The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/mm/vmscan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  linux/mm/vmscan.c
    3  *
    4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
    5  *
    6  *  Swap reorganised 29.12.95, Stephen Tweedie.
    7  *  kswapd added: 7.1.96  sct
    8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
    9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
   11  *  Multiqueue VM started 5.8.00, Rik van Riel.
   12  */
   13 
   14 #include <linux/mm.h>
   15 #include <linux/module.h>
   16 #include <linux/gfp.h>
   17 #include <linux/kernel_stat.h>
   18 #include <linux/swap.h>
   19 #include <linux/pagemap.h>
   20 #include <linux/init.h>
   21 #include <linux/highmem.h>
   22 #include <linux/vmstat.h>
   23 #include <linux/file.h>
   24 #include <linux/writeback.h>
   25 #include <linux/blkdev.h>
   26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
   27                                         buffer_heads_over_limit */
   28 #include <linux/mm_inline.h>
   29 #include <linux/backing-dev.h>
   30 #include <linux/rmap.h>
   31 #include <linux/topology.h>
   32 #include <linux/cpu.h>
   33 #include <linux/cpuset.h>
   34 #include <linux/compaction.h>
   35 #include <linux/notifier.h>
   36 #include <linux/rwsem.h>
   37 #include <linux/delay.h>
   38 #include <linux/kthread.h>
   39 #include <linux/freezer.h>
   40 #include <linux/memcontrol.h>
   41 #include <linux/delayacct.h>
   42 #include <linux/sysctl.h>
   43 #include <linux/oom.h>
   44 #include <linux/prefetch.h>
   45 
   46 #include <asm/tlbflush.h>
   47 #include <asm/div64.h>
   48 
   49 #include <linux/swapops.h>
   50 
   51 #include "internal.h"
   52 
   53 #define CREATE_TRACE_POINTS
   54 #include <trace/events/vmscan.h>
   55 
   56 struct scan_control {
   57         /* Incremented by the number of inactive pages that were scanned */
   58         unsigned long nr_scanned;
   59 
   60         /* Number of pages freed so far during a call to shrink_zones() */
   61         unsigned long nr_reclaimed;
   62 
   63         /* How many pages shrink_list() should reclaim */
   64         unsigned long nr_to_reclaim;
   65 
   66         unsigned long hibernation_mode;
   67 
   68         /* This context's GFP mask */
   69         gfp_t gfp_mask;
   70 
   71         int may_writepage;
   72 
   73         /* Can mapped pages be reclaimed? */
   74         int may_unmap;
   75 
   76         /* Can pages be swapped as part of reclaim? */
   77         int may_swap;
   78 
   79         int order;
   80 
   81         /* Scan (total_size >> priority) pages at once */
   82         int priority;
   83 
   84         /*
   85          * The memory cgroup that hit its limit and as a result is the
   86          * primary target of this reclaim invocation.
   87          */
   88         struct mem_cgroup *target_mem_cgroup;
   89 
   90         /*
   91          * Nodemask of nodes allowed by the caller. If NULL, all nodes
   92          * are scanned.
   93          */
   94         nodemask_t      *nodemask;
   95 };
   96 
   97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
   98 
   99 #ifdef ARCH_HAS_PREFETCH
  100 #define prefetch_prev_lru_page(_page, _base, _field)                    \
  101         do {                                                            \
  102                 if ((_page)->lru.prev != _base) {                       \
  103                         struct page *prev;                              \
  104                                                                         \
  105                         prev = lru_to_page(&(_page->lru));              \
  106                         prefetch(&prev->_field);                        \
  107                 }                                                       \
  108         } while (0)
  109 #else
  110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  111 #endif
  112 
  113 #ifdef ARCH_HAS_PREFETCHW
  114 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
  115         do {                                                            \
  116                 if ((_page)->lru.prev != _base) {                       \
  117                         struct page *prev;                              \
  118                                                                         \
  119                         prev = lru_to_page(&(_page->lru));              \
  120                         prefetchw(&prev->_field);                       \
  121                 }                                                       \
  122         } while (0)
  123 #else
  124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  125 #endif
  126 
  127 /*
  128  * From 0 .. 100.  Higher means more swappy.
  129  */
  130 int vm_swappiness = 60;
  131 long vm_total_pages;    /* The total number of pages which the VM controls */
  132 
  133 static LIST_HEAD(shrinker_list);
  134 static DECLARE_RWSEM(shrinker_rwsem);
  135 
  136 #ifdef CONFIG_MEMCG
  137 static bool global_reclaim(struct scan_control *sc)
  138 {
  139         return !sc->target_mem_cgroup;
  140 }
  141 #else
  142 static bool global_reclaim(struct scan_control *sc)
  143 {
  144         return true;
  145 }
  146 #endif
  147 
  148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  149 {
  150         if (!mem_cgroup_disabled())
  151                 return mem_cgroup_get_lru_size(lruvec, lru);
  152 
  153         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
  154 }
  155 
  156 /*
  157  * Add a shrinker callback to be called from the vm
  158  */
  159 void register_shrinker(struct shrinker *shrinker)
  160 {
  161         atomic_long_set(&shrinker->nr_in_batch, 0);
  162         down_write(&shrinker_rwsem);
  163         list_add_tail(&shrinker->list, &shrinker_list);
  164         up_write(&shrinker_rwsem);
  165 }
  166 EXPORT_SYMBOL(register_shrinker);
  167 
  168 /*
  169  * Remove one
  170  */
  171 void unregister_shrinker(struct shrinker *shrinker)
  172 {
  173         down_write(&shrinker_rwsem);
  174         list_del(&shrinker->list);
  175         up_write(&shrinker_rwsem);
  176 }
  177 EXPORT_SYMBOL(unregister_shrinker);
  178 
  179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
  180                                      struct shrink_control *sc,
  181                                      unsigned long nr_to_scan)
  182 {
  183         sc->nr_to_scan = nr_to_scan;
  184         return (*shrinker->shrink)(shrinker, sc);
  185 }
  186 
  187 #define SHRINK_BATCH 128
  188 /*
  189  * Call the shrink functions to age shrinkable caches
  190  *
  191  * Here we assume it costs one seek to replace a lru page and that it also
  192  * takes a seek to recreate a cache object.  With this in mind we age equal
  193  * percentages of the lru and ageable caches.  This should balance the seeks
  194  * generated by these structures.
  195  *
  196  * If the vm encountered mapped pages on the LRU it increase the pressure on
  197  * slab to avoid swapping.
  198  *
  199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  200  *
  201  * `lru_pages' represents the number of on-LRU pages in all the zones which
  202  * are eligible for the caller's allocation attempt.  It is used for balancing
  203  * slab reclaim versus page reclaim.
  204  *
  205  * Returns the number of slab objects which we shrunk.
  206  */
  207 unsigned long shrink_slab(struct shrink_control *shrink,
  208                           unsigned long nr_pages_scanned,
  209                           unsigned long lru_pages)
  210 {
  211         struct shrinker *shrinker;
  212         unsigned long ret = 0;
  213 
  214         if (nr_pages_scanned == 0)
  215                 nr_pages_scanned = SWAP_CLUSTER_MAX;
  216 
  217         if (!down_read_trylock(&shrinker_rwsem)) {
  218                 /* Assume we'll be able to shrink next time */
  219                 ret = 1;
  220                 goto out;
  221         }
  222 
  223         list_for_each_entry(shrinker, &shrinker_list, list) {
  224                 unsigned long long delta;
  225                 long total_scan;
  226                 long max_pass;
  227                 int shrink_ret = 0;
  228                 long nr;
  229                 long new_nr;
  230                 long batch_size = shrinker->batch ? shrinker->batch
  231                                                   : SHRINK_BATCH;
  232 
  233                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
  234                 if (max_pass <= 0)
  235                         continue;
  236 
  237                 /*
  238                  * copy the current shrinker scan count into a local variable
  239                  * and zero it so that other concurrent shrinker invocations
  240                  * don't also do this scanning work.
  241                  */
  242                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
  243 
  244                 total_scan = nr;
  245                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
  246                 delta *= max_pass;
  247                 do_div(delta, lru_pages + 1);
  248                 total_scan += delta;
  249                 if (total_scan < 0) {
  250                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
  251                                "delete nr=%ld\n",
  252                                shrinker->shrink, total_scan);
  253                         total_scan = max_pass;
  254                 }
  255 
  256                 /*
  257                  * We need to avoid excessive windup on filesystem shrinkers
  258                  * due to large numbers of GFP_NOFS allocations causing the
  259                  * shrinkers to return -1 all the time. This results in a large
  260                  * nr being built up so when a shrink that can do some work
  261                  * comes along it empties the entire cache due to nr >>>
  262                  * max_pass.  This is bad for sustaining a working set in
  263                  * memory.
  264                  *
  265                  * Hence only allow the shrinker to scan the entire cache when
  266                  * a large delta change is calculated directly.
  267                  */
  268                 if (delta < max_pass / 4)
  269                         total_scan = min(total_scan, max_pass / 2);
  270 
  271                 /*
  272                  * Avoid risking looping forever due to too large nr value:
  273                  * never try to free more than twice the estimate number of
  274                  * freeable entries.
  275                  */
  276                 if (total_scan > max_pass * 2)
  277                         total_scan = max_pass * 2;
  278 
  279                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
  280                                         nr_pages_scanned, lru_pages,
  281                                         max_pass, delta, total_scan);
  282 
  283                 while (total_scan >= batch_size) {
  284                         int nr_before;
  285 
  286                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
  287                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
  288                                                         batch_size);
  289                         if (shrink_ret == -1)
  290                                 break;
  291                         if (shrink_ret < nr_before)
  292                                 ret += nr_before - shrink_ret;
  293                         count_vm_events(SLABS_SCANNED, batch_size);
  294                         total_scan -= batch_size;
  295 
  296                         cond_resched();
  297                 }
  298 
  299                 /*
  300                  * move the unused scan count back into the shrinker in a
  301                  * manner that handles concurrent updates. If we exhausted the
  302                  * scan, there is no need to do an update.
  303                  */
  304                 if (total_scan > 0)
  305                         new_nr = atomic_long_add_return(total_scan,
  306                                         &shrinker->nr_in_batch);
  307                 else
  308                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
  309 
  310                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
  311         }
  312         up_read(&shrinker_rwsem);
  313 out:
  314         cond_resched();
  315         return ret;
  316 }
  317 
  318 static inline int is_page_cache_freeable(struct page *page)
  319 {
  320         /*
  321          * A freeable page cache page is referenced only by the caller
  322          * that isolated the page, the page cache radix tree and
  323          * optional buffer heads at page->private.
  324          */
  325         return page_count(page) - page_has_private(page) == 2;
  326 }
  327 
  328 static int may_write_to_queue(struct backing_dev_info *bdi,
  329                               struct scan_control *sc)
  330 {
  331         if (current->flags & PF_SWAPWRITE)
  332                 return 1;
  333         if (!bdi_write_congested(bdi))
  334                 return 1;
  335         if (bdi == current->backing_dev_info)
  336                 return 1;
  337         return 0;
  338 }
  339 
  340 /*
  341  * We detected a synchronous write error writing a page out.  Probably
  342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
  343  * fsync(), msync() or close().
  344  *
  345  * The tricky part is that after writepage we cannot touch the mapping: nothing
  346  * prevents it from being freed up.  But we have a ref on the page and once
  347  * that page is locked, the mapping is pinned.
  348  *
  349  * We're allowed to run sleeping lock_page() here because we know the caller has
  350  * __GFP_FS.
  351  */
  352 static void handle_write_error(struct address_space *mapping,
  353                                 struct page *page, int error)
  354 {
  355         lock_page(page);
  356         if (page_mapping(page) == mapping)
  357                 mapping_set_error(mapping, error);
  358         unlock_page(page);
  359 }
  360 
  361 /* possible outcome of pageout() */
  362 typedef enum {
  363         /* failed to write page out, page is locked */
  364         PAGE_KEEP,
  365         /* move page to the active list, page is locked */
  366         PAGE_ACTIVATE,
  367         /* page has been sent to the disk successfully, page is unlocked */
  368         PAGE_SUCCESS,
  369         /* page is clean and locked */
  370         PAGE_CLEAN,
  371 } pageout_t;
  372 
  373 /*
  374  * pageout is called by shrink_page_list() for each dirty page.
  375  * Calls ->writepage().
  376  */
  377 static pageout_t pageout(struct page *page, struct address_space *mapping,
  378                          struct scan_control *sc)
  379 {
  380         /*
  381          * If the page is dirty, only perform writeback if that write
  382          * will be non-blocking.  To prevent this allocation from being
  383          * stalled by pagecache activity.  But note that there may be
  384          * stalls if we need to run get_block().  We could test
  385          * PagePrivate for that.
  386          *
  387          * If this process is currently in __generic_file_aio_write() against
  388          * this page's queue, we can perform writeback even if that
  389          * will block.
  390          *
  391          * If the page is swapcache, write it back even if that would
  392          * block, for some throttling. This happens by accident, because
  393          * swap_backing_dev_info is bust: it doesn't reflect the
  394          * congestion state of the swapdevs.  Easy to fix, if needed.
  395          */
  396         if (!is_page_cache_freeable(page))
  397                 return PAGE_KEEP;
  398         if (!mapping) {
  399                 /*
  400                  * Some data journaling orphaned pages can have
  401                  * page->mapping == NULL while being dirty with clean buffers.
  402                  */
  403                 if (page_has_private(page)) {
  404                         if (try_to_free_buffers(page)) {
  405                                 ClearPageDirty(page);
  406                                 printk("%s: orphaned page\n", __func__);
  407                                 return PAGE_CLEAN;
  408                         }
  409                 }
  410                 return PAGE_KEEP;
  411         }
  412         if (mapping->a_ops->writepage == NULL)
  413                 return PAGE_ACTIVATE;
  414         if (!may_write_to_queue(mapping->backing_dev_info, sc))
  415                 return PAGE_KEEP;
  416 
  417         if (clear_page_dirty_for_io(page)) {
  418                 int res;
  419                 struct writeback_control wbc = {
  420                         .sync_mode = WB_SYNC_NONE,
  421                         .nr_to_write = SWAP_CLUSTER_MAX,
  422                         .range_start = 0,
  423                         .range_end = LLONG_MAX,
  424                         .for_reclaim = 1,
  425                 };
  426 
  427                 SetPageReclaim(page);
  428                 res = mapping->a_ops->writepage(page, &wbc);
  429                 if (res < 0)
  430                         handle_write_error(mapping, page, res);
  431                 if (res == AOP_WRITEPAGE_ACTIVATE) {
  432                         ClearPageReclaim(page);
  433                         return PAGE_ACTIVATE;
  434                 }
  435 
  436                 if (!PageWriteback(page)) {
  437                         /* synchronous write or broken a_ops? */
  438                         ClearPageReclaim(page);
  439                 }
  440                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
  441                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
  442                 return PAGE_SUCCESS;
  443         }
  444 
  445         return PAGE_CLEAN;
  446 }
  447 
  448 /*
  449  * Same as remove_mapping, but if the page is removed from the mapping, it
  450  * gets returned with a refcount of 0.
  451  */
  452 static int __remove_mapping(struct address_space *mapping, struct page *page)
  453 {
  454         BUG_ON(!PageLocked(page));
  455         BUG_ON(mapping != page_mapping(page));
  456 
  457         spin_lock_irq(&mapping->tree_lock);
  458         /*
  459          * The non racy check for a busy page.
