The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/altq/altq_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 1997-2003
    3  *      Sony Computer Science Laboratories Inc.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $
   27  * $FreeBSD$
   28  */
   29 
   30 #include "opt_altq.h"
   31 #include "opt_inet.h"
   32 #include "opt_inet6.h"
   33 
   34 #include <sys/param.h>
   35 #include <sys/malloc.h>
   36 #include <sys/mbuf.h>
   37 #include <sys/systm.h>
   38 #include <sys/proc.h>
   39 #include <sys/socket.h>
   40 #include <sys/socketvar.h>
   41 #include <sys/kernel.h>
   42 #include <sys/errno.h>
   43 #include <sys/syslog.h>
   44 #include <sys/sysctl.h>
   45 #include <sys/queue.h>
   46 
   47 #include <net/if.h>
   48 #include <net/if_var.h>
   49 #include <net/if_private.h>
   50 #include <net/if_dl.h>
   51 #include <net/if_types.h>
   52 #include <net/vnet.h>
   53 
   54 #include <netinet/in.h>
   55 #include <netinet/in_systm.h>
   56 #include <netinet/ip.h>
   57 #ifdef INET6
   58 #include <netinet/ip6.h>
   59 #endif
   60 #include <netinet/tcp.h>
   61 #include <netinet/udp.h>
   62 
   63 #include <netpfil/pf/pf.h>
   64 #include <netpfil/pf/pf_altq.h>
   65 #include <net/altq/altq.h>
   66 
   67 /* machine dependent clock related includes */
   68 #include <sys/bus.h>
   69 #include <sys/cpu.h>
   70 #include <sys/eventhandler.h>
   71 #include <machine/clock.h>
   72 #if defined(__amd64__) || defined(__i386__)
   73 #include <machine/cpufunc.h>            /* for pentium tsc */
   74 #include <machine/specialreg.h>         /* for CPUID_TSC */
   75 #include <machine/md_var.h>             /* for cpu_feature */
   76 #endif /* __amd64 || __i386__ */
   77 
   78 /*
   79  * internal function prototypes
   80  */
   81 static void     tbr_timeout(void *);
   82 static struct mbuf *tbr_dequeue(struct ifaltq *, int);
   83 static int tbr_timer = 0;       /* token bucket regulator timer */
   84 #if !defined(__FreeBSD__) || (__FreeBSD_version < 600000)
   85 static struct callout tbr_callout = CALLOUT_INITIALIZER;
   86 #else
   87 static struct callout tbr_callout;
   88 #endif
   89 
   90 #ifdef ALTQ3_CLFIER_COMPAT
   91 static int      extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
   92 #ifdef INET6
   93 static int      extract_ports6(struct mbuf *, struct ip6_hdr *,
   94                                struct flowinfo_in6 *);
   95 #endif
   96 static int      apply_filter4(u_int32_t, struct flow_filter *,
   97                               struct flowinfo_in *);
   98 static int      apply_ppfilter4(u_int32_t, struct flow_filter *,
   99                                 struct flowinfo_in *);
  100 #ifdef INET6
  101 static int      apply_filter6(u_int32_t, struct flow_filter6 *,
  102                               struct flowinfo_in6 *);
  103 #endif
  104 static int      apply_tosfilter4(u_int32_t, struct flow_filter *,
  105                                  struct flowinfo_in *);
  106 static u_long   get_filt_handle(struct acc_classifier *, int);
  107 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
  108 static u_int32_t filt2fibmask(struct flow_filter *);
  109 
  110 static void     ip4f_cache(struct ip *, struct flowinfo_in *);
  111 static int      ip4f_lookup(struct ip *, struct flowinfo_in *);
  112 static int      ip4f_init(void);
  113 static struct ip4_frag  *ip4f_alloc(void);
  114 static void     ip4f_free(struct ip4_frag *);
  115 #endif /* ALTQ3_CLFIER_COMPAT */
  116 
  117 #ifdef ALTQ
  118 SYSCTL_NODE(_kern_features, OID_AUTO, altq, CTLFLAG_RD | CTLFLAG_CAPRD, 0,
  119     "ALTQ packet queuing");
  120 
  121 #define ALTQ_FEATURE(name, desc)                                        \
  122         SYSCTL_INT_WITH_LABEL(_kern_features_altq, OID_AUTO, name,      \
  123             CTLFLAG_RD | CTLFLAG_CAPRD, SYSCTL_NULL_INT_PTR, 1,         \
  124             desc, "feature")
  125 
  126 #ifdef ALTQ_CBQ
  127 ALTQ_FEATURE(cbq, "ALTQ Class Based Queuing discipline");
  128 #endif
  129 #ifdef ALTQ_CODEL
  130 ALTQ_FEATURE(codel, "ALTQ Controlled Delay discipline");
  131 #endif
  132 #ifdef ALTQ_RED
  133 ALTQ_FEATURE(red, "ALTQ Random Early Detection discipline");
  134 #endif
  135 #ifdef ALTQ_RIO
  136 ALTQ_FEATURE(rio, "ALTQ Random Early Drop discipline");
  137 #endif
  138 #ifdef ALTQ_HFSC
  139 ALTQ_FEATURE(hfsc, "ALTQ Hierarchical Packet Scheduler discipline");
  140 #endif
  141 #ifdef ALTQ_PRIQ
  142 ALTQ_FEATURE(priq, "ATLQ Priority Queuing discipline");
  143 #endif
  144 #ifdef ALTQ_FAIRQ
  145 ALTQ_FEATURE(fairq, "ALTQ Fair Queuing discipline");
  146 #endif
  147 #endif
  148 
  149 /*
  150  * alternate queueing support routines
  151  */
  152 
  153 /* look up the queue state by the interface name and the queueing type. */
  154 void *
  155 altq_lookup(name, type)
  156         char *name;
  157         int type;
  158 {
  159         struct ifnet *ifp;
  160 
  161         if ((ifp = ifunit(name)) != NULL) {
  162                 /* read if_snd unlocked */
  163                 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
  164                         return (ifp->if_snd.altq_disc);
  165         }
  166 
  167         return NULL;
  168 }
  169 
  170 int
  171 altq_attach(ifq, type, discipline, enqueue, dequeue, request)
  172         struct ifaltq *ifq;
  173         int type;
  174         void *discipline;
  175         int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
  176         struct mbuf *(*dequeue)(struct ifaltq *, int);
  177         int (*request)(struct ifaltq *, int, void *);
  178 {
  179         IFQ_LOCK(ifq);
  180         if (!ALTQ_IS_READY(ifq)) {
  181                 IFQ_UNLOCK(ifq);
  182                 return ENXIO;
  183         }
  184 
  185         ifq->altq_type     = type;
  186         ifq->altq_disc     = discipline;
  187         ifq->altq_enqueue  = enqueue;
  188         ifq->altq_dequeue  = dequeue;
  189         ifq->altq_request  = request;
  190         ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
  191         IFQ_UNLOCK(ifq);
  192         return 0;
  193 }
  194 
  195 int
  196 altq_detach(ifq)
  197         struct ifaltq *ifq;
  198 {
  199         IFQ_LOCK(ifq);
  200 
  201         if (!ALTQ_IS_READY(ifq)) {
  202                 IFQ_UNLOCK(ifq);
  203                 return ENXIO;
  204         }
  205         if (ALTQ_IS_ENABLED(ifq)) {
  206                 IFQ_UNLOCK(ifq);
  207                 return EBUSY;
  208         }
  209         if (!ALTQ_IS_ATTACHED(ifq)) {
  210                 IFQ_UNLOCK(ifq);
  211                 return (0);
  212         }
  213 
  214         ifq->altq_type     = ALTQT_NONE;
  215         ifq->altq_disc     = NULL;
  216         ifq->altq_enqueue  = NULL;
  217         ifq->altq_dequeue  = NULL;
  218         ifq->altq_request  = NULL;
  219         ifq->altq_flags &= ALTQF_CANTCHANGE;
  220 
  221         IFQ_UNLOCK(ifq);
  222         return 0;
  223 }
  224 
  225 int
  226 altq_enable(ifq)
  227         struct ifaltq *ifq;
  228 {
  229         int s;
  230 
  231         IFQ_LOCK(ifq);
  232 
  233         if (!ALTQ_IS_READY(ifq)) {
  234                 IFQ_UNLOCK(ifq);
  235                 return ENXIO;
  236         }
  237         if (ALTQ_IS_ENABLED(ifq)) {
  238                 IFQ_UNLOCK(ifq);
  239                 return 0;
  240         }
  241 
  242         s = splnet();
  243         IFQ_PURGE_NOLOCK(ifq);
  244         ASSERT(ifq->ifq_len == 0);
  245         ifq->ifq_drv_maxlen = 0;                /* disable bulk dequeue */
  246         ifq->altq_flags |= ALTQF_ENABLED;
  247         splx(s);
  248 
  249         IFQ_UNLOCK(ifq);
  250         return 0;
  251 }
  252 
  253 int
  254 altq_disable(ifq)
  255         struct ifaltq *ifq;
  256 {
  257         int s;
  258 
  259         IFQ_LOCK(ifq);
  260         if (!ALTQ_IS_ENABLED(ifq)) {
  261                 IFQ_UNLOCK(ifq);
