The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/bpf_zerocopy.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2007 Seccuris Inc.
    5  * All rights reserved.
    6  *
    7  * This software was developed by Robert N. M. Watson under contract to
    8  * Seccuris Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/12.0/sys/net/bpf_zerocopy.c 326272 2017-11-27 15:23:17Z pfg $");
   34 
   35 #include "opt_bpf.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/lock.h>
   39 #include <sys/malloc.h>
   40 #include <sys/mbuf.h>
   41 #include <sys/mutex.h>
   42 #include <sys/proc.h>
   43 #include <sys/sf_buf.h>
   44 #include <sys/socket.h>
   45 #include <sys/uio.h>
   46 
   47 #include <machine/atomic.h>
   48 
   49 #include <net/if.h>
   50 #include <net/bpf.h>
   51 #include <net/bpf_zerocopy.h>
   52 #include <net/bpfdesc.h>
   53 
   54 #include <vm/vm.h>
   55 #include <vm/vm_param.h>
   56 #include <vm/pmap.h>
   57 #include <vm/vm_extern.h>
   58 #include <vm/vm_map.h>
   59 #include <vm/vm_page.h>
   60 
   61 /*
   62  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
   63  * are mapped into the kernel address space using sf_bufs and used directly
   64  * by BPF.  Memory is wired since page faults cannot be tolerated in the
   65  * contexts where the buffers are copied to (locks held, interrupt context,
   66  * etc).  Access to shared memory buffers is synchronized using a header on
   67  * each buffer, allowing the number of system calls to go to zero as BPF
   68  * reaches saturation (buffers filled as fast as they can be drained by the
   69  * user process).  Full details of the protocol for communicating between the
   70  * user process and BPF may be found in bpf(4).
   71  */
   72 
   73 /*
   74  * Maximum number of pages per buffer.  Since all BPF devices use two, the
   75  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
   76  * sf_bufs may be an issue, so do not set this too high.  On older systems,
   77  * kernel address space limits may also be an issue.
   78  */
   79 #define BPF_MAX_PAGES   512
   80 
   81 /*
   82  * struct zbuf describes a memory buffer loaned by a user process to the
   83  * kernel.  We represent this as a series of pages managed using an array of
   84  * sf_bufs.  Even though the memory is contiguous in user space, it may not
   85  * be mapped contiguously in the kernel (i.e., a set of physically
   86  * non-contiguous pages in the direct map region) so we must implement
   87  * scatter-gather copying.  One significant mitigating factor is that on
   88  * systems with a direct memory map, we can avoid TLB misses.
   89  *
   90  * At the front of the shared memory region is a bpf_zbuf_header, which
   91  * contains shared control data to allow user space and the kernel to
   92  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
   93  * knows that the space is not available.
   94  */
   95 struct zbuf {
   96         vm_offset_t      zb_uaddr;      /* User address at time of setup. */
   97         size_t           zb_size;       /* Size of buffer, incl. header. */
   98         u_int            zb_numpages;   /* Number of pages. */
   99         int              zb_flags;      /* Flags on zbuf. */
  100         struct sf_buf   **zb_pages;     /* Pages themselves. */
  101         struct bpf_zbuf_header  *zb_header;     /* Shared header. */
  102 };
  103 
  104 /*
  105  * When a buffer has been assigned to userspace, flag it as such, as the
  106  * buffer may remain in the store position as a result of the user process
  107  * not yet having acknowledged the buffer in the hold position yet.
  108  */
  109 #define ZBUF_FLAG_ASSIGNED      0x00000001      /* Set when owned by user. */
  110 
  111 /*
  112  * Release a page we've previously wired.
  113  */
  114 static void
  115 zbuf_page_free(vm_page_t pp)
  116 {
  117 
  118         vm_page_lock(pp);
  119         if (vm_page_unwire(pp, PQ_INACTIVE) && pp->object == NULL)
  120                 vm_page_free(pp);
  121         vm_page_unlock(pp);
  122 }
  123 
  124 /*
  125  * Free an sf_buf with attached page.
  126  */
  127 static void
  128 zbuf_sfbuf_free(struct sf_buf *sf)
  129 {
  130         vm_page_t pp;
  131 
  132         pp = sf_buf_page(sf);
  133         sf_buf_free(sf);
  134         zbuf_page_free(pp);
  135 }
  136 
  137 /*
  138  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
  139  * allocated zbufs to be freed so that it may be used even during a zbuf
  140  * setup.
