The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/bpf_zerocopy.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2007 Seccuris Inc.
    5  * All rights reserved.
    6  *
    7  * This software was developed by Robert N. M. Watson under contract to
    8  * Seccuris Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_bpf.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/lock.h>
   39 #include <sys/malloc.h>
   40 #include <sys/mbuf.h>
   41 #include <sys/mutex.h>
   42 #include <sys/proc.h>
   43 #include <sys/sf_buf.h>
   44 #include <sys/socket.h>
   45 #include <sys/uio.h>
   46 
   47 #include <machine/atomic.h>
   48 
   49 #include <net/if.h>
   50 #include <net/bpf.h>
   51 #include <net/bpf_zerocopy.h>
   52 #include <net/bpfdesc.h>
   53 
   54 #include <vm/vm.h>
   55 #include <vm/vm_param.h>
   56 #include <vm/pmap.h>
   57 #include <vm/vm_extern.h>
   58 #include <vm/vm_map.h>
   59 #include <vm/vm_page.h>
   60 
   61 /*
   62  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
   63  * are mapped into the kernel address space using sf_bufs and used directly
   64  * by BPF.  Memory is wired since page faults cannot be tolerated in the
   65  * contexts where the buffers are copied to (locks held, interrupt context,
   66  * etc).  Access to shared memory buffers is synchronized using a header on
   67  * each buffer, allowing the number of system calls to go to zero as BPF
   68  * reaches saturation (buffers filled as fast as they can be drained by the
   69  * user process).  Full details of the protocol for communicating between the
   70  * user process and BPF may be found in bpf(4).
   71  */
   72 
   73 /*
   74  * Maximum number of pages per buffer.  Since all BPF devices use two, the
   75  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
   76  * sf_bufs may be an issue, so do not set this too high.  On older systems,
   77  * kernel address space limits may also be an issue.
   78  */
   79 #define BPF_MAX_PAGES   512
   80 
   81 /*
   82  * struct zbuf describes a memory buffer loaned by a user process to the
   83  * kernel.  We represent this as a series of pages managed using an array of
   84  * sf_bufs.  Even though the memory is contiguous in user space, it may not
   85  * be mapped contiguously in the kernel (i.e., a set of physically
   86  * non-contiguous pages in the direct map region) so we must implement
   87  * scatter-gather copying.  One significant mitigating factor is that on
   88  * systems with a direct memory map, we can avoid TLB misses.
   89  *
   90  * At the front of the shared memory region is a bpf_zbuf_header, which
   91  * contains shared control data to allow user space and the kernel to
   92  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
   93  * knows that the space is not available.
   94  */
   95 struct zbuf {
   96         vm_offset_t      zb_uaddr;      /* User address at time of setup. */
   97         size_t           zb_size;       /* Size of buffer, incl. header. */
   98         u_int            zb_numpages;   /* Number of pages. */
   99         int              zb_flags;      /* Flags on zbuf. */
  100         struct sf_buf   **zb_pages;     /* Pages themselves. */
  101         struct bpf_zbuf_header  *zb_header;     /* Shared header. */
  102 };
  103 
  104 /*
  105  * When a buffer has been assigned to userspace, flag it as such, as the
  106  * buffer may remain in the store position as a result of the user process
  107  * not yet having acknowledged the buffer in the hold position yet.
  108  */
  109 #define ZBUF_FLAG_ASSIGNED      0x00000001      /* Set when owned by user. */
  110 
  111 /*
  112  * Release a page we've previously wired.
  113  */
  114 static void
  115 zbuf_page_free(vm_page_t pp)
  116 {
  117 
  118         vm_page_unwire(pp, PQ_INACTIVE);
  119 }
  120 
  121 /*
  122  * Free an sf_buf with attached page.
  123  */
  124 static void
  125 zbuf_sfbuf_free(struct sf_buf *sf)
  126 {
  127         vm_page_t pp;
  128 
  129         pp = sf_buf_page(sf);
  130         sf_buf_free(sf);
  131         zbuf_page_free(pp);
  132 }
  133 
  134 /*
  135  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
  136  * allocated zbufs to be freed so that it may be used even during a zbuf
  137  * setup.
  138  */
  139 static void
  140 zbuf_free(struct zbuf *zb)
  141 {
  142         int i;
  143 
  144         for (i = 0; i < zb->zb_numpages; i++) {
  145                 if (zb->zb_pages[i] != NULL)
  146                         zbuf_sfbuf_free(zb->zb_pages[i]);
  147         }
  148         free(zb->zb_pages, M_BPF);
  149         free(zb, M_BPF);
  150 }
  151 
  152 /*
  153  * Given a user pointer to a page of user memory, return an sf_buf for the
  154  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
  155  * deadlock and use SFB_NOWAIT.