  262                 return 0;
  263         }
  264 
  265         s = splnet();
  266         IFQ_PURGE_NOLOCK(ifq);
  267         ASSERT(ifq->ifq_len == 0);
  268         ifq->altq_flags &= ~(ALTQF_ENABLED);
  269         splx(s);
  270 
  271         IFQ_UNLOCK(ifq);
  272         return 0;
  273 }
  274 
  275 #ifdef ALTQ_DEBUG
  276 void
  277 altq_assert(file, line, failedexpr)
  278         const char *file, *failedexpr;
  279         int line;
  280 {
  281         (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
  282                      failedexpr, file, line);
  283         panic("altq assertion");
  284         /* NOTREACHED */
  285 }
  286 #endif
  287 
  288 /*
  289  * internal representation of token bucket parameters
  290  *      rate:   (byte_per_unittime << TBR_SHIFT)  / machclk_freq
  291  *              (((bits_per_sec) / 8) << TBR_SHIFT) / machclk_freq
  292  *      depth:  byte << TBR_SHIFT
  293  *
  294  */
  295 #define TBR_SHIFT       29
  296 #define TBR_SCALE(x)    ((int64_t)(x) << TBR_SHIFT)
  297 #define TBR_UNSCALE(x)  ((x) >> TBR_SHIFT)
  298 
  299 static struct mbuf *
  300 tbr_dequeue(ifq, op)
  301         struct ifaltq *ifq;
  302         int op;
  303 {
  304         struct tb_regulator *tbr;
  305         struct mbuf *m;
  306         int64_t interval;
  307         u_int64_t now;
  308 
  309         IFQ_LOCK_ASSERT(ifq);
  310         tbr = ifq->altq_tbr;
  311         if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
  312                 /* if this is a remove after poll, bypass tbr check */
  313         } else {
  314                 /* update token only when it is negative */
  315                 if (tbr->tbr_token <= 0) {
  316                         now = read_machclk();
  317                         interval = now - tbr->tbr_last;
  318                         if (interval >= tbr->tbr_filluptime)
  319                                 tbr->tbr_token = tbr->tbr_depth;
  320                         else {
  321                                 tbr->tbr_token += interval * tbr->tbr_rate;
  322                                 if (tbr->tbr_token > tbr->tbr_depth)
  323                                         tbr->tbr_token = tbr->tbr_depth;
  324                         }
  325                         tbr->tbr_last = now;
  326                 }
  327                 /* if token is still negative, don't allow dequeue */
  328                 if (tbr->tbr_token <= 0)
  329                         return (NULL);
  330         }
  331 
  332         if (ALTQ_IS_ENABLED(ifq))
  333                 m = (*ifq->altq_dequeue)(ifq, op);
  334         else {
  335                 if (op == ALTDQ_POLL)
  336                         _IF_POLL(ifq, m);
  337                 else
  338                         _IF_DEQUEUE(ifq, m);
  339         }
  340 
  341         if (m != NULL && op == ALTDQ_REMOVE)
  342                 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
  343         tbr->tbr_lastop = op;
  344         return (m);
  345 }
  346 
  347 /*
  348  * set a token bucket regulator.
  349  * if the specified rate is zero, the token bucket regulator is deleted.
  350  */
  351 int
  352 tbr_set(ifq, profile)
  353         struct ifaltq *ifq;
  354         struct tb_profile *profile;
  355 {
  356         struct tb_regulator *tbr, *otbr;
  357 
  358         if (tbr_dequeue_ptr == NULL)
  359                 tbr_dequeue_ptr = tbr_dequeue;
  360 
  361         if (machclk_freq == 0)
  362                 init_machclk();
  363         if (machclk_freq == 0) {
  364                 printf("tbr_set: no cpu clock available!\n");
  365                 return (ENXIO);
  366         }
  367 
  368         IFQ_LOCK(ifq);
  369         if (profile->rate == 0) {
  370                 /* delete this tbr */
  371                 if ((tbr = ifq->altq_tbr) == NULL) {
  372                         IFQ_UNLOCK(ifq);
  373                         return (ENOENT);
  374                 }
  375                 ifq->altq_tbr = NULL;
  376                 free(tbr, M_DEVBUF);
  377                 IFQ_UNLOCK(ifq);
  378                 return (0);
  379         }
  380 
  381         tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
  382         if (tbr == NULL) {
  383                 IFQ_UNLOCK(ifq);
  384                 return (ENOMEM);
  385         }
  386 
  387         tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
  388         tbr->tbr_depth = TBR_SCALE(profile->depth);
  389         if (tbr->tbr_rate > 0)
  390                 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
  391         else
  392                 tbr->tbr_filluptime = LLONG_MAX;
  393         /*
  394          *  The longest time between tbr_dequeue() calls will be about 1
  395          *  system tick, as the callout that drives it is scheduled once per
  396          *  tick.  The refill-time detection logic in tbr_dequeue() can only
  397          *  properly detect the passage of up to LLONG_MAX machclk ticks.
  398          *  Therefore, in order for this logic to function properly in the
  399          *  extreme case, the maximum value of tbr_filluptime should be
  400          *  LLONG_MAX less one system tick's worth of machclk ticks less
  401          *  some additional slop factor (here one more system tick's worth
  402          *  of machclk ticks).
  403          */
  404         if (tbr->tbr_filluptime > (LLONG_MAX - 2 * machclk_per_tick))
  405                 tbr->tbr_filluptime = LLONG_MAX - 2 * machclk_per_tick;
  406         tbr->tbr_token = tbr->tbr_depth;
  407         tbr->tbr_last = read_machclk();
  408         tbr->tbr_lastop = ALTDQ_REMOVE;
  409 
  410         otbr = ifq->altq_tbr;
  411         ifq->altq_tbr = tbr;    /* set the new tbr */
  412 
  413         if (otbr != NULL)
  414                 free(otbr, M_DEVBUF);
  415         else {
  416                 if (tbr_timer == 0) {
  417                         CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
  418                         tbr_timer = 1;
  419                 }
  420         }
  421         IFQ_UNLOCK(ifq);
  422         return (0);
  423 }
  424 
  425 /*
  426  * tbr_timeout goes through the interface list, and kicks the drivers
  427  * if necessary.
  428  *
  429  * MPSAFE
  430  */
  431 static void
  432 tbr_timeout(arg)
  433         void *arg;
  434 {
  435         VNET_ITERATOR_DECL(vnet_iter);
  436         struct ifnet *ifp;
  437         struct epoch_tracker et;
  438         int active;
  439 
  440         active = 0;
  441         NET_EPOCH_ENTER(et);
  442         VNET_LIST_RLOCK_NOSLEEP();
  443         VNET_FOREACH(vnet_iter) {
  444                 CURVNET_SET(vnet_iter);
  445                 for (ifp = CK_STAILQ_FIRST(&V_ifnet); ifp;
  446                     ifp = CK_STAILQ_NEXT(ifp, if_link)) {
  447                         /* read from if_snd unlocked */
  448                         if (!TBR_IS_ENABLED(&ifp->if_snd))
  449                                 continue;
  450                         active++;
  451                         if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
  452                             ifp->if_start != NULL)
  453                                 (*ifp->if_start)(ifp);
  454                 }
  455                 CURVNET_RESTORE();
  456         }
  457         VNET_LIST_RUNLOCK_NOSLEEP();
  458         NET_EPOCH_EXIT(et);
  459         if (active > 0)
  460                 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
  461         else
  462                 tbr_timer = 0;  /* don't need tbr_timer anymore */
  463 }
  464 
  465 /*
  466  * attach a discipline to the interface.  if one already exists, it is
  467  * overridden.
  468  * Locking is done in the discipline specific attach functions. Basically
  469  * they call back to altq_attach which takes care of the attach and locking.
