FreeBSD/Linux Kernel Cross Reference
sys/net/bpf.c
1 /*-
2 * Copyright (c) 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from the Stanford/CMU enet packet filter,
6 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
7 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
8 * Berkeley Laboratory.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)bpf.c 8.4 (Berkeley) 1/9/95
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD: releng/9.0/sys/net/bpf.c 225177 2011-08-25 15:51:54Z attilio $");
39
40 #include "opt_bpf.h"
41 #include "opt_compat.h"
42 #include "opt_netgraph.h"
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/time.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/filio.h>
57 #include <sys/sockio.h>
58 #include <sys/ttycom.h>
59 #include <sys/uio.h>
60
61 #include <sys/event.h>
62 #include <sys/file.h>
63 #include <sys/poll.h>
64 #include <sys/proc.h>
65
66 #include <sys/socket.h>
67
68 #include <net/if.h>
69 #include <net/bpf.h>
70 #include <net/bpf_buffer.h>
71 #ifdef BPF_JITTER
72 #include <net/bpf_jitter.h>
73 #endif
74 #include <net/bpf_zerocopy.h>
75 #include <net/bpfdesc.h>
76 #include <net/vnet.h>
77
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82
83 #include <net80211/ieee80211_freebsd.h>
84
85 #include <security/mac/mac_framework.h>
86
87 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
88
89 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
90
91 #define PRINET 26 /* interruptible */
92
93 #define SIZEOF_BPF_HDR(type) \
94 (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
95
96 #ifdef COMPAT_FREEBSD32
97 #include <sys/mount.h>
98 #include <compat/freebsd32/freebsd32.h>
99 #define BPF_ALIGNMENT32 sizeof(int32_t)
100 #define BPF_WORDALIGN32(x) (((x)+(BPF_ALIGNMENT32-1))&~(BPF_ALIGNMENT32-1))
101
102 #ifndef BURN_BRIDGES
103 /*
104 * 32-bit version of structure prepended to each packet. We use this header
105 * instead of the standard one for 32-bit streams. We mark the a stream as
106 * 32-bit the first time we see a 32-bit compat ioctl request.
107 */
108 struct bpf_hdr32 {
109 struct timeval32 bh_tstamp; /* time stamp */
110 uint32_t bh_caplen; /* length of captured portion */
111 uint32_t bh_datalen; /* original length of packet */
112 uint16_t bh_hdrlen; /* length of bpf header (this struct
113 plus alignment padding) */
114 };
115 #endif
116
117 struct bpf_program32 {
118 u_int bf_len;
119 uint32_t bf_insns;
120 };
121
122 struct bpf_dltlist32 {
123 u_int bfl_len;
124 u_int bfl_list;
125 };
126
127 #define BIOCSETF32 _IOW('B', 103, struct bpf_program32)
128 #define BIOCSRTIMEOUT32 _IOW('B', 109, struct timeval32)
129 #define BIOCGRTIMEOUT32 _IOR('B', 110, struct timeval32)
130 #define BIOCGDLTLIST32 _IOWR('B', 121, struct bpf_dltlist32)
131 #define BIOCSETWF32 _IOW('B', 123, struct bpf_program32)
132 #define BIOCSETFNR32 _IOW('B', 130, struct bpf_program32)
133 #endif
134
135 /*
136 * bpf_iflist is a list of BPF interface structures, each corresponding to a
137 * specific DLT. The same network interface might have several BPF interface
138 * structures registered by different layers in the stack (i.e., 802.11
139 * frames, ethernet frames, etc).
140 */
141 static LIST_HEAD(, bpf_if) bpf_iflist;
142 static struct mtx bpf_mtx; /* bpf global lock */
143 static int bpf_bpfd_cnt;
144
145 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
146 static void bpf_detachd(struct bpf_d *);
147 static void bpf_freed(struct bpf_d *);
148 static int bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
149 struct sockaddr *, int *, struct bpf_insn *);
150 static int bpf_setif(struct bpf_d *, struct ifreq *);
151 static void bpf_timed_out(void *);
152 static __inline void
153 bpf_wakeup(struct bpf_d *);
154 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
155 void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
156 struct bintime *);
157 static void reset_d(struct bpf_d *);
158 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
159 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
160 static int bpf_setdlt(struct bpf_d *, u_int);
161 static void filt_bpfdetach(struct knote *);
162 static int filt_bpfread(struct knote *, long);
163 static void bpf_drvinit(void *);
164 static int bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
165
166 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl");
167 int bpf_maxinsns = BPF_MAXINSNS;
168 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
169 &bpf_maxinsns, 0, "Maximum bpf program instructions");
170 static int bpf_zerocopy_enable = 0;
171 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
172 &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
173 SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
174 bpf_stats_sysctl, "bpf statistics portal");
175
176 static d_open_t bpfopen;
177 static d_read_t bpfread;
178 static d_write_t bpfwrite;
179 static d_ioctl_t bpfioctl;
180 static d_poll_t bpfpoll;
181 static d_kqfilter_t bpfkqfilter;
182
183 static struct cdevsw bpf_cdevsw = {
184 .d_version = D_VERSION,
185 .d_open = bpfopen,
186 .d_read = bpfread,
187 .d_write = bpfwrite,
188 .d_ioctl = bpfioctl,
189 .d_poll = bpfpoll,
190 .d_name = "bpf",
191 .d_kqfilter = bpfkqfilter,
192 };
193
194 static struct filterops bpfread_filtops = {
195 .f_isfd = 1,
196 .f_detach = filt_bpfdetach,
197 .f_event = filt_bpfread,
198 };
199
200 /*
201 * Wrapper functions for various buffering methods. If the set of buffer
202 * modes expands, we will probably want to introduce a switch data structure
203 * similar to protosw, et.
204 */
205 static void
206 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
207 u_int len)
208 {
209
210 BPFD_LOCK_ASSERT(d);
211
212 switch (d->bd_bufmode) {
213 case BPF_BUFMODE_BUFFER:
214 return (bpf_buffer_append_bytes(d, buf, offset, src, len));
215
216 case BPF_BUFMODE_ZBUF:
217 d->bd_zcopy++;
218 return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
219
220 default:
221 panic("bpf_buf_append_bytes");
222 }
223 }
224
225 static void
226 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
227 u_int len)
228 {
229
230 BPFD_LOCK_ASSERT(d);
231
232 switch (d->bd_bufmode) {
233 case BPF_BUFMODE_BUFFER:
234 return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
235
236 case BPF_BUFMODE_ZBUF:
237 d->bd_zcopy++;
238 return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
239
240 default:
241 panic("bpf_buf_append_mbuf");
242 }
243 }
244
245 /*
246 * This function gets called when the free buffer is re-assigned.
247 */
248 static void
249 bpf_buf_reclaimed(struct bpf_d *d)
250 {
251
252 BPFD_LOCK_ASSERT(d);
253
254 switch (d->bd_bufmode) {
255 case BPF_BUFMODE_BUFFER:
256 return;
257
258 case BPF_BUFMODE_ZBUF:
259 bpf_zerocopy_buf_reclaimed(d);
260 return;
261
262 default:
263 panic("bpf_buf_reclaimed");
264 }
265 }
266
267 /*
268 * If the buffer mechanism has a way to decide that a held buffer can be made
269 * free, then it is exposed via the bpf_canfreebuf() interface. (1) is
270 * returned if the buffer can be discarded, (0) is returned if it cannot.
271 */
272 static int
273 bpf_canfreebuf(struct bpf_d *d)
274 {
275
276 BPFD_LOCK_ASSERT(d);
277
278 switch (d->bd_bufmode) {
279 case BPF_BUFMODE_ZBUF:
280 return (bpf_zerocopy_canfreebuf(d));
281 }
282 return (0);
283 }
284
285 /*
286 * Allow the buffer model to indicate that the current store buffer is
287 * immutable, regardless of the appearance of space. Return (1) if the
288 * buffer is writable, and (0) if not.
289 */
290 static int
291 bpf_canwritebuf(struct bpf_d *d)
292 {
293
294 BPFD_LOCK_ASSERT(d);
295
296 switch (d->bd_bufmode) {
297 case BPF_BUFMODE_ZBUF:
298 return (bpf_zerocopy_canwritebuf(d));
299 }
300 return (1);
301 }
302
303 /*
304 * Notify buffer model that an attempt to write to the store buffer has
305 * resulted in a dropped packet, in which case the buffer may be considered
306 * full.
307 */
308 static void
309 bpf_buffull(struct bpf_d *d)
310 {
311
312 BPFD_LOCK_ASSERT(d);
313
314 switch (d->bd_bufmode) {
315 case BPF_BUFMODE_ZBUF:
316 bpf_zerocopy_buffull(d);
317 break;
318 }
319 }
320
321 /*
322 * Notify the buffer model that a buffer has moved into the hold position.
323 */
324 void
325 bpf_bufheld(struct bpf_d *d)
326 {
327
328 BPFD_LOCK_ASSERT(d);
329
330 switch (d->bd_bufmode) {
331 case BPF_BUFMODE_ZBUF:
332 bpf_zerocopy_bufheld(d);
333 break;
334 }
335 }
336
337 static void
338 bpf_free(struct bpf_d *d)
339 {
340
341 switch (d->bd_bufmode) {
342 case BPF_BUFMODE_BUFFER:
343 return (bpf_buffer_free(d));
344
345 case BPF_BUFMODE_ZBUF:
346 return (bpf_zerocopy_free(d));
347
348 default:
349 panic("bpf_buf_free");
350 }
351 }
352
353 static int
354 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
355 {
356
357 if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
358 return (EOPNOTSUPP);
359 return (bpf_buffer_uiomove(d, buf, len, uio));
360 }
361
362 static int
363 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
364 {
365
366 if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
367 return (EOPNOTSUPP);
368 return (bpf_buffer_ioctl_sblen(d, i));
369 }
370
371 static int
372 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
373 {
374
375 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
376 return (EOPNOTSUPP);
377 return (bpf_zerocopy_ioctl_getzmax(td, d, i));
378 }
379
380 static int
381 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
382 {
383
384 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
385 return (EOPNOTSUPP);
386 return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
387 }
388
389 static int
390 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
391 {
392
393 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
394 return (EOPNOTSUPP);
395 return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
396 }
397
398 /*
399 * General BPF functions.
