The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/bpf_zerocopy.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2007 Seccuris Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed by Robert N. M. Watson under contract to
    6  * Seccuris Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/8.4/sys/net/bpf_zerocopy.c 234970 2012-05-03 16:49:27Z eadler $");
   32 
   33 #include "opt_bpf.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/lock.h>
   37 #include <sys/malloc.h>
   38 #include <sys/mbuf.h>
   39 #include <sys/mutex.h>
   40 #include <sys/proc.h>
   41 #include <sys/sf_buf.h>
   42 #include <sys/socket.h>
   43 #include <sys/uio.h>
   44 
   45 #include <machine/atomic.h>
   46 
   47 #include <net/if.h>
   48 #include <net/bpf.h>
   49 #include <net/bpf_zerocopy.h>
   50 #include <net/bpfdesc.h>
   51 
   52 #include <vm/vm.h>
   53 #include <vm/pmap.h>
   54 #include <vm/vm_extern.h>
   55 #include <vm/vm_map.h>
   56 #include <vm/vm_page.h>
   57 
   58 /*
   59  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
   60  * are mapped into the kernel address space using sf_bufs and used directly
   61  * by BPF.  Memory is wired since page faults cannot be tolerated in the
   62  * contexts where the buffers are copied to (locks held, interrupt context,
   63  * etc).  Access to shared memory buffers is synchronized using a header on
   64  * each buffer, allowing the number of system calls to go to zero as BPF
   65  * reaches saturation (buffers filled as fast as they can be drained by the
   66  * user process).  Full details of the protocol for communicating between the
   67  * user process and BPF may be found in bpf(4).
   68  */
   69 
   70 /*
   71  * Maximum number of pages per buffer.  Since all BPF devices use two, the
   72  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
   73  * sf_bufs may be an issue, so do not set this too high.  On older systems,
   74  * kernel address space limits may also be an issue.
   75  */
   76 #define BPF_MAX_PAGES   512
   77 
   78 /*
   79  * struct zbuf describes a memory buffer loaned by a user process to the
   80  * kernel.  We represent this as a series of pages managed using an array of
   81  * sf_bufs.  Even though the memory is contiguous in user space, it may not
   82  * be mapped contiguously in the kernel (i.e., a set of physically
   83  * non-contiguous pages in the direct map region) so we must implement
   84  * scatter-gather copying.  One significant mitigating factor is that on
   85  * systems with a direct memory map, we can avoid TLB misses.
   86  *
   87  * At the front of the shared memory region is a bpf_zbuf_header, which
   88  * contains shared control data to allow user space and the kernel to
   89  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
   90  * knows that the space is not available.
   91  */
   92 struct zbuf {
   93         vm_offset_t      zb_uaddr;      /* User address at time of setup. */
   94         size_t           zb_size;       /* Size of buffer, incl. header. */
   95         u_int            zb_numpages;   /* Number of pages. */
   96         int              zb_flags;      /* Flags on zbuf. */
   97         struct sf_buf   **zb_pages;     /* Pages themselves. */
   98         struct bpf_zbuf_header  *zb_header;     /* Shared header. */
   99 };
  100 
  101 /*
  102  * When a buffer has been assigned to userspace, flag it as such, as the
  103  * buffer may remain in the store position as a result of the user process
  104  * not yet having acknowledged the buffer in the hold position yet.
  105  */
  106 #define ZBUF_FLAG_ASSIGNED      0x00000001      /* Set when owned by user. */
  107 
  108 /*
  109  * Release a page we've previously wired.
  110  */
  111 static void
  112 zbuf_page_free(vm_page_t pp)
  113 {
  114 
  115         vm_page_lock_queues();
  116         vm_page_unwire(pp, 0);
  117         if (pp->wire_count == 0 && pp->object == NULL)
  118                 vm_page_free(pp);
  119         vm_page_unlock_queues();
  120 }
  121 
  122 /*
  123  * Free an sf_buf with attached page.
  124  */
  125 static void
  126 zbuf_sfbuf_free(struct sf_buf *sf)
  127 {
  128         vm_page_t pp;
  129 
  130         pp = sf_buf_page(sf);
  131         sf_buf_free(sf);
  132         zbuf_page_free(pp);
  133 }
  134 
  135 /*
  136  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
  137  * allocated zbufs to be freed so that it may be used even during a zbuf
  138  * setup.
