The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/bpf_zerocopy.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2007 Seccuris Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed by Robert N. M. Watson under contract to
    6  * Seccuris Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "opt_bpf.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/lock.h>
   37 #include <sys/malloc.h>
   38 #include <sys/mbuf.h>
   39 #include <sys/mutex.h>
   40 #include <sys/proc.h>
   41 #include <sys/sf_buf.h>
   42 #include <sys/socket.h>
   43 #include <sys/uio.h>
   44 
   45 #include <machine/atomic.h>
   46 
   47 #include <net/if.h>
   48 #include <net/bpf.h>
   49 #include <net/bpf_zerocopy.h>
   50 #include <net/bpfdesc.h>
   51 
   52 #include <vm/vm.h>
   53 #include <vm/vm_param.h>
   54 #include <vm/pmap.h>
   55 #include <vm/vm_extern.h>
   56 #include <vm/vm_map.h>
   57 #include <vm/vm_page.h>
   58 
   59 /*
   60  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
   61  * are mapped into the kernel address space using sf_bufs and used directly
   62  * by BPF.  Memory is wired since page faults cannot be tolerated in the
   63  * contexts where the buffers are copied to (locks held, interrupt context,
   64  * etc).  Access to shared memory buffers is synchronized using a header on
   65  * each buffer, allowing the number of system calls to go to zero as BPF
   66  * reaches saturation (buffers filled as fast as they can be drained by the
   67  * user process).  Full details of the protocol for communicating between the
   68  * user process and BPF may be found in bpf(4).
   69  */
   70 
   71 /*
   72  * Maximum number of pages per buffer.  Since all BPF devices use two, the
   73  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
   74  * sf_bufs may be an issue, so do not set this too high.  On older systems,
   75  * kernel address space limits may also be an issue.
   76  */
   77 #define BPF_MAX_PAGES   512
   78 
   79 /*
   80  * struct zbuf describes a memory buffer loaned by a user process to the
   81  * kernel.  We represent this as a series of pages managed using an array of
   82  * sf_bufs.  Even though the memory is contiguous in user space, it may not
   83  * be mapped contiguously in the kernel (i.e., a set of physically
   84  * non-contiguous pages in the direct map region) so we must implement
   85  * scatter-gather copying.  One significant mitigating factor is that on
   86  * systems with a direct memory map, we can avoid TLB misses.
   87  *
   88  * At the front of the shared memory region is a bpf_zbuf_header, which
   89  * contains shared control data to allow user space and the kernel to
   90  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
   91  * knows that the space is not available.
   92  */
   93 struct zbuf {
   94         vm_offset_t      zb_uaddr;      /* User address at time of setup. */
   95         size_t           zb_size;       /* Size of buffer, incl. header. */
   96         u_int            zb_numpages;   /* Number of pages. */
   97         int              zb_flags;      /* Flags on zbuf. */
   98         struct sf_buf   **zb_pages;     /* Pages themselves. */
   99         struct bpf_zbuf_header  *zb_header;     /* Shared header. */
  100 };
  101 
  102 /*
  103  * When a buffer has been assigned to userspace, flag it as such, as the
  104  * buffer may remain in the store position as a result of the user process
  105  * not yet having acknowledged the buffer in the hold position yet.
  106  */
  107 #define ZBUF_FLAG_ASSIGNED      0x00000001      /* Set when owned by user. */
  108 
  109 /*
  110  * Release a page we've previously wired.
  111  */
  112 static void
  113 zbuf_page_free(vm_page_t pp)
  114 {
  115 
  116         vm_page_lock(pp);
  117         vm_page_unwire(pp, 0);
  118         if (pp->wire_count == 0 && pp->object == NULL)
  119                 vm_page_free(pp);
  120         vm_page_unlock(pp);
  121 }
  122 
  123 /*
  124  * Free an sf_buf with attached page.
  125  */
  126 static void
  127 zbuf_sfbuf_free(struct sf_buf *sf)
  128 {
  129         vm_page_t pp;
  130 
  131         pp = sf_buf_page(sf);
  132         sf_buf_free(sf);
  133         zbuf_page_free(pp);
  134 }
  135 
  136 /*
  137  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
  138  * allocated zbufs to be freed so that it may be used even during a zbuf
  139  * setup.