400 */
401 static int
402 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
403 struct sockaddr *sockp, int *hdrlen, struct bpf_insn *wfilter)
404 {
405 const struct ieee80211_bpf_params *p;
406 struct ether_header *eh;
407 struct mbuf *m;
408 int error;
409 int len;
410 int hlen;
411 int slen;
412
413 /*
414 * Build a sockaddr based on the data link layer type.
415 * We do this at this level because the ethernet header
416 * is copied directly into the data field of the sockaddr.
417 * In the case of SLIP, there is no header and the packet
418 * is forwarded as is.
419 * Also, we are careful to leave room at the front of the mbuf
420 * for the link level header.
421 */
422 switch (linktype) {
423
424 case DLT_SLIP:
425 sockp->sa_family = AF_INET;
426 hlen = 0;
427 break;
428
429 case DLT_EN10MB:
430 sockp->sa_family = AF_UNSPEC;
431 /* XXX Would MAXLINKHDR be better? */
432 hlen = ETHER_HDR_LEN;
433 break;
434
435 case DLT_FDDI:
436 sockp->sa_family = AF_IMPLINK;
437 hlen = 0;
438 break;
439
440 case DLT_RAW:
441 sockp->sa_family = AF_UNSPEC;
442 hlen = 0;
443 break;
444
445 case DLT_NULL:
446 /*
447 * null interface types require a 4 byte pseudo header which
448 * corresponds to the address family of the packet.
449 */
450 sockp->sa_family = AF_UNSPEC;
451 hlen = 4;
452 break;
453
454 case DLT_ATM_RFC1483:
455 /*
456 * en atm driver requires 4-byte atm pseudo header.
457 * though it isn't standard, vpi:vci needs to be
458 * specified anyway.
459 */
460 sockp->sa_family = AF_UNSPEC;
461 hlen = 12; /* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
462 break;
463
464 case DLT_PPP:
465 sockp->sa_family = AF_UNSPEC;
466 hlen = 4; /* This should match PPP_HDRLEN */
467 break;
468
469 case DLT_IEEE802_11: /* IEEE 802.11 wireless */
470 sockp->sa_family = AF_IEEE80211;
471 hlen = 0;
472 break;
473
474 case DLT_IEEE802_11_RADIO: /* IEEE 802.11 wireless w/ phy params */
475 sockp->sa_family = AF_IEEE80211;
476 sockp->sa_len = 12; /* XXX != 0 */
477 hlen = sizeof(struct ieee80211_bpf_params);
478 break;
479
480 default:
481 return (EIO);
482 }
483
484 len = uio->uio_resid;
485
486 if (len - hlen > ifp->if_mtu)
487 return (EMSGSIZE);
488
489 if ((unsigned)len > MJUM16BYTES)
490 return (EIO);
491
492 if (len <= MHLEN)
493 MGETHDR(m, M_WAIT, MT_DATA);
494 else if (len <= MCLBYTES)
495 m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
496 else
497 m = m_getjcl(M_WAIT, MT_DATA, M_PKTHDR,
498 #if (MJUMPAGESIZE > MCLBYTES)
499 len <= MJUMPAGESIZE ? MJUMPAGESIZE :
500 #endif
501 (len <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES));
502 m->m_pkthdr.len = m->m_len = len;
503 m->m_pkthdr.rcvif = NULL;
504 *mp = m;
505
506 if (m->m_len < hlen) {
507 error = EPERM;
508 goto bad;
509 }
510
511 error = uiomove(mtod(m, u_char *), len, uio);
512 if (error)
513 goto bad;
514
515 slen = bpf_filter(wfilter, mtod(m, u_char *), len, len);
516 if (slen == 0) {
517 error = EPERM;
518 goto bad;
519 }
520
521 /* Check for multicast destination */
522 switch (linktype) {
523 case DLT_EN10MB:
524 eh = mtod(m, struct ether_header *);
525 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
526 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
527 ETHER_ADDR_LEN) == 0)
528 m->m_flags |= M_BCAST;
529 else
530 m->m_flags |= M_MCAST;
531 }
532 break;
533 }
534
535 /*
536 * Make room for link header, and copy it to sockaddr
537 */
538 if (hlen != 0) {
539 if (sockp->sa_family == AF_IEEE80211) {
540 /*
541 * Collect true length from the parameter header
542 * NB: sockp is known to be zero'd so if we do a
543 * short copy unspecified parameters will be
544 * zero.
545 * NB: packet may not be aligned after stripping
546 * bpf params
547 * XXX check ibp_vers
548 */
549 p = mtod(m, const struct ieee80211_bpf_params *);
550 hlen = p->ibp_len;
551 if (hlen > sizeof(sockp->sa_data)) {
552 error = EINVAL;
553 goto bad;
554 }
555 }
556 bcopy(m->m_data, sockp->sa_data, hlen);
557 }
558 *hdrlen = hlen;
559
560 return (0);
561 bad:
562 m_freem(m);
563 return (error);
564 }
565
566 /*
567 * Attach file to the bpf interface, i.e. make d listen on bp.
568 */
569 static void
570 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
571 {
572 /*
573 * Point d at bp, and add d to the interface's list of listeners.
574 * Finally, point the driver's bpf cookie at the interface so
575 * it will divert packets to bpf.
576 */
577 BPFIF_LOCK(bp);
578 d->bd_bif = bp;
579 LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
580
581 bpf_bpfd_cnt++;
582 BPFIF_UNLOCK(bp);
583
584 EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
585 }
586
587 /*
588 * Detach a file from its interface.
589 */
590 static void
591 bpf_detachd(struct bpf_d *d)
592 {
593 int error;
594 struct bpf_if *bp;
595 struct ifnet *ifp;
596
597 bp = d->bd_bif;
598 BPFIF_LOCK(bp);
599 BPFD_LOCK(d);
600 ifp = d->bd_bif->bif_ifp;
601
602 /*
603 * Remove d from the interface's descriptor list.
604 */
605 LIST_REMOVE(d, bd_next);
606
607 bpf_bpfd_cnt--;
608 d->bd_bif = NULL;
609 BPFD_UNLOCK(d);
610 BPFIF_UNLOCK(bp);
611
612 EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
613
614 /*
615 * Check if this descriptor had requested promiscuous mode.
616 * If so, turn it off.
617 */
618 if (d->bd_promisc) {
619 d->bd_promisc = 0;
620 CURVNET_SET(ifp->if_vnet);
621 error = ifpromisc(ifp, 0);
622 CURVNET_RESTORE();
623 if (error != 0 && error != ENXIO) {
624 /*
625 * ENXIO can happen if a pccard is unplugged
626 * Something is really wrong if we were able to put
627 * the driver into promiscuous mode, but can't
628 * take it out.
629 */
630 if_printf(bp->bif_ifp,
631 "bpf_detach: ifpromisc failed (%d)\n", error);
632 }
633 }
634 }
635
636 /*
637 * Close the descriptor by detaching it from its interface,
638 * deallocating its buffers, and marking it free.
639 */
640 static void
641 bpf_dtor(void *data)
642 {
643 struct bpf_d *d = data;
644
645 BPFD_LOCK(d);
646 if (d->bd_state == BPF_WAITING)
647 callout_stop(&d->bd_callout);
648 d->bd_state = BPF_IDLE;
649 BPFD_UNLOCK(d);
650 funsetown(&d->bd_sigio);
651 mtx_lock(&bpf_mtx);
652 if (d->bd_bif)
653 bpf_detachd(d);
654 mtx_unlock(&bpf_mtx);
655 #ifdef MAC
656 mac_bpfdesc_destroy(d);
657 #endif /* MAC */
658 seldrain(&d->bd_sel);
659 knlist_destroy(&d->bd_sel.si_note);
660 callout_drain(&d->bd_callout);
661 bpf_freed(d);
662 free(d, M_BPF);
663 }
664
665 /*
666 * Open ethernet device. Returns ENXIO for illegal minor device number,
667 * EBUSY if file is open by another process.
668 */
669 /* ARGSUSED */
670 static int
671 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
672 {
673 struct bpf_d *d;
674 int error;
675
676 d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
677 error = devfs_set_cdevpriv(d, bpf_dtor);
678 if (error != 0) {
679 free(d, M_BPF);
680 return (error);
681 }
682
683 /*
684 * For historical reasons, perform a one-time initialization call to
685 * the buffer routines, even though we're not yet committed to a
686 * particular buffer method.
687 */
688 bpf_buffer_init(d);
689 d->bd_bufmode = BPF_BUFMODE_BUFFER;
690 d->bd_sig = SIGIO;
691 d->bd_direction = BPF_D_INOUT;
692 d->bd_pid = td->td_proc->p_pid;
693 #ifdef MAC
694 mac_bpfdesc_init(d);
695 mac_bpfdesc_create(td->td_ucred, d);
696 #endif
697 mtx_init(&d->bd_mtx, devtoname(dev), "bpf cdev lock", MTX_DEF);
698 callout_init_mtx(&d->bd_callout, &d->bd_mtx, 0);
699 knlist_init_mtx(&d->bd_sel.si_note, &d->bd_mtx);
700
701 return (0);
702 }
703
704 /*
705 * bpfread - read next chunk of packets from buffers
706 */
707 static int
708 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
709 {
710 struct bpf_d *d;
711 int error;
712 int non_block;
713 int timed_out;
714
715 error = devfs_get_cdevpriv((void **)&d);
716 if (error != 0)
717 return (error);
718
719 /*
720 * Restrict application to use a buffer the same size as
721 * as kernel buffers.