  139  */
  140 static void
  141 zbuf_free(struct zbuf *zb)
  142 {
  143         int i;
  144 
  145         for (i = 0; i < zb->zb_numpages; i++) {
  146                 if (zb->zb_pages[i] != NULL)
  147                         zbuf_sfbuf_free(zb->zb_pages[i]);
  148         }
  149         free(zb->zb_pages, M_BPF);
  150         free(zb, M_BPF);
  151 }
  152 
  153 /*
  154  * Given a user pointer to a page of user memory, return an sf_buf for the
  155  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
  156  * deadlock and use SFB_NOWAIT.
  157  */
  158 static struct sf_buf *
  159 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
  160 {
  161         struct sf_buf *sf;
  162         vm_page_t pp;
  163 
  164         if (vm_fault_quick((caddr_t) uaddr, VM_PROT_READ | VM_PROT_WRITE) <
  165             0)
  166                 return (NULL);
  167         pp = pmap_extract_and_hold(map->pmap, uaddr, VM_PROT_READ |
  168             VM_PROT_WRITE);
  169         if (pp == NULL)
  170                 return (NULL);
  171         vm_page_lock_queues();
  172         vm_page_wire(pp);
  173         vm_page_unhold(pp);
  174         vm_page_unlock_queues();
  175         sf = sf_buf_alloc(pp, SFB_NOWAIT);
  176         if (sf == NULL) {
  177                 zbuf_page_free(pp);
  178                 return (NULL);
  179         }
  180         return (sf);
  181 }
  182 
  183 /*
  184  * Create a zbuf describing a range of user address space memory.  Validate
  185  * page alignment, size requirements, etc.
  186  */
  187 static int
  188 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
  189     struct zbuf **zbp)
  190 {
  191         struct zbuf *zb;
  192         struct vm_map *map;
  193         int error, i;
  194 
  195         *zbp = NULL;
  196 
  197         /*
  198          * User address must be page-aligned.
  199          */
  200         if (uaddr & PAGE_MASK)
  201                 return (EINVAL);
  202 
  203         /*
  204          * Length must be an integer number of full pages.
  205          */
  206         if (len & PAGE_MASK)
  207                 return (EINVAL);
  208 
  209         /*
  210          * Length must not exceed per-buffer resource limit.
  211          */
  212         if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
  213                 return (EINVAL);
  214 
  215         /*
  216          * Allocate the buffer and set up each page with is own sf_buf.
  217          */
  218         error = 0;
  219         zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
  220         zb->zb_uaddr = uaddr;
  221         zb->zb_size = len;
  222         zb->zb_numpages = len / PAGE_SIZE;
  223         zb->zb_pages = malloc(sizeof(struct sf_buf *) *
  224             zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
  225         map = &td->td_proc->p_vmspace->vm_map;
  226         for (i = 0; i < zb->zb_numpages; i++) {
  227                 zb->zb_pages[i] = zbuf_sfbuf_get(map,
  228                     uaddr + (i * PAGE_SIZE));
  229                 if (zb->zb_pages[i] == NULL) {
  230                         error = EFAULT;
  231                         goto error;
  232                 }
  233         }
  234         zb->zb_header =
  235             (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
  236         bzero(zb->zb_header, sizeof(*zb->zb_header));
  237         *zbp = zb;
  238         return (0);
  239 
  240 error:
  241         zbuf_free(zb);
  242         return (error);
  243 }
  244 
  245 /*
  246  * Copy bytes from a source into the specified zbuf.  The caller is
  247  * responsible for performing bounds checking, etc.
  248  */
  249 void
  250 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
  251     void *src, u_int len)
  252 {
  253         u_int count, page, poffset;
  254         u_char *src_bytes;
  255         struct zbuf *zb;
  256 
  257         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  258             ("bpf_zerocopy_append_bytes: not in zbuf mode"));
  259         KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
  260 
  261         src_bytes = (u_char *)src;
  262         zb = (struct zbuf *)buf;
  263 
  264         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
  265             ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
  266 
  267         /*
  268          * Scatter-gather copy to user pages mapped into kernel address space
  269          * using sf_bufs: copy up to a page at a time.
  270          */
  271         offset += sizeof(struct bpf_zbuf_header);
  272         page = offset / PAGE_SIZE;
  273         poffset = offset % PAGE_SIZE;
  274         while (len > 0) {
  275                 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
  276                    " page overflow (%d p %d np)\n", page, zb->zb_numpages));
  277 
  278                 count = min(len, PAGE_SIZE - poffset);
  279                 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
  280                     poffset, count);
  281                 poffset += count;
  282                 if (poffset == PAGE_SIZE) {
  283                         poffset = 0;
  284                         page++;
  285                 }
  286                 KASSERT(poffset < PAGE_SIZE,
  287                     ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
  288                     poffset));
  289                 len -= count;
  290                 src_bytes += count;
  291         }
  292 }
  293 
  294 /*
  295  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
  296  * scatter-gather both from mbufs, which may be fragmented over memory, and
  297  * to pages, which may not be contiguously mapped in kernel address space.