  470  */
  471 int
  472 altq_pfattach(struct pf_altq *a)
  473 {
  474         int error = 0;
  475 
  476         switch (a->scheduler) {
  477         case ALTQT_NONE:
  478                 break;
  479 #ifdef ALTQ_CBQ
  480         case ALTQT_CBQ:
  481                 error = cbq_pfattach(a);
  482                 break;
  483 #endif
  484 #ifdef ALTQ_PRIQ
  485         case ALTQT_PRIQ:
  486                 error = priq_pfattach(a);
  487                 break;
  488 #endif
  489 #ifdef ALTQ_HFSC
  490         case ALTQT_HFSC:
  491                 error = hfsc_pfattach(a);
  492                 break;
  493 #endif
  494 #ifdef ALTQ_FAIRQ
  495         case ALTQT_FAIRQ:
  496                 error = fairq_pfattach(a);
  497                 break;
  498 #endif
  499 #ifdef ALTQ_CODEL
  500         case ALTQT_CODEL:
  501                 error = codel_pfattach(a);
  502                 break;
  503 #endif
  504         default:
  505                 error = ENXIO;
  506         }
  507 
  508         return (error);
  509 }
  510 
  511 /*
  512  * detach a discipline from the interface.
  513  * it is possible that the discipline was already overridden by another
  514  * discipline.
  515  */
  516 int
  517 altq_pfdetach(struct pf_altq *a)
  518 {
  519         struct ifnet *ifp;
  520         int s, error = 0;
  521 
  522         if ((ifp = ifunit(a->ifname)) == NULL)
  523                 return (EINVAL);
  524 
  525         /* if this discipline is no longer referenced, just return */
  526         /* read unlocked from if_snd */
  527         if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
  528                 return (0);
  529 
  530         s = splnet();
  531         /* read unlocked from if_snd, _disable and _detach take care */
  532         if (ALTQ_IS_ENABLED(&ifp->if_snd))
  533                 error = altq_disable(&ifp->if_snd);
  534         if (error == 0)
  535                 error = altq_detach(&ifp->if_snd);
  536         splx(s);
  537 
  538         return (error);
  539 }
  540 
  541 /*
  542  * add a discipline or a queue
  543  * Locking is done in the discipline specific functions with regards to
  544  * malloc with WAITOK, also it is not yet clear which lock to use.
  545  */
  546 int
  547 altq_add(struct ifnet *ifp, struct pf_altq *a)
  548 {
  549         int error = 0;
  550 
  551         if (a->qname[0] != 0)
  552                 return (altq_add_queue(a));
  553 
  554         if (machclk_freq == 0)
  555                 init_machclk();
  556         if (machclk_freq == 0)
  557                 panic("altq_add: no cpu clock");
  558 
  559         switch (a->scheduler) {
  560 #ifdef ALTQ_CBQ
  561         case ALTQT_CBQ:
  562                 error = cbq_add_altq(ifp, a);
  563                 break;
  564 #endif
  565 #ifdef ALTQ_PRIQ
  566         case ALTQT_PRIQ:
  567                 error = priq_add_altq(ifp, a);
  568                 break;
  569 #endif
  570 #ifdef ALTQ_HFSC
  571         case ALTQT_HFSC:
  572                 error = hfsc_add_altq(ifp, a);
  573                 break;
  574 #endif
  575 #ifdef ALTQ_FAIRQ
  576         case ALTQT_FAIRQ:
  577                 error = fairq_add_altq(ifp, a);
  578                 break;
  579 #endif
  580 #ifdef ALTQ_CODEL
  581         case ALTQT_CODEL:
  582                 error = codel_add_altq(ifp, a);
  583                 break;
  584 #endif
  585         default:
  586                 error = ENXIO;
  587         }
  588 
  589         return (error);
  590 }
  591 
  592 /*
  593  * remove a discipline or a queue
  594  * It is yet unclear what lock to use to protect this operation, the
  595  * discipline specific functions will determine and grab it
  596  */
  597 int
  598 altq_remove(struct pf_altq *a)
  599 {
  600         int error = 0;
  601 
  602         if (a->qname[0] != 0)
  603                 return (altq_remove_queue(a));
  604 
  605         switch (a->scheduler) {
  606 #ifdef ALTQ_CBQ
  607         case ALTQT_CBQ:
  608                 error = cbq_remove_altq(a);
  609                 break;
  610 #endif
  611 #ifdef ALTQ_PRIQ
  612         case ALTQT_PRIQ:
  613                 error = priq_remove_altq(a);
  614                 break;
  615 #endif
  616 #ifdef ALTQ_HFSC
  617         case ALTQT_HFSC:
  618                 error = hfsc_remove_altq(a);
  619                 break;
  620 #endif
  621 #ifdef ALTQ_FAIRQ
  622         case ALTQT_FAIRQ:
  623                 error = fairq_remove_altq(a);
  624                 break;
  625 #endif
  626 #ifdef ALTQ_CODEL
  627         case ALTQT_CODEL:
  628                 error = codel_remove_altq(a);
  629                 break;
  630 #endif
  631         default:
  632                 error = ENXIO;
  633         }
  634 
  635         return (error);
  636 }
  637 
  638 /*
  639  * add a queue to the discipline
  640  * It is yet unclear what lock to use to protect this operation, the
  641  * discipline specific functions will determine and grab it
  642  */
  643 int
  644 altq_add_queue(struct pf_altq *a)
  645 {
  646         int error = 0;
  647 
  648         switch (a->scheduler) {
  649 #ifdef ALTQ_CBQ
  650         case ALTQT_CBQ:
  651                 error = cbq_add_queue(a);
  652                 break;
  653 #endif
  654 #ifdef ALTQ_PRIQ
  655         case ALTQT_PRIQ:
  656                 error = priq_add_queue(a);
  657                 break;
  658 #endif
  659 #ifdef ALTQ_HFSC
  660         case ALTQT_HFSC:
  661                 error = hfsc_add_queue(a);
  662                 break;
  663 #endif
  664 #ifdef ALTQ_FAIRQ
  665         case ALTQT_FAIRQ:
  666                 error = fairq_add_queue(a);
  667                 break;
  668 #endif
  669         default:
  670                 error = ENXIO;
  671         }
  672 
  673         return (error);
  674 }
  675 
  676 /*
  677  * remove a queue from the discipline
  678  * It is yet unclear what lock to use to protect this operation, the
  679  * discipline specific functions will determine and grab it
  680  */
  681 int
  682 altq_remove_queue(struct pf_altq *a)
  683 {
  684         int error = 0;
  685 
  686         switch (a->scheduler) {
  687 #ifdef ALTQ_CBQ
  688         case ALTQT_CBQ:
  689                 error = cbq_remove_queue(a);
  690                 break;
  691 #endif
  692 #ifdef ALTQ_PRIQ
  693         case ALTQT_PRIQ:
  694                 error = priq_remove_queue(a);
  695                 break;
  696 #endif
  697 #ifdef ALTQ_HFSC
  698         case ALTQT_HFSC:
  699                 error = hfsc_remove_queue(a);
  700                 break;
  701 #endif
  702 #ifdef ALTQ_FAIRQ
  703         case ALTQT_FAIRQ:
  704                 error = fairq_remove_queue(a);
  705                 break;
  706 #endif
  707         default:
  708                 error = ENXIO;
  709         }
  710 
  711         return (error);
  712 }
  713 
  714 /*
  715  * get queue statistics
  716  * Locking is done in the discipline specific functions with regards to
  717  * copyout operations, also it is not yet clear which lock to use.