  141  */
  142 static void
  143 zbuf_free(struct zbuf *zb)
  144 {
  145         int i;
  146 
  147         for (i = 0; i < zb->zb_numpages; i++) {
  148                 if (zb->zb_pages[i] != NULL)
  149                         zbuf_sfbuf_free(zb->zb_pages[i]);
  150         }
  151         free(zb->zb_pages, M_BPF);
  152         free(zb, M_BPF);
  153 }
  154 
  155 /*
  156  * Given a user pointer to a page of user memory, return an sf_buf for the
  157  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
  158  * deadlock and use SFB_NOWAIT.
  159  */
  160 static struct sf_buf *
  161 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
  162 {
  163         struct sf_buf *sf;
  164         vm_page_t pp;
  165 
  166         if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
  167             VM_PROT_WRITE, &pp, 1) < 0)
  168                 return (NULL);
  169         vm_page_lock(pp);
  170         vm_page_wire(pp);
  171         vm_page_unhold(pp);
  172         vm_page_unlock(pp);
  173         sf = sf_buf_alloc(pp, SFB_NOWAIT);
  174         if (sf == NULL) {
  175                 zbuf_page_free(pp);
  176                 return (NULL);
  177         }
  178         return (sf);
  179 }
  180 
  181 /*
  182  * Create a zbuf describing a range of user address space memory.  Validate
  183  * page alignment, size requirements, etc.
  184  */
  185 static int
  186 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
  187     struct zbuf **zbp)
  188 {
  189         struct zbuf *zb;
  190         struct vm_map *map;
  191         int error, i;
  192 
  193         *zbp = NULL;
  194 
  195         /*
  196          * User address must be page-aligned.
  197          */
  198         if (uaddr & PAGE_MASK)
  199                 return (EINVAL);
  200 
  201         /*
  202          * Length must be an integer number of full pages.
  203          */
  204         if (len & PAGE_MASK)
  205                 return (EINVAL);
  206 
  207         /*
  208          * Length must not exceed per-buffer resource limit.
  209          */
  210         if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
  211                 return (EINVAL);
  212 
  213         /*
  214          * Allocate the buffer and set up each page with is own sf_buf.
  215          */
  216         error = 0;
  217         zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
  218         zb->zb_uaddr = uaddr;
  219         zb->zb_size = len;
  220         zb->zb_numpages = len / PAGE_SIZE;
  221         zb->zb_pages = malloc(sizeof(struct sf_buf *) *
  222             zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
  223         map = &td->td_proc->p_vmspace->vm_map;
  224         for (i = 0; i < zb->zb_numpages; i++) {
  225                 zb->zb_pages[i] = zbuf_sfbuf_get(map,
  226                     uaddr + (i * PAGE_SIZE));
  227                 if (zb->zb_pages[i] == NULL) {
  228                         error = EFAULT;
  229                         goto error;
  230                 }
  231         }
  232         zb->zb_header =
  233             (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
  234         bzero(zb->zb_header, sizeof(*zb->zb_header));
  235         *zbp = zb;
  236         return (0);
  237 
  238 error:
  239         zbuf_free(zb);
  240         return (error);
  241 }
  242 
  243 /*
  244  * Copy bytes from a source into the specified zbuf.  The caller is
  245  * responsible for performing bounds checking, etc.
  246  */
  247 void
  248 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
  249     void *src, u_int len)
  250 {
  251         u_int count, page, poffset;
  252         u_char *src_bytes;
  253         struct zbuf *zb;
  254 
  255         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  256             ("bpf_zerocopy_append_bytes: not in zbuf mode"));
  257         KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
  258 
  259         src_bytes = (u_char *)src;
  260         zb = (struct zbuf *)buf;
  261 
  262         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
  263             ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
  264 
  265         /*
  266          * Scatter-gather copy to user pages mapped into kernel address space
  267          * using sf_bufs: copy up to a page at a time.
  268          */
  269         offset += sizeof(struct bpf_zbuf_header);
  270         page = offset / PAGE_SIZE;
  271         poffset = offset % PAGE_SIZE;
  272         while (len > 0) {
  273                 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
  274                    " page overflow (%d p %d np)\n", page, zb->zb_numpages));
  275 
  276                 count = min(len, PAGE_SIZE - poffset);
  277                 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
  278                     poffset, count);
  279                 poffset += count;
  280                 if (poffset == PAGE_SIZE) {
  281                         poffset = 0;
  282                         page++;
  283                 }
  284                 KASSERT(poffset < PAGE_SIZE,
  285                     ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
  286                     poffset));
  287                 len -= count;
  288                 src_bytes += count;
  289         }
  290 }
  291 
  292 /*
  293  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
  294  * scatter-gather both from mbufs, which may be fragmented over memory, and
  295  * to pages, which may not be contiguously mapped in kernel address space.