722 */
723 if (uio->uio_resid != d->bd_bufsize)
724 return (EINVAL);
725
726 non_block = ((ioflag & O_NONBLOCK) != 0);
727
728 BPFD_LOCK(d);
729 d->bd_pid = curthread->td_proc->p_pid;
730 if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
731 BPFD_UNLOCK(d);
732 return (EOPNOTSUPP);
733 }
734 if (d->bd_state == BPF_WAITING)
735 callout_stop(&d->bd_callout);
736 timed_out = (d->bd_state == BPF_TIMED_OUT);
737 d->bd_state = BPF_IDLE;
738 /*
739 * If the hold buffer is empty, then do a timed sleep, which
740 * ends when the timeout expires or when enough packets
741 * have arrived to fill the store buffer.
742 */
743 while (d->bd_hbuf == NULL) {
744 if (d->bd_slen != 0) {
745 /*
746 * A packet(s) either arrived since the previous
747 * read or arrived while we were asleep.
748 */
749 if (d->bd_immediate || non_block || timed_out) {
750 /*
751 * Rotate the buffers and return what's here
752 * if we are in immediate mode, non-blocking
753 * flag is set, or this descriptor timed out.
754 */
755 ROTATE_BUFFERS(d);
756 break;
757 }
758 }
759
760 /*
761 * No data is available, check to see if the bpf device
762 * is still pointed at a real interface. If not, return
763 * ENXIO so that the userland process knows to rebind
764 * it before using it again.
765 */
766 if (d->bd_bif == NULL) {
767 BPFD_UNLOCK(d);
768 return (ENXIO);
769 }
770
771 if (non_block) {
772 BPFD_UNLOCK(d);
773 return (EWOULDBLOCK);
774 }
775 error = msleep(d, &d->bd_mtx, PRINET|PCATCH,
776 "bpf", d->bd_rtout);
777 if (error == EINTR || error == ERESTART) {
778 BPFD_UNLOCK(d);
779 return (error);
780 }
781 if (error == EWOULDBLOCK) {
782 /*
783 * On a timeout, return what's in the buffer,
784 * which may be nothing. If there is something
785 * in the store buffer, we can rotate the buffers.
786 */
787 if (d->bd_hbuf)
788 /*
789 * We filled up the buffer in between
790 * getting the timeout and arriving
791 * here, so we don't need to rotate.
792 */
793 break;
794
795 if (d->bd_slen == 0) {
796 BPFD_UNLOCK(d);
797 return (0);
798 }
799 ROTATE_BUFFERS(d);
800 break;
801 }
802 }
803 /*
804 * At this point, we know we have something in the hold slot.
805 */
806 BPFD_UNLOCK(d);
807
808 /*
809 * Move data from hold buffer into user space.
810 * We know the entire buffer is transferred since
811 * we checked above that the read buffer is bpf_bufsize bytes.
812 *
813 * XXXRW: More synchronization needed here: what if a second thread
814 * issues a read on the same fd at the same time? Don't want this
815 * getting invalidated.
816 */
817 error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
818
819 BPFD_LOCK(d);
820 d->bd_fbuf = d->bd_hbuf;
821 d->bd_hbuf = NULL;
822 d->bd_hlen = 0;
823 bpf_buf_reclaimed(d);
824 BPFD_UNLOCK(d);
825
826 return (error);
827 }
828
829 /*
830 * If there are processes sleeping on this descriptor, wake them up.
831 */
832 static __inline void
833 bpf_wakeup(struct bpf_d *d)
834 {
835
836 BPFD_LOCK_ASSERT(d);
837 if (d->bd_state == BPF_WAITING) {
838 callout_stop(&d->bd_callout);
839 d->bd_state = BPF_IDLE;
840 }
841 wakeup(d);
842 if (d->bd_async && d->bd_sig && d->bd_sigio)
843 pgsigio(&d->bd_sigio, d->bd_sig, 0);
844
845 selwakeuppri(&d->bd_sel, PRINET);
846 KNOTE_LOCKED(&d->bd_sel.si_note, 0);
847 }
848
849 static void
850 bpf_timed_out(void *arg)
851 {
852 struct bpf_d *d = (struct bpf_d *)arg;
853
854 BPFD_LOCK_ASSERT(d);
855
856 if (callout_pending(&d->bd_callout) || !callout_active(&d->bd_callout))
857 return;
858 if (d->bd_state == BPF_WAITING) {
859 d->bd_state = BPF_TIMED_OUT;
860 if (d->bd_slen != 0)
861 bpf_wakeup(d);
862 }
863 }
864
865 static int
866 bpf_ready(struct bpf_d *d)
867 {
868
869 BPFD_LOCK_ASSERT(d);
870
871 if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
872 return (1);
873 if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
874 d->bd_slen != 0)
875 return (1);
876 return (0);
877 }
878
879 static int
880 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
881 {
882 struct bpf_d *d;
883 struct ifnet *ifp;
884 struct mbuf *m, *mc;
885 struct sockaddr dst;
886 int error, hlen;
887
888 error = devfs_get_cdevpriv((void **)&d);
889 if (error != 0)
890 return (error);
891
892 d->bd_pid = curthread->td_proc->p_pid;
893 d->bd_wcount++;
894 if (d->bd_bif == NULL) {
895 d->bd_wdcount++;
896 return (ENXIO);
897 }
898
899 ifp = d->bd_bif->bif_ifp;
900
901 if ((ifp->if_flags & IFF_UP) == 0) {
902 d->bd_wdcount++;
903 return (ENETDOWN);
904 }
905
906 if (uio->uio_resid == 0) {
907 d->bd_wdcount++;
908 return (0);
909 }
910
911 bzero(&dst, sizeof(dst));
912 m = NULL;
913 hlen = 0;
914 error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp,
915 &m, &dst, &hlen, d->bd_wfilter);
916 if (error) {
917 d->bd_wdcount++;
918 return (error);
919 }
920 d->bd_wfcount++;
921 if (d->bd_hdrcmplt)
922 dst.sa_family = pseudo_AF_HDRCMPLT;
923
924 if (d->bd_feedback) {
925 mc = m_dup(m, M_DONTWAIT);
926 if (mc != NULL)
927 mc->m_pkthdr.rcvif = ifp;
928 /* Set M_PROMISC for outgoing packets to be discarded. */
929 if (d->bd_direction == BPF_D_INOUT)
930 m->m_flags |= M_PROMISC;
931 } else
932 mc = NULL;
933
934 m->m_pkthdr.len -= hlen;
935 m->m_len -= hlen;
936 m->m_data += hlen; /* XXX */
937
938 CURVNET_SET(ifp->if_vnet);
939 #ifdef MAC
940 BPFD_LOCK(d);
941 mac_bpfdesc_create_mbuf(d, m);
942 if (mc != NULL)
943 mac_bpfdesc_create_mbuf(d, mc);
944 BPFD_UNLOCK(d);
945 #endif
946
947 error = (*ifp->if_output)(ifp, m, &dst, NULL);
948 if (error)
949 d->bd_wdcount++;
950
951 if (mc != NULL) {
952 if (error == 0)
953 (*ifp->if_input)(ifp, mc);
954 else
955 m_freem(mc);
956 }
957 CURVNET_RESTORE();
958
959 return (error);
960 }
961
962 /*
963 * Reset a descriptor by flushing its packet buffer and clearing the receive
964 * and drop counts. This is doable for kernel-only buffers, but with
965 * zero-copy buffers, we can't write to (or rotate) buffers that are
966 * currently owned by userspace. It would be nice if we could encapsulate
967 * this logic in the buffer code rather than here.
968 */
969 static void
970 reset_d(struct bpf_d *d)
971 {
972
973 mtx_assert(&d->bd_mtx, MA_OWNED);
974
975 if ((d->bd_hbuf != NULL) &&
976 (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
977 /* Free the hold buffer. */
978 d->bd_fbuf = d->bd_hbuf;
979 d->bd_hbuf = NULL;
980 d->bd_hlen = 0;
981 bpf_buf_reclaimed(d);
982 }
983 if (bpf_canwritebuf(d))
984 d->bd_slen = 0;
985 d->bd_rcount = 0;
986 d->bd_dcount = 0;
987 d->bd_fcount = 0;
988 d->bd_wcount = 0;
989 d->bd_wfcount = 0;
990 d->bd_wdcount = 0;
991 d->bd_zcopy = 0;
992 }
993
994 /*
995 * FIONREAD Check for read packet available.
996 * SIOCGIFADDR Get interface address - convenient hook to driver.
997 * BIOCGBLEN Get buffer len [for read()].
998 * BIOCSETF Set read filter.
999 * BIOCSETFNR Set read filter without resetting descriptor.
1000 * BIOCSETWF Set write filter.
1001 * BIOCFLUSH Flush read packet buffer.
1002 * BIOCPROMISC Put interface into promiscuous mode.
1003 * BIOCGDLT Get link layer type.
1004 * BIOCGETIF Get interface name.
1005 * BIOCSETIF Set interface.
1006 * BIOCSRTIMEOUT Set read timeout.
1007 * BIOCGRTIMEOUT Get read timeout.
1008 * BIOCGSTATS Get packet stats.
1009 * BIOCIMMEDIATE Set immediate mode.
1010 * BIOCVERSION Get filter language version.
1011 * BIOCGHDRCMPLT Get "header already complete" flag
1012 * BIOCSHDRCMPLT Set "header already complete" flag
1013 * BIOCGDIRECTION Get packet direction flag
1014 * BIOCSDIRECTION Set packet direction flag
1015 * BIOCGTSTAMP Get time stamp format and resolution.