  460          *
  461          * Must be careful with the order of the tests. When someone has
  462          * a ref to the page, it may be possible that they dirty it then
  463          * drop the reference. So if PageDirty is tested before page_count
  464          * here, then the following race may occur:
  465          *
  466          * get_user_pages(&page);
  467          * [user mapping goes away]
  468          * write_to(page);
  469          *                              !PageDirty(page)    [good]
  470          * SetPageDirty(page);
  471          * put_page(page);
  472          *                              !page_count(page)   [good, discard it]
  473          *
  474          * [oops, our write_to data is lost]
  475          *
  476          * Reversing the order of the tests ensures such a situation cannot
  477          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  478          * load is not satisfied before that of page->_count.
  479          *
  480          * Note that if SetPageDirty is always performed via set_page_dirty,
  481          * and thus under tree_lock, then this ordering is not required.
  482          */
  483         if (!page_freeze_refs(page, 2))
  484                 goto cannot_free;
  485         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  486         if (unlikely(PageDirty(page))) {
  487                 page_unfreeze_refs(page, 2);
  488                 goto cannot_free;
  489         }
  490 
  491         if (PageSwapCache(page)) {
  492                 swp_entry_t swap = { .val = page_private(page) };
  493                 __delete_from_swap_cache(page);
  494                 spin_unlock_irq(&mapping->tree_lock);
  495                 swapcache_free(swap, page);
  496         } else {
  497                 void (*freepage)(struct page *);
  498 
  499                 freepage = mapping->a_ops->freepage;
  500 
  501                 __delete_from_page_cache(page);
  502                 spin_unlock_irq(&mapping->tree_lock);
  503                 mem_cgroup_uncharge_cache_page(page);
  504 
  505                 if (freepage != NULL)
  506                         freepage(page);
  507         }
  508 
  509         return 1;
  510 
  511 cannot_free:
  512         spin_unlock_irq(&mapping->tree_lock);
  513         return 0;
  514 }
  515 
  516 /*
  517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
  518  * someone else has a ref on the page, abort and return 0.  If it was
  519  * successfully detached, return 1.  Assumes the caller has a single ref on
  520  * this page.
  521  */
  522 int remove_mapping(struct address_space *mapping, struct page *page)
  523 {
  524         if (__remove_mapping(mapping, page)) {
  525                 /*
  526                  * Unfreezing the refcount with 1 rather than 2 effectively
  527                  * drops the pagecache ref for us without requiring another
  528                  * atomic operation.
  529                  */
  530                 page_unfreeze_refs(page, 1);
  531                 return 1;
  532         }
  533         return 0;
  534 }
  535 
  536 /**
  537  * putback_lru_page - put previously isolated page onto appropriate LRU list
  538  * @page: page to be put back to appropriate lru list
  539  *
  540  * Add previously isolated @page to appropriate LRU list.
  541  * Page may still be unevictable for other reasons.
  542  *
  543  * lru_lock must not be held, interrupts must be enabled.
  544  */
  545 void putback_lru_page(struct page *page)
  546 {
  547         int lru;
  548         int active = !!TestClearPageActive(page);
  549         int was_unevictable = PageUnevictable(page);
  550 
  551         VM_BUG_ON(PageLRU(page));
  552 
  553 redo:
  554         ClearPageUnevictable(page);
  555 
  556         if (page_evictable(page)) {
  557                 /*
  558                  * For evictable pages, we can use the cache.
  559                  * In event of a race, worst case is we end up with an
  560                  * unevictable page on [in]active list.
  561                  * We know how to handle that.
  562                  */
  563                 lru = active + page_lru_base_type(page);
  564                 lru_cache_add_lru(page, lru);
  565         } else {
  566                 /*
  567                  * Put unevictable pages directly on zone's unevictable
  568                  * list.
  569                  */
  570                 lru = LRU_UNEVICTABLE;
  571                 add_page_to_unevictable_list(page);
  572                 /*
  573                  * When racing with an mlock or AS_UNEVICTABLE clearing
  574                  * (page is unlocked) make sure that if the other thread
  575                  * does not observe our setting of PG_lru and fails
  576                  * isolation/check_move_unevictable_pages,
  577                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
  578                  * the page back to the evictable list.
  579                  *
  580                  * The other side is TestClearPageMlocked() or shmem_lock().
  581                  */
  582                 smp_mb();
  583         }
  584 
  585         /*
  586          * page's status can change while we move it among lru. If an evictable
  587          * page is on unevictable list, it never be freed. To avoid that,
  588          * check after we added it to the list, again.
  589          */
  590         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
  591                 if (!isolate_lru_page(page)) {
  592                         put_page(page);
  593                         goto redo;
  594                 }
  595                 /* This means someone else dropped this page from LRU
  596                  * So, it will be freed or putback to LRU again. There is
  597                  * nothing to do here.
  598                  */
  599         }
  600 
  601         if (was_unevictable && lru != LRU_UNEVICTABLE)
  602                 count_vm_event(UNEVICTABLE_PGRESCUED);
  603         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
  604                 count_vm_event(UNEVICTABLE_PGCULLED);
  605 
  606         put_page(page);         /* drop ref from isolate */
  607 }
  608 
  609 enum page_references {
  610         PAGEREF_RECLAIM,
  611         PAGEREF_RECLAIM_CLEAN,
  612         PAGEREF_KEEP,
  613         PAGEREF_ACTIVATE,
  614 };
  615 
  616 static enum page_references page_check_references(struct page *page,
  617                                                   struct scan_control *sc)
  618 {
  619         int referenced_ptes, referenced_page;
  620         unsigned long vm_flags;
  621 
  622         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
  623                                           &vm_flags);
  624         referenced_page = TestClearPageReferenced(page);
  625 
  626         /*
  627          * Mlock lost the isolation race with us.  Let try_to_unmap()
  628          * move the page to the unevictable list.
  629          */
  630         if (vm_flags & VM_LOCKED)
  631                 return PAGEREF_RECLAIM;
  632 
  633         if (referenced_ptes) {
  634                 if (PageSwapBacked(page))
  635                         return PAGEREF_ACTIVATE;
  636                 /*
  637                  * All mapped pages start out with page table
  638                  * references from the instantiating fault, so we need
  639                  * to look twice if a mapped file page is used more
  640                  * than once.
  641                  *
  642                  * Mark it and spare it for another trip around the
  643                  * inactive list.  Another page table reference will
  644                  * lead to its activation.
  645                  *
  646                  * Note: the mark is set for activated pages as well
  647                  * so that recently deactivated but used pages are
  648                  * quickly recovered.
  649                  */
  650                 SetPageReferenced(page);
  651 
  652                 if (referenced_page || referenced_ptes > 1)
  653                         return PAGEREF_ACTIVATE;
  654 
  655                 /*
  656                  * Activate file-backed executable pages after first usage.
  657                  */
  658                 if (vm_flags & VM_EXEC)
  659                         return PAGEREF_ACTIVATE;
  660 
  661                 return PAGEREF_KEEP;
  662         }
  663 
  664         /* Reclaim if clean, defer dirty pages to writeback */
  665         if (referenced_page && !PageSwapBacked(page))
  666                 return PAGEREF_RECLAIM_CLEAN;
  667 
  668         return PAGEREF_RECLAIM;
  669 }
  670 
  671 /*
  672  * shrink_page_list() returns the number of reclaimed pages
  673  */
  674 static unsigned long shrink_page_list(struct list_head *page_list,
  675                                       struct zone *zone,
  676                                       struct scan_control *sc,
  677                                       enum ttu_flags ttu_flags,
  678                                       unsigned long *ret_nr_dirty,
  679                                       unsigned long *ret_nr_writeback,
  680                                       bool force_reclaim)
  681 {
  682         LIST_HEAD(ret_pages);
  683         LIST_HEAD(free_pages);
  684         int pgactivate = 0;
  685         unsigned long nr_dirty = 0;
  686         unsigned long nr_congested = 0;
  687         unsigned long nr_reclaimed = 0;
  688         unsigned long nr_writeback = 0;
  689 
  690         cond_resched();
  691 
  692         mem_cgroup_uncharge_start();
  693         while (!list_empty(page_list)) {
  694                 struct address_space *mapping;
  695                 struct page *page;
  696                 int may_enter_fs;
  697                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
  698 
  699                 cond_resched();
  700 
  701                 page = lru_to_page(page_list);
  702                 list_del(&page->lru);
  703 
  704                 if (!trylock_page(page))
  705                         goto keep;
  706 
  707                 VM_BUG_ON(PageActive(page));
  708                 VM_BUG_ON(page_zone(page) != zone);
  709 
  710                 sc->nr_scanned++;
  711 
  712                 if (unlikely(!page_evictable(page)))
  713                         goto cull_mlocked;
  714 
  715                 if (!sc->may_unmap && page_mapped(page))
  716                         goto keep_locked;
  717 
  718                 /* Double the slab pressure for mapped and swapcache pages */
  719                 if (page_mapped(page) || PageSwapCache(page))
  720                         sc->nr_scanned++;
  721 
  722                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  723                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  724 
  725                 if (PageWriteback(page)) {
  726                         /*
  727                          * memcg doesn't have any dirty pages throttling so we
  728                          * could easily OOM just because too many pages are in
  729                          * writeback and there is nothing else to reclaim.
  730                          *
  731                          * Check __GFP_IO, certainly because a loop driver
  732                          * thread might enter reclaim, and deadlock if it waits
  733                          * on a page for which it is needed to do the write
  734                          * (loop masks off __GFP_IO|__GFP_FS for this reason);
  735                          * but more thought would probably show more reasons.
  736                          *
  737                          * Don't require __GFP_FS, since we're not going into
  738                          * the FS, just waiting on its writeback completion.
  739                          * Worryingly, ext4 gfs2 and xfs allocate pages with
  740                          * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
  741                          * testing may_enter_fs here is liable to OOM on them.
  742                          */
  743                         if (global_reclaim(sc) ||
  744                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
  745                                 /*
  746                                  * This is slightly racy - end_page_writeback()
  747                                  * might have just cleared PageReclaim, then
  748                                  * setting PageReclaim here end up interpreted
  749                                  * as PageReadahead - but that does not matter
  750                                  * enough to care.  What we do want is for this
  751                                  * page to have PageReclaim set next time memcg
  752                                  * reclaim reaches the tests above, so it will
  753                                  * then wait_on_page_writeback() to avoid OOM;
  754                                  * and it's also appropriate in global reclaim.
  755                                  */
  756                                 SetPageReclaim(page);
  757                                 nr_writeback++;
  758                                 goto keep_locked;
  759                         }
  760                         wait_on_page_writeback(page);
  761                 }
  762 
  763                 if (!force_reclaim)
  764                         references = page_check_references(page, sc);
  765 
  766                 switch (references) {
  767                 case PAGEREF_ACTIVATE:
  768                         goto activate_locked;
  769                 case PAGEREF_KEEP:
  770                         goto keep_locked;
  771                 case PAGEREF_RECLAIM:
  772                 case PAGEREF_RECLAIM_CLEAN:
  773                         ; /* try to reclaim the page below */
  774                 }
  775 
  776                 /*
  777                  * Anonymous process memory has backing store?
  778                  * Try to allocate it some swap space here.
  779                  */
  780                 if (PageAnon(page) && !PageSwapCache(page)) {
  781                         if (!(sc->gfp_mask & __GFP_IO))
  782                                 goto keep_locked;
  783                         if (!add_to_swap(page))
  784                                 goto activate_locked;
  785                         may_enter_fs = 1;
  786                 }
  787 
  788                 mapping = page_mapping(page);
  789 
  790                 /*
  791                  * The page is mapped into the page tables of one or more
  792                  * processes. Try to unmap it here.
  793                  */
  794                 if (page_mapped(page) && mapping) {
  795                         switch (try_to_unmap(page, ttu_flags)) {
  796                         case SWAP_FAIL:
  797                                 goto activate_locked;
  798                         case SWAP_AGAIN:
  799                                 goto keep_locked;
  800                         case SWAP_MLOCK:
  801                                 goto cull_mlocked;
  802                         case SWAP_SUCCESS:
  803                                 ; /* try to free the page below */
  804                         }
  805                 }
  806 
  807                 if (PageDirty(page)) {
  808                         nr_dirty++;
  809 
  810                         /*
  811                          * Only kswapd can writeback filesystem pages to
  812                          * avoid risk of stack overflow but do not writeback
  813                          * unless under significant pressure.
  814                          */
  815                         if (page_is_file_cache(page) &&
  816                                         (!current_is_kswapd() ||
  817                                          sc->priority >= DEF_PRIORITY - 2)) {
  818                                 /*
  819                                  * Immediately reclaim when written back.
  820                                  * Similar in principal to deactivate_page()
  821                                  * except we already have the page isolated
  822                                  * and know it's dirty
  823                                  */
  824                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
  825                                 SetPageReclaim(page);
  826 
  827                                 goto keep_locked;
  828                         }
  829 
  830                         if (references == PAGEREF_RECLAIM_CLEAN)
  831                                 goto keep_locked;
  832                         if (!may_enter_fs)
  833                                 goto keep_locked;
  834                         if (!sc->may_writepage)
  835                                 goto keep_locked;
  836 
  837                         /* Page is dirty, try to write it out here */
  838                         switch (pageout(page, mapping, sc)) {
  839                         case PAGE_KEEP:
  840                                 nr_congested++;
  841                                 goto keep_locked;
  842                         case PAGE_ACTIVATE:
  843                                 goto activate_locked;
  844                         case PAGE_SUCCESS:
  845                                 if (PageWriteback(page))
  846                                         goto keep;
  847                                 if (PageDirty(page))
  848                                         goto keep;
  849 
  850                                 /*
  851                                  * A synchronous write - probably a ramdisk.  Go
  852                                  * ahead and try to reclaim the page.
  853                                  */
  854                                 if (!trylock_page(page))
  855                                         goto keep;
  856                                 if (PageDirty(page) || PageWriteback(page))
  857                                         goto keep_locked;
  858                                 mapping = page_mapping(page);
  859                         case PAGE_CLEAN:
  860                                 ; /* try to free the page below */
  861                         }
  862                 }
  863 
  864                 /*
  865                  * If the page has buffers, try to free the buffer mappings
  866                  * associated with this page. If we succeed we try to free
  867                  * the page as well.
  868                  *
  869                  * We do this even if the page is PageDirty().
  870                  * try_to_release_page() does not perform I/O, but it is
  871                  * possible for a page to have PageDirty set, but it is actually
  872                  * clean (all its buffers are clean).  This happens if the
  873                  * buffers were written out directly, with submit_bh(). ext3
  874                  * will do this, as well as the blockdev mapping.
  875                  * try_to_release_page() will discover that cleanness and will
  876                  * drop the buffers and mark the page clean - it can be freed.
  877                  *
  878                  * Rarely, pages can have buffers and no ->mapping.  These are
  879                  * the pages which were not successfully invalidated in
  880                  * truncate_complete_page().  We try to drop those buffers here
  881                  * and if that worked, and the page is no longer mapped into
  882                  * process address space (page_count == 1) it can be freed.
  883                  * Otherwise, leave the page on the LRU so it is swappable.
  884                  */
  885                 if (page_has_private(page)) {
  886                         if (!try_to_release_page(page, sc->gfp_mask))
  887                                 goto activate_locked;
  888                         if (!mapping && page_count(page) == 1) {
  889                                 unlock_page(page);
  890                                 if (put_page_testzero(page))
  891                                         goto free_it;
  892                                 else {
  893                                         /*
  894                                          * rare race with speculative reference.
  895                                          * the speculative reference will free
  896                                          * this page shortly, so we may
  897                                          * increment nr_reclaimed here (and
  898                                          * leave it off the LRU).