  156  */
  157 static struct sf_buf *
  158 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
  159 {
  160         struct sf_buf *sf;
  161         vm_page_t pp;
  162 
  163         if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
  164             VM_PROT_WRITE, &pp, 1) < 0)
  165                 return (NULL);
  166         sf = sf_buf_alloc(pp, SFB_NOWAIT);
  167         if (sf == NULL) {
  168                 zbuf_page_free(pp);
  169                 return (NULL);
  170         }
  171         return (sf);
  172 }
  173 
  174 /*
  175  * Create a zbuf describing a range of user address space memory.  Validate
  176  * page alignment, size requirements, etc.
  177  */
  178 static int
  179 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
  180     struct zbuf **zbp)
  181 {
  182         struct zbuf *zb;
  183         struct vm_map *map;
  184         int error, i;
  185 
  186         *zbp = NULL;
  187 
  188         /*
  189          * User address must be page-aligned.
  190          */
  191         if (uaddr & PAGE_MASK)
  192                 return (EINVAL);
  193 
  194         /*
  195          * Length must be an integer number of full pages.
  196          */
  197         if (len & PAGE_MASK)
  198                 return (EINVAL);
  199 
  200         /*
  201          * Length must not exceed per-buffer resource limit.
  202          */
  203         if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
  204                 return (EINVAL);
  205 
  206         /*
  207          * Allocate the buffer and set up each page with is own sf_buf.
  208          */
  209         error = 0;
  210         zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
  211         zb->zb_uaddr = uaddr;
  212         zb->zb_size = len;
  213         zb->zb_numpages = len / PAGE_SIZE;
  214         zb->zb_pages = malloc(sizeof(struct sf_buf *) *
  215             zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
  216         map = &td->td_proc->p_vmspace->vm_map;
  217         for (i = 0; i < zb->zb_numpages; i++) {
  218                 zb->zb_pages[i] = zbuf_sfbuf_get(map,
  219                     uaddr + (i * PAGE_SIZE));
  220                 if (zb->zb_pages[i] == NULL) {
  221                         error = EFAULT;
  222                         goto error;
  223                 }
  224         }
  225         zb->zb_header =
  226             (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
  227         bzero(zb->zb_header, sizeof(*zb->zb_header));
  228         *zbp = zb;
  229         return (0);
  230 
  231 error:
  232         zbuf_free(zb);
  233         return (error);
  234 }
  235 
  236 /*
  237  * Copy bytes from a source into the specified zbuf.  The caller is
  238  * responsible for performing bounds checking, etc.
  239  */
  240 void
  241 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
  242     void *src, u_int len)
  243 {
  244         u_int count, page, poffset;
  245         u_char *src_bytes;
  246         struct zbuf *zb;
  247 
  248         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  249             ("bpf_zerocopy_append_bytes: not in zbuf mode"));
  250         KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
  251 
  252         src_bytes = (u_char *)src;
  253         zb = (struct zbuf *)buf;
  254 
  255         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
  256             ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
  257 
  258         /*
  259          * Scatter-gather copy to user pages mapped into kernel address space
  260          * using sf_bufs: copy up to a page at a time.
  261          */
  262         offset += sizeof(struct bpf_zbuf_header);
  263         page = offset / PAGE_SIZE;
  264         poffset = offset % PAGE_SIZE;
  265         while (len > 0) {
  266                 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
  267                    " page overflow (%d p %d np)\n", page, zb->zb_numpages));
  268 
  269                 count = min(len, PAGE_SIZE - poffset);
  270                 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
  271                     poffset, count);
  272                 poffset += count;
  273                 if (poffset == PAGE_SIZE) {
  274                         poffset = 0;
  275                         page++;
  276                 }
  277                 KASSERT(poffset < PAGE_SIZE,
  278                     ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
  279                     poffset));
  280                 len -= count;
  281                 src_bytes += count;
  282         }
  283 }
  284 
  285 /*
  286  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
  287  * scatter-gather both from mbufs, which may be fragmented over memory, and
  288  * to pages, which may not be contiguously mapped in kernel address space.
  289  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
  290  * checking that this will not exceed the buffer limit.