1016 * BIOCSTSTAMP Set time stamp format and resolution.
1017 * BIOCLOCK Set "locked" flag
1018 * BIOCFEEDBACK Set packet feedback mode.
1019 * BIOCSETZBUF Set current zero-copy buffer locations.
1020 * BIOCGETZMAX Get maximum zero-copy buffer size.
1021 * BIOCROTZBUF Force rotation of zero-copy buffer
1022 * BIOCSETBUFMODE Set buffer mode.
1023 * BIOCGETBUFMODE Get current buffer mode.
1024 */
1025 /* ARGSUSED */
1026 static int
1027 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1028 struct thread *td)
1029 {
1030 struct bpf_d *d;
1031 int error;
1032
1033 error = devfs_get_cdevpriv((void **)&d);
1034 if (error != 0)
1035 return (error);
1036
1037 /*
1038 * Refresh PID associated with this descriptor.
1039 */
1040 BPFD_LOCK(d);
1041 d->bd_pid = td->td_proc->p_pid;
1042 if (d->bd_state == BPF_WAITING)
1043 callout_stop(&d->bd_callout);
1044 d->bd_state = BPF_IDLE;
1045 BPFD_UNLOCK(d);
1046
1047 if (d->bd_locked == 1) {
1048 switch (cmd) {
1049 case BIOCGBLEN:
1050 case BIOCFLUSH:
1051 case BIOCGDLT:
1052 case BIOCGDLTLIST:
1053 #ifdef COMPAT_FREEBSD32
1054 case BIOCGDLTLIST32:
1055 #endif
1056 case BIOCGETIF:
1057 case BIOCGRTIMEOUT:
1058 #ifdef COMPAT_FREEBSD32
1059 case BIOCGRTIMEOUT32:
1060 #endif
1061 case BIOCGSTATS:
1062 case BIOCVERSION:
1063 case BIOCGRSIG:
1064 case BIOCGHDRCMPLT:
1065 case BIOCSTSTAMP:
1066 case BIOCFEEDBACK:
1067 case FIONREAD:
1068 case BIOCLOCK:
1069 case BIOCSRTIMEOUT:
1070 #ifdef COMPAT_FREEBSD32
1071 case BIOCSRTIMEOUT32:
1072 #endif
1073 case BIOCIMMEDIATE:
1074 case TIOCGPGRP:
1075 case BIOCROTZBUF:
1076 break;
1077 default:
1078 return (EPERM);
1079 }
1080 }
1081 #ifdef COMPAT_FREEBSD32
1082 /*
1083 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1084 * that it will get 32-bit packet headers.
1085 */
1086 switch (cmd) {
1087 case BIOCSETF32:
1088 case BIOCSETFNR32:
1089 case BIOCSETWF32:
1090 case BIOCGDLTLIST32:
1091 case BIOCGRTIMEOUT32:
1092 case BIOCSRTIMEOUT32:
1093 d->bd_compat32 = 1;
1094 }
1095 #endif
1096
1097 CURVNET_SET(TD_TO_VNET(td));
1098 switch (cmd) {
1099
1100 default:
1101 error = EINVAL;
1102 break;
1103
1104 /*
1105 * Check for read packet available.
1106 */
1107 case FIONREAD:
1108 {
1109 int n;
1110
1111 BPFD_LOCK(d);
1112 n = d->bd_slen;
1113 if (d->bd_hbuf)
1114 n += d->bd_hlen;
1115 BPFD_UNLOCK(d);
1116
1117 *(int *)addr = n;
1118 break;
1119 }
1120
1121 case SIOCGIFADDR:
1122 {
1123 struct ifnet *ifp;
1124
1125 if (d->bd_bif == NULL)
1126 error = EINVAL;
1127 else {
1128 ifp = d->bd_bif->bif_ifp;
1129 error = (*ifp->if_ioctl)(ifp, cmd, addr);
1130 }
1131 break;
1132 }
1133
1134 /*
1135 * Get buffer len [for read()].
1136 */
1137 case BIOCGBLEN:
1138 *(u_int *)addr = d->bd_bufsize;
1139 break;
1140
1141 /*
1142 * Set buffer length.
1143 */
1144 case BIOCSBLEN:
1145 error = bpf_ioctl_sblen(d, (u_int *)addr);
1146 break;
1147
1148 /*
1149 * Set link layer read filter.
1150 */
1151 case BIOCSETF:
1152 case BIOCSETFNR:
1153 case BIOCSETWF:
1154 #ifdef COMPAT_FREEBSD32
1155 case BIOCSETF32:
1156 case BIOCSETFNR32:
1157 case BIOCSETWF32:
1158 #endif
1159 error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1160 break;
1161
1162 /*
1163 * Flush read packet buffer.
1164 */
1165 case BIOCFLUSH:
1166 BPFD_LOCK(d);
1167 reset_d(d);
1168 BPFD_UNLOCK(d);
1169 break;
1170
1171 /*
1172 * Put interface into promiscuous mode.
1173 */
1174 case BIOCPROMISC:
1175 if (d->bd_bif == NULL) {
1176 /*
1177 * No interface attached yet.
1178 */
1179 error = EINVAL;
1180 break;
1181 }
1182 if (d->bd_promisc == 0) {
1183 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1184 if (error == 0)
1185 d->bd_promisc = 1;
1186 }
1187 break;
1188
1189 /*
1190 * Get current data link type.
1191 */
1192 case BIOCGDLT:
1193 if (d->bd_bif == NULL)
1194 error = EINVAL;
1195 else
1196 *(u_int *)addr = d->bd_bif->bif_dlt;
1197 break;
1198
1199 /*
1200 * Get a list of supported data link types.
1201 */
1202 #ifdef COMPAT_FREEBSD32
1203 case BIOCGDLTLIST32:
1204 {
1205 struct bpf_dltlist32 *list32;
1206 struct bpf_dltlist dltlist;
1207
1208 list32 = (struct bpf_dltlist32 *)addr;
1209 dltlist.bfl_len = list32->bfl_len;
1210 dltlist.bfl_list = PTRIN(list32->bfl_list);
1211 if (d->bd_bif == NULL)
1212 error = EINVAL;
1213 else {
1214 error = bpf_getdltlist(d, &dltlist);
1215 if (error == 0)
1216 list32->bfl_len = dltlist.bfl_len;
1217 }
1218 break;
1219 }
1220 #endif
1221
1222 case BIOCGDLTLIST:
1223 if (d->bd_bif == NULL)
1224 error = EINVAL;
1225 else
1226 error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1227 break;
1228
1229 /*
1230 * Set data link type.
1231 */
1232 case BIOCSDLT:
1233 if (d->bd_bif == NULL)
1234 error = EINVAL;
1235 else
1236 error = bpf_setdlt(d, *(u_int *)addr);
1237 break;
1238
1239 /*
1240 * Get interface name.
1241 */
1242 case BIOCGETIF:
1243 if (d->bd_bif == NULL)
1244 error = EINVAL;
1245 else {
1246 struct ifnet *const ifp = d->bd_bif->bif_ifp;
1247 struct ifreq *const ifr = (struct ifreq *)addr;
1248
1249 strlcpy(ifr->ifr_name, ifp->if_xname,
1250 sizeof(ifr->ifr_name));
1251 }
1252 break;
1253
1254 /*
1255 * Set interface.
1256 */
1257 case BIOCSETIF:
1258 error = bpf_setif(d, (struct ifreq *)addr);
1259 break;
1260
1261 /*
1262 * Set read timeout.
1263 */
1264 case BIOCSRTIMEOUT:
1265 #ifdef COMPAT_FREEBSD32
1266 case BIOCSRTIMEOUT32:
1267 #endif
1268 {
1269 struct timeval *tv = (struct timeval *)addr;
1270 #ifdef COMPAT_FREEBSD32
1271 struct timeval32 *tv32;
1272 struct timeval tv64;
1273
1274 if (cmd == BIOCSRTIMEOUT32) {
1275 tv32 = (struct timeval32 *)addr;
1276 tv = &tv64;
1277 tv->tv_sec = tv32->tv_sec;
1278 tv->tv_usec = tv32->tv_usec;
1279 } else
1280 #endif
1281 tv = (struct timeval *)addr;
1282
1283 /*
1284 * Subtract 1 tick from tvtohz() since this isn't
1285 * a one-shot timer.
1286 */
1287 if ((error = itimerfix(tv)) == 0)
1288 d->bd_rtout = tvtohz(tv) - 1;
1289 break;
1290 }
1291
1292 /*
1293 * Get read timeout.
1294 */
1295 case BIOCGRTIMEOUT:
1296 #ifdef COMPAT_FREEBSD32
1297 case BIOCGRTIMEOUT32:
1298 #endif
1299 {
1300 struct timeval *tv;
1301 #ifdef COMPAT_FREEBSD32
1302 struct timeval32 *tv32;
1303 struct timeval tv64;
1304
1305 if (cmd == BIOCGRTIMEOUT32)
1306 tv = &tv64;
1307 else
1308 #endif
1309 tv = (struct timeval *)addr;
1310
1311 tv->tv_sec = d->bd_rtout / hz;
1312 tv->tv_usec = (d->bd_rtout % hz) * tick;
1313 #ifdef COMPAT_FREEBSD32
1314 if (cmd == BIOCGRTIMEOUT32) {
1315 tv32 = (struct timeval32 *)addr;
1316 tv32->tv_sec = tv->tv_sec;
1317 tv32->tv_usec = tv->tv_usec;
1318 }
1319 #endif
1320
1321 break;
1322 }
1323
1324 /*
1325 * Get packet stats.