  899                                          */
  900                                         nr_reclaimed++;
  901                                         continue;
  902                                 }
  903                         }
  904                 }
  905 
  906                 if (!mapping || !__remove_mapping(mapping, page))
  907                         goto keep_locked;
  908 
  909                 /*
  910                  * At this point, we have no other references and there is
  911                  * no way to pick any more up (removed from LRU, removed
  912                  * from pagecache). Can use non-atomic bitops now (and
  913                  * we obviously don't have to worry about waking up a process
  914                  * waiting on the page lock, because there are no references.
  915                  */
  916                 __clear_page_locked(page);
  917 free_it:
  918                 nr_reclaimed++;
  919 
  920                 /*
  921                  * Is there need to periodically free_page_list? It would
  922                  * appear not as the counts should be low
  923                  */
  924                 list_add(&page->lru, &free_pages);
  925                 continue;
  926 
  927 cull_mlocked:
  928                 if (PageSwapCache(page))
  929                         try_to_free_swap(page);
  930                 unlock_page(page);
  931                 putback_lru_page(page);
  932                 continue;
  933 
  934 activate_locked:
  935                 /* Not a candidate for swapping, so reclaim swap space. */
  936                 if (PageSwapCache(page) && vm_swap_full())
  937                         try_to_free_swap(page);
  938                 VM_BUG_ON(PageActive(page));
  939                 SetPageActive(page);
  940                 pgactivate++;
  941 keep_locked:
  942                 unlock_page(page);
  943 keep:
  944                 list_add(&page->lru, &ret_pages);
  945                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
  946         }
  947 
  948         /*
  949          * Tag a zone as congested if all the dirty pages encountered were
  950          * backed by a congested BDI. In this case, reclaimers should just
  951          * back off and wait for congestion to clear because further reclaim
  952          * will encounter the same problem
  953          */
  954         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
  955                 zone_set_flag(zone, ZONE_CONGESTED);
  956 
  957         free_hot_cold_page_list(&free_pages, 1);
  958 
  959         list_splice(&ret_pages, page_list);
  960         count_vm_events(PGACTIVATE, pgactivate);
  961         mem_cgroup_uncharge_end();
  962         *ret_nr_dirty += nr_dirty;
  963         *ret_nr_writeback += nr_writeback;
  964         return nr_reclaimed;
  965 }
  966 
  967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
  968                                             struct list_head *page_list)
  969 {
  970         struct scan_control sc = {
  971                 .gfp_mask = GFP_KERNEL,
  972                 .priority = DEF_PRIORITY,
  973                 .may_unmap = 1,
  974         };
  975         unsigned long ret, dummy1, dummy2;
  976         struct page *page, *next;
  977         LIST_HEAD(clean_pages);
  978 
  979         list_for_each_entry_safe(page, next, page_list, lru) {
  980                 if (page_is_file_cache(page) && !PageDirty(page)) {
  981                         ClearPageActive(page);
  982                         list_move(&page->lru, &clean_pages);
  983                 }
  984         }
  985 
  986         ret = shrink_page_list(&clean_pages, zone, &sc,
  987                                 TTU_UNMAP|TTU_IGNORE_ACCESS,
  988                                 &dummy1, &dummy2, true);
  989         list_splice(&clean_pages, page_list);
  990         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
  991         return ret;
  992 }
  993 
  994 /*
  995  * Attempt to remove the specified page from its LRU.  Only take this page
  996  * if it is of the appropriate PageActive status.  Pages which are being
  997  * freed elsewhere are also ignored.
  998  *
  999  * page:        page to consider
 1000  * mode:        one of the LRU isolation modes defined above
 1001  *
 1002  * returns 0 on success, -ve errno on failure.
 1003  */
 1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
 1005 {
 1006         int ret = -EINVAL;
 1007 
 1008         /* Only take pages on the LRU. */
 1009         if (!PageLRU(page))
 1010                 return ret;
 1011 
 1012         /* Compaction should not handle unevictable pages but CMA can do so */
 1013         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
 1014                 return ret;
 1015 
 1016         ret = -EBUSY;
 1017 
 1018         /*
 1019          * To minimise LRU disruption, the caller can indicate that it only
 1020          * wants to isolate pages it will be able to operate on without
 1021          * blocking - clean pages for the most part.
 1022          *
 1023          * ISOLATE_CLEAN means that only clean pages should be isolated. This
 1024          * is used by reclaim when it is cannot write to backing storage
 1025          *
 1026          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
 1027          * that it is possible to migrate without blocking
 1028          */
 1029         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
 1030                 /* All the caller can do on PageWriteback is block */
 1031                 if (PageWriteback(page))
 1032                         return ret;
 1033 
 1034                 if (PageDirty(page)) {
 1035                         struct address_space *mapping;
 1036 
 1037                         /* ISOLATE_CLEAN means only clean pages */
 1038                         if (mode & ISOLATE_CLEAN)
 1039                                 return ret;
 1040 
 1041                         /*
 1042                          * Only pages without mappings or that have a
 1043                          * ->migratepage callback are possible to migrate
 1044                          * without blocking
 1045                          */
 1046                         mapping = page_mapping(page);
 1047                         if (mapping && !mapping->a_ops->migratepage)
 1048                                 return ret;
 1049                 }
 1050         }
 1051 
 1052         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
 1053                 return ret;
 1054 
 1055         if (likely(get_page_unless_zero(page))) {
 1056                 /*
 1057                  * Be careful not to clear PageLRU until after we're
 1058                  * sure the page is not being freed elsewhere -- the
 1059                  * page release code relies on it.
 1060                  */
 1061                 ClearPageLRU(page);
 1062                 ret = 0;
 1063         }
 1064 
 1065         return ret;
 1066 }
 1067 
 1068 /*
 1069  * zone->lru_lock is heavily contended.  Some of the functions that
 1070  * shrink the lists perform better by taking out a batch of pages
 1071  * and working on them outside the LRU lock.
 1072  *
 1073  * For pagecache intensive workloads, this function is the hottest
 1074  * spot in the kernel (apart from copy_*_user functions).
 1075  *
 1076  * Appropriate locks must be held before calling this function.
 1077  *
 1078  * @nr_to_scan: The number of pages to look through on the list.
 1079  * @lruvec:     The LRU vector to pull pages from.
 1080  * @dst:        The temp list to put pages on to.
 1081  * @nr_scanned: The number of pages that were scanned.
 1082  * @sc:         The scan_control struct for this reclaim session
 1083  * @mode:       One of the LRU isolation modes
 1084  * @lru:        LRU list id for isolating
 1085  *
 1086  * returns how many pages were moved onto *@dst.
 1087  */
 1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
 1089                 struct lruvec *lruvec, struct list_head *dst,
 1090                 unsigned long *nr_scanned, struct scan_control *sc,
 1091                 isolate_mode_t mode, enum lru_list lru)
 1092 {
 1093         struct list_head *src = &lruvec->lists[lru];
 1094         unsigned long nr_taken = 0;
 1095         unsigned long scan;
 1096 
 1097         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 1098                 struct page *page;
 1099                 int nr_pages;
 1100 
 1101                 page = lru_to_page(src);
 1102                 prefetchw_prev_lru_page(page, src, flags);
 1103 
 1104                 VM_BUG_ON(!PageLRU(page));
 1105 
 1106                 switch (__isolate_lru_page(page, mode)) {
 1107                 case 0:
 1108                         nr_pages = hpage_nr_pages(page);
 1109                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
 1110                         list_move(&page->lru, dst);
 1111                         nr_taken += nr_pages;
 1112                         break;
 1113 
 1114                 case -EBUSY:
 1115                         /* else it is being freed elsewhere */
 1116                         list_move(&page->lru, src);
 1117                         continue;
 1118 
 1119                 default:
 1120                         BUG();
 1121                 }
 1122         }
 1123 
 1124         *nr_scanned = scan;
 1125         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
 1126                                     nr_taken, mode, is_file_lru(lru));
 1127         return nr_taken;
 1128 }
 1129 
 1130 /**
 1131  * isolate_lru_page - tries to isolate a page from its LRU list
 1132  * @page: page to isolate from its LRU list
 1133  *
 1134  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 1135  * vmstat statistic corresponding to whatever LRU list the page was on.
 1136  *
 1137  * Returns 0 if the page was removed from an LRU list.
 1138  * Returns -EBUSY if the page was not on an LRU list.
 1139  *
 1140  * The returned page will have PageLRU() cleared.  If it was found on
 1141  * the active list, it will have PageActive set.  If it was found on
 1142  * the unevictable list, it will have the PageUnevictable bit set. That flag
 1143  * may need to be cleared by the caller before letting the page go.
 1144  *
 1145  * The vmstat statistic corresponding to the list on which the page was
 1146  * found will be decremented.
 1147  *
 1148  * Restrictions:
 1149  * (1) Must be called with an elevated refcount on the page. This is a
 1150  *     fundamentnal difference from isolate_lru_pages (which is called
 1151  *     without a stable reference).
 1152  * (2) the lru_lock must not be held.
 1153  * (3) interrupts must be enabled.
 1154  */
 1155 int isolate_lru_page(struct page *page)
 1156 {
 1157         int ret = -EBUSY;
 1158 
 1159         VM_BUG_ON(!page_count(page));
 1160 
 1161         if (PageLRU(page)) {
 1162                 struct zone *zone = page_zone(page);
 1163                 struct lruvec *lruvec;
 1164 
 1165                 spin_lock_irq(&zone->lru_lock);
 1166                 lruvec = mem_cgroup_page_lruvec(page, zone);
 1167                 if (PageLRU(page)) {
 1168                         int lru = page_lru(page);
 1169                         get_page(page);
 1170                         ClearPageLRU(page);
 1171                         del_page_from_lru_list(page, lruvec, lru);
 1172                         ret = 0;
 1173                 }
 1174                 spin_unlock_irq(&zone->lru_lock);
 1175         }
 1176         return ret;
 1177 }
 1178 
 1179 /*
 1180  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 1181  * then get resheduled. When there are massive number of tasks doing page
 1182  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 1183  * the LRU list will go small and be scanned faster than necessary, leading to
 1184  * unnecessary swapping, thrashing and OOM.
 1185  */
 1186 static int too_many_isolated(struct zone *zone, int file,
 1187                 struct scan_control *sc)
 1188 {
 1189         unsigned long inactive, isolated;
 1190 
 1191         if (current_is_kswapd())
 1192                 return 0;
 1193 
 1194         if (!global_reclaim(sc))
 1195                 return 0;
 1196 
 1197         if (file) {
 1198                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
 1199                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
 1200         } else {
 1201                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
 1202                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
 1203         }
 1204 
 1205         /*
 1206          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
 1207          * won't get blocked by normal direct-reclaimers, forming a circular
 1208          * deadlock.
 1209          */
 1210         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
 1211                 inactive >>= 3;
 1212 
 1213         return isolated > inactive;
 1214 }
 1215 
 1216 static noinline_for_stack void
 1217 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 1218 {
 1219         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 1220         struct zone *zone = lruvec_zone(lruvec);
 1221         LIST_HEAD(pages_to_free);
 1222 
 1223         /*
 1224          * Put back any unfreeable pages.
 1225          */
 1226         while (!list_empty(page_list)) {
 1227                 struct page *page = lru_to_page(page_list);
 1228                 int lru;
 1229 
 1230                 VM_BUG_ON(PageLRU(page));
 1231                 list_del(&page->lru);
 1232                 if (unlikely(!page_evictable(page))) {
 1233                         spin_unlock_irq(&zone->lru_lock);
 1234                         putback_lru_page(page);
 1235                         spin_lock_irq(&zone->lru_lock);
 1236                         continue;
 1237                 }
 1238 
 1239                 lruvec = mem_cgroup_page_lruvec(page, zone);
 1240 
 1241                 SetPageLRU(page);
 1242                 lru = page_lru(page);
 1243                 add_page_to_lru_list(page, lruvec, lru);
 1244 
 1245                 if (is_active_lru(lru)) {
 1246                         int file = is_file_lru(lru);
 1247                         int numpages = hpage_nr_pages(page);
 1248                         reclaim_stat->recent_rotated[file] += numpages;
 1249                 }
 1250                 if (put_page_testzero(page)) {
 1251                         __ClearPageLRU(page);
 1252                         __ClearPageActive(page);
 1253                         del_page_from_lru_list(page, lruvec, lru);
 1254 
 1255                         if (unlikely(PageCompound(page))) {
 1256                                 spin_unlock_irq(&zone->lru_lock);
 1257                                 (*get_compound_page_dtor(page))(page);
 1258                                 spin_lock_irq(&zone->lru_lock);
 1259                         } else
 1260                                 list_add(&page->lru, &pages_to_free);
 1261                 }
 1262         }
 1263 
 1264         /*
 1265          * To save our caller's stack, now use input list for pages to free.
 1266          */
 1267         list_splice(&pages_to_free, page_list);
 1268 }
 1269 
 1270 /*
 1271  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 1272  * of reclaimed pages
 1273  */
 1274 static noinline_for_stack unsigned long
 1275 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
 1276                      struct scan_control *sc, enum lru_list lru)
 1277 {
 1278         LIST_HEAD(page_list);
 1279         unsigned long nr_scanned;
 1280         unsigned long nr_reclaimed = 0;
 1281         unsigned long nr_taken;
 1282         unsigned long nr_dirty = 0;
 1283         unsigned long nr_writeback = 0;
 1284         isolate_mode_t isolate_mode = 0;
 1285         int file = is_file_lru(lru);
 1286         struct zone *zone = lruvec_zone(lruvec);
 1287         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 1288 
 1289         while (unlikely(too_many_isolated(zone, file, sc))) {
 1290                 congestion_wait(BLK_RW_ASYNC, HZ/10);
 1291 
 1292                 /* We are about to die and free our memory. Return now. */
 1293                 if (fatal_signal_pending(current))
 1294                         return SWAP_CLUSTER_MAX;
 1295         }
 1296 
 1297         lru_add_drain();
 1298 
 1299         if (!sc->may_unmap)
 1300                 isolate_mode |= ISOLATE_UNMAPPED;
 1301         if (!sc->may_writepage)
 1302                 isolate_mode |= ISOLATE_CLEAN;
 1303 
 1304         spin_lock_irq(&zone->lru_lock);
 1305 
 1306         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
 1307                                      &nr_scanned, sc, isolate_mode, lru);
 1308 
 1309         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
 1310         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
 1311 
 1312         if (global_reclaim(sc)) {
 1313                 zone->pages_scanned += nr_scanned;
 1314                 if (current_is_kswapd())
 1315                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
 1316                 else
 1317                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
 1318         }
 1319         spin_unlock_irq(&zone->lru_lock);
 1320 
 1321         if (nr_taken == 0)
 1322                 return 0;
 1323 
 1324         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
 1325                                         &nr_dirty, &nr_writeback, false);
 1326 
 1327         spin_lock_irq(&zone->lru_lock);
 1328 
 1329         reclaim_stat->recent_scanned[file] += nr_taken;
 1330 
 1331         if (global_reclaim(sc)) {
 1332                 if (current_is_kswapd())
 1333                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
 1334                                                nr_reclaimed);
 1335                 else
 1336                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
 1337                                                nr_reclaimed);
 1338         }
 1339 
 1340         putback_inactive_pages(lruvec, &page_list);
 1341 
 1342         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
 1343 
 1344         spin_unlock_irq(&zone->lru_lock);
 1345 
 1346         free_hot_cold_page_list(&page_list, 1);
 1347 
 1348         /*
 1349          * If reclaim is isolating dirty pages under writeback, it implies
 1350          * that the long-lived page allocation rate is exceeding the page
 1351          * laundering rate. Either the global limits are not being effective
 1352          * at throttling processes due to the page distribution throughout
 1353          * zones or there is heavy usage of a slow backing device. The
 1354          * only option is to throttle from reclaim context which is not ideal
 1355          * as there is no guarantee the dirtying process is throttled in the
 1356          * same way balance_dirty_pages() manages.