  296  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
  297  * checking that this will not exceed the buffer limit.
  298  */
  299 void
  300 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
  301     void *src, u_int len)
  302 {
  303         u_int count, moffset, page, poffset;
  304         const struct mbuf *m;
  305         struct zbuf *zb;
  306 
  307         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  308             ("bpf_zerocopy_append_mbuf not in zbuf mode"));
  309         KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
  310 
  311         m = (struct mbuf *)src;
  312         zb = (struct zbuf *)buf;
  313 
  314         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
  315             ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
  316 
  317         /*
  318          * Scatter gather both from an mbuf chain and to a user page set
  319          * mapped into kernel address space using sf_bufs.  If we're lucky,
  320          * each mbuf requires one copy operation, but if page alignment and
  321          * mbuf alignment work out less well, we'll be doing two copies per
  322          * mbuf.
  323          */
  324         offset += sizeof(struct bpf_zbuf_header);
  325         page = offset / PAGE_SIZE;
  326         poffset = offset % PAGE_SIZE;
  327         moffset = 0;
  328         while (len > 0) {
  329                 KASSERT(page < zb->zb_numpages,
  330                     ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
  331                     "np)\n", page, zb->zb_numpages));
  332                 KASSERT(m != NULL,
  333                     ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
  334 
  335                 count = min(m->m_len - moffset, len);
  336                 count = min(count, PAGE_SIZE - poffset);
  337                 bcopy(mtod(m, u_char *) + moffset,
  338                     ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
  339                     count);
  340                 poffset += count;
  341                 if (poffset == PAGE_SIZE) {
  342                         poffset = 0;
  343                         page++;
  344                 }
  345                 KASSERT(poffset < PAGE_SIZE,
  346                     ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
  347                     poffset));
  348                 moffset += count;
  349                 if (moffset == m->m_len) {
  350                         m = m->m_next;
  351                         moffset = 0;
  352                 }
  353                 len -= count;
  354         }
  355 }
  356 
  357 /*
  358  * Notification from the BPF framework that a buffer in the store position is
  359  * rejecting packets and may be considered full.  We mark the buffer as
  360  * immutable and assign to userspace so that it is immediately available for
  361  * the user process to access.
  362  */
  363 void
  364 bpf_zerocopy_buffull(struct bpf_d *d)
  365 {
  366         struct zbuf *zb;
  367 
  368         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  369             ("bpf_zerocopy_buffull: not in zbuf mode"));
  370 
  371         zb = (struct zbuf *)d->bd_sbuf;
  372         KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
  373 
  374         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
  375                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
  376                 zb->zb_header->bzh_kernel_len = d->bd_slen;
  377                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
  378         }
  379 }
  380 
  381 /*
  382  * Notification from the BPF framework that a buffer has moved into the held
  383  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
  384  * the user process know and flag the buffer as assigned if it hasn't already
  385  * been marked assigned due to filling while it was in the store position.
  386  *
  387  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
  388  * on bd_hbuf and bd_hlen.
  389  */
  390 void
  391 bpf_zerocopy_bufheld(struct bpf_d *d)
  392 {
  393         struct zbuf *zb;
  394 
  395         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  396             ("bpf_zerocopy_bufheld: not in zbuf mode"));
  397 
  398         zb = (struct zbuf *)d->bd_hbuf;
  399         KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
  400 
  401         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
  402                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
  403                 zb->zb_header->bzh_kernel_len = d->bd_hlen;
  404                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
  405         }
  406 }
  407 
  408 /*
  409  * Notification from the BPF framework that the free buffer has been been
  410  * rotated out of the held position to the free position.  This happens when
  411  * the user acknowledges the held buffer.
  412  */
  413 void
  414 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
  415 {
  416         struct zbuf *zb;
  417 
  418         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  419             ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
  420 
  421         KASSERT(d->bd_fbuf != NULL,
  422             ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
  423         zb = (struct zbuf *)d->bd_fbuf;
  424         zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
  425 }
  426 
  427 /*
  428  * Query from the BPF framework regarding whether the buffer currently in the
  429  * held position can be moved to the free position, which can be indicated by
  430  * the user process making their generation number equal to the kernel
  431  * generation number.
  432  */
  433 int
  434 bpf_zerocopy_canfreebuf(struct bpf_d *d)
  435 {
  436         struct zbuf *zb;
  437 
  438         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  439             ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
  440 
  441         zb = (struct zbuf *)d->bd_hbuf;
  442         if (zb == NULL)
  443                 return (0);
  444         if (zb->zb_header->bzh_kernel_gen ==
  445             atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
  446                 return (1);
  447         return (0);
  448 }
  449 
  450 /*
  451  * Query from the BPF framework as to whether or not the buffer current in
  452  * the store position can actually be written to.  This may return false if
  453  * the store buffer is assigned to userspace before the hold buffer is
  454  * acknowledged.