  140  */
  141 static void
  142 zbuf_free(struct zbuf *zb)
  143 {
  144         int i;
  145 
  146         for (i = 0; i < zb->zb_numpages; i++) {
  147                 if (zb->zb_pages[i] != NULL)
  148                         zbuf_sfbuf_free(zb->zb_pages[i]);
  149         }
  150         free(zb->zb_pages, M_BPF);
  151         free(zb, M_BPF);
  152 }
  153 
  154 /*
  155  * Given a user pointer to a page of user memory, return an sf_buf for the
  156  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
  157  * deadlock and use SFB_NOWAIT.
  158  */
  159 static struct sf_buf *
  160 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
  161 {
  162         struct sf_buf *sf;
  163         vm_page_t pp;
  164 
  165         if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
  166             VM_PROT_WRITE, &pp, 1) < 0)
  167                 return (NULL);
  168         vm_page_lock(pp);
  169         vm_page_wire(pp);
  170         vm_page_unhold(pp);
  171         vm_page_unlock(pp);
  172         sf = sf_buf_alloc(pp, SFB_NOWAIT);
  173         if (sf == NULL) {
  174                 zbuf_page_free(pp);
  175                 return (NULL);
  176         }
  177         return (sf);
  178 }
  179 
  180 /*
  181  * Create a zbuf describing a range of user address space memory.  Validate
  182  * page alignment, size requirements, etc.
  183  */
  184 static int
  185 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
  186     struct zbuf **zbp)
  187 {
  188         struct zbuf *zb;
  189         struct vm_map *map;
  190         int error, i;
  191 
  192         *zbp = NULL;
  193 
  194         /*
  195          * User address must be page-aligned.
  196          */
  197         if (uaddr & PAGE_MASK)
  198                 return (EINVAL);
  199 
  200         /*
  201          * Length must be an integer number of full pages.
  202          */
  203         if (len & PAGE_MASK)
  204                 return (EINVAL);
  205 
  206         /*
  207          * Length must not exceed per-buffer resource limit.
  208          */
  209         if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
  210                 return (EINVAL);
  211 
  212         /*
  213          * Allocate the buffer and set up each page with is own sf_buf.
  214          */
  215         error = 0;
  216         zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
  217         zb->zb_uaddr = uaddr;
  218         zb->zb_size = len;
  219         zb->zb_numpages = len / PAGE_SIZE;
  220         zb->zb_pages = malloc(sizeof(struct sf_buf *) *
  221             zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
  222         map = &td->td_proc->p_vmspace->vm_map;
  223         for (i = 0; i < zb->zb_numpages; i++) {
  224                 zb->zb_pages[i] = zbuf_sfbuf_get(map,
  225                     uaddr + (i * PAGE_SIZE));
  226                 if (zb->zb_pages[i] == NULL) {
  227                         error = EFAULT;
  228                         goto error;
  229                 }
  230         }
  231         zb->zb_header =
  232             (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
  233         bzero(zb->zb_header, sizeof(*zb->zb_header));
  234         *zbp = zb;
  235         return (0);
  236 
  237 error:
  238         zbuf_free(zb);
  239         return (error);
  240 }
  241 
  242 /*
  243  * Copy bytes from a source into the specified zbuf.  The caller is
  244  * responsible for performing bounds checking, etc.
  245  */
  246 void
  247 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
  248     void *src, u_int len)
  249 {
  250         u_int count, page, poffset;
  251         u_char *src_bytes;
  252         struct zbuf *zb;
  253 
  254         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  255             ("bpf_zerocopy_append_bytes: not in zbuf mode"));
  256         KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
  257 
  258         src_bytes = (u_char *)src;
  259         zb = (struct zbuf *)buf;
  260 
  261         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
  262             ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
  263 
  264         /*
  265          * Scatter-gather copy to user pages mapped into kernel address space
  266          * using sf_bufs: copy up to a page at a time.
  267          */
  268         offset += sizeof(struct bpf_zbuf_header);
  269         page = offset / PAGE_SIZE;
  270         poffset = offset % PAGE_SIZE;
  271         while (len > 0) {
  272                 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
  273                    " page overflow (%d p %d np)\n", page, zb->zb_numpages));
  274 
  275                 count = min(len, PAGE_SIZE - poffset);
  276                 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
  277                     poffset, count);
  278                 poffset += count;
  279                 if (poffset == PAGE_SIZE) {
  280                         poffset = 0;
  281                         page++;
  282                 }
  283                 KASSERT(poffset < PAGE_SIZE,
  284                     ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
  285                     poffset));
  286                 len -= count;
  287                 src_bytes += count;
  288         }
  289 }
  290 
  291 /*
  292  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
  293  * scatter-gather both from mbufs, which may be fragmented over memory, and
  294  * to pages, which may not be contiguously mapped in kernel address space.