 1357          *
 1358          * This scales the number of dirty pages that must be under writeback
 1359          * before throttling depending on priority. It is a simple backoff
 1360          * function that has the most effect in the range DEF_PRIORITY to
 1361          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
 1362          * in trouble and reclaim is considered to be in trouble.
 1363          *
 1364          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
 1365          * DEF_PRIORITY-1  50% must be PageWriteback
 1366          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
 1367          * ...
 1368          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
 1369          *                     isolated page is PageWriteback
 1370          */
 1371         if (nr_writeback && nr_writeback >=
 1372                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
 1373                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
 1374 
 1375         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
 1376                 zone_idx(zone),
 1377                 nr_scanned, nr_reclaimed,
 1378                 sc->priority,
 1379                 trace_shrink_flags(file));
 1380         return nr_reclaimed;
 1381 }
 1382 
 1383 /*
 1384  * This moves pages from the active list to the inactive list.
 1385  *
 1386  * We move them the other way if the page is referenced by one or more
 1387  * processes, from rmap.
 1388  *
 1389  * If the pages are mostly unmapped, the processing is fast and it is
 1390  * appropriate to hold zone->lru_lock across the whole operation.  But if
 1391  * the pages are mapped, the processing is slow (page_referenced()) so we
 1392  * should drop zone->lru_lock around each page.  It's impossible to balance
 1393  * this, so instead we remove the pages from the LRU while processing them.
 1394  * It is safe to rely on PG_active against the non-LRU pages in here because
 1395  * nobody will play with that bit on a non-LRU page.
 1396  *
 1397  * The downside is that we have to touch page->_count against each page.
 1398  * But we had to alter page->flags anyway.
 1399  */
 1400 
 1401 static void move_active_pages_to_lru(struct lruvec *lruvec,
 1402                                      struct list_head *list,
 1403                                      struct list_head *pages_to_free,
 1404                                      enum lru_list lru)
 1405 {
 1406         struct zone *zone = lruvec_zone(lruvec);
 1407         unsigned long pgmoved = 0;
 1408         struct page *page;
 1409         int nr_pages;
 1410 
 1411         while (!list_empty(list)) {
 1412                 page = lru_to_page(list);
 1413                 lruvec = mem_cgroup_page_lruvec(page, zone);
 1414 
 1415                 VM_BUG_ON(PageLRU(page));
 1416                 SetPageLRU(page);
 1417 
 1418                 nr_pages = hpage_nr_pages(page);
 1419                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
 1420                 list_move(&page->lru, &lruvec->lists[lru]);
 1421                 pgmoved += nr_pages;
 1422 
 1423                 if (put_page_testzero(page)) {
 1424                         __ClearPageLRU(page);
 1425                         __ClearPageActive(page);
 1426                         del_page_from_lru_list(page, lruvec, lru);
 1427 
 1428                         if (unlikely(PageCompound(page))) {
 1429                                 spin_unlock_irq(&zone->lru_lock);
 1430                                 (*get_compound_page_dtor(page))(page);
 1431                                 spin_lock_irq(&zone->lru_lock);
 1432                         } else
 1433                                 list_add(&page->lru, pages_to_free);
 1434                 }
 1435         }
 1436         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
 1437         if (!is_active_lru(lru))
 1438                 __count_vm_events(PGDEACTIVATE, pgmoved);
 1439 }
 1440 
 1441 static void shrink_active_list(unsigned long nr_to_scan,
 1442                                struct lruvec *lruvec,
 1443                                struct scan_control *sc,
 1444                                enum lru_list lru)
 1445 {
 1446         unsigned long nr_taken;
 1447         unsigned long nr_scanned;
 1448         unsigned long vm_flags;
 1449         LIST_HEAD(l_hold);      /* The pages which were snipped off */
 1450         LIST_HEAD(l_active);
 1451         LIST_HEAD(l_inactive);
 1452         struct page *page;
 1453         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 1454         unsigned long nr_rotated = 0;
 1455         isolate_mode_t isolate_mode = 0;
 1456         int file = is_file_lru(lru);
 1457         struct zone *zone = lruvec_zone(lruvec);
 1458 
 1459         lru_add_drain();
 1460 
 1461         if (!sc->may_unmap)
 1462                 isolate_mode |= ISOLATE_UNMAPPED;
 1463         if (!sc->may_writepage)
 1464                 isolate_mode |= ISOLATE_CLEAN;
 1465 
 1466         spin_lock_irq(&zone->lru_lock);
 1467 
 1468         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
 1469                                      &nr_scanned, sc, isolate_mode, lru);
 1470         if (global_reclaim(sc))
 1471                 zone->pages_scanned += nr_scanned;
 1472 
 1473         reclaim_stat->recent_scanned[file] += nr_taken;
 1474 
 1475         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
 1476         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
 1477         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
 1478         spin_unlock_irq(&zone->lru_lock);
 1479 
 1480         while (!list_empty(&l_hold)) {
 1481                 cond_resched();
 1482                 page = lru_to_page(&l_hold);
 1483                 list_del(&page->lru);
 1484 
 1485                 if (unlikely(!page_evictable(page))) {
 1486                         putback_lru_page(page);
 1487                         continue;
 1488                 }
 1489 
 1490                 if (unlikely(buffer_heads_over_limit)) {
 1491                         if (page_has_private(page) && trylock_page(page)) {
 1492                                 if (page_has_private(page))
 1493                                         try_to_release_page(page, 0);
 1494                                 unlock_page(page);
 1495                         }
 1496                 }
 1497 
 1498                 if (page_referenced(page, 0, sc->target_mem_cgroup,
 1499                                     &vm_flags)) {
 1500                         nr_rotated += hpage_nr_pages(page);
 1501                         /*
 1502                          * Identify referenced, file-backed active pages and
 1503                          * give them one more trip around the active list. So
 1504                          * that executable code get better chances to stay in
 1505                          * memory under moderate memory pressure.  Anon pages
 1506                          * are not likely to be evicted by use-once streaming
 1507                          * IO, plus JVM can create lots of anon VM_EXEC pages,
 1508                          * so we ignore them here.
 1509                          */
 1510                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
 1511                                 list_add(&page->lru, &l_active);
 1512                                 continue;
 1513                         }
 1514                 }
 1515 
 1516                 ClearPageActive(page);  /* we are de-activating */
 1517                 list_add(&page->lru, &l_inactive);
 1518         }
 1519 
 1520         /*
 1521          * Move pages back to the lru list.
 1522          */
 1523         spin_lock_irq(&zone->lru_lock);
 1524         /*
 1525          * Count referenced pages from currently used mappings as rotated,
 1526          * even though only some of them are actually re-activated.  This
 1527          * helps balance scan pressure between file and anonymous pages in
 1528          * get_scan_ratio.
 1529          */
 1530         reclaim_stat->recent_rotated[file] += nr_rotated;
 1531 
 1532         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
 1533         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
 1534         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
 1535         spin_unlock_irq(&zone->lru_lock);
 1536 
 1537         free_hot_cold_page_list(&l_hold, 1);
 1538 }
 1539 
 1540 #ifdef CONFIG_SWAP
 1541 static int inactive_anon_is_low_global(struct zone *zone)
 1542 {
 1543         unsigned long active, inactive;
 1544 
 1545         active = zone_page_state(zone, NR_ACTIVE_ANON);
 1546         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
 1547 
 1548         if (inactive * zone->inactive_ratio < active)
 1549                 return 1;
 1550 
 1551         return 0;
 1552 }
 1553 
 1554 /**
 1555  * inactive_anon_is_low - check if anonymous pages need to be deactivated
 1556  * @lruvec: LRU vector to check
 1557  *
 1558  * Returns true if the zone does not have enough inactive anon pages,
 1559  * meaning some active anon pages need to be deactivated.
 1560  */
 1561 static int inactive_anon_is_low(struct lruvec *lruvec)
 1562 {
 1563         /*
 1564          * If we don't have swap space, anonymous page deactivation
 1565          * is pointless.
 1566          */
 1567         if (!total_swap_pages)
 1568                 return 0;
 1569 
 1570         if (!mem_cgroup_disabled())
 1571                 return mem_cgroup_inactive_anon_is_low(lruvec);
 1572 
 1573         return inactive_anon_is_low_global(lruvec_zone(lruvec));
 1574 }
 1575 #else
 1576 static inline int inactive_anon_is_low(struct lruvec *lruvec)
 1577 {
 1578         return 0;
 1579 }
 1580 #endif
 1581 
 1582 static int inactive_file_is_low_global(struct zone *zone)
 1583 {
 1584         unsigned long active, inactive;
 1585 
 1586         active = zone_page_state(zone, NR_ACTIVE_FILE);
 1587         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
 1588 
 1589         return (active > inactive);
 1590 }
 1591 
 1592 /**
 1593  * inactive_file_is_low - check if file pages need to be deactivated
 1594  * @lruvec: LRU vector to check
 1595  *
 1596  * When the system is doing streaming IO, memory pressure here
 1597  * ensures that active file pages get deactivated, until more
 1598  * than half of the file pages are on the inactive list.
 1599  *
 1600  * Once we get to that situation, protect the system's working
 1601  * set from being evicted by disabling active file page aging.
 1602  *
 1603  * This uses a different ratio than the anonymous pages, because
 1604  * the page cache uses a use-once replacement algorithm.
 1605  */
 1606 static int inactive_file_is_low(struct lruvec *lruvec)
 1607 {
 1608         if (!mem_cgroup_disabled())
 1609                 return mem_cgroup_inactive_file_is_low(lruvec);
 1610 
 1611         return inactive_file_is_low_global(lruvec_zone(lruvec));
 1612 }
 1613 
 1614 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
 1615 {
 1616         if (is_file_lru(lru))
 1617                 return inactive_file_is_low(lruvec);
 1618         else
 1619                 return inactive_anon_is_low(lruvec);
 1620 }
 1621 
 1622 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
 1623                                  struct lruvec *lruvec, struct scan_control *sc)
 1624 {
 1625         if (is_active_lru(lru)) {
 1626                 if (inactive_list_is_low(lruvec, lru))
 1627                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
 1628                 return 0;
 1629         }
 1630 
 1631         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
 1632 }
 1633 
 1634 static int vmscan_swappiness(struct scan_control *sc)
 1635 {
 1636         if (global_reclaim(sc))
 1637                 return vm_swappiness;
 1638         return mem_cgroup_swappiness(sc->target_mem_cgroup);
 1639 }
 1640 
 1641 /*
 1642  * Determine how aggressively the anon and file LRU lists should be
 1643  * scanned.  The relative value of each set of LRU lists is determined
 1644  * by looking at the fraction of the pages scanned we did rotate back
 1645  * onto the active list instead of evict.
 1646  *
 1647  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 1648  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
 1649  */
 1650 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
 1651                            unsigned long *nr)
 1652 {
 1653         unsigned long anon, file, free;
 1654         unsigned long anon_prio, file_prio;
 1655         unsigned long ap, fp;
 1656         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 1657         u64 fraction[2], denominator;
 1658         enum lru_list lru;
 1659         int noswap = 0;
 1660         bool force_scan = false;
 1661         struct zone *zone = lruvec_zone(lruvec);
 1662 
 1663         /*
 1664          * If the zone or memcg is small, nr[l] can be 0.  This
 1665          * results in no scanning on this priority and a potential
 1666          * priority drop.  Global direct reclaim can go to the next
 1667          * zone and tends to have no problems. Global kswapd is for
 1668          * zone balancing and it needs to scan a minimum amount. When
 1669          * reclaiming for a memcg, a priority drop can cause high
 1670          * latencies, so it's better to scan a minimum amount there as
 1671          * well.
 1672          */
 1673         if (current_is_kswapd() && zone->all_unreclaimable)
 1674                 force_scan = true;
 1675         if (!global_reclaim(sc))
 1676                 force_scan = true;
 1677 
 1678         /* If we have no swap space, do not bother scanning anon pages. */
 1679         if (!sc->may_swap || (nr_swap_pages <= 0)) {
 1680                 noswap = 1;
 1681                 fraction[0] = 0;
 1682                 fraction[1] = 1;
 1683                 denominator = 1;
 1684                 goto out;
 1685         }
 1686 
 1687         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
 1688                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
 1689         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
 1690                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
 1691 
 1692         if (global_reclaim(sc)) {
 1693                 free  = zone_page_state(zone, NR_FREE_PAGES);
 1694                 if (unlikely(file + free <= high_wmark_pages(zone))) {
 1695                         /*
 1696                          * If we have very few page cache pages, force-scan
 1697                          * anon pages.
 1698                          */
 1699                         fraction[0] = 1;
 1700                         fraction[1] = 0;
 1701                         denominator = 1;
 1702                         goto out;
 1703                 } else if (!inactive_file_is_low_global(zone)) {
 1704                         /*
 1705                          * There is enough inactive page cache, do not
 1706                          * reclaim anything from the working set right now.
 1707                          */
 1708                         fraction[0] = 0;
 1709                         fraction[1] = 1;
 1710                         denominator = 1;
 1711                         goto out;
 1712                 }
 1713         }
 1714 
 1715         /*
 1716          * With swappiness at 100, anonymous and file have the same priority.
 1717          * This scanning priority is essentially the inverse of IO cost.
 1718          */
 1719         anon_prio = vmscan_swappiness(sc);
 1720         file_prio = 200 - anon_prio;
 1721 
 1722         /*
 1723          * OK, so we have swap space and a fair amount of page cache
 1724          * pages.  We use the recently rotated / recently scanned
 1725          * ratios to determine how valuable each cache is.
 1726          *
 1727          * Because workloads change over time (and to avoid overflow)
 1728          * we keep these statistics as a floating average, which ends
 1729          * up weighing recent references more than old ones.
 1730          *
 1731          * anon in [0], file in [1]
 1732          */
 1733         spin_lock_irq(&zone->lru_lock);
 1734         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
 1735                 reclaim_stat->recent_scanned[0] /= 2;
 1736                 reclaim_stat->recent_rotated[0] /= 2;
 1737         }
 1738 
 1739         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
 1740                 reclaim_stat->recent_scanned[1] /= 2;
 1741                 reclaim_stat->recent_rotated[1] /= 2;
 1742         }
 1743 
 1744         /*
 1745          * The amount of pressure on anon vs file pages is inversely
 1746          * proportional to the fraction of recently scanned pages on
 1747          * each list that were recently referenced and in active use.
 1748          */
 1749         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
 1750         ap /= reclaim_stat->recent_rotated[0] + 1;
 1751 
 1752         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
 1753         fp /= reclaim_stat->recent_rotated[1] + 1;
 1754         spin_unlock_irq(&zone->lru_lock);
 1755 
 1756         fraction[0] = ap;
 1757         fraction[1] = fp;
 1758         denominator = ap + fp + 1;
 1759 out:
 1760         for_each_evictable_lru(lru) {
 1761                 int file = is_file_lru(lru);
 1762                 unsigned long scan;
 1763 
 1764                 scan = get_lru_size(lruvec, lru);
 1765                 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
 1766                         scan >>= sc->priority;
 1767                         if (!scan && force_scan)
 1768                                 scan = SWAP_CLUSTER_MAX;
 1769                         scan = div64_u64(scan * fraction[file], denominator);
 1770                 }
 1771                 nr[lru] = scan;
 1772         }
 1773 }
 1774 
 1775 /* Use reclaim/compaction for costly allocs or under memory pressure */
 1776 static bool in_reclaim_compaction(struct scan_control *sc)
 1777 {
 1778         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
 1779                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
 1780                          sc->priority < DEF_PRIORITY - 2))
 1781                 return true;
 1782 
 1783         return false;
 1784 }
 1785 
 1786 /*
 1787  * Reclaim/compaction is used for high-order allocation requests. It reclaims
 1788  * order-0 pages before compacting the zone. should_continue_reclaim() returns
 1789  * true if more pages should be reclaimed such that when the page allocator
 1790  * calls try_to_compact_zone() that it will have enough free pages to succeed.