  298  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
  299  * checking that this will not exceed the buffer limit.
  300  */
  301 void
  302 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
  303     void *src, u_int len)
  304 {
  305         u_int count, moffset, page, poffset;
  306         const struct mbuf *m;
  307         struct zbuf *zb;
  308 
  309         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  310             ("bpf_zerocopy_append_mbuf not in zbuf mode"));
  311         KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
  312 
  313         m = (struct mbuf *)src;
  314         zb = (struct zbuf *)buf;
  315 
  316         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
  317             ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
  318 
  319         /*
  320          * Scatter gather both from an mbuf chain and to a user page set
  321          * mapped into kernel address space using sf_bufs.  If we're lucky,
  322          * each mbuf requires one copy operation, but if page alignment and
  323          * mbuf alignment work out less well, we'll be doing two copies per
  324          * mbuf.
  325          */
  326         offset += sizeof(struct bpf_zbuf_header);
  327         page = offset / PAGE_SIZE;
  328         poffset = offset % PAGE_SIZE;
  329         moffset = 0;
  330         while (len > 0) {
  331                 KASSERT(page < zb->zb_numpages,
  332                     ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
  333                     "np)\n", page, zb->zb_numpages));
  334                 KASSERT(m != NULL,
  335                     ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
  336 
  337                 count = min(m->m_len - moffset, len);
  338                 count = min(count, PAGE_SIZE - poffset);
  339                 bcopy(mtod(m, u_char *) + moffset,
  340                     ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
  341                     count);
  342                 poffset += count;
  343                 if (poffset == PAGE_SIZE) {
  344                         poffset = 0;
  345                         page++;
  346                 }
  347                 KASSERT(poffset < PAGE_SIZE,
  348                     ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
  349                     poffset));
  350                 moffset += count;
  351                 if (moffset == m->m_len) {
  352                         m = m->m_next;
  353                         moffset = 0;
  354                 }
  355                 len -= count;
  356         }
  357 }
  358 
  359 /*
  360  * Notification from the BPF framework that a buffer in the store position is
  361  * rejecting packets and may be considered full.  We mark the buffer as
  362  * immutable and assign to userspace so that it is immediately available for
  363  * the user process to access.
  364  */
  365 void
  366 bpf_zerocopy_buffull(struct bpf_d *d)
  367 {
  368         struct zbuf *zb;
  369 
  370         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  371             ("bpf_zerocopy_buffull: not in zbuf mode"));
  372 
  373         zb = (struct zbuf *)d->bd_sbuf;
  374         KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
  375 
  376         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
  377                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
  378                 zb->zb_header->bzh_kernel_len = d->bd_slen;
  379                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
  380         }
  381 }
  382 
  383 /*
  384  * Notification from the BPF framework that a buffer has moved into the held
  385  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
  386  * the user process know and flag the buffer as assigned if it hasn't already
  387  * been marked assigned due to filling while it was in the store position.
  388  *
  389  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
  390  * on bd_hbuf and bd_hlen.
  391  */
  392 void
  393 bpf_zerocopy_bufheld(struct bpf_d *d)
  394 {
  395         struct zbuf *zb;
  396 
  397         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  398             ("bpf_zerocopy_bufheld: not in zbuf mode"));
  399 
  400         zb = (struct zbuf *)d->bd_hbuf;
  401         KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
  402 
  403         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
  404                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
  405                 zb->zb_header->bzh_kernel_len = d->bd_hlen;
  406                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
  407         }
  408 }
  409 
  410 /*
  411  * Notification from the BPF framework that the free buffer has been been
  412  * rotated out of the held position to the free position.  This happens when
  413  * the user acknowledges the held buffer.
  414  */
  415 void
  416 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
  417 {
  418         struct zbuf *zb;
  419 
  420         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  421             ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
  422 
  423         KASSERT(d->bd_fbuf != NULL,
  424             ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
  425         zb = (struct zbuf *)d->bd_fbuf;
  426         zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
  427 }
  428 
  429 /*
  430  * Query from the BPF framework regarding whether the buffer currently in the
  431  * held position can be moved to the free position, which can be indicated by
  432  * the user process making their generation number equal to the kernel
  433  * generation number.