  718  */
  719 int
  720 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes, int version)
  721 {
  722         int error = 0;
  723 
  724         switch (a->scheduler) {
  725 #ifdef ALTQ_CBQ
  726         case ALTQT_CBQ:
  727                 error = cbq_getqstats(a, ubuf, nbytes, version);
  728                 break;
  729 #endif
  730 #ifdef ALTQ_PRIQ
  731         case ALTQT_PRIQ:
  732                 error = priq_getqstats(a, ubuf, nbytes, version);
  733                 break;
  734 #endif
  735 #ifdef ALTQ_HFSC
  736         case ALTQT_HFSC:
  737                 error = hfsc_getqstats(a, ubuf, nbytes, version);
  738                 break;
  739 #endif
  740 #ifdef ALTQ_FAIRQ
  741         case ALTQT_FAIRQ:
  742                 error = fairq_getqstats(a, ubuf, nbytes, version);
  743                 break;
  744 #endif
  745 #ifdef ALTQ_CODEL
  746         case ALTQT_CODEL:
  747                 error = codel_getqstats(a, ubuf, nbytes, version);
  748                 break;
  749 #endif
  750         default:
  751                 error = ENXIO;
  752         }
  753 
  754         return (error);
  755 }
  756 
  757 /*
  758  * read and write diffserv field in IPv4 or IPv6 header
  759  */
  760 u_int8_t
  761 read_dsfield(m, pktattr)
  762         struct mbuf *m;
  763         struct altq_pktattr *pktattr;
  764 {
  765         struct mbuf *m0;
  766         u_int8_t ds_field = 0;
  767 
  768         if (pktattr == NULL ||
  769             (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
  770                 return ((u_int8_t)0);
  771 
  772         /* verify that pattr_hdr is within the mbuf data */
  773         for (m0 = m; m0 != NULL; m0 = m0->m_next)
  774                 if ((pktattr->pattr_hdr >= m0->m_data) &&
  775                     (pktattr->pattr_hdr < m0->m_data + m0->m_len))
  776                         break;
  777         if (m0 == NULL) {
  778                 /* ick, pattr_hdr is stale */
  779                 pktattr->pattr_af = AF_UNSPEC;
  780 #ifdef ALTQ_DEBUG
  781                 printf("read_dsfield: can't locate header!\n");
  782 #endif
  783                 return ((u_int8_t)0);
  784         }
  785 
  786         if (pktattr->pattr_af == AF_INET) {
  787                 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
  788 
  789                 if (ip->ip_v != 4)
  790                         return ((u_int8_t)0);   /* version mismatch! */
  791                 ds_field = ip->ip_tos;
  792         }
  793 #ifdef INET6
  794         else if (pktattr->pattr_af == AF_INET6) {
  795                 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
  796                 u_int32_t flowlabel;
  797 
  798                 flowlabel = ntohl(ip6->ip6_flow);
  799                 if ((flowlabel >> 28) != 6)
  800                         return ((u_int8_t)0);   /* version mismatch! */
  801                 ds_field = (flowlabel >> 20) & 0xff;
  802         }
  803 #endif
  804         return (ds_field);
  805 }
  806 
  807 void
  808 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
  809 {
  810         struct mbuf *m0;
  811 
  812         if (pktattr == NULL ||
  813             (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
  814                 return;
  815 
  816         /* verify that pattr_hdr is within the mbuf data */
  817         for (m0 = m; m0 != NULL; m0 = m0->m_next)
  818                 if ((pktattr->pattr_hdr >= m0->m_data) &&
  819                     (pktattr->pattr_hdr < m0->m_data + m0->m_len))
  820                         break;
  821         if (m0 == NULL) {
  822                 /* ick, pattr_hdr is stale */
  823                 pktattr->pattr_af = AF_UNSPEC;
  824 #ifdef ALTQ_DEBUG
  825                 printf("write_dsfield: can't locate header!\n");
  826 #endif
  827                 return;
  828         }
  829 
  830         if (pktattr->pattr_af == AF_INET) {
  831                 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
  832                 u_int8_t old;
  833                 int32_t sum;
  834 
  835                 if (ip->ip_v != 4)
  836                         return;         /* version mismatch! */
  837                 old = ip->ip_tos;
  838                 dsfield |= old & 3;     /* leave CU bits */
  839                 if (old == dsfield)
  840                         return;
  841                 ip->ip_tos = dsfield;
  842                 /*
  843                  * update checksum (from RFC1624)
  844                  *         HC' = ~(~HC + ~m + m')
  845                  */
  846                 sum = ~ntohs(ip->ip_sum) & 0xffff;
  847                 sum += 0xff00 + (~old & 0xff) + dsfield;
  848                 sum = (sum >> 16) + (sum & 0xffff);
  849                 sum += (sum >> 16);  /* add carry */
  850 
  851                 ip->ip_sum = htons(~sum & 0xffff);
  852         }
  853 #ifdef INET6
  854         else if (pktattr->pattr_af == AF_INET6) {
  855                 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
  856                 u_int32_t flowlabel;
  857 
  858                 flowlabel = ntohl(ip6->ip6_flow);
  859                 if ((flowlabel >> 28) != 6)
  860                         return;         /* version mismatch! */
  861                 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
  862                 ip6->ip6_flow = htonl(flowlabel);
  863         }
  864 #endif
  865         return;
  866 }
  867 
  868 /*
  869  * high resolution clock support taking advantage of a machine dependent
  870  * high resolution time counter (e.g., timestamp counter of intel pentium).
  871  * we assume
  872  *  - 64-bit-long monotonically-increasing counter
  873  *  - frequency range is 100M-4GHz (CPU speed)
  874  */
  875 /* if pcc is not available or disabled, emulate 256MHz using microtime() */
  876 #define MACHCLK_SHIFT   8
  877 
  878 int machclk_usepcc;
  879 u_int32_t machclk_freq;
  880 u_int32_t machclk_per_tick;
  881 
  882 #if defined(__i386__) && defined(__NetBSD__)
  883 extern u_int64_t cpu_tsc_freq;
  884 #endif
  885 
  886 #if (__FreeBSD_version >= 700035)
  887 /* Update TSC freq with the value indicated by the caller. */
  888 static void
  889 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
  890 {
  891         /* If there was an error during the transition, don't do anything. */
  892         if (status != 0)
  893                 return;
  894 
  895 #if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__))
  896         /* If TSC is P-state invariant, don't do anything. */
  897         if (tsc_is_invariant)
  898                 return;
  899 #endif
  900 
  901         /* Total setting for this level gives the new frequency in MHz. */
  902         init_machclk();
  903 }
  904 EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
  905     EVENTHANDLER_PRI_LAST);
  906 #endif /* __FreeBSD_version >= 700035 */
  907 
  908 static void
  909 init_machclk_setup(void)
  910 {
  911         callout_init(&tbr_callout, 1);
  912 
  913         machclk_usepcc = 1;
  914 
  915 #if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
  916         machclk_usepcc = 0;
  917 #endif
  918 #if defined(__FreeBSD__) && defined(SMP)
  919         machclk_usepcc = 0;
  920 #endif
  921 #if defined(__NetBSD__) && defined(MULTIPROCESSOR)
  922         machclk_usepcc = 0;
  923 #endif
  924 #if defined(__amd64__) || defined(__i386__)
  925         /* check if TSC is available */
  926         if ((cpu_feature & CPUID_TSC) == 0 ||
  927             atomic_load_acq_64(&tsc_freq) == 0)
  928                 machclk_usepcc = 0;
  929 #endif
  930 }
  931 
  932 void
  933 init_machclk(void)
  934 {
  935         static int called;
  936 
  937         /* Call one-time initialization function. */
  938         if (!called) {
  939                 init_machclk_setup();
  940                 called = 1;
  941         }
  942 
  943         if (machclk_usepcc == 0) {
  944                 /* emulate 256MHz using microtime() */
  945                 machclk_freq = 1000000 << MACHCLK_SHIFT;
  946                 machclk_per_tick = machclk_freq / hz;
  947 #ifdef ALTQ_DEBUG
  948                 printf("altq: emulate %uHz cpu clock\n", machclk_freq);
  949 #endif
  950                 return;
  951         }
  952 
  953         /*
  954          * if the clock frequency (of Pentium TSC or Alpha PCC) is
  955          * accessible, just use it.
  956          */
  957 #if defined(__amd64__) || defined(__i386__)
  958         machclk_freq = atomic_load_acq_64(&tsc_freq);
  959 #endif
  960 
  961         /*
  962          * if we don't know the clock frequency, measure it.
  963          */
  964         if (machclk_freq == 0) {
  965                 static int      wait;
  966                 struct timeval  tv_start, tv_end;
  967                 u_int64_t       start, end, diff;
  968                 int             timo;
  969 
  970                 microtime(&tv_start);
  971                 start = read_machclk();
  972                 timo = hz;      /* 1 sec */
  973                 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
  974                 microtime(&tv_end);
  975                 end = read_machclk();
  976                 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
  977                     + tv_end.tv_usec - tv_start.tv_usec;
  978                 if (diff != 0)
  979                         machclk_freq = (u_int)((end - start) * 1000000 / diff);
  980         }
  981 
  982         machclk_per_tick = machclk_freq / hz;
  983 
  984 #ifdef ALTQ_DEBUG
  985         printf("altq: CPU clock: %uHz\n", machclk_freq);
  986 #endif
  987 }
  988 
  989 #if defined(__OpenBSD__) && defined(__i386__)
  990 static __inline u_int64_t
  991 rdtsc(void)
  992 {
  993         u_int64_t rv;
  994         __asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
  995         return (rv);
  996 }
  997 #endif /* __OpenBSD__ && __i386__ */
  998 
  999 u_int64_t
 1000 read_machclk(void)
 1001 {
 1002         u_int64_t val;
 1003 
 1004         if (machclk_usepcc) {
 1005 #if defined(__amd64__) || defined(__i386__)
 1006                 val = rdtsc();
 1007 #else
 1008                 panic("read_machclk");
 1009 #endif
 1010         } else {
 1011                 struct timeval tv, boottime;
 1012 
 1013                 microtime(&tv);
 1014                 getboottime(&boottime);
 1015                 val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
 1016                     + tv.tv_usec) << MACHCLK_SHIFT);
 1017         }
 1018         return (val);
 1019 }
 1020 
 1021 #ifdef ALTQ3_CLFIER_COMPAT
 1022 
 1023 #ifndef IPPROTO_ESP
 1024 #define IPPROTO_ESP     50              /* encapsulating security payload */
 1025 #endif
 1026 #ifndef IPPROTO_AH
 1027 #define IPPROTO_AH      51              /* authentication header */
 1028 #endif
 1029 
 1030 /*
 1031  * extract flow information from a given packet.