 1791  * It will give up earlier than that if there is difficulty reclaiming pages.
 1792  */
 1793 static inline bool should_continue_reclaim(struct lruvec *lruvec,
 1794                                         unsigned long nr_reclaimed,
 1795                                         unsigned long nr_scanned,
 1796                                         struct scan_control *sc)
 1797 {
 1798         unsigned long pages_for_compaction;
 1799         unsigned long inactive_lru_pages;
 1800 
 1801         /* If not in reclaim/compaction mode, stop */
 1802         if (!in_reclaim_compaction(sc))
 1803                 return false;
 1804 
 1805         /* Consider stopping depending on scan and reclaim activity */
 1806         if (sc->gfp_mask & __GFP_REPEAT) {
 1807                 /*
 1808                  * For __GFP_REPEAT allocations, stop reclaiming if the
 1809                  * full LRU list has been scanned and we are still failing
 1810                  * to reclaim pages. This full LRU scan is potentially
 1811                  * expensive but a __GFP_REPEAT caller really wants to succeed
 1812                  */
 1813                 if (!nr_reclaimed && !nr_scanned)
 1814                         return false;
 1815         } else {
 1816                 /*
 1817                  * For non-__GFP_REPEAT allocations which can presumably
 1818                  * fail without consequence, stop if we failed to reclaim
 1819                  * any pages from the last SWAP_CLUSTER_MAX number of
 1820                  * pages that were scanned. This will return to the
 1821                  * caller faster at the risk reclaim/compaction and
 1822                  * the resulting allocation attempt fails
 1823                  */
 1824                 if (!nr_reclaimed)
 1825                         return false;
 1826         }
 1827 
 1828         /*
 1829          * If we have not reclaimed enough pages for compaction and the
 1830          * inactive lists are large enough, continue reclaiming
 1831          */
 1832         pages_for_compaction = (2UL << sc->order);
 1833         inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
 1834         if (nr_swap_pages > 0)
 1835                 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
 1836         if (sc->nr_reclaimed < pages_for_compaction &&
 1837                         inactive_lru_pages > pages_for_compaction)
 1838                 return true;
 1839 
 1840         /* If compaction would go ahead or the allocation would succeed, stop */
 1841         switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
 1842         case COMPACT_PARTIAL:
 1843         case COMPACT_CONTINUE:
 1844                 return false;
 1845         default:
 1846                 return true;
 1847         }
 1848 }
 1849 
 1850 /*
 1851  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 1852  */
 1853 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
 1854 {
 1855         unsigned long nr[NR_LRU_LISTS];
 1856         unsigned long nr_to_scan;
 1857         enum lru_list lru;
 1858         unsigned long nr_reclaimed, nr_scanned;
 1859         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 1860         struct blk_plug plug;
 1861 
 1862 restart:
 1863         nr_reclaimed = 0;
 1864         nr_scanned = sc->nr_scanned;
 1865         get_scan_count(lruvec, sc, nr);
 1866 
 1867         blk_start_plug(&plug);
 1868         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
 1869                                         nr[LRU_INACTIVE_FILE]) {
 1870                 for_each_evictable_lru(lru) {
 1871                         if (nr[lru]) {
 1872                                 nr_to_scan = min_t(unsigned long,
 1873                                                    nr[lru], SWAP_CLUSTER_MAX);
 1874                                 nr[lru] -= nr_to_scan;
 1875 
 1876                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
 1877                                                             lruvec, sc);
 1878                         }
 1879                 }
 1880                 /*
 1881                  * On large memory systems, scan >> priority can become
 1882                  * really large. This is fine for the starting priority;
 1883                  * we want to put equal scanning pressure on each zone.
 1884                  * However, if the VM has a harder time of freeing pages,
 1885                  * with multiple processes reclaiming pages, the total
 1886                  * freeing target can get unreasonably large.
 1887                  */
 1888                 if (nr_reclaimed >= nr_to_reclaim &&
 1889                     sc->priority < DEF_PRIORITY)
 1890                         break;
 1891         }
 1892         blk_finish_plug(&plug);
 1893         sc->nr_reclaimed += nr_reclaimed;
 1894 
 1895         /*
 1896          * Even if we did not try to evict anon pages at all, we want to
 1897          * rebalance the anon lru active/inactive ratio.
 1898          */
 1899         if (inactive_anon_is_low(lruvec))
 1900                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
 1901                                    sc, LRU_ACTIVE_ANON);
 1902 
 1903         /* reclaim/compaction might need reclaim to continue */
 1904         if (should_continue_reclaim(lruvec, nr_reclaimed,
 1905                                     sc->nr_scanned - nr_scanned, sc))
 1906                 goto restart;
 1907 
 1908         throttle_vm_writeout(sc->gfp_mask);
 1909 }
 1910 
 1911 static void shrink_zone(struct zone *zone, struct scan_control *sc)
 1912 {
 1913         struct mem_cgroup *root = sc->target_mem_cgroup;
 1914         struct mem_cgroup_reclaim_cookie reclaim = {
 1915                 .zone = zone,
 1916                 .priority = sc->priority,
 1917         };
 1918         struct mem_cgroup *memcg;
 1919 
 1920         memcg = mem_cgroup_iter(root, NULL, &reclaim);
 1921         do {
 1922                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 1923 
 1924                 shrink_lruvec(lruvec, sc);
 1925 
 1926                 /*
 1927                  * Limit reclaim has historically picked one memcg and
 1928                  * scanned it with decreasing priority levels until
 1929                  * nr_to_reclaim had been reclaimed.  This priority
 1930                  * cycle is thus over after a single memcg.
 1931                  *
 1932                  * Direct reclaim and kswapd, on the other hand, have
 1933                  * to scan all memory cgroups to fulfill the overall
 1934                  * scan target for the zone.
 1935                  */
 1936                 if (!global_reclaim(sc)) {
 1937                         mem_cgroup_iter_break(root, memcg);
 1938                         break;
 1939                 }
 1940                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
 1941         } while (memcg);
 1942 }
 1943 
 1944 /* Returns true if compaction should go ahead for a high-order request */
 1945 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
 1946 {
 1947         unsigned long balance_gap, watermark;
 1948         bool watermark_ok;
 1949 
 1950         /* Do not consider compaction for orders reclaim is meant to satisfy */
 1951         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
 1952                 return false;
 1953 
 1954         /*
 1955          * Compaction takes time to run and there are potentially other
 1956          * callers using the pages just freed. Continue reclaiming until
 1957          * there is a buffer of free pages available to give compaction
 1958          * a reasonable chance of completing and allocating the page
 1959          */
 1960         balance_gap = min(low_wmark_pages(zone),
 1961                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
 1962                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
 1963         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
 1964         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
 1965 
 1966         /*
 1967          * If compaction is deferred, reclaim up to a point where
 1968          * compaction will have a chance of success when re-enabled
 1969          */
 1970         if (compaction_deferred(zone, sc->order))
 1971                 return watermark_ok;
 1972 
 1973         /* If compaction is not ready to start, keep reclaiming */
 1974         if (!compaction_suitable(zone, sc->order))
 1975                 return false;
 1976 
 1977         return watermark_ok;
 1978 }
 1979 
 1980 /*
 1981  * This is the direct reclaim path, for page-allocating processes.  We only
 1982  * try to reclaim pages from zones which will satisfy the caller's allocation
 1983  * request.
 1984  *
 1985  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 1986  * Because:
 1987  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 1988  *    allocation or
 1989  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 1990  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 1991  *    zone defense algorithm.
 1992  *
 1993  * If a zone is deemed to be full of pinned pages then just give it a light
 1994  * scan then give up on it.
 1995  *
 1996  * This function returns true if a zone is being reclaimed for a costly
 1997  * high-order allocation and compaction is ready to begin. This indicates to
 1998  * the caller that it should consider retrying the allocation instead of
 1999  * further reclaim.
 2000  */
 2001 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
 2002 {
 2003         struct zoneref *z;
 2004         struct zone *zone;
 2005         unsigned long nr_soft_reclaimed;
 2006         unsigned long nr_soft_scanned;
 2007         bool aborted_reclaim = false;
 2008 
 2009         /*
 2010          * If the number of buffer_heads in the machine exceeds the maximum
 2011          * allowed level, force direct reclaim to scan the highmem zone as
 2012          * highmem pages could be pinning lowmem pages storing buffer_heads
 2013          */
 2014         if (buffer_heads_over_limit)
 2015                 sc->gfp_mask |= __GFP_HIGHMEM;
 2016 
 2017         for_each_zone_zonelist_nodemask(zone, z, zonelist,
 2018                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
 2019                 if (!populated_zone(zone))
 2020                         continue;
 2021                 /*
 2022                  * Take care memory controller reclaiming has small influence
 2023                  * to global LRU.
 2024                  */
 2025                 if (global_reclaim(sc)) {
 2026                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 2027                                 continue;
 2028                         if (zone->all_unreclaimable &&
 2029                                         sc->priority != DEF_PRIORITY)
 2030                                 continue;       /* Let kswapd poll it */
 2031                         if (IS_ENABLED(CONFIG_COMPACTION)) {
 2032                                 /*
 2033                                  * If we already have plenty of memory free for
 2034                                  * compaction in this zone, don't free any more.
 2035                                  * Even though compaction is invoked for any
 2036                                  * non-zero order, only frequent costly order
 2037                                  * reclamation is disruptive enough to become a
 2038                                  * noticeable problem, like transparent huge
 2039                                  * page allocations.
 2040                                  */
 2041                                 if (compaction_ready(zone, sc)) {
 2042                                         aborted_reclaim = true;
 2043                                         continue;
 2044                                 }
 2045                         }
 2046                         /*
 2047                          * This steals pages from memory cgroups over softlimit
 2048                          * and returns the number of reclaimed pages and
 2049                          * scanned pages. This works for global memory pressure
 2050                          * and balancing, not for a memcg's limit.
 2051                          */
 2052                         nr_soft_scanned = 0;
 2053                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
 2054                                                 sc->order, sc->gfp_mask,
 2055                                                 &nr_soft_scanned);
 2056                         sc->nr_reclaimed += nr_soft_reclaimed;
 2057                         sc->nr_scanned += nr_soft_scanned;
 2058                         /* need some check for avoid more shrink_zone() */
 2059                 }
 2060 
 2061                 shrink_zone(zone, sc);
 2062         }
 2063 
 2064         return aborted_reclaim;
 2065 }
 2066 
 2067 static bool zone_reclaimable(struct zone *zone)
 2068 {
 2069         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
 2070 }
 2071 
 2072 /* All zones in zonelist are unreclaimable? */
 2073 static bool all_unreclaimable(struct zonelist *zonelist,
 2074                 struct scan_control *sc)
 2075 {
 2076         struct zoneref *z;
 2077         struct zone *zone;
 2078 
 2079         for_each_zone_zonelist_nodemask(zone, z, zonelist,
 2080                         gfp_zone(sc->gfp_mask), sc->nodemask) {
 2081                 if (!populated_zone(zone))
 2082                         continue;
 2083                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 2084                         continue;
 2085                 if (!zone->all_unreclaimable)
 2086                         return false;
 2087         }
 2088 
 2089         return true;
 2090 }
 2091 
 2092 /*
 2093  * This is the main entry point to direct page reclaim.
 2094  *
 2095  * If a full scan of the inactive list fails to free enough memory then we
 2096  * are "out of memory" and something needs to be killed.
 2097  *
 2098  * If the caller is !__GFP_FS then the probability of a failure is reasonably
 2099  * high - the zone may be full of dirty or under-writeback pages, which this
 2100  * caller can't do much about.  We kick the writeback threads and take explicit
 2101  * naps in the hope that some of these pages can be written.  But if the
 2102  * allocating task holds filesystem locks which prevent writeout this might not
 2103  * work, and the allocation attempt will fail.
 2104  *
 2105  * returns:     0, if no pages reclaimed
 2106  *              else, the number of pages reclaimed
 2107  */
 2108 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
 2109                                         struct scan_control *sc,
 2110                                         struct shrink_control *shrink)
 2111 {
 2112         unsigned long total_scanned = 0;
 2113         struct reclaim_state *reclaim_state = current->reclaim_state;
 2114         struct zoneref *z;
 2115         struct zone *zone;
 2116         unsigned long writeback_threshold;
 2117         bool aborted_reclaim;
 2118 
 2119         delayacct_freepages_start();
 2120 
 2121         if (global_reclaim(sc))
 2122                 count_vm_event(ALLOCSTALL);
 2123 
 2124         do {
 2125                 sc->nr_scanned = 0;
 2126                 aborted_reclaim = shrink_zones(zonelist, sc);
 2127 
 2128                 /*
 2129                  * Don't shrink slabs when reclaiming memory from
 2130                  * over limit cgroups
 2131                  */
 2132                 if (global_reclaim(sc)) {
 2133                         unsigned long lru_pages = 0;
 2134                         for_each_zone_zonelist(zone, z, zonelist,
 2135                                         gfp_zone(sc->gfp_mask)) {
 2136                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 2137                                         continue;
 2138 
 2139                                 lru_pages += zone_reclaimable_pages(zone);
 2140                         }
 2141 
 2142                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
 2143                         if (reclaim_state) {
 2144                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
 2145                                 reclaim_state->reclaimed_slab = 0;
 2146                         }
 2147                 }
 2148                 total_scanned += sc->nr_scanned;
 2149                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
 2150                         goto out;
 2151 
 2152                 /*
 2153                  * Try to write back as many pages as we just scanned.  This
 2154                  * tends to cause slow streaming writers to write data to the
 2155                  * disk smoothly, at the dirtying rate, which is nice.   But
 2156                  * that's undesirable in laptop mode, where we *want* lumpy
 2157                  * writeout.  So in laptop mode, write out the whole world.
 2158                  */
 2159                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
 2160                 if (total_scanned > writeback_threshold) {
 2161                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
 2162                                                 WB_REASON_TRY_TO_FREE_PAGES);
 2163                         sc->may_writepage = 1;
 2164                 }
 2165 
 2166                 /* Take a nap, wait for some writeback to complete */
 2167                 if (!sc->hibernation_mode && sc->nr_scanned &&
 2168                     sc->priority < DEF_PRIORITY - 2) {
 2169                         struct zone *preferred_zone;
 2170 
 2171                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
 2172                                                 &cpuset_current_mems_allowed,
 2173                                                 &preferred_zone);
 2174                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
 2175                 }
 2176         } while (--sc->priority >= 0);
 2177 
 2178 out:
 2179         delayacct_freepages_end();
 2180 
 2181         if (sc->nr_reclaimed)
 2182                 return sc->nr_reclaimed;
 2183 
 2184         /*
 2185          * As hibernation is going on, kswapd is freezed so that it can't mark
 2186          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
 2187          * check.