  434  */
  435 int
  436 bpf_zerocopy_canfreebuf(struct bpf_d *d)
  437 {
  438         struct zbuf *zb;
  439 
  440         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  441             ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
  442 
  443         zb = (struct zbuf *)d->bd_hbuf;
  444         if (zb == NULL)
  445                 return (0);
  446         if (zb->zb_header->bzh_kernel_gen ==
  447             atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
  448                 return (1);
  449         return (0);
  450 }
  451 
  452 /*
  453  * Query from the BPF framework as to whether or not the buffer current in
  454  * the store position can actually be written to.  This may return false if
  455  * the store buffer is assigned to userspace before the hold buffer is
  456  * acknowledged.
  457  */
  458 int
  459 bpf_zerocopy_canwritebuf(struct bpf_d *d)
  460 {
  461         struct zbuf *zb;
  462 
  463         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  464             ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
  465 
  466         zb = (struct zbuf *)d->bd_sbuf;
  467         KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
  468 
  469         if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
  470                 return (0);
  471         return (1);
  472 }
  473 
  474 /*
  475  * Free zero copy buffers at request of descriptor.
  476  */
  477 void
  478 bpf_zerocopy_free(struct bpf_d *d)
  479 {
  480         struct zbuf *zb;
  481 
  482         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  483             ("bpf_zerocopy_free: not in zbuf mode"));
  484 
  485         zb = (struct zbuf *)d->bd_sbuf;
  486         if (zb != NULL)
  487                 zbuf_free(zb);
  488         zb = (struct zbuf *)d->bd_hbuf;
  489         if (zb != NULL)
  490                 zbuf_free(zb);
  491         zb = (struct zbuf *)d->bd_fbuf;
  492         if (zb != NULL)
  493                 zbuf_free(zb);
  494 }
  495 
  496 /*
  497  * Ioctl to return the maximum buffer size.
  498  */
  499 int
  500 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
  501 {
  502 
  503         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  504             ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
  505 
  506         *i = BPF_MAX_PAGES * PAGE_SIZE;
  507         return (0);
  508 }
  509 
  510 /*
  511  * Ioctl to force rotation of the two buffers, if there's any data available.
  512  * This can be used by user space to implement timeouts when waiting for a
  513  * buffer to fill.
  514  */
  515 int
  516 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
  517     struct bpf_zbuf *bz)
  518 {
  519         struct zbuf *bzh;
  520 
  521         bzero(bz, sizeof(*bz));
  522         BPFD_LOCK(d);
  523         if (d->bd_hbuf == NULL && d->bd_slen != 0) {
  524                 ROTATE_BUFFERS(d);
  525                 bzh = (struct zbuf *)d->bd_hbuf;
  526                 bz->bz_bufa = (void *)bzh->zb_uaddr;
  527                 bz->bz_buflen = d->bd_hlen;
  528         }
  529         BPFD_UNLOCK(d);
  530         return (0);
  531 }
  532 
  533 /*
  534  * Ioctl to configure zero-copy buffers -- may be done only once.
  535  */
  536 int
  537 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
  538     struct bpf_zbuf *bz)
  539 {
  540         struct zbuf *zba, *zbb;
  541         int error;
  542 
  543         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  544             ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
  545 
  546         /*
  547          * Must set both buffers.  Cannot clear them.
  548          */
  549         if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
  550                 return (EINVAL);
  551 
  552         /*
  553          * Buffers must have a size greater than 0.  Alignment and other size
  554          * validity checking is done in zbuf_setup().
  555          */
  556         if (bz->bz_buflen == 0)
  557                 return (EINVAL);
  558 
  559         /*
  560          * Allocate new buffers.
  561          */
  562         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
  563             &zba);
  564         if (error)
  565                 return (error);
  566         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
  567             &zbb);
  568         if (error) {
  569                 zbuf_free(zba);
  570                 return (error);
  571         }
  572 
  573         /*
  574          * We only allow buffers to be installed once, so atomically check
  575          * that no buffers are currently installed and install new buffers.
  576          */
  577         BPFD_LOCK(d);
  578         if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
  579             d->bd_bif != NULL) {
  580                 BPFD_UNLOCK(d);
  581                 zbuf_free(zba);
  582                 zbuf_free(zbb);
  583                 return (EINVAL);
  584         }
  585 
  586         /*
  587          * Point BPF descriptor at buffers; initialize sbuf as zba so that
  588          * it is always filled first in the sequence, per bpf(4).
  589          */
  590         d->bd_fbuf = (caddr_t)zbb;
  591         d->bd_sbuf = (caddr_t)zba;
  592         d->bd_slen = 0;
  593         d->bd_hlen = 0;
  594 
  595         /*
  596          * We expose only the space left in the buffer after the size of the
  597          * shared management region.
  598          */
  599         d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
  600         BPFD_UNLOCK(d);
  601         return (0);
  602 }

Cache object: 5281b3704ffa4e4e1f332056ed5209e2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.