 1032  * filt_mask shows flowinfo fields required.
 1033  * we assume the ip header is in one mbuf, and addresses and ports are
 1034  * in network byte order.
 1035  */
 1036 int
 1037 altq_extractflow(m, af, flow, filt_bmask)
 1038         struct mbuf *m;
 1039         int af;
 1040         struct flowinfo *flow;
 1041         u_int32_t       filt_bmask;
 1042 {
 1043 
 1044         switch (af) {
 1045         case PF_INET: {
 1046                 struct flowinfo_in *fin;
 1047                 struct ip *ip;
 1048 
 1049                 ip = mtod(m, struct ip *);
 1050 
 1051                 if (ip->ip_v != 4)
 1052                         break;
 1053 
 1054                 fin = (struct flowinfo_in *)flow;
 1055                 fin->fi_len = sizeof(struct flowinfo_in);
 1056                 fin->fi_family = AF_INET;
 1057 
 1058                 fin->fi_proto = ip->ip_p;
 1059                 fin->fi_tos = ip->ip_tos;
 1060 
 1061                 fin->fi_src.s_addr = ip->ip_src.s_addr;
 1062                 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
 1063 
 1064                 if (filt_bmask & FIMB4_PORTS)
 1065                         /* if port info is required, extract port numbers */
 1066                         extract_ports4(m, ip, fin);
 1067                 else {
 1068                         fin->fi_sport = 0;
 1069                         fin->fi_dport = 0;
 1070                         fin->fi_gpi = 0;
 1071                 }
 1072                 return (1);
 1073         }
 1074 
 1075 #ifdef INET6
 1076         case PF_INET6: {
 1077                 struct flowinfo_in6 *fin6;
 1078                 struct ip6_hdr *ip6;
 1079 
 1080                 ip6 = mtod(m, struct ip6_hdr *);
 1081                 /* should we check the ip version? */
 1082 
 1083                 fin6 = (struct flowinfo_in6 *)flow;
 1084                 fin6->fi6_len = sizeof(struct flowinfo_in6);
 1085                 fin6->fi6_family = AF_INET6;
 1086 
 1087                 fin6->fi6_proto = ip6->ip6_nxt;
 1088                 fin6->fi6_tclass   = IPV6_TRAFFIC_CLASS(ip6);
 1089 
 1090                 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
 1091                 fin6->fi6_src = ip6->ip6_src;
 1092                 fin6->fi6_dst = ip6->ip6_dst;
 1093 
 1094                 if ((filt_bmask & FIMB6_PORTS) ||
 1095                     ((filt_bmask & FIMB6_PROTO)
 1096                      && ip6->ip6_nxt > IPPROTO_IPV6))
 1097                         /*
 1098                          * if port info is required, or proto is required
 1099                          * but there are option headers, extract port
 1100                          * and protocol numbers.
 1101                          */
 1102                         extract_ports6(m, ip6, fin6);
 1103                 else {
 1104                         fin6->fi6_sport = 0;
 1105                         fin6->fi6_dport = 0;
 1106                         fin6->fi6_gpi = 0;
 1107                 }
 1108                 return (1);
 1109         }
 1110 #endif /* INET6 */
 1111 
 1112         default:
 1113                 break;
 1114         }
 1115 
 1116         /* failed */
 1117         flow->fi_len = sizeof(struct flowinfo);
 1118         flow->fi_family = AF_UNSPEC;
 1119         return (0);
 1120 }
 1121 
 1122 /*
 1123  * helper routine to extract port numbers
 1124  */
 1125 /* structure for ipsec and ipv6 option header template */
 1126 struct _opt6 {
 1127         u_int8_t        opt6_nxt;       /* next header */
 1128         u_int8_t        opt6_hlen;      /* header extension length */
 1129         u_int16_t       _pad;
 1130         u_int32_t       ah_spi;         /* security parameter index
 1131                                            for authentication header */
 1132 };
 1133 
 1134 /*
 1135  * extract port numbers from a ipv4 packet.
 1136  */
 1137 static int
 1138 extract_ports4(m, ip, fin)
 1139         struct mbuf *m;
 1140         struct ip *ip;
 1141         struct flowinfo_in *fin;
 1142 {
 1143         struct mbuf *m0;
 1144         u_short ip_off;
 1145         u_int8_t proto;
 1146         int     off;
 1147 
 1148         fin->fi_sport = 0;
 1149         fin->fi_dport = 0;
 1150         fin->fi_gpi = 0;
 1151 
 1152         ip_off = ntohs(ip->ip_off);
 1153         /* if it is a fragment, try cached fragment info */
 1154         if (ip_off & IP_OFFMASK) {
 1155                 ip4f_lookup(ip, fin);
 1156                 return (1);
 1157         }
 1158 
 1159         /* locate the mbuf containing the protocol header */
 1160         for (m0 = m; m0 != NULL; m0 = m0->m_next)
 1161                 if (((caddr_t)ip >= m0->m_data) &&
 1162                     ((caddr_t)ip < m0->m_data + m0->m_len))
 1163                         break;
 1164         if (m0 == NULL) {
 1165 #ifdef ALTQ_DEBUG
 1166                 printf("extract_ports4: can't locate header! ip=%p\n", ip);
 1167 #endif
 1168                 return (0);
 1169         }
 1170         off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
 1171         proto = ip->ip_p;
 1172 
 1173 #ifdef ALTQ_IPSEC
 1174  again:
 1175 #endif
 1176         while (off >= m0->m_len) {
 1177                 off -= m0->m_len;
 1178                 m0 = m0->m_next;
 1179                 if (m0 == NULL)
 1180                         return (0);  /* bogus ip_hl! */
 1181         }
 1182         if (m0->m_len < off + 4)
 1183                 return (0);
 1184 
 1185         switch (proto) {
 1186         case IPPROTO_TCP:
 1187         case IPPROTO_UDP: {
 1188                 struct udphdr *udp;
 1189 
 1190                 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
 1191                 fin->fi_sport = udp->uh_sport;
 1192                 fin->fi_dport = udp->uh_dport;
 1193                 fin->fi_proto = proto;
 1194                 }
 1195                 break;
 1196 
 1197 #ifdef ALTQ_IPSEC
 1198         case IPPROTO_ESP:
 1199                 if (fin->fi_gpi == 0){
 1200                         u_int32_t *gpi;
 1201 
 1202                         gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
 1203                         fin->fi_gpi   = *gpi;
 1204                 }
 1205                 fin->fi_proto = proto;
 1206                 break;
 1207 
 1208         case IPPROTO_AH: {
 1209                         /* get next header and header length */
 1210                         struct _opt6 *opt6;
 1211 
 1212                         opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 1213                         proto = opt6->opt6_nxt;
 1214                         off += 8 + (opt6->opt6_hlen * 4);
 1215                         if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
 1216                                 fin->fi_gpi = opt6->ah_spi;
 1217                 }
 1218                 /* goto the next header */
 1219                 goto again;
 1220 #endif  /* ALTQ_IPSEC */
 1221 
 1222         default:
 1223                 fin->fi_proto = proto;
 1224                 return (0);
 1225         }
 1226 
 1227         /* if this is a first fragment, cache it. */
 1228         if (ip_off & IP_MF)
 1229                 ip4f_cache(ip, fin);
 1230 
 1231         return (1);
 1232 }
 1233 
 1234 #ifdef INET6
 1235 static int
 1236 extract_ports6(m, ip6, fin6)
 1237         struct mbuf *m;
 1238         struct ip6_hdr *ip6;
 1239         struct flowinfo_in6 *fin6;
 1240 {
 1241         struct mbuf *m0;
 1242         int     off;
 1243         u_int8_t proto;
 1244 
 1245         fin6->fi6_gpi   = 0;
 1246         fin6->fi6_sport = 0;
 1247         fin6->fi6_dport = 0;
 1248 
 1249         /* locate the mbuf containing the protocol header */
 1250         for (m0 = m; m0 != NULL; m0 = m0->m_next)
 1251                 if (((caddr_t)ip6 >= m0->m_data) &&
 1252                     ((caddr_t)ip6 < m0->m_data + m0->m_len))
 1253                         break;
 1254         if (m0 == NULL) {
 1255 #ifdef ALTQ_DEBUG
 1256                 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
 1257 #endif
 1258                 return (0);
 1259         }
 1260         off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
 1261 
 1262         proto = ip6->ip6_nxt;
 1263         do {
 1264                 while (off >= m0->m_len) {
 1265                         off -= m0->m_len;
 1266                         m0 = m0->m_next;
 1267                         if (m0 == NULL)
 1268                                 return (0);
 1269                 }
 1270                 if (m0->m_len < off + 4)
 1271                         return (0);
 1272 
 1273                 switch (proto) {
