struct page *page)
  415 {
  416         if (!PageDirty(page))
  417                 return 0;
  418         if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
  419                 return 0;
  420         return mapping->a_ops->launder_page(page);
  421 }
  422 
  423 /**
  424  * invalidate_inode_pages2_range - remove range of pages from an address_space
  425  * @mapping: the address_space
  426  * @start: the page offset 'from' which to invalidate
  427  * @end: the page offset 'to' which to invalidate (inclusive)
  428  *
  429  * Any pages which are found to be mapped into pagetables are unmapped prior to
  430  * invalidation.
  431  *
  432  * Returns -EBUSY if any pages could not be invalidated.
  433  */
  434 int invalidate_inode_pages2_range(struct address_space *mapping,
  435                                   pgoff_t start, pgoff_t end)
  436 {
  437         struct pagevec pvec;
  438         pgoff_t index;
  439         int i;
  440         int ret = 0;
  441         int ret2 = 0;
  442         int did_range_unmap = 0;
  443 
  444         cleancache_invalidate_inode(mapping);
  445         pagevec_init(&pvec, 0);
  446         index = start;
  447         while (index <= end && pagevec_lookup(&pvec, mapping, index,
  448                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
  449                 mem_cgroup_uncharge_start();
  450                 for (i = 0; i < pagevec_count(&pvec); i++) {
  451                         struct page *page = pvec.pages[i];
  452 
  453                         /* We rely upon deletion not changing page->index */
  454                         index = page->index;
  455                         if (index > end)
  456                                 break;
  457 
  458                         lock_page(page);
  459                         WARN_ON(page->index != index);
  460                         if (page->mapping != mapping) {
  461                                 unlock_page(page);
  462                                 continue;
  463                         }
  464                         wait_on_page_writeback(page);
  465                         if (page_mapped(page)) {
  466                                 if (!did_range_unmap) {
  467                                         /*
  468                                          * Zap the rest of the file in one hit.
  469                                          */
  470                                         unmap_mapping_range(mapping,
  471                                            (loff_t)index << PAGE_CACHE_SHIFT,
  472                                            (loff_t)(1 + end - index)
  473                                                          << PAGE_CACHE_SHIFT,
  474                                             0);
  475                                         did_range_unmap = 1;
  476                                 } else {
  477                                         /*
  478                                          * Just zap this page
  479                                          */
  480                                         unmap_mapping_range(mapping,
  481                                            (loff_t)index << PAGE_CACHE_SHIFT,
  482                                            PAGE_CACHE_SIZE, 0);
  483                                 }
  484                         }
  485                         BUG_ON(page_mapped(page));
  486                         ret2 = do_launder_page(mapping, page);
  487                         if (ret2 == 0) {
  488                                 if (!invalidate_complete_page2(mapping, page))
  489                                         ret2 = -EBUSY;
  490                         }
  491                         if (ret2 < 0)
  492                                 ret = ret2;
  493                         unlock_page(page);
  494                 }
  495                 pagevec_release(&pvec);
  496                 mem_cgroup_uncharge_end();
  497                 cond_resched();
  498                 index++;
  499         }
  500         cleancache_invalidate_inode(mapping);
  501         return ret;
  502 }
  503 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
  504 
  505 /**
  506  * invalidate_inode_pages2 - remove all pages from an address_space
  507  * @mapping: the address_space
  508  *
  509  * Any pages which are found to be mapped into pagetables are unmapped prior to
  510  * invalidation.
  511  *
  512  * Returns -EBUSY if any pages could not be invalidated.
  513  */
  514 int invalidate_inode_pages2(struct address_space *mapping)
  515 {
  516         return invalidate_inode_pages2_range(mapping, 0, -1);
  517 }
  518 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
  519 
  520 /**
  521  * truncate_pagecache - unmap and remove pagecache that has been truncated
  522  * @inode: inode
  523  * @oldsize: old file size
  524  * @newsize: new file size
  525  *
  526  * inode's new i_size must already be written before truncate_pagecache
  527  * is called.