1326 */
1327 case BIOCGSTATS:
1328 {
1329 struct bpf_stat *bs = (struct bpf_stat *)addr;
1330
1331 /* XXXCSJP overflow */
1332 bs->bs_recv = d->bd_rcount;
1333 bs->bs_drop = d->bd_dcount;
1334 break;
1335 }
1336
1337 /*
1338 * Set immediate mode.
1339 */
1340 case BIOCIMMEDIATE:
1341 d->bd_immediate = *(u_int *)addr;
1342 break;
1343
1344 case BIOCVERSION:
1345 {
1346 struct bpf_version *bv = (struct bpf_version *)addr;
1347
1348 bv->bv_major = BPF_MAJOR_VERSION;
1349 bv->bv_minor = BPF_MINOR_VERSION;
1350 break;
1351 }
1352
1353 /*
1354 * Get "header already complete" flag
1355 */
1356 case BIOCGHDRCMPLT:
1357 *(u_int *)addr = d->bd_hdrcmplt;
1358 break;
1359
1360 /*
1361 * Set "header already complete" flag
1362 */
1363 case BIOCSHDRCMPLT:
1364 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1365 break;
1366
1367 /*
1368 * Get packet direction flag
1369 */
1370 case BIOCGDIRECTION:
1371 *(u_int *)addr = d->bd_direction;
1372 break;
1373
1374 /*
1375 * Set packet direction flag
1376 */
1377 case BIOCSDIRECTION:
1378 {
1379 u_int direction;
1380
1381 direction = *(u_int *)addr;
1382 switch (direction) {
1383 case BPF_D_IN:
1384 case BPF_D_INOUT:
1385 case BPF_D_OUT:
1386 d->bd_direction = direction;
1387 break;
1388 default:
1389 error = EINVAL;
1390 }
1391 }
1392 break;
1393
1394 /*
1395 * Get packet timestamp format and resolution.
1396 */
1397 case BIOCGTSTAMP:
1398 *(u_int *)addr = d->bd_tstamp;
1399 break;
1400
1401 /*
1402 * Set packet timestamp format and resolution.
1403 */
1404 case BIOCSTSTAMP:
1405 {
1406 u_int func;
1407
1408 func = *(u_int *)addr;
1409 if (BPF_T_VALID(func))
1410 d->bd_tstamp = func;
1411 else
1412 error = EINVAL;
1413 }
1414 break;
1415
1416 case BIOCFEEDBACK:
1417 d->bd_feedback = *(u_int *)addr;
1418 break;
1419
1420 case BIOCLOCK:
1421 d->bd_locked = 1;
1422 break;
1423
1424 case FIONBIO: /* Non-blocking I/O */
1425 break;
1426
1427 case FIOASYNC: /* Send signal on receive packets */
1428 d->bd_async = *(int *)addr;
1429 break;
1430
1431 case FIOSETOWN:
1432 error = fsetown(*(int *)addr, &d->bd_sigio);
1433 break;
1434
1435 case FIOGETOWN:
1436 *(int *)addr = fgetown(&d->bd_sigio);
1437 break;
1438
1439 /* This is deprecated, FIOSETOWN should be used instead. */
1440 case TIOCSPGRP:
1441 error = fsetown(-(*(int *)addr), &d->bd_sigio);
1442 break;
1443
1444 /* This is deprecated, FIOGETOWN should be used instead. */
1445 case TIOCGPGRP:
1446 *(int *)addr = -fgetown(&d->bd_sigio);
1447 break;
1448
1449 case BIOCSRSIG: /* Set receive signal */
1450 {
1451 u_int sig;
1452
1453 sig = *(u_int *)addr;
1454
1455 if (sig >= NSIG)
1456 error = EINVAL;
1457 else
1458 d->bd_sig = sig;
1459 break;
1460 }
1461 case BIOCGRSIG:
1462 *(u_int *)addr = d->bd_sig;
1463 break;
1464
1465 case BIOCGETBUFMODE:
1466 *(u_int *)addr = d->bd_bufmode;
1467 break;
1468
1469 case BIOCSETBUFMODE:
1470 /*
1471 * Allow the buffering mode to be changed as long as we
1472 * haven't yet committed to a particular mode. Our
1473 * definition of commitment, for now, is whether or not a
1474 * buffer has been allocated or an interface attached, since
1475 * that's the point where things get tricky.
1476 */
1477 switch (*(u_int *)addr) {
1478 case BPF_BUFMODE_BUFFER:
1479 break;
1480
1481 case BPF_BUFMODE_ZBUF:
1482 if (bpf_zerocopy_enable)
1483 break;
1484 /* FALLSTHROUGH */
1485
1486 default:
1487 CURVNET_RESTORE();
1488 return (EINVAL);
1489 }
1490
1491 BPFD_LOCK(d);
1492 if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1493 d->bd_fbuf != NULL || d->bd_bif != NULL) {
1494 BPFD_UNLOCK(d);
1495 CURVNET_RESTORE();
1496 return (EBUSY);
1497 }
1498 d->bd_bufmode = *(u_int *)addr;
1499 BPFD_UNLOCK(d);
1500 break;
1501
1502 case BIOCGETZMAX:
1503 error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1504 break;
1505
1506 case BIOCSETZBUF:
1507 error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1508 break;
1509
1510 case BIOCROTZBUF:
1511 error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1512 break;
1513 }
1514 CURVNET_RESTORE();
1515 return (error);
1516 }
1517
1518 /*
1519 * Set d's packet filter program to fp. If this file already has a filter,
1520 * free it and replace it. Returns EINVAL for bogus requests.
1521 */
1522 static int
1523 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1524 {
1525 struct bpf_insn *fcode, *old;
1526 u_int wfilter, flen, size;
1527 #ifdef BPF_JITTER
1528 bpf_jit_filter *ofunc;
1529 #endif
1530 #ifdef COMPAT_FREEBSD32
1531 struct bpf_program32 *fp32;
1532 struct bpf_program fp_swab;
1533
1534 if (cmd == BIOCSETWF32 || cmd == BIOCSETF32 || cmd == BIOCSETFNR32) {
1535 fp32 = (struct bpf_program32 *)fp;
1536 fp_swab.bf_len = fp32->bf_len;
1537 fp_swab.bf_insns = (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1538 fp = &fp_swab;
1539 if (cmd == BIOCSETWF32)
1540 cmd = BIOCSETWF;
1541 }
1542 #endif
1543 if (cmd == BIOCSETWF) {
1544 old = d->bd_wfilter;
1545 wfilter = 1;
1546 #ifdef BPF_JITTER
1547 ofunc = NULL;
1548 #endif
1549 } else {
1550 wfilter = 0;
1551 old = d->bd_rfilter;
1552 #ifdef BPF_JITTER
1553 ofunc = d->bd_bfilter;
1554 #endif
1555 }
1556 if (fp->bf_insns == NULL) {
1557 if (fp->bf_len != 0)
1558 return (EINVAL);
1559 BPFD_LOCK(d);
1560 if (wfilter)
1561 d->bd_wfilter = NULL;
1562 else {
1563 d->bd_rfilter = NULL;
1564 #ifdef BPF_JITTER
1565 d->bd_bfilter = NULL;
1566 #endif
1567 if (cmd == BIOCSETF)
1568 reset_d(d);
1569 }
1570 BPFD_UNLOCK(d);
1571 if (old != NULL)
1572 free((caddr_t)old, M_BPF);
1573 #ifdef BPF_JITTER
1574 if (ofunc != NULL)
1575 bpf_destroy_jit_filter(ofunc);
1576 #endif
1577 return (0);
1578 }
1579 flen = fp->bf_len;
1580 if (flen > bpf_maxinsns)
1581 return (EINVAL);
1582
1583 size = flen * sizeof(*fp->bf_insns);
1584 fcode = (struct bpf_insn *)malloc(size, M_BPF, M_WAITOK);
1585 if (copyin((caddr_t)fp->bf_insns, (caddr_t)fcode, size) == 0 &&
1586 bpf_validate(fcode, (int)flen)) {
1587 BPFD_LOCK(d);
1588 if (wfilter)
1589 d->bd_wfilter = fcode;
1590 else {
1591 d->bd_rfilter = fcode;
1592 #ifdef BPF_JITTER
1593 d->bd_bfilter = bpf_jitter(fcode, flen);
1594 #endif
1595 if (cmd == BIOCSETF)
1596 reset_d(d);
1597 }
1598 BPFD_UNLOCK(d);
1599 if (old != NULL)
1600 free((caddr_t)old, M_BPF);
1601 #ifdef BPF_JITTER
1602 if (ofunc != NULL)
1603 bpf_destroy_jit_filter(ofunc);
1604 #endif
1605
1606 return (0);
1607 }
1608 free((caddr_t)fcode, M_BPF);
1609 return (EINVAL);
1610 }
1611
1612 /*
1613 * Detach a file from its current interface (if attached at all) and attach
1614 * to the interface indicated by the name stored in ifr.
1615 * Return an errno or 0.
1616 */
1617 static int
1618 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1619 {
1620 struct bpf_if *bp;
1621 struct ifnet *theywant;
1622
1623 theywant = ifunit(ifr->ifr_name);
1624 if (theywant == NULL || theywant->if_bpf == NULL)
1625 return (ENXIO);
1626
1627 bp = theywant->if_bpf;
1628
1629 /*
1630 * Behavior here depends on the buffering model. If we're using
1631 * kernel memory buffers, then we can allocate them here. If we're
1632 * using zero-copy, then the user process must have registered
1633 * buffers by the time we get here. If not, return an error.
1634 *
1635 * XXXRW: There are locking issues here with multi-threaded use: what
1636 * if two threads try to set the interface at once?