 1274                 case IPPROTO_TCP:
 1275                 case IPPROTO_UDP: {
 1276                         struct udphdr *udp;
 1277 
 1278                         udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
 1279                         fin6->fi6_sport = udp->uh_sport;
 1280                         fin6->fi6_dport = udp->uh_dport;
 1281                         fin6->fi6_proto = proto;
 1282                         }
 1283                         return (1);
 1284 
 1285                 case IPPROTO_ESP:
 1286                         if (fin6->fi6_gpi == 0) {
 1287                                 u_int32_t *gpi;
 1288 
 1289                                 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
 1290                                 fin6->fi6_gpi   = *gpi;
 1291                         }
 1292                         fin6->fi6_proto = proto;
 1293                         return (1);
 1294 
 1295                 case IPPROTO_AH: {
 1296                         /* get next header and header length */
 1297                         struct _opt6 *opt6;
 1298 
 1299                         opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 1300                         if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
 1301                                 fin6->fi6_gpi = opt6->ah_spi;
 1302                         proto = opt6->opt6_nxt;
 1303                         off += 8 + (opt6->opt6_hlen * 4);
 1304                         /* goto the next header */
 1305                         break;
 1306                         }
 1307 
 1308                 case IPPROTO_HOPOPTS:
 1309                 case IPPROTO_ROUTING:
 1310                 case IPPROTO_DSTOPTS: {
 1311                         /* get next header and header length */
 1312                         struct _opt6 *opt6;
 1313 
 1314                         opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 1315                         proto = opt6->opt6_nxt;
 1316                         off += (opt6->opt6_hlen + 1) * 8;
 1317                         /* goto the next header */
 1318                         break;
 1319                         }
 1320 
 1321                 case IPPROTO_FRAGMENT:
 1322                         /* ipv6 fragmentations are not supported yet */
 1323                 default:
 1324                         fin6->fi6_proto = proto;
 1325                         return (0);
 1326                 }
 1327         } while (1);
 1328         /*NOTREACHED*/
 1329 }
 1330 #endif /* INET6 */
 1331 
 1332 /*
 1333  * altq common classifier
 1334  */
 1335 int
 1336 acc_add_filter(classifier, filter, class, phandle)
 1337         struct acc_classifier *classifier;
 1338         struct flow_filter *filter;
 1339         void    *class;
 1340         u_long  *phandle;
 1341 {
 1342         struct acc_filter *afp, *prev, *tmp;
 1343         int     i, s;
 1344 
 1345 #ifdef INET6
 1346         if (filter->ff_flow.fi_family != AF_INET &&
 1347             filter->ff_flow.fi_family != AF_INET6)
 1348                 return (EINVAL);
 1349 #else
 1350         if (filter->ff_flow.fi_family != AF_INET)
 1351                 return (EINVAL);
 1352 #endif
 1353 
 1354         afp = malloc(sizeof(struct acc_filter),
 1355                M_DEVBUF, M_WAITOK);
 1356         if (afp == NULL)
 1357                 return (ENOMEM);
 1358         bzero(afp, sizeof(struct acc_filter));
 1359 
 1360         afp->f_filter = *filter;
 1361         afp->f_class = class;
 1362 
 1363         i = ACC_WILDCARD_INDEX;
 1364         if (filter->ff_flow.fi_family == AF_INET) {
 1365                 struct flow_filter *filter4 = &afp->f_filter;
 1366 
 1367                 /*
 1368                  * if address is 0, it's a wildcard.  if address mask
 1369                  * isn't set, use full mask.
 1370                  */
 1371                 if (filter4->ff_flow.fi_dst.s_addr == 0)
 1372                         filter4->ff_mask.mask_dst.s_addr = 0;
 1373                 else if (filter4->ff_mask.mask_dst.s_addr == 0)
 1374                         filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
 1375                 if (filter4->ff_flow.fi_src.s_addr == 0)
 1376                         filter4->ff_mask.mask_src.s_addr = 0;
 1377                 else if (filter4->ff_mask.mask_src.s_addr == 0)
 1378                         filter4->ff_mask.mask_src.s_addr = 0xffffffff;
 1379 
 1380                 /* clear extra bits in addresses  */
 1381                    filter4->ff_flow.fi_dst.s_addr &=
 1382                        filter4->ff_mask.mask_dst.s_addr;
 1383                    filter4->ff_flow.fi_src.s_addr &=
 1384                        filter4->ff_mask.mask_src.s_addr;
 1385 
 1386                 /*
 1387                  * if dst address is a wildcard, use hash-entry
 1388                  * ACC_WILDCARD_INDEX.
 1389                  */
 1390                 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
 1391                         i = ACC_WILDCARD_INDEX;
 1392                 else
 1393                         i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
 1394         }
 1395 #ifdef INET6
 1396         else if (filter->ff_flow.fi_family == AF_INET6) {
 1397                 struct flow_filter6 *filter6 =
 1398                         (struct flow_filter6 *)&afp->f_filter;
 1399 #ifndef IN6MASK0 /* taken from kame ipv6 */
 1400 #define IN6MASK0        {{{ 0, 0, 0, 0 }}}
 1401 #define IN6MASK128      {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
 1402                 const struct in6_addr in6mask0 = IN6MASK0;
 1403                 const struct in6_addr in6mask128 = IN6MASK128;
 1404 #endif
 1405 
 1406                 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
 1407                         filter6->ff_mask6.mask6_dst = in6mask0;
 1408                 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
 1409                         filter6->ff_mask6.mask6_dst = in6mask128;
 1410                 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
 1411                         filter6->ff_mask6.mask6_src = in6mask0;
 1412                 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
 1413                         filter6->ff_mask6.mask6_src = in6mask128;
 1414 
 1415                 /* clear extra bits in addresses  */
 1416                 for (i = 0; i < 16; i++)
 1417                         filter6->ff_flow6.fi6_dst.s6_addr[i] &=
 1418                             filter6->ff_mask6.mask6_dst.s6_addr[i];
 1419                 for (i = 0; i < 16; i++)
 1420                         filter6->ff_flow6.fi6_src.s6_addr[i] &=
 1421                             filter6->ff_mask6.mask6_src.s6_addr[i];
 1422 
 1423                 if (filter6->ff_flow6.fi6_flowlabel == 0)
 1424                         i = ACC_WILDCARD_INDEX;
 1425                 else
 1426                         i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
 1427         }
 1428 #endif /* INET6 */
 1429 
 1430         afp->f_handle = get_filt_handle(classifier, i);
 1431 
 1432         /* update filter bitmask */
 1433         afp->f_fbmask = filt2fibmask(filter);
 1434         classifier->acc_fbmask |= afp->f_fbmask;
 1435 
 1436         /*
 1437          * add this filter to the filter list.
 1438          * filters are ordered from the highest rule number.
 1439          */
 1440         s = splnet();
 1441         prev = NULL;
 1442         LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
 1443                 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
 1444                         prev = tmp;
 1445                 else
 1446                         break;
 1447         }
 1448         if (prev == NULL)
 1449                 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
 1450         else
 1451                 LIST_INSERT_AFTER(prev, afp, f_chain);
 1452         splx(s);
 1453 
 1454         *phandle = afp->f_handle;
 1455         return (0);
 1456 }
 1457 
 1458 int
 1459 acc_delete_filter(classifier, handle)
 1460         struct acc_classifier *classifier;
 1461         u_long handle;
 1462 {
 1463         struct acc_filter *afp;
 1464         int     s;
 1465 
 1466         if ((afp = filth_to_filtp(classifier, handle)) == NULL)
 1467                 return (EINVAL);
 1468 
 1469         s = splnet();
 1470         LIST_REMOVE(afp, f_chain);
 1471         splx(s);
 1472 
 1473         free(afp, M_DEVBUF);
 1474 
 1475         /* todo: update filt_bmask */
 1476 
 1477         return (0);
 1478 }
 1479 
 1480 /*
 1481  * delete filters referencing to the specified class.