  291  */
  292 void
  293 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
  294     void *src, u_int len)
  295 {
  296         u_int count, moffset, page, poffset;
  297         const struct mbuf *m;
  298         struct zbuf *zb;
  299 
  300         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  301             ("bpf_zerocopy_append_mbuf not in zbuf mode"));
  302         KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
  303 
  304         m = (struct mbuf *)src;
  305         zb = (struct zbuf *)buf;
  306 
  307         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
  308             ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
  309 
  310         /*
  311          * Scatter gather both from an mbuf chain and to a user page set
  312          * mapped into kernel address space using sf_bufs.  If we're lucky,
  313          * each mbuf requires one copy operation, but if page alignment and
  314          * mbuf alignment work out less well, we'll be doing two copies per
  315          * mbuf.
  316          */
  317         offset += sizeof(struct bpf_zbuf_header);
  318         page = offset / PAGE_SIZE;
  319         poffset = offset % PAGE_SIZE;
  320         moffset = 0;
  321         while (len > 0) {
  322                 KASSERT(page < zb->zb_numpages,
  323                     ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
  324                     "np)\n", page, zb->zb_numpages));
  325                 KASSERT(m != NULL,
  326                     ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
  327 
  328                 count = min(m->m_len - moffset, len);
  329                 count = min(count, PAGE_SIZE - poffset);
  330                 bcopy(mtod(m, u_char *) + moffset,
  331                     ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
  332                     count);
  333                 poffset += count;
  334                 if (poffset == PAGE_SIZE) {
  335                         poffset = 0;
  336                         page++;
  337                 }
  338                 KASSERT(poffset < PAGE_SIZE,
  339                     ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
  340                     poffset));
  341                 moffset += count;
  342                 if (moffset == m->m_len) {
  343                         m = m->m_next;
  344                         moffset = 0;
  345                 }
  346                 len -= count;
  347         }
  348 }
  349 
  350 /*
  351  * Notification from the BPF framework that a buffer in the store position is
  352  * rejecting packets and may be considered full.  We mark the buffer as
  353  * immutable and assign to userspace so that it is immediately available for
  354  * the user process to access.
  355  */
  356 void
  357 bpf_zerocopy_buffull(struct bpf_d *d)
  358 {
  359         struct zbuf *zb;
  360 
  361         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  362             ("bpf_zerocopy_buffull: not in zbuf mode"));
  363 
  364         zb = (struct zbuf *)d->bd_sbuf;
  365         KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
  366 
  367         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
  368                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
  369                 zb->zb_header->bzh_kernel_len = d->bd_slen;
  370                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
  371         }
  372 }
  373 
  374 /*
  375  * Notification from the BPF framework that a buffer has moved into the held
  376  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
  377  * the user process know and flag the buffer as assigned if it hasn't already
  378  * been marked assigned due to filling while it was in the store position.
  379  *
  380  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
  381  * on bd_hbuf and bd_hlen.
  382  */
  383 void
  384 bpf_zerocopy_bufheld(struct bpf_d *d)
  385 {
  386         struct zbuf *zb;
  387 
  388         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  389             ("bpf_zerocopy_bufheld: not in zbuf mode"));
  390 
  391         zb = (struct zbuf *)d->bd_hbuf;
  392         KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
  393 
  394         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
  395                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
  396                 zb->zb_header->bzh_kernel_len = d->bd_hlen;
  397                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
  398         }
  399 }
  400 
  401 /*
  402  * Notification from the BPF framework that the free buffer has been been
  403  * rotated out of the held position to the free position.  This happens when
  404  * the user acknowledges the held buffer.
  405  */
  406 void
  407 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
  408 {
  409         struct zbuf *zb;
  410 
  411         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  412             ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
  413 
  414         KASSERT(d->bd_fbuf != NULL,
  415             ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
  416         zb = (struct zbuf *)d->bd_fbuf;
  417         zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
  418 }
  419 
  420 /*
  421  * Query from the BPF framework regarding whether the buffer currently in the
  422  * held position can be moved to the free position, which can be indicated by
  423  * the user process making their generation number equal to the kernel
  424  * generation number.
  425  */
  426 int
  427 bpf_zerocopy_canfreebuf(struct bpf_d *d)
  428 {
  429         struct zbuf *zb;
  430 
  431         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  432             ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
  433 
  434         zb = (struct zbuf *)d->bd_hbuf;
  435         if (zb == NULL)
  436                 return (0);
  437         if (zb->zb_header->bzh_kernel_gen ==
  438             atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
  439                 return (1);
  440         return (0);
  441 }
  442 
  443 /*
  444  * Query from the BPF framework as to whether or not the buffer current in
  445  * the store position can actually be written to.  This may return false if
  446  * the store buffer is assigned to userspace before the hold buffer is
  447  * acknowledged.