 2188          */
 2189         if (oom_killer_disabled)
 2190                 return 0;
 2191 
 2192         /* Aborted reclaim to try compaction? don't OOM, then */
 2193         if (aborted_reclaim)
 2194                 return 1;
 2195 
 2196         /* top priority shrink_zones still had more to do? don't OOM, then */
 2197         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
 2198                 return 1;
 2199 
 2200         return 0;
 2201 }
 2202 
 2203 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
 2204 {
 2205         struct zone *zone;
 2206         unsigned long pfmemalloc_reserve = 0;
 2207         unsigned long free_pages = 0;
 2208         int i;
 2209         bool wmark_ok;
 2210 
 2211         for (i = 0; i <= ZONE_NORMAL; i++) {
 2212                 zone = &pgdat->node_zones[i];
 2213                 pfmemalloc_reserve += min_wmark_pages(zone);
 2214                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
 2215         }
 2216 
 2217         wmark_ok = free_pages > pfmemalloc_reserve / 2;
 2218 
 2219         /* kswapd must be awake if processes are being throttled */
 2220         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
 2221                 pgdat->classzone_idx = min(pgdat->classzone_idx,
 2222                                                 (enum zone_type)ZONE_NORMAL);
 2223                 wake_up_interruptible(&pgdat->kswapd_wait);
 2224         }
 2225 
 2226         return wmark_ok;
 2227 }
 2228 
 2229 /*
 2230  * Throttle direct reclaimers if backing storage is backed by the network
 2231  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 2232  * depleted. kswapd will continue to make progress and wake the processes
 2233  * when the low watermark is reached.
 2234  *
 2235  * Returns true if a fatal signal was delivered during throttling. If this
 2236  * happens, the page allocator should not consider triggering the OOM killer.
 2237  */
 2238 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
 2239                                         nodemask_t *nodemask)
 2240 {
 2241         struct zone *zone;
 2242         int high_zoneidx = gfp_zone(gfp_mask);
 2243         pg_data_t *pgdat;
 2244 
 2245         /*
 2246          * Kernel threads should not be throttled as they may be indirectly
 2247          * responsible for cleaning pages necessary for reclaim to make forward
 2248          * progress. kjournald for example may enter direct reclaim while
 2249          * committing a transaction where throttling it could forcing other
 2250          * processes to block on log_wait_commit().
 2251          */
 2252         if (current->flags & PF_KTHREAD)
 2253                 goto out;
 2254 
 2255         /*
 2256          * If a fatal signal is pending, this process should not throttle.
 2257          * It should return quickly so it can exit and free its memory
 2258          */
 2259         if (fatal_signal_pending(current))
 2260                 goto out;
 2261 
 2262         /* Check if the pfmemalloc reserves are ok */
 2263         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
 2264         pgdat = zone->zone_pgdat;
 2265         if (pfmemalloc_watermark_ok(pgdat))
 2266                 goto out;
 2267 
 2268         /* Account for the throttling */
 2269         count_vm_event(PGSCAN_DIRECT_THROTTLE);
 2270 
 2271         /*
 2272          * If the caller cannot enter the filesystem, it's possible that it
 2273          * is due to the caller holding an FS lock or performing a journal
 2274          * transaction in the case of a filesystem like ext[3|4]. In this case,
 2275          * it is not safe to block on pfmemalloc_wait as kswapd could be
 2276          * blocked waiting on the same lock. Instead, throttle for up to a
 2277          * second before continuing.
 2278          */
 2279         if (!(gfp_mask & __GFP_FS)) {
 2280                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
 2281                         pfmemalloc_watermark_ok(pgdat), HZ);
 2282 
 2283                 goto check_pending;
 2284         }
 2285 
 2286         /* Throttle until kswapd wakes the process */
 2287         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
 2288                 pfmemalloc_watermark_ok(pgdat));
 2289 
 2290 check_pending:
 2291         if (fatal_signal_pending(current))
 2292                 return true;
 2293 
 2294 out:
 2295         return false;
 2296 }
 2297 
 2298 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
 2299                                 gfp_t gfp_mask, nodemask_t *nodemask)
 2300 {
 2301         unsigned long nr_reclaimed;
 2302         struct scan_control sc = {
 2303                 .gfp_mask = gfp_mask,
 2304                 .may_writepage = !laptop_mode,
 2305                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
 2306                 .may_unmap = 1,
 2307                 .may_swap = 1,
 2308                 .order = order,
 2309                 .priority = DEF_PRIORITY,
 2310                 .target_mem_cgroup = NULL,
 2311                 .nodemask = nodemask,
 2312         };
 2313         struct shrink_control shrink = {
 2314                 .gfp_mask = sc.gfp_mask,
 2315         };
 2316 
 2317         /*
 2318          * Do not enter reclaim if fatal signal was delivered while throttled.
 2319          * 1 is returned so that the page allocator does not OOM kill at this
 2320          * point.
 2321          */
 2322         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
 2323                 return 1;
 2324 
 2325         trace_mm_vmscan_direct_reclaim_begin(order,
 2326                                 sc.may_writepage,
 2327                                 gfp_mask);
 2328 
 2329         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
 2330 
 2331         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 2332 
 2333         return nr_reclaimed;
 2334 }
 2335 
 2336 #ifdef CONFIG_MEMCG
 2337 
 2338 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
 2339                                                 gfp_t gfp_mask, bool noswap,
 2340                                                 struct zone *zone,
 2341                                                 unsigned long *nr_scanned)
 2342 {
 2343         struct scan_control sc = {
 2344                 .nr_scanned = 0,
 2345                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
 2346                 .may_writepage = !laptop_mode,
 2347                 .may_unmap = 1,
 2348                 .may_swap = !noswap,
 2349                 .order = 0,
 2350                 .priority = 0,
 2351                 .target_mem_cgroup = memcg,
 2352         };
 2353         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 2354 
 2355         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
 2356                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
 2357 
 2358         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
 2359                                                       sc.may_writepage,
 2360                                                       sc.gfp_mask);
 2361 
 2362         /*
 2363          * NOTE: Although we can get the priority field, using it
 2364          * here is not a good idea, since it limits the pages we can scan.
 2365          * if we don't reclaim here, the shrink_zone from balance_pgdat
 2366          * will pick up pages from other mem cgroup's as well. We hack
 2367          * the priority and make it zero.
 2368          */
 2369         shrink_lruvec(lruvec, &sc);
 2370 
 2371         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
 2372 
 2373         *nr_scanned = sc.nr_scanned;
 2374         return sc.nr_reclaimed;
 2375 }
 2376 
 2377 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 2378                                            gfp_t gfp_mask,
 2379                                            bool noswap)
 2380 {
 2381         struct zonelist *zonelist;
 2382         unsigned long nr_reclaimed;
 2383         int nid;
 2384         struct scan_control sc = {
 2385                 .may_writepage = !laptop_mode,
 2386                 .may_unmap = 1,
 2387                 .may_swap = !noswap,
 2388                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
 2389                 .order = 0,
 2390                 .priority = DEF_PRIORITY,
 2391                 .target_mem_cgroup = memcg,
 2392                 .nodemask = NULL, /* we don't care the placement */
 2393                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
 2394                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
 2395         };
 2396         struct shrink_control shrink = {
 2397                 .gfp_mask = sc.gfp_mask,
 2398         };
 2399 
 2400         /*
 2401          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
 2402          * take care of from where we get pages. So the node where we start the
 2403          * scan does not need to be the current node.
 2404          */
 2405         nid = mem_cgroup_select_victim_node(memcg);
 2406 
 2407         zonelist = NODE_DATA(nid)->node_zonelists;
 2408 
 2409         trace_mm_vmscan_memcg_reclaim_begin(0,
 2410                                             sc.may_writepage,
 2411                                             sc.gfp_mask);
 2412 
 2413         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
 2414 
 2415         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 2416 
 2417         return nr_reclaimed;
 2418 }
 2419 #endif
 2420 
 2421 static void age_active_anon(struct zone *zone, struct scan_control *sc)
 2422 {
 2423         struct mem_cgroup *memcg;
 2424 
 2425         if (!total_swap_pages)
 2426                 return;
 2427 
 2428         memcg = mem_cgroup_iter(NULL, NULL, NULL);
 2429         do {
 2430                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 2431 
 2432                 if (inactive_anon_is_low(lruvec))
 2433                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
 2434                                            sc, LRU_ACTIVE_ANON);
 2435 
 2436                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
 2437         } while (memcg);
 2438 }
 2439 
 2440 static bool zone_balanced(struct zone *zone, int order,
 2441                           unsigned long balance_gap, int classzone_idx)
 2442 {
 2443         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
 2444                                     balance_gap, classzone_idx, 0))
 2445                 return false;
 2446 
 2447         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
 2448             !compaction_suitable(zone, order))
 2449                 return false;
 2450 
 2451         return true;
 2452 }
 2453 
 2454 /*
 2455  * pgdat_balanced() is used when checking if a node is balanced.
 2456  *
 2457  * For order-0, all zones must be balanced!
 2458  *
 2459  * For high-order allocations only zones that meet watermarks and are in a
 2460  * zone allowed by the callers classzone_idx are added to balanced_pages. The
 2461  * total of balanced pages must be at least 25% of the zones allowed by
 2462  * classzone_idx for the node to be considered balanced. Forcing all zones to
 2463  * be balanced for high orders can cause excessive reclaim when there are
 2464  * imbalanced zones.
 2465  * The choice of 25% is due to
 2466  *   o a 16M DMA zone that is balanced will not balance a zone on any
 2467  *     reasonable sized machine
 2468  *   o On all other machines, the top zone must be at least a reasonable
 2469  *     percentage of the middle zones. For example, on 32-bit x86, highmem
 2470  *     would need to be at least 256M for it to be balance a whole node.
 2471  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 2472  *     to balance a node on its own. These seemed like reasonable ratios.
 2473  */
 2474 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
 2475 {
 2476         unsigned long present_pages = 0;
 2477         unsigned long balanced_pages = 0;
 2478         int i;
 2479 
 2480         /* Check the watermark levels */
 2481         for (i = 0; i <= classzone_idx; i++) {
 2482                 struct zone *zone = pgdat->node_zones + i;
 2483 
 2484                 if (!populated_zone(zone))
 2485                         continue;
 2486 
 2487                 present_pages += zone->present_pages;
 2488 
 2489                 /*
 2490                  * A special case here:
 2491                  *
 2492                  * balance_pgdat() skips over all_unreclaimable after
 2493                  * DEF_PRIORITY. Effectively, it considers them balanced so
 2494                  * they must be considered balanced here as well!
 2495                  */
 2496                 if (zone->all_unreclaimable) {
 2497                         balanced_pages += zone->present_pages;
 2498                         continue;
 2499                 }
 2500 
 2501                 if (zone_balanced(zone, order, 0, i))
 2502                         balanced_pages += zone->present_pages;
 2503                 else if (!order)
 2504                         return false;
 2505         }
 2506 
 2507         if (order)
 2508                 return balanced_pages >= (present_pages >> 2);
 2509         else
 2510                 return true;
 2511 }
 2512 
 2513 /*
 2514  * Prepare kswapd for sleeping. This verifies that there are no processes
 2515  * waiting in throttle_direct_reclaim() and that watermarks have been met.
 2516  *
 2517  * Returns true if kswapd is ready to sleep
 2518  */
 2519 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
 2520                                         int classzone_idx)
 2521 {
 2522         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
 2523         if (remaining)
 2524                 return false;
 2525 
 2526         /*
 2527          * There is a potential race between when kswapd checks its watermarks
 2528          * and a process gets throttled. There is also a potential race if
 2529          * processes get throttled, kswapd wakes, a large process exits therby
 2530          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
 2531          * is going to sleep, no process should be sleeping on pfmemalloc_wait
 2532          * so wake them now if necessary. If necessary, processes will wake
 2533          * kswapd and get throttled again
 2534          */
 2535         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
 2536                 wake_up(&pgdat->pfmemalloc_wait);
 2537                 return false;
 2538         }
 2539 
 2540         return pgdat_balanced(pgdat, order, classzone_idx);
 2541 }
 2542 
 2543 /*
 2544  * For kswapd, balance_pgdat() will work across all this node's zones until
 2545  * they are all at high_wmark_pages(zone).
 2546  *
 2547  * Returns the final order kswapd was reclaiming at
 2548  *
 2549  * There is special handling here for zones which are full of pinned pages.
 2550  * This can happen if the pages are all mlocked, or if they are all used by
 2551  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 2552  * What we do is to detect the case where all pages in the zone have been
 2553  * scanned twice and there has been zero successful reclaim.  Mark the zone as
 2554  * dead and from now on, only perform a short scan.  Basically we're polling
 2555  * the zone for when the problem goes away.
 2556  *
 2557  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 2558  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 2559  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 2560  * lower zones regardless of the number of free pages in the lower zones. This
 2561  * interoperates with the page allocator fallback scheme to ensure that aging
 2562  * of pages is balanced across the zones.
 2563  */
 2564 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
 2565                                                         int *classzone_idx)
 2566 {
 2567         struct zone *unbalanced_zone;
 2568         int i;
 2569         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
 2570         unsigned long total_scanned;
 2571         struct reclaim_state *reclaim_state = current->reclaim_state;
 2572         unsigned long nr_soft_reclaimed;
 2573         unsigned long nr_soft_scanned;
 2574         struct scan_control sc = {
 2575                 .gfp_mask = GFP_KERNEL,
 2576                 .may_unmap = 1,
 2577                 .may_swap = 1,
 2578                 /*
 2579                  * kswapd doesn't want to be bailed out while reclaim. because
 2580                  * we want to put equal scanning pressure on each zone.
 2581                  */
 2582                 .nr_to_reclaim = ULONG_MAX,
 2583                 .order = order,
 2584                 .target_mem_cgroup = NULL,
 2585         };
 2586         struct shrink_control shrink = {
 2587                 .gfp_mask = sc.gfp_mask,
 2588         };
 2589 loop_again:
 2590         total_scanned = 0;
 2591         sc.priority = DEF_PRIORITY;
 2592         sc.nr_reclaimed = 0;
 2593         sc.may_writepage = !laptop_mode;
 2594         count_vm_event(PAGEOUTRUN);
 2595 
 2596         do {
 2597                 unsigned long lru_pages = 0;
 2598                 int has_under_min_watermark_zone = 0;
 2599 
 2600                 unbalanced_zone = NULL;
 2601 
 2602                 /*
 2603                  * Scan in the highmem->dma direction for the highest
 2604                  * zone which needs scanning
 2605                  */
 2606                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
 2607                         struct zone *zone = pgdat->node_zones + i;
 2608 
 2609                         if (!populated_zone(zone))
 2610                                 continue;
 2611 
 2612                         if (zone->all_unreclaimable &&
 2613                             sc.priority != DEF_PRIORITY)
 2614                                 continue;
 2615 
 2616                         /*
 2617                          * Do some background aging of the anon list, to give
 2618                          * pages a chance to be referenced before reclaiming.
 2619                          */
 2620                         age_active_anon(zone, &sc);
 2621 
 2622                         /*
 2623                          * If the number of buffer_heads in the machine
 2624                          * exceeds the maximum allowed level and this node
 2625                          * has a highmem zone, force kswapd to reclaim from
 2626                          * it to relieve lowmem pressure.
 2627                          */
 2628                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
 2629                                 end_zone = i;
 2630                                 break;
 2631                         }
 2632 
 2633                         if (!zone_balanced(zone, order, 0, 0)) {
 2634                                 end_zone = i;
 2635                                 break;
 2636                         } else {
 2637                                 /* If balanced, clear the congested flag */
 2638                                 zone_clear_flag(zone, ZONE_CONGESTED);
 2639                         }
 2640                 }
 2641                 if (i < 0)
 2642                         goto out;
 2643 
 2644                 for (i = 0; i <= end_zone; i++) {
 2645                         struct zone *zone = pgdat->node_zones + i;
 2646 
 2647                         lru_pages += zone_reclaimable_pages(zone);
 2648                 }
 2649 
 2650                 /*
 2651                  * Now scan the zone in the dma->highmem direction, stopping
 2652                  * at the last zone which needs scanning.