 1482  * if the all flag is not 0, delete all the filters.
 1483  */
 1484 int
 1485 acc_discard_filters(classifier, class, all)
 1486         struct acc_classifier *classifier;
 1487         void    *class;
 1488         int     all;
 1489 {
 1490         struct acc_filter *afp;
 1491         int     i, s;
 1492 
 1493         s = splnet();
 1494         for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
 1495                 do {
 1496                         LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 1497                                 if (all || afp->f_class == class) {
 1498                                         LIST_REMOVE(afp, f_chain);
 1499                                         free(afp, M_DEVBUF);
 1500                                         /* start again from the head */
 1501                                         break;
 1502                                 }
 1503                 } while (afp != NULL);
 1504         }
 1505         splx(s);
 1506 
 1507         if (all)
 1508                 classifier->acc_fbmask = 0;
 1509 
 1510         return (0);
 1511 }
 1512 
 1513 void *
 1514 acc_classify(clfier, m, af)
 1515         void *clfier;
 1516         struct mbuf *m;
 1517         int af;
 1518 {
 1519         struct acc_classifier *classifier;
 1520         struct flowinfo flow;
 1521         struct acc_filter *afp;
 1522         int     i;
 1523 
 1524         classifier = (struct acc_classifier *)clfier;
 1525         altq_extractflow(m, af, &flow, classifier->acc_fbmask);
 1526 
 1527         if (flow.fi_family == AF_INET) {
 1528                 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
 1529 
 1530                 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
 1531                         /* only tos is used */
 1532                         LIST_FOREACH(afp,
 1533                                  &classifier->acc_filters[ACC_WILDCARD_INDEX],
 1534                                  f_chain)
 1535                                 if (apply_tosfilter4(afp->f_fbmask,
 1536                                                      &afp->f_filter, fp))
 1537                                         /* filter matched */
 1538                                         return (afp->f_class);
 1539                 } else if ((classifier->acc_fbmask &
 1540                         (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
 1541                     == 0) {
 1542                         /* only proto and ports are used */
 1543                         LIST_FOREACH(afp,
 1544                                  &classifier->acc_filters[ACC_WILDCARD_INDEX],
 1545                                  f_chain)
 1546                                 if (apply_ppfilter4(afp->f_fbmask,
 1547                                                     &afp->f_filter, fp))
 1548                                         /* filter matched */
 1549                                         return (afp->f_class);
 1550                 } else {
 1551                         /* get the filter hash entry from its dest address */
 1552                         i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
 1553                         do {
 1554                                 /*
 1555                                  * go through this loop twice.  first for dst
 1556                                  * hash, second for wildcards.
 1557                                  */
 1558                                 LIST_FOREACH(afp, &classifier->acc_filters[i],
 1559                                              f_chain)
 1560                                         if (apply_filter4(afp->f_fbmask,
 1561                                                           &afp->f_filter, fp))
 1562                                                 /* filter matched */
 1563                                                 return (afp->f_class);
 1564 
 1565                                 /*
 1566                                  * check again for filters with a dst addr
 1567                                  * wildcard.
 1568                                  * (daddr == 0 || dmask != 0xffffffff).
 1569                                  */
 1570                                 if (i != ACC_WILDCARD_INDEX)
 1571                                         i = ACC_WILDCARD_INDEX;
 1572                                 else
 1573                                         break;
 1574                         } while (1);
 1575                 }
 1576         }
 1577 #ifdef INET6
 1578         else if (flow.fi_family == AF_INET6) {
 1579                 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
 1580 
 1581                 /* get the filter hash entry from its flow ID */
 1582                 if (fp6->fi6_flowlabel != 0)
 1583                         i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
 1584                 else
 1585                         /* flowlable can be zero */
 1586                         i = ACC_WILDCARD_INDEX;
 1587 
 1588                 /* go through this loop twice.  first for flow hash, second
 1589                    for wildcards. */
 1590                 do {
 1591                         LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 1592                                 if (apply_filter6(afp->f_fbmask,
 1593                                         (struct flow_filter6 *)&afp->f_filter,
 1594                                         fp6))
 1595                                         /* filter matched */
 1596                                         return (afp->f_class);
 1597 
 1598                         /*
 1599                          * check again for filters with a wildcard.
 1600                          */
 1601                         if (i != ACC_WILDCARD_INDEX)
 1602                                 i = ACC_WILDCARD_INDEX;
 1603                         else
 1604                                 break;
 1605                 } while (1);
 1606         }
 1607 #endif /* INET6 */
 1608 
 1609         /* no filter matched */
 1610         return (NULL);
 1611 }
 1612 
 1613 static int
 1614 apply_filter4(fbmask, filt, pkt)
 1615         u_int32_t       fbmask;
 1616         struct flow_filter *filt;
 1617         struct flowinfo_in *pkt;
 1618 {
 1619         if (filt->ff_flow.fi_family != AF_INET)
 1620                 return (0);
 1621         if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
 1622                 return (0);
 1623         if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
 1624                 return (0);
 1625         if ((fbmask & FIMB4_DADDR) &&
 1626             filt->ff_flow.fi_dst.s_addr !=
 1627             (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
 1628                 return (0);
 1629         if ((fbmask & FIMB4_SADDR) &&
 1630             filt->ff_flow.fi_src.s_addr !=
 1631             (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
 1632                 return (0);
 1633         if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
 1634                 return (0);
 1635         if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
 1636             (pkt->fi_tos & filt->ff_mask.mask_tos))
 1637                 return (0);
 1638         if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
 1639                 return (0);
 1640         /* match */
 1641         return (1);
 1642 }
 1643 
 1644 /*
 1645  * filter matching function optimized for a common case that checks
 1646  * only protocol and port numbers
 1647  */
 1648 static int
 1649 apply_ppfilter4(fbmask, filt, pkt)
 1650         u_int32_t       fbmask;
 1651         struct flow_filter *filt;
 1652         struct flowinfo_in *pkt;
 1653 {
 1654         if (filt->ff_flow.fi_family != AF_INET)
 1655                 return (0);
 1656         if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
 1657                 return (0);
 1658         if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
 1659                 return (0);
 1660         if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
 1661                 return (0);
 1662         /* match */
 1663         return (1);
 1664 }
 1665 
 1666 /*
 1667  * filter matching function only for tos field.
 1668  */
 1669 static int
 1670 apply_tosfilter4(fbmask, filt, pkt)
 1671         u_int32_t       fbmask;
 1672         struct flow_filter *filt;
 1673         struct flowinfo_in *pkt;
 1674 {
 1675         if (filt->ff_flow.fi_family != AF_INET)
 1676                 return (0);
 1677         if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
 1678             (pkt->fi_tos & filt->ff_mask.mask_tos))
 1679                 return (0);
 1680         /* match */
 1681         return (1);
 1682 }
 1683 
 1684 #ifdef INET6
 1685 static int
 1686 apply_filter6(fbmask, filt, pkt)
 1687         u_int32_t       fbmask;
 1688         struct flow_filter6 *filt;
 1689         struct flowinfo_in6 *pkt;
 1690 {
 1691         int i;
 1692 
 1693         if (filt->ff_flow6.fi6_family != AF_INET6)
 1694                 return (0);
 1695         if ((fbmask & FIMB6_FLABEL) &&
 1696             filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
 1697                 return (0);
 1698         if ((fbmask & FIMB6_PROTO) &&
 1699             filt->ff_flow6.fi6_proto != pkt->fi6_proto)
 1700                 return (0);
 1701         if ((fbmask & FIMB6_SPORT) &&
 1702             filt->ff_flow6.fi6_sport != pkt->fi6_sport)
 1703                 return (0);
 1704         if ((fbmask & FIMB6_DPORT) &&
 1705             filt->ff_flow6.fi6_dport != pkt->fi6_dport)
 1706                 return (0);
 1707         if (fbmask & FIMB6_SADDR) {
 1708                 for (i = 0; i < 4; i++)
 1709                         if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
 1710                             (pkt->fi6_src.s6_addr32[i] &
 1711                              filt->ff_mask6.mask6_src.s6_addr32[i]))
 1712                                 return (0);
 1713         }
 1714         if (fbmask & FIMB6_DADDR) {
 1715                 for (i = 0; i < 4; i++)
 1716                         if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
 1717                             (pkt->fi6_dst.s6_addr32[i] &
 1718                              filt->ff_mask6.mask6_dst.s6_addr32[i]))
 1719                                 return (0);
 1720         }
 1721         if ((fbmask & FIMB6_TCLASS) &&
 1722             filt->ff_flow6.fi6_tclass !=
 1723             (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
 1724                 return (0);
 1725         if ((fbmask & FIMB6_GPI) &&
 1726             filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
 1727                 return (0);
 1728         /* match */
 1729         return (1);
 1730 }
 1731 #endif /* INET6 */
 1732 
 1733 /*
 1734  *  filter handle:
 1735  *      bit 20-28: index to the filter hash table
 1736  *      bit  0-19: unique id in the hash bucket.