  528  *
  529  * This function should typically be called before the filesystem
  530  * releases resources associated with the freed range (eg. deallocates
  531  * blocks). This way, pagecache will always stay logically coherent
  532  * with on-disk format, and the filesystem would not have to deal with
  533  * situations such as writepage being called for a page that has already
  534  * had its underlying blocks deallocated.
  535  */
  536 void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
  537 {
  538         struct address_space *mapping = inode->i_mapping;
  539         loff_t holebegin = round_up(newsize, PAGE_SIZE);
  540 
  541         /*
  542          * unmap_mapping_range is called twice, first simply for
  543          * efficiency so that truncate_inode_pages does fewer
  544          * single-page unmaps.  However after this first call, and
  545          * before truncate_inode_pages finishes, it is possible for
  546          * private pages to be COWed, which remain after
  547          * truncate_inode_pages finishes, hence the second
  548          * unmap_mapping_range call must be made for correctness.
  549          */
  550         unmap_mapping_range(mapping, holebegin, 0, 1);
  551         truncate_inode_pages(mapping, newsize);
  552         unmap_mapping_range(mapping, holebegin, 0, 1);
  553 }
  554 EXPORT_SYMBOL(truncate_pagecache);
  555 
  556 /**
  557  * truncate_setsize - update inode and pagecache for a new file size
  558  * @inode: inode
  559  * @newsize: new file size
  560  *
  561  * truncate_setsize updates i_size and performs pagecache truncation (if
  562  * necessary) to @newsize. It will be typically be called from the filesystem's
  563  * setattr function when ATTR_SIZE is passed in.
  564  *
  565  * Must be called with inode_mutex held and before all filesystem specific
  566  * block truncation has been performed.
  567  */
  568 void truncate_setsize(struct inode *inode, loff_t newsize)
  569 {
  570         loff_t oldsize;
  571 
  572         oldsize = inode->i_size;
  573         i_size_write(inode, newsize);
  574 
  575         truncate_pagecache(inode, oldsize, newsize);
  576 }
  577 EXPORT_SYMBOL(truncate_setsize);
  578 
  579 /**
  580  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
  581  * @inode: inode
  582  * @lstart: offset of beginning of hole
  583  * @lend: offset of last byte of hole
  584  *
  585  * This function should typically be called before the filesystem
  586  * releases resources associated with the freed range (eg. deallocates
  587  * blocks). This way, pagecache will always stay logically coherent
  588  * with on-disk format, and the filesystem would not have to deal with
  589  * situations such as writepage being called for a page that has already
  590  * had its underlying blocks deallocated.
  591  */
  592 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
  593 {
  594         struct address_space *mapping = inode->i_mapping;
  595         loff_t unmap_start = round_up(lstart, PAGE_SIZE);
  596         loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
  597         /*
  598          * This rounding is currently just for example: unmap_mapping_range
  599          * expands its hole outwards, whereas we want it to contract the hole
  600          * inwards.  However, existing callers of truncate_pagecache_range are
  601          * doing their own page rounding first; and truncate_inode_pages_range
  602          * currently BUGs if lend is not pagealigned-1 (it handles partial
  603          * page at start of hole, but not partial page at end of hole).  Note
  604          * unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
  605          */
  606 
  607         /*
  608          * Unlike in truncate_pagecache, unmap_mapping_range is called only
  609          * once (before truncating pagecache), and without "even_cows" flag:
  610          * hole-punching should not remove private COWed pages from the hole.
  611          */
  612         if ((u64)unmap_end > (u64)unmap_start)
  613                 unmap_mapping_range(mapping, unmap_start,
  614                                     1 + unmap_end - unmap_start, 0);
  615         truncate_inode_pages_range(mapping, lstart, lend);
  616 }
  617 EXPORT_SYMBOL(truncate_pagecache_range);

Cache object: b9f3cf990148c4e275f51ef50e2b9ef3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.