1637 */
1638 switch (d->bd_bufmode) {
1639 case BPF_BUFMODE_BUFFER:
1640 if (d->bd_sbuf == NULL)
1641 bpf_buffer_alloc(d);
1642 KASSERT(d->bd_sbuf != NULL, ("bpf_setif: bd_sbuf NULL"));
1643 break;
1644
1645 case BPF_BUFMODE_ZBUF:
1646 if (d->bd_sbuf == NULL)
1647 return (EINVAL);
1648 break;
1649
1650 default:
1651 panic("bpf_setif: bufmode %d", d->bd_bufmode);
1652 }
1653 if (bp != d->bd_bif) {
1654 if (d->bd_bif)
1655 /*
1656 * Detach if attached to something else.
1657 */
1658 bpf_detachd(d);
1659
1660 bpf_attachd(d, bp);
1661 }
1662 BPFD_LOCK(d);
1663 reset_d(d);
1664 BPFD_UNLOCK(d);
1665 return (0);
1666 }
1667
1668 /*
1669 * Support for select() and poll() system calls
1670 *
1671 * Return true iff the specific operation will not block indefinitely.
1672 * Otherwise, return false but make a note that a selwakeup() must be done.
1673 */
1674 static int
1675 bpfpoll(struct cdev *dev, int events, struct thread *td)
1676 {
1677 struct bpf_d *d;
1678 int revents;
1679
1680 if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
1681 return (events &
1682 (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
1683
1684 /*
1685 * Refresh PID associated with this descriptor.
1686 */
1687 revents = events & (POLLOUT | POLLWRNORM);
1688 BPFD_LOCK(d);
1689 d->bd_pid = td->td_proc->p_pid;
1690 if (events & (POLLIN | POLLRDNORM)) {
1691 if (bpf_ready(d))
1692 revents |= events & (POLLIN | POLLRDNORM);
1693 else {
1694 selrecord(td, &d->bd_sel);
1695 /* Start the read timeout if necessary. */
1696 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1697 callout_reset(&d->bd_callout, d->bd_rtout,
1698 bpf_timed_out, d);
1699 d->bd_state = BPF_WAITING;
1700 }
1701 }
1702 }
1703 BPFD_UNLOCK(d);
1704 return (revents);
1705 }
1706
1707 /*
1708 * Support for kevent() system call. Register EVFILT_READ filters and
1709 * reject all others.
1710 */
1711 int
1712 bpfkqfilter(struct cdev *dev, struct knote *kn)
1713 {
1714 struct bpf_d *d;
1715
1716 if (devfs_get_cdevpriv((void **)&d) != 0 ||
1717 kn->kn_filter != EVFILT_READ)
1718 return (1);
1719
1720 /*
1721 * Refresh PID associated with this descriptor.
1722 */
1723 BPFD_LOCK(d);
1724 d->bd_pid = curthread->td_proc->p_pid;
1725 kn->kn_fop = &bpfread_filtops;
1726 kn->kn_hook = d;
1727 knlist_add(&d->bd_sel.si_note, kn, 1);
1728 BPFD_UNLOCK(d);
1729
1730 return (0);
1731 }
1732
1733 static void
1734 filt_bpfdetach(struct knote *kn)
1735 {
1736 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1737
1738 knlist_remove(&d->bd_sel.si_note, kn, 0);
1739 }
1740
1741 static int
1742 filt_bpfread(struct knote *kn, long hint)
1743 {
1744 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1745 int ready;
1746
1747 BPFD_LOCK_ASSERT(d);
1748 ready = bpf_ready(d);
1749 if (ready) {
1750 kn->kn_data = d->bd_slen;
1751 if (d->bd_hbuf)
1752 kn->kn_data += d->bd_hlen;
1753 } else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1754 callout_reset(&d->bd_callout, d->bd_rtout,
1755 bpf_timed_out, d);
1756 d->bd_state = BPF_WAITING;
1757 }
1758
1759 return (ready);
1760 }
1761
1762 #define BPF_TSTAMP_NONE 0
1763 #define BPF_TSTAMP_FAST 1
1764 #define BPF_TSTAMP_NORMAL 2
1765 #define BPF_TSTAMP_EXTERN 3
1766
1767 static int
1768 bpf_ts_quality(int tstype)
1769 {
1770
1771 if (tstype == BPF_T_NONE)
1772 return (BPF_TSTAMP_NONE);
1773 if ((tstype & BPF_T_FAST) != 0)
1774 return (BPF_TSTAMP_FAST);
1775
1776 return (BPF_TSTAMP_NORMAL);
1777 }
1778
1779 static int
1780 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
1781 {
1782 struct m_tag *tag;
1783 int quality;
1784
1785 quality = bpf_ts_quality(tstype);
1786 if (quality == BPF_TSTAMP_NONE)
1787 return (quality);
1788
1789 if (m != NULL) {
1790 tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
1791 if (tag != NULL) {
1792 *bt = *(struct bintime *)(tag + 1);
1793 return (BPF_TSTAMP_EXTERN);
1794 }
1795 }
1796 if (quality == BPF_TSTAMP_NORMAL)
1797 binuptime(bt);
1798 else
1799 getbinuptime(bt);
1800
1801 return (quality);
1802 }
1803
1804 /*
1805 * Incoming linkage from device drivers. Process the packet pkt, of length
1806 * pktlen, which is stored in a contiguous buffer. The packet is parsed
1807 * by each process' filter, and if accepted, stashed into the corresponding
1808 * buffer.
1809 */
1810 void
1811 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1812 {
1813 struct bintime bt;
1814 struct bpf_d *d;
1815 #ifdef BPF_JITTER
1816 bpf_jit_filter *bf;
1817 #endif
1818 u_int slen;
1819 int gottime;
1820
1821 gottime = BPF_TSTAMP_NONE;
1822 BPFIF_LOCK(bp);
1823 LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1824 BPFD_LOCK(d);
1825 ++d->bd_rcount;
1826 /*
1827 * NB: We dont call BPF_CHECK_DIRECTION() here since there is no
1828 * way for the caller to indiciate to us whether this packet
1829 * is inbound or outbound. In the bpf_mtap() routines, we use
1830 * the interface pointers on the mbuf to figure it out.
1831 */
1832 #ifdef BPF_JITTER
1833 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
1834 if (bf != NULL)
1835 slen = (*(bf->func))(pkt, pktlen, pktlen);
1836 else
1837 #endif
1838 slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
1839 if (slen != 0) {
1840 d->bd_fcount++;
1841 if (gottime < bpf_ts_quality(d->bd_tstamp))
1842 gottime = bpf_gettime(&bt, d->bd_tstamp, NULL);
1843 #ifdef MAC
1844 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1845 #endif
1846 catchpacket(d, pkt, pktlen, slen,
1847 bpf_append_bytes, &bt);
1848 }
1849 BPFD_UNLOCK(d);
1850 }
1851 BPFIF_UNLOCK(bp);
1852 }
1853
1854 #define BPF_CHECK_DIRECTION(d, r, i) \
1855 (((d)->bd_direction == BPF_D_IN && (r) != (i)) || \
1856 ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
1857
1858 /*
1859 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1860 */
1861 void
1862 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1863 {
1864 struct bintime bt;
1865 struct bpf_d *d;
1866 #ifdef BPF_JITTER
1867 bpf_jit_filter *bf;
1868 #endif
1869 u_int pktlen, slen;
1870 int gottime;
1871
1872 /* Skip outgoing duplicate packets. */
1873 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1874 m->m_flags &= ~M_PROMISC;
1875 return;
1876 }
1877
1878 pktlen = m_length(m, NULL);
1879
1880 gottime = BPF_TSTAMP_NONE;
1881 BPFIF_LOCK(bp);
1882 LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1883 if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
1884 continue;
1885 BPFD_LOCK(d);
1886 ++d->bd_rcount;
1887 #ifdef BPF_JITTER
1888 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
1889 /* XXX We cannot handle multiple mbufs. */
1890 if (bf != NULL && m->m_next == NULL)
1891 slen = (*(bf->func))(mtod(m, u_char *), pktlen, pktlen);
1892 else
1893 #endif
1894 slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
1895 if (slen != 0) {
1896 d->bd_fcount++;
1897 if (gottime < bpf_ts_quality(d->bd_tstamp))
1898 gottime = bpf_gettime(&bt, d->bd_tstamp, m);
1899 #ifdef MAC
1900 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1901 #endif
1902 catchpacket(d, (u_char *)m, pktlen, slen,
1903 bpf_append_mbuf, &bt);
1904 }
1905 BPFD_UNLOCK(d);
1906 }
1907 BPFIF_UNLOCK(bp);
1908 }
1909
1910 /*
1911 * Incoming linkage from device drivers, when packet is in
1912 * an mbuf chain and to be prepended by a contiguous header.
1913 */
1914 void
1915 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1916 {
1917 struct bintime bt;
1918 struct mbuf mb;
1919 struct bpf_d *d;
1920 u_int pktlen, slen;
1921 int gottime;
1922
1923 /* Skip outgoing duplicate packets. */
1924 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1925 m->m_flags &= ~M_PROMISC;
1926 return;
1927 }
1928
1929 pktlen = m_length(m, NULL);
1930 /*
1931 * Craft on-stack mbuf suitable for passing to bpf_filter.
1932 * Note that we cut corners here; we only setup what's
1933 * absolutely needed--this mbuf should never go anywhere else.