 1737  */
 1738 static u_long
 1739 get_filt_handle(classifier, i)
 1740         struct acc_classifier *classifier;
 1741         int     i;
 1742 {
 1743         static u_long handle_number = 1;
 1744         u_long  handle;
 1745         struct acc_filter *afp;
 1746 
 1747         while (1) {
 1748                 handle = handle_number++ & 0x000fffff;
 1749 
 1750                 if (LIST_EMPTY(&classifier->acc_filters[i]))
 1751                         break;
 1752 
 1753                 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 1754                         if ((afp->f_handle & 0x000fffff) == handle)
 1755                                 break;
 1756                 if (afp == NULL)
 1757                         break;
 1758                 /* this handle is already used, try again */
 1759         }
 1760 
 1761         return ((i << 20) | handle);
 1762 }
 1763 
 1764 /* convert filter handle to filter pointer */
 1765 static struct acc_filter *
 1766 filth_to_filtp(classifier, handle)
 1767         struct acc_classifier *classifier;
 1768         u_long handle;
 1769 {
 1770         struct acc_filter *afp;
 1771         int     i;
 1772 
 1773         i = ACC_GET_HINDEX(handle);
 1774 
 1775         LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 1776                 if (afp->f_handle == handle)
 1777                         return (afp);
 1778 
 1779         return (NULL);
 1780 }
 1781 
 1782 /* create flowinfo bitmask */
 1783 static u_int32_t
 1784 filt2fibmask(filt)
 1785         struct flow_filter *filt;
 1786 {
 1787         u_int32_t mask = 0;
 1788 #ifdef INET6
 1789         struct flow_filter6 *filt6;
 1790 #endif
 1791 
 1792         switch (filt->ff_flow.fi_family) {
 1793         case AF_INET:
 1794                 if (filt->ff_flow.fi_proto != 0)
 1795                         mask |= FIMB4_PROTO;
 1796                 if (filt->ff_flow.fi_tos != 0)
 1797                         mask |= FIMB4_TOS;
 1798                 if (filt->ff_flow.fi_dst.s_addr != 0)
 1799                         mask |= FIMB4_DADDR;
 1800                 if (filt->ff_flow.fi_src.s_addr != 0)
 1801                         mask |= FIMB4_SADDR;
 1802                 if (filt->ff_flow.fi_sport != 0)
 1803                         mask |= FIMB4_SPORT;
 1804                 if (filt->ff_flow.fi_dport != 0)
 1805                         mask |= FIMB4_DPORT;
 1806                 if (filt->ff_flow.fi_gpi != 0)
 1807                         mask |= FIMB4_GPI;
 1808                 break;
 1809 #ifdef INET6
 1810         case AF_INET6:
 1811                 filt6 = (struct flow_filter6 *)filt;
 1812 
 1813                 if (filt6->ff_flow6.fi6_proto != 0)
 1814                         mask |= FIMB6_PROTO;
 1815                 if (filt6->ff_flow6.fi6_tclass != 0)
 1816                         mask |= FIMB6_TCLASS;
 1817                 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
 1818                         mask |= FIMB6_DADDR;
 1819                 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
 1820                         mask |= FIMB6_SADDR;
 1821                 if (filt6->ff_flow6.fi6_sport != 0)
 1822                         mask |= FIMB6_SPORT;
 1823                 if (filt6->ff_flow6.fi6_dport != 0)
 1824                         mask |= FIMB6_DPORT;
 1825                 if (filt6->ff_flow6.fi6_gpi != 0)
 1826                         mask |= FIMB6_GPI;
 1827                 if (filt6->ff_flow6.fi6_flowlabel != 0)
 1828                         mask |= FIMB6_FLABEL;
 1829                 break;
 1830 #endif /* INET6 */
 1831         }
 1832         return (mask);
 1833 }
 1834 
 1835 /*
 1836  * helper functions to handle IPv4 fragments.
 1837  * currently only in-sequence fragments are handled.
 1838  *      - fragment info is cached in a LRU list.
 1839  *      - when a first fragment is found, cache its flow info.
 1840  *      - when a non-first fragment is found, lookup the cache.
 1841  */
 1842 
 1843 struct ip4_frag {
 1844     TAILQ_ENTRY(ip4_frag) ip4f_chain;
 1845     char    ip4f_valid;
 1846     u_short ip4f_id;
 1847     struct flowinfo_in ip4f_info;
 1848 };
 1849 
 1850 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
 1851 
 1852 #define IP4F_TABSIZE            16      /* IPv4 fragment cache size */
 1853 
 1854 static void
 1855 ip4f_cache(ip, fin)
 1856         struct ip *ip;
 1857         struct flowinfo_in *fin;
 1858 {
 1859         struct ip4_frag *fp;
 1860 
 1861         if (TAILQ_EMPTY(&ip4f_list)) {
 1862                 /* first time call, allocate fragment cache entries. */
 1863                 if (ip4f_init() < 0)
 1864                         /* allocation failed! */
 1865                         return;
 1866         }
 1867 
 1868         fp = ip4f_alloc();
 1869         fp->ip4f_id = ip->ip_id;
 1870         fp->ip4f_info.fi_proto = ip->ip_p;
 1871         fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
 1872         fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
 1873 
 1874         /* save port numbers */
 1875         fp->ip4f_info.fi_sport = fin->fi_sport;
 1876         fp->ip4f_info.fi_dport = fin->fi_dport;
 1877         fp->ip4f_info.fi_gpi   = fin->fi_gpi;
 1878 }
 1879 
 1880 static int
 1881 ip4f_lookup(ip, fin)
 1882         struct ip *ip;
 1883         struct flowinfo_in *fin;
 1884 {
 1885         struct ip4_frag *fp;
 1886 
 1887         for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
 1888              fp = TAILQ_NEXT(fp, ip4f_chain))
 1889                 if (ip->ip_id == fp->ip4f_id &&
 1890                     ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
 1891                     ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
 1892                     ip->ip_p == fp->ip4f_info.fi_proto) {
 1893                         /* found the matching entry */
 1894                         fin->fi_sport = fp->ip4f_info.fi_sport;
 1895                         fin->fi_dport = fp->ip4f_info.fi_dport;
 1896                         fin->fi_gpi   = fp->ip4f_info.fi_gpi;
 1897 
 1898                         if ((ntohs(ip->ip_off) & IP_MF) == 0)
 1899                                 /* this is the last fragment,
 1900                                    release the entry. */
 1901                                 ip4f_free(fp);
 1902 
 1903                         return (1);
 1904                 }
 1905 
 1906         /* no matching entry found */
 1907         return (0);
 1908 }
 1909 
 1910 static int
 1911 ip4f_init(void)
 1912 {
 1913         struct ip4_frag *fp;
 1914         int i;
 1915 
 1916         TAILQ_INIT(&ip4f_list);
 1917         for (i=0; i<IP4F_TABSIZE; i++) {
 1918                 fp = malloc(sizeof(struct ip4_frag),
 1919                        M_DEVBUF, M_NOWAIT);
 1920                 if (fp == NULL) {
 1921                         printf("ip4f_init: can't alloc %dth entry!\n", i);
 1922                         if (i == 0)
 1923                                 return (-1);
 1924                         return (0);
 1925                 }
 1926                 fp->ip4f_valid = 0;
 1927                 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
 1928         }
 1929         return (0);
 1930 }
 1931 
 1932 static struct ip4_frag *
 1933 ip4f_alloc(void)
 1934 {
 1935         struct ip4_frag *fp;
 1936 
 1937         /* reclaim an entry at the tail, put it at the head */
 1938         fp = TAILQ_LAST(&ip4f_list, ip4f_list);
 1939         TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
 1940         fp->ip4f_valid = 1;
 1941         TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
 1942         return (fp);
 1943 }
 1944 
 1945 static void
 1946 ip4f_free(fp)
 1947         struct ip4_frag *fp;
 1948 {
 1949         TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
 1950         fp->ip4f_valid = 0;
 1951         TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
 1952 }
 1953 
 1954 #endif /* ALTQ3_CLFIER_COMPAT */

Cache object: ba768173afb3d2a25ad364b8306ddbcf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.