 2653                  *
 2654                  * We do this because the page allocator works in the opposite
 2655                  * direction.  This prevents the page allocator from allocating
 2656                  * pages behind kswapd's direction of progress, which would
 2657                  * cause too much scanning of the lower zones.
 2658                  */
 2659                 for (i = 0; i <= end_zone; i++) {
 2660                         struct zone *zone = pgdat->node_zones + i;
 2661                         int nr_slab, testorder;
 2662                         unsigned long balance_gap;
 2663 
 2664                         if (!populated_zone(zone))
 2665                                 continue;
 2666 
 2667                         if (zone->all_unreclaimable &&
 2668                             sc.priority != DEF_PRIORITY)
 2669                                 continue;
 2670 
 2671                         sc.nr_scanned = 0;
 2672 
 2673                         nr_soft_scanned = 0;
 2674                         /*
 2675                          * Call soft limit reclaim before calling shrink_zone.
 2676                          */
 2677                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
 2678                                                         order, sc.gfp_mask,
 2679                                                         &nr_soft_scanned);
 2680                         sc.nr_reclaimed += nr_soft_reclaimed;
 2681                         total_scanned += nr_soft_scanned;
 2682 
 2683                         /*
 2684                          * We put equal pressure on every zone, unless
 2685                          * one zone has way too many pages free
 2686                          * already. The "too many pages" is defined
 2687                          * as the high wmark plus a "gap" where the
 2688                          * gap is either the low watermark or 1%
 2689                          * of the zone, whichever is smaller.
 2690                          */
 2691                         balance_gap = min(low_wmark_pages(zone),
 2692                                 (zone->present_pages +
 2693                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
 2694                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
 2695                         /*
 2696                          * Kswapd reclaims only single pages with compaction
 2697                          * enabled. Trying too hard to reclaim until contiguous
 2698                          * free pages have become available can hurt performance
 2699                          * by evicting too much useful data from memory.
 2700                          * Do not reclaim more than needed for compaction.
 2701                          */
 2702                         testorder = order;
 2703                         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
 2704                                         compaction_suitable(zone, order) !=
 2705                                                 COMPACT_SKIPPED)
 2706                                 testorder = 0;
 2707 
 2708                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
 2709                             !zone_balanced(zone, testorder,
 2710                                            balance_gap, end_zone)) {
 2711                                 shrink_zone(zone, &sc);
 2712 
 2713                                 reclaim_state->reclaimed_slab = 0;
 2714                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
 2715                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
 2716                                 total_scanned += sc.nr_scanned;
 2717 
 2718                                 if (nr_slab == 0 && !zone_reclaimable(zone))
 2719                                         zone->all_unreclaimable = 1;
 2720                         }
 2721 
 2722                         /*
 2723                          * If we've done a decent amount of scanning and
 2724                          * the reclaim ratio is low, start doing writepage
 2725                          * even in laptop mode
 2726                          */
 2727                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
 2728                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
 2729                                 sc.may_writepage = 1;
 2730 
 2731                         if (zone->all_unreclaimable) {
 2732                                 if (end_zone && end_zone == i)
 2733                                         end_zone--;
 2734                                 continue;
 2735                         }
 2736 
 2737                         if (!zone_balanced(zone, testorder, 0, end_zone)) {
 2738                                 unbalanced_zone = zone;
 2739                                 /*
 2740                                  * We are still under min water mark.  This
 2741                                  * means that we have a GFP_ATOMIC allocation
 2742                                  * failure risk. Hurry up!
 2743                                  */
 2744                                 if (!zone_watermark_ok_safe(zone, order,
 2745                                             min_wmark_pages(zone), end_zone, 0))
 2746                                         has_under_min_watermark_zone = 1;
 2747                         } else {
 2748                                 /*
 2749                                  * If a zone reaches its high watermark,
 2750                                  * consider it to be no longer congested. It's
 2751                                  * possible there are dirty pages backed by
 2752                                  * congested BDIs but as pressure is relieved,
 2753                                  * speculatively avoid congestion waits
 2754                                  */
 2755                                 zone_clear_flag(zone, ZONE_CONGESTED);
 2756                         }
 2757 
 2758                 }
 2759 
 2760                 /*
 2761                  * If the low watermark is met there is no need for processes
 2762                  * to be throttled on pfmemalloc_wait as they should not be
 2763                  * able to safely make forward progress. Wake them
 2764                  */
 2765                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
 2766                                 pfmemalloc_watermark_ok(pgdat))
 2767                         wake_up(&pgdat->pfmemalloc_wait);
 2768 
 2769                 if (pgdat_balanced(pgdat, order, *classzone_idx))
 2770                         break;          /* kswapd: all done */
 2771                 /*
 2772                  * OK, kswapd is getting into trouble.  Take a nap, then take
 2773                  * another pass across the zones.
 2774                  */
 2775                 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
 2776                         if (has_under_min_watermark_zone)
 2777                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
 2778                         else if (unbalanced_zone)
 2779                                 wait_iff_congested(unbalanced_zone, BLK_RW_ASYNC, HZ/10);
 2780                 }
 2781 
 2782                 /*
 2783                  * We do this so kswapd doesn't build up large priorities for
 2784                  * example when it is freeing in parallel with allocators. It
 2785                  * matches the direct reclaim path behaviour in terms of impact
 2786                  * on zone->*_priority.
 2787                  */
 2788                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
 2789                         break;
 2790         } while (--sc.priority >= 0);
 2791 out:
 2792 
 2793         if (!pgdat_balanced(pgdat, order, *classzone_idx)) {
 2794                 cond_resched();
 2795 
 2796                 try_to_freeze();
 2797 
 2798                 /*
 2799                  * Fragmentation may mean that the system cannot be
 2800                  * rebalanced for high-order allocations in all zones.
 2801                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
 2802                  * it means the zones have been fully scanned and are still
 2803                  * not balanced. For high-order allocations, there is
 2804                  * little point trying all over again as kswapd may
 2805                  * infinite loop.
 2806                  *
 2807                  * Instead, recheck all watermarks at order-0 as they
 2808                  * are the most important. If watermarks are ok, kswapd will go
 2809                  * back to sleep. High-order users can still perform direct
 2810                  * reclaim if they wish.
 2811                  */
 2812                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
 2813                         order = sc.order = 0;
 2814 
 2815                 goto loop_again;
 2816         }
 2817 
 2818         /*
 2819          * If kswapd was reclaiming at a higher order, it has the option of
 2820          * sleeping without all zones being balanced. Before it does, it must
 2821          * ensure that the watermarks for order-0 on *all* zones are met and
 2822          * that the congestion flags are cleared. The congestion flag must
 2823          * be cleared as kswapd is the only mechanism that clears the flag
 2824          * and it is potentially going to sleep here.
 2825          */
 2826         if (order) {
 2827                 int zones_need_compaction = 1;
 2828 
 2829                 for (i = 0; i <= end_zone; i++) {
 2830                         struct zone *zone = pgdat->node_zones + i;
 2831 
 2832                         if (!populated_zone(zone))
 2833                                 continue;
 2834 
 2835                         /* Check if the memory needs to be defragmented. */
 2836                         if (zone_watermark_ok(zone, order,
 2837                                     low_wmark_pages(zone), *classzone_idx, 0))
 2838                                 zones_need_compaction = 0;
 2839                 }
 2840 
 2841                 if (zones_need_compaction)
 2842                         compact_pgdat(pgdat, order);
 2843         }
 2844 
 2845         /*
 2846          * Return the order we were reclaiming at so prepare_kswapd_sleep()
 2847          * makes a decision on the order we were last reclaiming at. However,
 2848          * if another caller entered the allocator slow path while kswapd
 2849          * was awake, order will remain at the higher level
 2850          */
 2851         *classzone_idx = end_zone;
 2852         return order;
 2853 }
 2854 
 2855 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 2856 {
 2857         long remaining = 0;
 2858         DEFINE_WAIT(wait);
 2859 
 2860         if (freezing(current) || kthread_should_stop())
 2861                 return;
 2862 
 2863         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
 2864 
 2865         /* Try to sleep for a short interval */
 2866         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
 2867                 remaining = schedule_timeout(HZ/10);
 2868                 finish_wait(&pgdat->kswapd_wait, &wait);
 2869                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
 2870         }
 2871 
 2872         /*
 2873          * After a short sleep, check if it was a premature sleep. If not, then
 2874          * go fully to sleep until explicitly woken up.
 2875          */
 2876         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
 2877                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
 2878 
 2879                 /*
 2880                  * vmstat counters are not perfectly accurate and the estimated
 2881                  * value for counters such as NR_FREE_PAGES can deviate from the
 2882                  * true value by nr_online_cpus * threshold. To avoid the zone
 2883                  * watermarks being breached while under pressure, we reduce the
 2884                  * per-cpu vmstat threshold while kswapd is awake and restore
 2885                  * them before going back to sleep.
 2886                  */
 2887                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
 2888 
 2889                 /*
 2890                  * Compaction records what page blocks it recently failed to
 2891                  * isolate pages from and skips them in the future scanning.
 2892                  * When kswapd is going to sleep, it is reasonable to assume
 2893                  * that pages and compaction may succeed so reset the cache.
 2894                  */
 2895                 reset_isolation_suitable(pgdat);
 2896 
 2897                 if (!kthread_should_stop())
 2898                         schedule();
 2899 
 2900                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
 2901         } else {
 2902                 if (remaining)
 2903                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
 2904                 else
 2905                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
 2906         }
 2907         finish_wait(&pgdat->kswapd_wait, &wait);
 2908 }
 2909 
 2910 /*
 2911  * The background pageout daemon, started as a kernel thread
 2912  * from the init process.
 2913  *
 2914  * This basically trickles out pages so that we have _some_
 2915  * free memory available even if there is no other activity
 2916  * that frees anything up. This is needed for things like routing
 2917  * etc, where we otherwise might have all activity going on in
 2918  * asynchronous contexts that cannot page things out.
 2919  *
 2920  * If there are applications that are active memory-allocators
 2921  * (most normal use), this basically shouldn't matter.
 2922  */
 2923 static int kswapd(void *p)
 2924 {
 2925         unsigned long order, new_order;
 2926         unsigned balanced_order;
 2927         int classzone_idx, new_classzone_idx;
 2928         int balanced_classzone_idx;
 2929         pg_data_t *pgdat = (pg_data_t*)p;
 2930         struct task_struct *tsk = current;
 2931 
 2932         struct reclaim_state reclaim_state = {
 2933                 .reclaimed_slab = 0,
 2934         };
 2935         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
 2936 
 2937         lockdep_set_current_reclaim_state(GFP_KERNEL);
 2938 
 2939         if (!cpumask_empty(cpumask))
 2940                 set_cpus_allowed_ptr(tsk, cpumask);
 2941         current->reclaim_state = &reclaim_state;
 2942 
 2943         /*
 2944          * Tell the memory management that we're a "memory allocator",
 2945          * and that if we need more memory we should get access to it
 2946          * regardless (see "__alloc_pages()"). "kswapd" should
 2947          * never get caught in the normal page freeing logic.
 2948          *
 2949          * (Kswapd normally doesn't need memory anyway, but sometimes
 2950          * you need a small amount of memory in order to be able to
 2951          * page out something else, and this flag essentially protects
 2952          * us from recursively trying to free more memory as we're
 2953          * trying to free the first piece of memory in the first place).
 2954          */
 2955         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
 2956         set_freezable();
 2957 
 2958         order = new_order = 0;
 2959         balanced_order = 0;
 2960         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
 2961         balanced_classzone_idx = classzone_idx;
 2962         for ( ; ; ) {
 2963                 bool ret;
 2964 
 2965                 /*
 2966                  * If the last balance_pgdat was unsuccessful it's unlikely a
 2967                  * new request of a similar or harder type will succeed soon
 2968                  * so consider going to sleep on the basis we reclaimed at
 2969                  */
 2970                 if (balanced_classzone_idx >= new_classzone_idx &&
 2971                                         balanced_order == new_order) {
 2972                         new_order = pgdat->kswapd_max_order;
 2973                         new_classzone_idx = pgdat->classzone_idx;
 2974                         pgdat->kswapd_max_order =  0;
 2975                         pgdat->classzone_idx = pgdat->nr_zones - 1;
 2976                 }
 2977 
 2978                 if (order < new_order || classzone_idx > new_classzone_idx) {
 2979                         /*
 2980                          * Don't sleep if someone wants a larger 'order'
 2981                          * allocation or has tigher zone constraints
 2982                          */
 2983                         order = new_order;
 2984                         classzone_idx = new_classzone_idx;
 2985                 } else {
 2986                         kswapd_try_to_sleep(pgdat, balanced_order,
 2987                                                 balanced_classzone_idx);
 2988                         order = pgdat->kswapd_max_order;
 2989                         classzone_idx = pgdat->classzone_idx;
 2990                         new_order = order;
 2991                         new_classzone_idx = classzone_idx;
 2992                         pgdat->kswapd_max_order = 0;
 2993                         pgdat->classzone_idx = pgdat->nr_zones - 1;
 2994                 }
 2995 
 2996                 ret = try_to_freeze();
 2997                 if (kthread_should_stop())
 2998                         break;
 2999 
 3000                 /*
 3001                  * We can speed up thawing tasks if we don't call balance_pgdat
 3002                  * after returning from the refrigerator
 3003                  */
 3004                 if (!ret) {
 3005                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
 3006                         balanced_classzone_idx = classzone_idx;
 3007                         balanced_order = balance_pgdat(pgdat, order,
 3008                                                 &balanced_classzone_idx);
 3009                 }
 3010         }
 3011 
 3012         current->reclaim_state = NULL;
 3013         return 0;
 3014 }
 3015 
 3016 /*
 3017  * A zone is low on free memory, so wake its kswapd task to service it.
 3018  */
 3019 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 3020 {
 3021         pg_data_t *pgdat;
 3022 
 3023         if (!populated_zone(zone))
 3024                 return;
 3025 
 3026         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 3027                 return;
 3028         pgdat = zone->zone_pgdat;
 3029         if (pgdat->kswapd_max_order < order) {
 3030                 pgdat->kswapd_max_order = order;
 3031                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
 3032         }
 3033         if (!waitqueue_active(&pgdat->kswapd_wait))
 3034                 return;
 3035         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
 3036                 return;
 3037 
 3038         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 3039         wake_up_interruptible(&pgdat->kswapd_wait);
 3040 }
 3041 
 3042 /*
 3043  * The reclaimable count would be mostly accurate.
 3044  * The less reclaimable pages may be
 3045  * - mlocked pages, which will be moved to unevictable list when encountered
 3046  * - mapped pages, which may require several travels to be reclaimed
 3047  * - dirty pages, which is not "instantly" reclaimable
 3048  */
 3049 unsigned long global_reclaimable_pages(void)
 3050 {
 3051         int nr;
 3052 
 3053         nr = global_page_state(NR_ACTIVE_FILE) +
 3054              global_page_state(NR_INACTIVE_FILE);
 3055 
 3056         if (nr_swap_pages > 0)
 3057                 nr += global_page_state(NR_ACTIVE_ANON) +
 3058                       global_page_state(NR_INACTIVE_ANON);
 3059 
 3060         return nr;
 3061 }
 3062 
 3063 unsigned long zone_reclaimable_pages(struct zone *zone)
 3064 {
 3065         int nr;
 3066 
 3067         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
 3068              zone_page_state(zone, NR_INACTIVE_FILE);
 3069 
 3070         if (nr_swap_pages > 0)
 3071                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
 3072                       zone_page_state(zone, NR_INACTIVE_ANON);
 3073 
 3074         return nr;
 3075 }
 3076 
 3077 #ifdef CONFIG_HIBERNATION
 3078 /*
 3079  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
 3080  * freed pages.