1934 */
1935 mb.m_next = m;
1936 mb.m_data = data;
1937 mb.m_len = dlen;
1938 pktlen += dlen;
1939
1940 gottime = BPF_TSTAMP_NONE;
1941 BPFIF_LOCK(bp);
1942 LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1943 if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
1944 continue;
1945 BPFD_LOCK(d);
1946 ++d->bd_rcount;
1947 slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
1948 if (slen != 0) {
1949 d->bd_fcount++;
1950 if (gottime < bpf_ts_quality(d->bd_tstamp))
1951 gottime = bpf_gettime(&bt, d->bd_tstamp, m);
1952 #ifdef MAC
1953 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1954 #endif
1955 catchpacket(d, (u_char *)&mb, pktlen, slen,
1956 bpf_append_mbuf, &bt);
1957 }
1958 BPFD_UNLOCK(d);
1959 }
1960 BPFIF_UNLOCK(bp);
1961 }
1962
1963 #undef BPF_CHECK_DIRECTION
1964
1965 #undef BPF_TSTAMP_NONE
1966 #undef BPF_TSTAMP_FAST
1967 #undef BPF_TSTAMP_NORMAL
1968 #undef BPF_TSTAMP_EXTERN
1969
1970 static int
1971 bpf_hdrlen(struct bpf_d *d)
1972 {
1973 int hdrlen;
1974
1975 hdrlen = d->bd_bif->bif_hdrlen;
1976 #ifndef BURN_BRIDGES
1977 if (d->bd_tstamp == BPF_T_NONE ||
1978 BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
1979 #ifdef COMPAT_FREEBSD32
1980 if (d->bd_compat32)
1981 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
1982 else
1983 #endif
1984 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
1985 else
1986 #endif
1987 hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
1988 #ifdef COMPAT_FREEBSD32
1989 if (d->bd_compat32)
1990 hdrlen = BPF_WORDALIGN32(hdrlen);
1991 else
1992 #endif
1993 hdrlen = BPF_WORDALIGN(hdrlen);
1994
1995 return (hdrlen - d->bd_bif->bif_hdrlen);
1996 }
1997
1998 static void
1999 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2000 {
2001 struct bintime bt2;
2002 struct timeval tsm;
2003 struct timespec tsn;
2004
2005 if ((tstype & BPF_T_MONOTONIC) == 0) {
2006 bt2 = *bt;
2007 bintime_add(&bt2, &boottimebin);
2008 bt = &bt2;
2009 }
2010 switch (BPF_T_FORMAT(tstype)) {
2011 case BPF_T_MICROTIME:
2012 bintime2timeval(bt, &tsm);
2013 ts->bt_sec = tsm.tv_sec;
2014 ts->bt_frac = tsm.tv_usec;
2015 break;
2016 case BPF_T_NANOTIME:
2017 bintime2timespec(bt, &tsn);
2018 ts->bt_sec = tsn.tv_sec;
2019 ts->bt_frac = tsn.tv_nsec;
2020 break;
2021 case BPF_T_BINTIME:
2022 ts->bt_sec = bt->sec;
2023 ts->bt_frac = bt->frac;
2024 break;
2025 }
2026 }
2027
2028 /*
2029 * Move the packet data from interface memory (pkt) into the
2030 * store buffer. "cpfn" is the routine called to do the actual data
2031 * transfer. bcopy is passed in to copy contiguous chunks, while
2032 * bpf_append_mbuf is passed in to copy mbuf chains. In the latter case,
2033 * pkt is really an mbuf.
2034 */
2035 static void
2036 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2037 void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2038 struct bintime *bt)
2039 {
2040 struct bpf_xhdr hdr;
2041 #ifndef BURN_BRIDGES
2042 struct bpf_hdr hdr_old;
2043 #ifdef COMPAT_FREEBSD32
2044 struct bpf_hdr32 hdr32_old;
2045 #endif
2046 #endif
2047 int caplen, curlen, hdrlen, totlen;
2048 int do_wakeup = 0;
2049 int do_timestamp;
2050 int tstype;
2051
2052 BPFD_LOCK_ASSERT(d);
2053
2054 /*
2055 * Detect whether user space has released a buffer back to us, and if
2056 * so, move it from being a hold buffer to a free buffer. This may
2057 * not be the best place to do it (for example, we might only want to
2058 * run this check if we need the space), but for now it's a reliable
2059 * spot to do it.
2060 */
2061 if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2062 d->bd_fbuf = d->bd_hbuf;
2063 d->bd_hbuf = NULL;
2064 d->bd_hlen = 0;
2065 bpf_buf_reclaimed(d);
2066 }
2067
2068 /*
2069 * Figure out how many bytes to move. If the packet is
2070 * greater or equal to the snapshot length, transfer that
2071 * much. Otherwise, transfer the whole packet (unless
2072 * we hit the buffer size limit).
2073 */
2074 hdrlen = bpf_hdrlen(d);
2075 totlen = hdrlen + min(snaplen, pktlen);
2076 if (totlen > d->bd_bufsize)
2077 totlen = d->bd_bufsize;
2078
2079 /*
2080 * Round up the end of the previous packet to the next longword.
2081 *
2082 * Drop the packet if there's no room and no hope of room
2083 * If the packet would overflow the storage buffer or the storage
2084 * buffer is considered immutable by the buffer model, try to rotate
2085 * the buffer and wakeup pending processes.
2086 */
2087 #ifdef COMPAT_FREEBSD32
2088 if (d->bd_compat32)
2089 curlen = BPF_WORDALIGN32(d->bd_slen);
2090 else
2091 #endif
2092 curlen = BPF_WORDALIGN(d->bd_slen);
2093 if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2094 if (d->bd_fbuf == NULL) {
2095 /*
2096 * There's no room in the store buffer, and no
2097 * prospect of room, so drop the packet. Notify the
2098 * buffer model.
2099 */
2100 bpf_buffull(d);
2101 ++d->bd_dcount;
2102 return;
2103 }
2104 ROTATE_BUFFERS(d);
2105 do_wakeup = 1;
2106 curlen = 0;
2107 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
2108 /*
2109 * Immediate mode is set, or the read timeout has already
2110 * expired during a select call. A packet arrived, so the
2111 * reader should be woken up.
2112 */
2113 do_wakeup = 1;
2114 caplen = totlen - hdrlen;
2115 tstype = d->bd_tstamp;
2116 do_timestamp = tstype != BPF_T_NONE;
2117 #ifndef BURN_BRIDGES
2118 if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2119 struct bpf_ts ts;
2120 if (do_timestamp)
2121 bpf_bintime2ts(bt, &ts, tstype);
2122 #ifdef COMPAT_FREEBSD32
2123 if (d->bd_compat32) {
2124 bzero(&hdr32_old, sizeof(hdr32_old));
2125 if (do_timestamp) {
2126 hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2127 hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2128 }
2129 hdr32_old.bh_datalen = pktlen;
2130 hdr32_old.bh_hdrlen = hdrlen;
2131 hdr32_old.bh_caplen = caplen;
2132 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2133 sizeof(hdr32_old));
2134 goto copy;
2135 }
2136 #endif
2137 bzero(&hdr_old, sizeof(hdr_old));
2138 if (do_timestamp) {
2139 hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2140 hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2141 }
2142 hdr_old.bh_datalen = pktlen;
2143 hdr_old.bh_hdrlen = hdrlen;
2144 hdr_old.bh_caplen = caplen;
2145 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2146 sizeof(hdr_old));
2147 goto copy;
2148 }
2149 #endif
2150
2151 /*
2152 * Append the bpf header. Note we append the actual header size, but
2153 * move forward the length of the header plus padding.
2154 */
2155 bzero(&hdr, sizeof(hdr));
2156 if (do_timestamp)
2157 bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2158 hdr.bh_datalen = pktlen;
2159 hdr.bh_hdrlen = hdrlen;
2160 hdr.bh_caplen = caplen;
2161 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2162
2163 /*
2164 * Copy the packet data into the store buffer and update its length.
2165 */
2166 #ifndef BURN_BRIDGES
2167 copy:
2168 #endif
2169 (*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2170 d->bd_slen = curlen + totlen;
2171
2172 if (do_wakeup)
2173 bpf_wakeup(d);
2174 }
2175
2176 /*
2177 * Free buffers currently in use by a descriptor.
2178 * Called on close.
2179 */
2180 static void
2181 bpf_freed(struct bpf_d *d)
2182 {
2183
2184 /*
2185 * We don't need to lock out interrupts since this descriptor has
2186 * been detached from its interface and it yet hasn't been marked
2187 * free.
2188 */
2189 bpf_free(d);
2190 if (d->bd_rfilter != NULL) {
2191 free((caddr_t)d->bd_rfilter, M_BPF);
2192 #ifdef BPF_JITTER
2193 if (d->bd_bfilter != NULL)
2194 bpf_destroy_jit_filter(d->bd_bfilter);
2195 #endif
2196 }
2197 if (d->bd_wfilter != NULL)
2198 free((caddr_t)d->bd_wfilter, M_BPF);
2199 mtx_destroy(&d->bd_mtx);
2200 }
2201
2202 /*
2203 * Attach an interface to bpf. dlt is the link layer type; hdrlen is the
2204 * fixed size of the link header (variable length headers not yet supported).
2205 */
2206 void
2207 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2208 {
2209
2210 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2211 }
2212
2213 /*
2214 * Attach an interface to bpf. ifp is a pointer to the structure
2215 * defining the interface to be attached, dlt is the link layer type,
2216 * and hdrlen is the fixed size of the link header (variable length
2217 * headers are not yet supporrted).
2218 */
2219 void
2220 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2221 {
2222 struct bpf_if *bp;
2223
2224 bp = malloc(sizeof(*bp), M_BPF, M_NOWAIT | M_ZERO);
2225 if (bp == NULL)
2226 panic("bpfattach");
2227
2228 LIST_INIT(&bp->bif_dlist);
2229 bp->bif_ifp = ifp;
2230 bp->bif_dlt = dlt;
2231 mtx_init(&bp->bif_mtx, "bpf interface lock", NULL, MTX_DEF);
2232 KASSERT(*driverp == NULL, ("bpfattach2: driverp already initialized"));
2233 *driverp = bp;
2234
2235 mtx_lock(&bpf_mtx);
2236 LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2237 mtx_unlock(&bpf_mtx);
2238
2239 bp->bif_hdrlen = hdrlen;
2240
2241 if (bootverbose)
2242 if_printf(ifp, "bpf attached\n");
2243 }
2244
2245 /*
2246 * Detach bpf from an interface. This involves detaching each descriptor
2247 * associated with the interface, and leaving bd_bif NULL. Notify each
2248 * descriptor as it's detached so that any sleepers wake up and get
2249 * ENXIO.