  455  */
  456 int
  457 bpf_zerocopy_canwritebuf(struct bpf_d *d)
  458 {
  459         struct zbuf *zb;
  460 
  461         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  462             ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
  463 
  464         zb = (struct zbuf *)d->bd_sbuf;
  465         KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
  466 
  467         if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
  468                 return (0);
  469         return (1);
  470 }
  471 
  472 /*
  473  * Free zero copy buffers at request of descriptor.
  474  */
  475 void
  476 bpf_zerocopy_free(struct bpf_d *d)
  477 {
  478         struct zbuf *zb;
  479 
  480         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  481             ("bpf_zerocopy_free: not in zbuf mode"));
  482 
  483         zb = (struct zbuf *)d->bd_sbuf;
  484         if (zb != NULL)
  485                 zbuf_free(zb);
  486         zb = (struct zbuf *)d->bd_hbuf;
  487         if (zb != NULL)
  488                 zbuf_free(zb);
  489         zb = (struct zbuf *)d->bd_fbuf;
  490         if (zb != NULL)
  491                 zbuf_free(zb);
  492 }
  493 
  494 /*
  495  * Ioctl to return the maximum buffer size.
  496  */
  497 int
  498 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
  499 {
  500 
  501         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  502             ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
  503 
  504         *i = BPF_MAX_PAGES * PAGE_SIZE;
  505         return (0);
  506 }
  507 
  508 /*
  509  * Ioctl to force rotation of the two buffers, if there's any data available.
  510  * This can be used by user space to implement timeouts when waiting for a
  511  * buffer to fill.
  512  */
  513 int
  514 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
  515     struct bpf_zbuf *bz)
  516 {
  517         struct zbuf *bzh;
  518 
  519         bzero(bz, sizeof(*bz));
  520         BPFD_LOCK(d);
  521         if (d->bd_hbuf == NULL && d->bd_slen != 0) {
  522                 ROTATE_BUFFERS(d);
  523                 bzh = (struct zbuf *)d->bd_hbuf;
  524                 bz->bz_bufa = (void *)bzh->zb_uaddr;
  525                 bz->bz_buflen = d->bd_hlen;
  526         }
  527         BPFD_UNLOCK(d);
  528         return (0);
  529 }
  530 
  531 /*
  532  * Ioctl to configure zero-copy buffers -- may be done only once.
  533  */
  534 int
  535 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
  536     struct bpf_zbuf *bz)
  537 {
  538         struct zbuf *zba, *zbb;
  539         int error;
  540 
  541         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  542             ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
  543 
  544         /*
  545          * Must set both buffers.  Cannot clear them.
  546          */
  547         if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
  548                 return (EINVAL);
  549 
  550         /*
  551          * Buffers must have a size greater than 0.  Alignment and other size
  552          * validity checking is done in zbuf_setup().
  553          */
  554         if (bz->bz_buflen == 0)
  555                 return (EINVAL);
  556 
  557         /*
  558          * Allocate new buffers.
  559          */
  560         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
  561             &zba);
  562         if (error)
  563                 return (error);
  564         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
  565             &zbb);
  566         if (error) {
  567                 zbuf_free(zba);
  568                 return (error);
  569         }
  570 
  571         /*
  572          * We only allow buffers to be installed once, so atomically check
  573          * that no buffers are currently installed and install new buffers.
  574          */
  575         BPFD_LOCK(d);
  576         if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
  577             d->bd_bif != NULL) {
  578                 BPFD_UNLOCK(d);
  579                 zbuf_free(zba);
  580                 zbuf_free(zbb);
  581                 return (EINVAL);
  582         }
  583 
  584         /*
  585          * Point BPF descriptor at buffers; initialize sbuf as zba so that
  586          * it is always filled first in the sequence, per bpf(4).
  587          */
  588         d->bd_fbuf = (caddr_t)zbb;
  589         d->bd_sbuf = (caddr_t)zba;
  590         d->bd_slen = 0;
  591         d->bd_hlen = 0;
  592 
  593         /*
  594          * We expose only the space left in the buffer after the size of the
  595          * shared management region.
  596          */
  597         d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
  598         BPFD_UNLOCK(d);
  599         return (0);
  600 }

Cache object: 94a16ed76e3cafe9e6044722d9c9816e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.