 3081  *
 3082  * Rather than trying to age LRUs the aim is to preserve the overall
 3083  * LRU order by reclaiming preferentially
 3084  * inactive > active > active referenced > active mapped
 3085  */
 3086 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
 3087 {
 3088         struct reclaim_state reclaim_state;
 3089         struct scan_control sc = {
 3090                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
 3091                 .may_swap = 1,
 3092                 .may_unmap = 1,
 3093                 .may_writepage = 1,
 3094                 .nr_to_reclaim = nr_to_reclaim,
 3095                 .hibernation_mode = 1,
 3096                 .order = 0,
 3097                 .priority = DEF_PRIORITY,
 3098         };
 3099         struct shrink_control shrink = {
 3100                 .gfp_mask = sc.gfp_mask,
 3101         };
 3102         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 3103         struct task_struct *p = current;
 3104         unsigned long nr_reclaimed;
 3105 
 3106         p->flags |= PF_MEMALLOC;
 3107         lockdep_set_current_reclaim_state(sc.gfp_mask);
 3108         reclaim_state.reclaimed_slab = 0;
 3109         p->reclaim_state = &reclaim_state;
 3110 
 3111         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
 3112 
 3113         p->reclaim_state = NULL;
 3114         lockdep_clear_current_reclaim_state();
 3115         p->flags &= ~PF_MEMALLOC;
 3116 
 3117         return nr_reclaimed;
 3118 }
 3119 #endif /* CONFIG_HIBERNATION */
 3120 
 3121 /* It's optimal to keep kswapds on the same CPUs as their memory, but
 3122    not required for correctness.  So if the last cpu in a node goes
 3123    away, we get changed to run anywhere: as the first one comes back,
 3124    restore their cpu bindings. */
 3125 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
 3126                         void *hcpu)
 3127 {
 3128         int nid;
 3129 
 3130         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
 3131                 for_each_node_state(nid, N_MEMORY) {
 3132                         pg_data_t *pgdat = NODE_DATA(nid);
 3133                         const struct cpumask *mask;
 3134 
 3135                         mask = cpumask_of_node(pgdat->node_id);
 3136 
 3137                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
 3138                                 /* One of our CPUs online: restore mask */
 3139                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
 3140                 }
 3141         }
 3142         return NOTIFY_OK;
 3143 }
 3144 
 3145 /*
 3146  * This kswapd start function will be called by init and node-hot-add.
 3147  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 3148  */
 3149 int kswapd_run(int nid)
 3150 {
 3151         pg_data_t *pgdat = NODE_DATA(nid);
 3152         int ret = 0;
 3153 
 3154         if (pgdat->kswapd)
 3155                 return 0;
 3156 
 3157         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
 3158         if (IS_ERR(pgdat->kswapd)) {
 3159                 /* failure at boot is fatal */
 3160                 BUG_ON(system_state == SYSTEM_BOOTING);
 3161                 pgdat->kswapd = NULL;
 3162                 pr_err("Failed to start kswapd on node %d\n", nid);
 3163                 ret = PTR_ERR(pgdat->kswapd);
 3164         }
 3165         return ret;
 3166 }
 3167 
 3168 /*
 3169  * Called by memory hotplug when all memory in a node is offlined.  Caller must
 3170  * hold lock_memory_hotplug().
 3171  */
 3172 void kswapd_stop(int nid)
 3173 {
 3174         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
 3175 
 3176         if (kswapd) {
 3177                 kthread_stop(kswapd);
 3178                 NODE_DATA(nid)->kswapd = NULL;
 3179         }
 3180 }
 3181 
 3182 static int __init kswapd_init(void)
 3183 {
 3184         int nid;
 3185 
 3186         swap_setup();
 3187         for_each_node_state(nid, N_MEMORY)
 3188                 kswapd_run(nid);
 3189         hotcpu_notifier(cpu_callback, 0);
 3190         return 0;
 3191 }
 3192 
 3193 module_init(kswapd_init)
 3194 
 3195 #ifdef CONFIG_NUMA
 3196 /*
 3197  * Zone reclaim mode
 3198  *
 3199  * If non-zero call zone_reclaim when the number of free pages falls below
 3200  * the watermarks.
 3201  */
 3202 int zone_reclaim_mode __read_mostly;
 3203 
 3204 #define RECLAIM_OFF 0
 3205 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
 3206 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
 3207 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
 3208 
 3209 /*
 3210  * Priority for ZONE_RECLAIM. This determines the fraction of pages
 3211  * of a node considered for each zone_reclaim. 4 scans 1/16th of
 3212  * a zone.
 3213  */
 3214 #define ZONE_RECLAIM_PRIORITY 4
 3215 
 3216 /*
 3217  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 3218  * occur.
 3219  */
 3220 int sysctl_min_unmapped_ratio = 1;
 3221 
 3222 /*
 3223  * If the number of slab pages in a zone grows beyond this percentage then
 3224  * slab reclaim needs to occur.
 3225  */
 3226 int sysctl_min_slab_ratio = 5;
 3227 
 3228 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
 3229 {
 3230         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
 3231         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
 3232                 zone_page_state(zone, NR_ACTIVE_FILE);
 3233 
 3234         /*
 3235          * It's possible for there to be more file mapped pages than
 3236          * accounted for by the pages on the file LRU lists because
 3237          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
 3238          */
 3239         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
 3240 }
 3241 
 3242 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
 3243 static long zone_pagecache_reclaimable(struct zone *zone)
 3244 {
 3245         long nr_pagecache_reclaimable;
 3246         long delta = 0;
 3247 
 3248         /*
 3249          * If RECLAIM_SWAP is set, then all file pages are considered
 3250          * potentially reclaimable. Otherwise, we have to worry about
 3251          * pages like swapcache and zone_unmapped_file_pages() provides
 3252          * a better estimate
 3253          */
 3254         if (zone_reclaim_mode & RECLAIM_SWAP)
 3255                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
 3256         else
 3257                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
 3258 
 3259         /* If we can't clean pages, remove dirty pages from consideration */
 3260         if (!(zone_reclaim_mode & RECLAIM_WRITE))
 3261                 delta += zone_page_state(zone, NR_FILE_DIRTY);
 3262 
 3263         /* Watch for any possible underflows due to delta */
 3264         if (unlikely(delta > nr_pagecache_reclaimable))
 3265                 delta = nr_pagecache_reclaimable;
 3266 
 3267         return nr_pagecache_reclaimable - delta;
 3268 }
 3269 
 3270 /*
 3271  * Try to free up some pages from this zone through reclaim.
 3272  */
 3273 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
 3274 {
 3275         /* Minimum pages needed in order to stay on node */
 3276         const unsigned long nr_pages = 1 << order;
 3277         struct task_struct *p = current;
 3278         struct reclaim_state reclaim_state;
 3279         struct scan_control sc = {
 3280                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
 3281                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
 3282                 .may_swap = 1,
 3283                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
 3284                                        SWAP_CLUSTER_MAX),
 3285                 .gfp_mask = gfp_mask,
 3286                 .order = order,
 3287                 .priority = ZONE_RECLAIM_PRIORITY,
 3288         };
 3289         struct shrink_control shrink = {
 3290                 .gfp_mask = sc.gfp_mask,
 3291         };
 3292         unsigned long nr_slab_pages0, nr_slab_pages1;
 3293 
 3294         cond_resched();
 3295         /*
 3296          * We need to be able to allocate from the reserves for RECLAIM_SWAP
 3297          * and we also need to be able to write out pages for RECLAIM_WRITE
 3298          * and RECLAIM_SWAP.
 3299          */
 3300         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
 3301         lockdep_set_current_reclaim_state(gfp_mask);
 3302         reclaim_state.reclaimed_slab = 0;
 3303         p->reclaim_state = &reclaim_state;
 3304 
 3305         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
 3306                 /*
 3307                  * Free memory by calling shrink zone with increasing
 3308                  * priorities until we have enough memory freed.
 3309                  */
 3310                 do {
 3311                         shrink_zone(zone, &sc);
 3312                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
 3313         }
 3314 
 3315         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
 3316         if (nr_slab_pages0 > zone->min_slab_pages) {
 3317                 /*
 3318                  * shrink_slab() does not currently allow us to determine how
 3319                  * many pages were freed in this zone. So we take the current
 3320                  * number of slab pages and shake the slab until it is reduced
 3321                  * by the same nr_pages that we used for reclaiming unmapped
 3322                  * pages.
 3323                  *
 3324                  * Note that shrink_slab will free memory on all zones and may
 3325                  * take a long time.
 3326                  */
 3327                 for (;;) {
 3328                         unsigned long lru_pages = zone_reclaimable_pages(zone);
 3329 
 3330                         /* No reclaimable slab or very low memory pressure */
 3331                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
 3332                                 break;
 3333 
 3334                         /* Freed enough memory */
 3335                         nr_slab_pages1 = zone_page_state(zone,
 3336                                                         NR_SLAB_RECLAIMABLE);
 3337                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
 3338                                 break;
 3339                 }
 3340 
 3341                 /*
 3342                  * Update nr_reclaimed by the number of slab pages we
 3343                  * reclaimed from this zone.
 3344                  */
 3345                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
 3346                 if (nr_slab_pages1 < nr_slab_pages0)
 3347                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
 3348         }
 3349 
 3350         p->reclaim_state = NULL;
 3351         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
 3352         lockdep_clear_current_reclaim_state();
 3353         return sc.nr_reclaimed >= nr_pages;
 3354 }
 3355 
 3356 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
 3357 {
 3358         int node_id;
 3359         int ret;
 3360 
 3361         /*
 3362          * Zone reclaim reclaims unmapped file backed pages and
 3363          * slab pages if we are over the defined limits.
 3364          *
 3365          * A small portion of unmapped file backed pages is needed for
 3366          * file I/O otherwise pages read by file I/O will be immediately
 3367          * thrown out if the zone is overallocated. So we do not reclaim
 3368          * if less than a specified percentage of the zone is used by
 3369          * unmapped file backed pages.
 3370          */
 3371         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
 3372             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
 3373                 return ZONE_RECLAIM_FULL;
 3374 
 3375         if (zone->all_unreclaimable)
 3376                 return ZONE_RECLAIM_FULL;
 3377 
 3378         /*
 3379          * Do not scan if the allocation should not be delayed.
 3380          */
 3381         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
 3382                 return ZONE_RECLAIM_NOSCAN;
 3383 
 3384         /*
 3385          * Only run zone reclaim on the local zone or on zones that do not
 3386          * have associated processors. This will favor the local processor
 3387          * over remote processors and spread off node memory allocations
 3388          * as wide as possible.
 3389          */
 3390         node_id = zone_to_nid(zone);
 3391         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
 3392                 return ZONE_RECLAIM_NOSCAN;
 3393 
 3394         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
 3395                 return ZONE_RECLAIM_NOSCAN;
 3396 
 3397         ret = __zone_reclaim(zone, gfp_mask, order);
 3398         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
 3399 
 3400         if (!ret)
 3401                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
 3402 
 3403         return ret;
 3404 }
 3405 #endif
 3406 
 3407 /*
 3408  * page_evictable - test whether a page is evictable
 3409  * @page: the page to test
 3410  *
 3411  * Test whether page is evictable--i.e., should be placed on active/inactive
 3412  * lists vs unevictable list.
 3413  *
 3414  * Reasons page might not be evictable:
 3415  * (1) page's mapping marked unevictable
 3416  * (2) page is part of an mlocked VMA
 3417  *
 3418  */
 3419 int page_evictable(struct page *page)
 3420 {
 3421         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
 3422 }
 3423 
 3424 #ifdef CONFIG_SHMEM
 3425 /**
 3426  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 3427  * @pages:      array of pages to check
 3428  * @nr_pages:   number of pages to check
 3429  *
 3430  * Checks pages for evictability and moves them to the appropriate lru list.
 3431  *
 3432  * This function is only used for SysV IPC SHM_UNLOCK.
 3433  */
 3434 void check_move_unevictable_pages(struct page **pages, int nr_pages)
 3435 {
 3436         struct lruvec *lruvec;
 3437         struct zone *zone = NULL;
 3438         int pgscanned = 0;
 3439         int pgrescued = 0;
 3440         int i;
 3441 
 3442         for (i = 0; i < nr_pages; i++) {
 3443                 struct page *page = pages[i];
 3444                 struct zone *pagezone;
 3445 
 3446                 pgscanned++;
 3447                 pagezone = page_zone(page);
 3448                 if (pagezone != zone) {
 3449                         if (zone)
 3450                                 spin_unlock_irq(&zone->lru_lock);
 3451                         zone = pagezone;
 3452                         spin_lock_irq(&zone->lru_lock);
 3453                 }
 3454                 lruvec = mem_cgroup_page_lruvec(page, zone);
 3455 
 3456                 if (!PageLRU(page) || !PageUnevictable(page))
 3457                         continue;
 3458 
 3459                 if (page_evictable(page)) {
 3460                         enum lru_list lru = page_lru_base_type(page);
 3461 
 3462                         VM_BUG_ON(PageActive(page));
 3463                         ClearPageUnevictable(page);
 3464                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
 3465                         add_page_to_lru_list(page, lruvec, lru);
 3466                         pgrescued++;
 3467                 }
 3468         }
 3469 
 3470         if (zone) {
 3471                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 3472                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
 3473                 spin_unlock_irq(&zone->lru_lock);
 3474         }
 3475 }
 3476 #endif /* CONFIG_SHMEM */
 3477 
 3478 static void warn_scan_unevictable_pages(void)
 3479 {
 3480         printk_once(KERN_WARNING
 3481                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
 3482                     "disabled for lack of a legitimate use case.  If you have "
 3483                     "one, please send an email to linux-mm@kvack.org.\n",
 3484                     current->comm);
 3485 }
 3486 
 3487 /*
 3488  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 3489  * all nodes' unevictable lists for evictable pages
 3490  */
 3491 unsigned long scan_unevictable_pages;
 3492 
 3493 int scan_unevictable_handler(struct ctl_table *table, int write,
 3494                            void __user *buffer,
 3495                            size_t *length, loff_t *ppos)
 3496 {
 3497         warn_scan_unevictable_pages();
 3498         proc_doulongvec_minmax(table, write, buffer, length, ppos);
 3499         scan_unevictable_pages = 0;
 3500         return 0;
 3501 }
 3502 
 3503 #ifdef CONFIG_NUMA
 3504 /*
 3505  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 3506  * a specified node's per zone unevictable lists for evictable pages.
 3507  */
 3508 
 3509 static ssize_t read_scan_unevictable_node(struct device *dev,
 3510                                           struct device_attribute *attr,
 3511                                           char *buf)
 3512 {
 3513         warn_scan_unevictable_pages();
 3514         return sprintf(buf, "\n");     /* always zero; should fit... */
 3515 }
 3516 
 3517 static ssize_t write_scan_unevictable_node(struct device *dev,
 3518                                            struct device_attribute *attr,
 3519                                         const char *buf, size_t count)
 3520 {
 3521         warn_scan_unevictable_pages();
 3522         return 1;
 3523 }
 3524 
 3525 
 3526 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
 3527                         read_scan_unevictable_node,
 3528                         write_scan_unevictable_node);
 3529 
 3530 int scan_unevictable_register_node(struct node *node)
 3531 {
 3532         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
 3533 }
 3534 
 3535 void scan_unevictable_unregister_node(struct node *node)
 3536 {
 3537         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
 3538 }
 3539 #endif

Cache object: 006643d6e508894836a5ef6c66c5d673


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.