2250 */
2251 void
2252 bpfdetach(struct ifnet *ifp)
2253 {
2254 struct bpf_if *bp;
2255 struct bpf_d *d;
2256
2257 /* Locate BPF interface information */
2258 mtx_lock(&bpf_mtx);
2259 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2260 if (ifp == bp->bif_ifp)
2261 break;
2262 }
2263
2264 /* Interface wasn't attached */
2265 if ((bp == NULL) || (bp->bif_ifp == NULL)) {
2266 mtx_unlock(&bpf_mtx);
2267 printf("bpfdetach: %s was not attached\n", ifp->if_xname);
2268 return;
2269 }
2270
2271 LIST_REMOVE(bp, bif_next);
2272 mtx_unlock(&bpf_mtx);
2273
2274 while ((d = LIST_FIRST(&bp->bif_dlist)) != NULL) {
2275 bpf_detachd(d);
2276 BPFD_LOCK(d);
2277 bpf_wakeup(d);
2278 BPFD_UNLOCK(d);
2279 }
2280
2281 mtx_destroy(&bp->bif_mtx);
2282 free(bp, M_BPF);
2283 }
2284
2285 /*
2286 * Get a list of available data link type of the interface.
2287 */
2288 static int
2289 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2290 {
2291 int n, error;
2292 struct ifnet *ifp;
2293 struct bpf_if *bp;
2294
2295 ifp = d->bd_bif->bif_ifp;
2296 n = 0;
2297 error = 0;
2298 mtx_lock(&bpf_mtx);
2299 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2300 if (bp->bif_ifp != ifp)
2301 continue;
2302 if (bfl->bfl_list != NULL) {
2303 if (n >= bfl->bfl_len) {
2304 mtx_unlock(&bpf_mtx);
2305 return (ENOMEM);
2306 }
2307 error = copyout(&bp->bif_dlt,
2308 bfl->bfl_list + n, sizeof(u_int));
2309 }
2310 n++;
2311 }
2312 mtx_unlock(&bpf_mtx);
2313 bfl->bfl_len = n;
2314 return (error);
2315 }
2316
2317 /*
2318 * Set the data link type of a BPF instance.
2319 */
2320 static int
2321 bpf_setdlt(struct bpf_d *d, u_int dlt)
2322 {
2323 int error, opromisc;
2324 struct ifnet *ifp;
2325 struct bpf_if *bp;
2326
2327 if (d->bd_bif->bif_dlt == dlt)
2328 return (0);
2329 ifp = d->bd_bif->bif_ifp;
2330 mtx_lock(&bpf_mtx);
2331 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2332 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2333 break;
2334 }
2335 mtx_unlock(&bpf_mtx);
2336 if (bp != NULL) {
2337 opromisc = d->bd_promisc;
2338 bpf_detachd(d);
2339 bpf_attachd(d, bp);
2340 BPFD_LOCK(d);
2341 reset_d(d);
2342 BPFD_UNLOCK(d);
2343 if (opromisc) {
2344 error = ifpromisc(bp->bif_ifp, 1);
2345 if (error)
2346 if_printf(bp->bif_ifp,
2347 "bpf_setdlt: ifpromisc failed (%d)\n",
2348 error);
2349 else
2350 d->bd_promisc = 1;
2351 }
2352 }
2353 return (bp == NULL ? EINVAL : 0);
2354 }
2355
2356 static void
2357 bpf_drvinit(void *unused)
2358 {
2359 struct cdev *dev;
2360
2361 mtx_init(&bpf_mtx, "bpf global lock", NULL, MTX_DEF);
2362 LIST_INIT(&bpf_iflist);
2363
2364 dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2365 /* For compatibility */
2366 make_dev_alias(dev, "bpf0");
2367 }
2368
2369 /*
2370 * Zero out the various packet counters associated with all of the bpf
2371 * descriptors. At some point, we will probably want to get a bit more
2372 * granular and allow the user to specify descriptors to be zeroed.
2373 */
2374 static void
2375 bpf_zero_counters(void)
2376 {
2377 struct bpf_if *bp;
2378 struct bpf_d *bd;
2379
2380 mtx_lock(&bpf_mtx);
2381 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2382 BPFIF_LOCK(bp);
2383 LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2384 BPFD_LOCK(bd);
2385 bd->bd_rcount = 0;
2386 bd->bd_dcount = 0;
2387 bd->bd_fcount = 0;
2388 bd->bd_wcount = 0;
2389 bd->bd_wfcount = 0;
2390 bd->bd_zcopy = 0;
2391 BPFD_UNLOCK(bd);
2392 }
2393 BPFIF_UNLOCK(bp);
2394 }
2395 mtx_unlock(&bpf_mtx);
2396 }
2397
2398 static void
2399 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
2400 {
2401
2402 bzero(d, sizeof(*d));
2403 BPFD_LOCK_ASSERT(bd);
2404 d->bd_structsize = sizeof(*d);
2405 d->bd_immediate = bd->bd_immediate;
2406 d->bd_promisc = bd->bd_promisc;
2407 d->bd_hdrcmplt = bd->bd_hdrcmplt;
2408 d->bd_direction = bd->bd_direction;
2409 d->bd_feedback = bd->bd_feedback;
2410 d->bd_async = bd->bd_async;
2411 d->bd_rcount = bd->bd_rcount;
2412 d->bd_dcount = bd->bd_dcount;
2413 d->bd_fcount = bd->bd_fcount;
2414 d->bd_sig = bd->bd_sig;
2415 d->bd_slen = bd->bd_slen;
2416 d->bd_hlen = bd->bd_hlen;
2417 d->bd_bufsize = bd->bd_bufsize;
2418 d->bd_pid = bd->bd_pid;
2419 strlcpy(d->bd_ifname,
2420 bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
2421 d->bd_locked = bd->bd_locked;
2422 d->bd_wcount = bd->bd_wcount;
2423 d->bd_wdcount = bd->bd_wdcount;
2424 d->bd_wfcount = bd->bd_wfcount;
2425 d->bd_zcopy = bd->bd_zcopy;
2426 d->bd_bufmode = bd->bd_bufmode;
2427 }
2428
2429 static int
2430 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
2431 {
2432 struct xbpf_d *xbdbuf, *xbd, zerostats;
2433 int index, error;
2434 struct bpf_if *bp;
2435 struct bpf_d *bd;
2436
2437 /*
2438 * XXX This is not technically correct. It is possible for non
2439 * privileged users to open bpf devices. It would make sense
2440 * if the users who opened the devices were able to retrieve
2441 * the statistics for them, too.
2442 */
2443 error = priv_check(req->td, PRIV_NET_BPF);
2444 if (error)
2445 return (error);
2446 /*
2447 * Check to see if the user is requesting that the counters be
2448 * zeroed out. Explicitly check that the supplied data is zeroed,
2449 * as we aren't allowing the user to set the counters currently.
2450 */
2451 if (req->newptr != NULL) {
2452 if (req->newlen != sizeof(zerostats))
2453 return (EINVAL);
2454 bzero(&zerostats, sizeof(zerostats));
2455 xbd = req->newptr;
2456 if (bcmp(xbd, &zerostats, sizeof(*xbd)) != 0)
2457 return (EINVAL);
2458 bpf_zero_counters();
2459 return (0);
2460 }
2461 if (req->oldptr == NULL)
2462 return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
2463 if (bpf_bpfd_cnt == 0)
2464 return (SYSCTL_OUT(req, 0, 0));
2465 xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
2466 mtx_lock(&bpf_mtx);
2467 if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
2468 mtx_unlock(&bpf_mtx);
2469 free(xbdbuf, M_BPF);
2470 return (ENOMEM);
2471 }
2472 index = 0;
2473 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2474 BPFIF_LOCK(bp);
2475 LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2476 xbd = &xbdbuf[index++];
2477 BPFD_LOCK(bd);
2478 bpfstats_fill_xbpf(xbd, bd);
2479 BPFD_UNLOCK(bd);
2480 }
2481 BPFIF_UNLOCK(bp);
2482 }
2483 mtx_unlock(&bpf_mtx);
2484 error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
2485 free(xbdbuf, M_BPF);
2486 return (error);
2487 }
2488
2489 SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
2490
2491 #else /* !DEV_BPF && !NETGRAPH_BPF */
2492 /*
2493 * NOP stubs to allow bpf-using drivers to load and function.
2494 *
2495 * A 'better' implementation would allow the core bpf functionality
2496 * to be loaded at runtime.
2497 */
2498 static struct bpf_if bp_null;
2499
2500 void
2501 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2502 {
2503 }
2504
2505 void
2506 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2507 {
2508 }
2509
2510 void
2511 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
2512 {
2513 }
2514
2515 void
2516 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2517 {
2518
2519 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2520 }
2521
2522 void
2523 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2524 {
2525
2526 *driverp = &bp_null;
2527 }
2528
2529 void
2530 bpfdetach(struct ifnet *ifp)
2531 {
2532 }
2533
2534 u_int
2535 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
2536 {
2537 return -1; /* "no filter" behaviour */
2538 }
2539
2540 int
2541 bpf_validate(const struct bpf_insn *f, int len)
2542 {
2543 return 0; /* false */
2544 }
2545
2546 #endif /* !DEV_BPF && !NETGRAPH_BPF */
Cache object: afd1cc4cc777a1e516acb2bce3e19184
|