  295  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
  296  * checking that this will not exceed the buffer limit.
  297  */
  298 void
  299 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
  300     void *src, u_int len)
  301 {
  302         u_int count, moffset, page, poffset;
  303         const struct mbuf *m;
  304         struct zbuf *zb;
  305 
  306         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  307             ("bpf_zerocopy_append_mbuf not in zbuf mode"));
  308         KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
  309 
  310         m = (struct mbuf *)src;
  311         zb = (struct zbuf *)buf;
  312 
  313         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
  314             ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
  315 
  316         /*
  317          * Scatter gather both from an mbuf chain and to a user page set
  318          * mapped into kernel address space using sf_bufs.  If we're lucky,
  319          * each mbuf requires one copy operation, but if page alignment and
  320          * mbuf alignment work out less well, we'll be doing two copies per
  321          * mbuf.
  322          */
  323         offset += sizeof(struct bpf_zbuf_header);
  324         page = offset / PAGE_SIZE;
  325         poffset = offset % PAGE_SIZE;
  326         moffset = 0;
  327         while (len > 0) {
  328                 KASSERT(page < zb->zb_numpages,
  329                     ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
  330                     "np)\n", page, zb->zb_numpages));
  331                 KASSERT(m != NULL,
  332                     ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
  333 
  334                 count = min(m->m_len - moffset, len);
  335                 count = min(count, PAGE_SIZE - poffset);
  336                 bcopy(mtod(m, u_char *) + moffset,
  337                     ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
  338                     count);
  339                 poffset += count;
  340                 if (poffset == PAGE_SIZE) {
  341                         poffset = 0;
  342                         page++;
  343                 }
  344                 KASSERT(poffset < PAGE_SIZE,
  345                     ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
  346                     poffset));
  347                 moffset += count;
  348                 if (moffset == m->m_len) {
  349                         m = m->m_next;
  350                         moffset = 0;
  351                 }
  352                 len -= count;
  353         }
  354 }
  355 
  356 /*
  357  * Notification from the BPF framework that a buffer in the store position is
  358  * rejecting packets and may be considered full.  We mark the buffer as
  359  * immutable and assign to userspace so that it is immediately available for
  360  * the user process to access.
  361  */
  362 void
  363 bpf_zerocopy_buffull(struct bpf_d *d)
  364 {
  365         struct zbuf *zb;
  366 
  367         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  368             ("bpf_zerocopy_buffull: not in zbuf mode"));
  369 
  370         zb = (struct zbuf *)d->bd_sbuf;
  371         KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
  372 
  373         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
  374                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
  375                 zb->zb_header->bzh_kernel_len = d->bd_slen;
  376                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
  377         }
  378 }
  379 
  380 /*
  381  * Notification from the BPF framework that a buffer has moved into the held
  382  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
  383  * the user process know and flag the buffer as assigned if it hasn't already
  384  * been marked assigned due to filling while it was in the store position.
  385  *
  386  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
  387  * on bd_hbuf and bd_hlen.
  388  */
  389 void
  390 bpf_zerocopy_bufheld(struct bpf_d *d)
  391 {
  392         struct zbuf *zb;
  393 
  394         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  395             ("bpf_zerocopy_bufheld: not in zbuf mode"));
  396 
  397         zb = (struct zbuf *)d->bd_hbuf;
  398         KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
  399 
  400         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
  401                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
  402                 zb->zb_header->bzh_kernel_len = d->bd_hlen;
  403                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
  404         }
  405 }
  406 
  407 /*
  408  * Notification from the BPF framework that the free buffer has been been
  409  * rotated out of the held position to the free position.  This happens when
  410  * the user acknowledges the held buffer.
  411  */
  412 void
  413 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
  414 {
  415         struct zbuf *zb;
  416 
  417         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  418             ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
  419 
  420         KASSERT(d->bd_fbuf != NULL,
  421             ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
  422         zb = (struct zbuf *)d->bd_fbuf;
  423         zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
  424 }
  425 
  426 /*
  427  * Query from the BPF framework regarding whether the buffer currently in the
  428  * held position can be moved to the free position, which can be indicated by
  429  * the user process making their generation number equal to the kernel
  430  * generation number.
  431  */
  432 int
  433 bpf_zerocopy_canfreebuf(struct bpf_d *d)
  434 {
  435         struct zbuf *zb;
  436 
  437         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  438             ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
  439 
  440         zb = (struct zbuf *)d->bd_hbuf;
  441         if (zb == NULL)
  442                 return (0);
  443         if (zb->zb_header->bzh_kernel_gen ==
  444             atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
  445                 return (1);
  446         return (0);
  447 }
  448 
  449 /*
  450  * Query from the BPF framework as to whether or not the buffer current in
  451  * the store position can actually be written to.  This may return false if
  452  * the store buffer is assigned to userspace before the hold buffer is
  453  * acknowledged.