  448  */
  449 int
  450 bpf_zerocopy_canwritebuf(struct bpf_d *d)
  451 {
  452         struct zbuf *zb;
  453 
  454         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  455             ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
  456 
  457         zb = (struct zbuf *)d->bd_sbuf;
  458         KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
  459 
  460         if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
  461                 return (0);
  462         return (1);
  463 }
  464 
  465 /*
  466  * Free zero copy buffers at request of descriptor.
  467  */
  468 void
  469 bpf_zerocopy_free(struct bpf_d *d)
  470 {
  471         struct zbuf *zb;
  472 
  473         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  474             ("bpf_zerocopy_free: not in zbuf mode"));
  475 
  476         zb = (struct zbuf *)d->bd_sbuf;
  477         if (zb != NULL)
  478                 zbuf_free(zb);
  479         zb = (struct zbuf *)d->bd_hbuf;
  480         if (zb != NULL)
  481                 zbuf_free(zb);
  482         zb = (struct zbuf *)d->bd_fbuf;
  483         if (zb != NULL)
  484                 zbuf_free(zb);
  485 }
  486 
  487 /*
  488  * Ioctl to return the maximum buffer size.
  489  */
  490 int
  491 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
  492 {
  493 
  494         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  495             ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
  496 
  497         *i = BPF_MAX_PAGES * PAGE_SIZE;
  498         return (0);
  499 }
  500 
  501 /*
  502  * Ioctl to force rotation of the two buffers, if there's any data available.
  503  * This can be used by user space to implement timeouts when waiting for a
  504  * buffer to fill.
  505  */
  506 int
  507 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
  508     struct bpf_zbuf *bz)
  509 {
  510         struct zbuf *bzh;
  511 
  512         bzero(bz, sizeof(*bz));
  513         BPFD_LOCK(d);
  514         if (d->bd_hbuf == NULL && d->bd_slen != 0) {
  515                 ROTATE_BUFFERS(d);
  516                 bzh = (struct zbuf *)d->bd_hbuf;
  517                 bz->bz_bufa = (void *)bzh->zb_uaddr;
  518                 bz->bz_buflen = d->bd_hlen;
  519         }
  520         BPFD_UNLOCK(d);
  521         return (0);
  522 }
  523 
  524 /*
  525  * Ioctl to configure zero-copy buffers -- may be done only once.
  526  */
  527 int
  528 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
  529     struct bpf_zbuf *bz)
  530 {
  531         struct zbuf *zba, *zbb;
  532         int error;
  533 
  534         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  535             ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
  536 
  537         /*
  538          * Must set both buffers.  Cannot clear them.
  539          */
  540         if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
  541                 return (EINVAL);
  542 
  543         /*
  544          * Buffers must have a size greater than 0.  Alignment and other size
  545          * validity checking is done in zbuf_setup().
  546          */
  547         if (bz->bz_buflen == 0)
  548                 return (EINVAL);
  549 
  550         /*
  551          * Allocate new buffers.
  552          */
  553         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
  554             &zba);
  555         if (error)
  556                 return (error);
  557         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
  558             &zbb);
  559         if (error) {
  560                 zbuf_free(zba);
  561                 return (error);
  562         }
  563 
  564         /*
  565          * We only allow buffers to be installed once, so atomically check
  566          * that no buffers are currently installed and install new buffers.
  567          */
  568         BPFD_LOCK(d);
  569         if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
  570             d->bd_bif != NULL) {
  571                 BPFD_UNLOCK(d);
  572                 zbuf_free(zba);
  573                 zbuf_free(zbb);
  574                 return (EINVAL);
  575         }
  576 
  577         /*
  578          * Point BPF descriptor at buffers; initialize sbuf as zba so that
  579          * it is always filled first in the sequence, per bpf(4).
  580          */
  581         d->bd_fbuf = (caddr_t)zbb;
  582         d->bd_sbuf = (caddr_t)zba;
  583         d->bd_slen = 0;
  584         d->bd_hlen = 0;
  585 
  586         /*
  587          * We expose only the space left in the buffer after the size of the
  588          * shared management region.
  589          */
  590         d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
  591         BPFD_UNLOCK(d);
  592         return (0);
  593 }

Cache object: d4c95f39d972538dad9f9c8e12d90d7f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.