  454  */
  455 int
  456 bpf_zerocopy_canwritebuf(struct bpf_d *d)
  457 {
  458         struct zbuf *zb;
  459 
  460         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  461             ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
  462 
  463         zb = (struct zbuf *)d->bd_sbuf;
  464         KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
  465 
  466         if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
  467                 return (0);
  468         return (1);
  469 }
  470 
  471 /*
  472  * Free zero copy buffers at request of descriptor.
  473  */
  474 void
  475 bpf_zerocopy_free(struct bpf_d *d)
  476 {
  477         struct zbuf *zb;
  478 
  479         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  480             ("bpf_zerocopy_free: not in zbuf mode"));
  481 
  482         zb = (struct zbuf *)d->bd_sbuf;
  483         if (zb != NULL)
  484                 zbuf_free(zb);
  485         zb = (struct zbuf *)d->bd_hbuf;
  486         if (zb != NULL)
  487                 zbuf_free(zb);
  488         zb = (struct zbuf *)d->bd_fbuf;
  489         if (zb != NULL)
  490                 zbuf_free(zb);
  491 }
  492 
  493 /*
  494  * Ioctl to return the maximum buffer size.
  495  */
  496 int
  497 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
  498 {
  499 
  500         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  501             ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
  502 
  503         *i = BPF_MAX_PAGES * PAGE_SIZE;
  504         return (0);
  505 }
  506 
  507 /*
  508  * Ioctl to force rotation of the two buffers, if there's any data available.
  509  * This can be used by user space to implement timeouts when waiting for a
  510  * buffer to fill.
  511  */
  512 int
  513 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
  514     struct bpf_zbuf *bz)
  515 {
  516         struct zbuf *bzh;
  517 
  518         bzero(bz, sizeof(*bz));
  519         BPFD_LOCK(d);
  520         if (d->bd_hbuf == NULL && d->bd_slen != 0) {
  521                 ROTATE_BUFFERS(d);
  522                 bzh = (struct zbuf *)d->bd_hbuf;
  523                 bz->bz_bufa = (void *)bzh->zb_uaddr;
  524                 bz->bz_buflen = d->bd_hlen;
  525         }
  526         BPFD_UNLOCK(d);
  527         return (0);
  528 }
  529 
  530 /*
  531  * Ioctl to configure zero-copy buffers -- may be done only once.
  532  */
  533 int
  534 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
  535     struct bpf_zbuf *bz)
  536 {
  537         struct zbuf *zba, *zbb;
  538         int error;
  539 
  540         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
  541             ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
  542 
  543         /*
  544          * Must set both buffers.  Cannot clear them.
  545          */
  546         if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
  547                 return (EINVAL);
  548 
  549         /*
  550          * Buffers must have a size greater than 0.  Alignment and other size
  551          * validity checking is done in zbuf_setup().
  552          */
  553         if (bz->bz_buflen == 0)
  554                 return (EINVAL);
  555 
  556         /*
  557          * Allocate new buffers.
  558          */
  559         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
  560             &zba);
  561         if (error)
  562                 return (error);
  563         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
  564             &zbb);
  565         if (error) {
  566                 zbuf_free(zba);
  567                 return (error);
  568         }
  569 
  570         /*
  571          * We only allow buffers to be installed once, so atomically check
  572          * that no buffers are currently installed and install new buffers.
  573          */
  574         BPFD_LOCK(d);
  575         if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
  576             d->bd_bif != NULL) {
  577                 BPFD_UNLOCK(d);
  578                 zbuf_free(zba);
  579                 zbuf_free(zbb);
  580                 return (EINVAL);
  581         }
  582 
  583         /*
  584          * Point BPF descriptor at buffers; initialize sbuf as zba so that
  585          * it is always filled first in the sequence, per bpf(4).
  586          */
  587         d->bd_fbuf = (caddr_t)zbb;
  588         d->bd_sbuf = (caddr_t)zba;
  589         d->bd_slen = 0;
  590         d->bd_hlen = 0;
  591 
  592         /*
  593          * We expose only the space left in the buffer after the size of the
  594          * shared management region.
  595          */
  596         d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
  597         BPFD_UNLOCK(d);
  598         return (0);
  599 }

Cache object: c366bd0dc596cca00429456fbe88fe6c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.