The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/core/skbuff.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *      Routines having to do with the 'struct sk_buff' memory handlers.
    3  *
    4  *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
    5  *                      Florian La Roche <rzsfl@rz.uni-sb.de>
    6  *
    7  *      Fixes:
    8  *              Alan Cox        :       Fixed the worst of the load
    9  *                                      balancer bugs.
   10  *              Dave Platt      :       Interrupt stacking fix.
   11  *      Richard Kooijman        :       Timestamp fixes.
   12  *              Alan Cox        :       Changed buffer format.
   13  *              Alan Cox        :       destructor hook for AF_UNIX etc.
   14  *              Linus Torvalds  :       Better skb_clone.
   15  *              Alan Cox        :       Added skb_copy.
   16  *              Alan Cox        :       Added all the changed routines Linus
   17  *                                      only put in the headers
   18  *              Ray VanTassle   :       Fixed --skb->lock in free
   19  *              Alan Cox        :       skb_copy copy arp field
   20  *              Andi Kleen      :       slabified it.
   21  *              Robert Olsson   :       Removed skb_head_pool
   22  *
   23  *      NOTE:
   24  *              The __skb_ routines should be called with interrupts
   25  *      disabled, or you better be *real* sure that the operation is atomic
   26  *      with respect to whatever list is being frobbed (e.g. via lock_sock()
   27  *      or via disabling bottom half handlers, etc).
   28  *
   29  *      This program is free software; you can redistribute it and/or
   30  *      modify it under the terms of the GNU General Public License
   31  *      as published by the Free Software Foundation; either version
   32  *      2 of the License, or (at your option) any later version.
   33  */
   34 
   35 /*
   36  *      The functions in this file will not compile correctly with gcc 2.4.x
   37  */
   38 
   39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   40 
   41 #include <linux/module.h>
   42 #include <linux/types.h>
   43 #include <linux/kernel.h>
   44 #include <linux/kmemcheck.h>
   45 #include <linux/mm.h>
   46 #include <linux/interrupt.h>
   47 #include <linux/in.h>
   48 #include <linux/inet.h>
   49 #include <linux/slab.h>
   50 #include <linux/netdevice.h>
   51 #ifdef CONFIG_NET_CLS_ACT
   52 #include <net/pkt_sched.h>
   53 #endif
   54 #include <linux/string.h>
   55 #include <linux/skbuff.h>
   56 #include <linux/splice.h>
   57 #include <linux/cache.h>
   58 #include <linux/rtnetlink.h>
   59 #include <linux/init.h>
   60 #include <linux/scatterlist.h>
   61 #include <linux/errqueue.h>
   62 #include <linux/prefetch.h>
   63 
   64 #include <net/protocol.h>
   65 #include <net/dst.h>
   66 #include <net/sock.h>
   67 #include <net/checksum.h>
   68 #include <net/xfrm.h>
   69 
   70 #include <asm/uaccess.h>
   71 #include <trace/events/skb.h>
   72 #include <linux/highmem.h>
   73 
   74 struct kmem_cache *skbuff_head_cache __read_mostly;
   75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
   76 
   77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
   78                                   struct pipe_buffer *buf)
   79 {
   80         put_page(buf->page);
   81 }
   82 
   83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
   84                                 struct pipe_buffer *buf)
   85 {
   86         get_page(buf->page);
   87 }
   88 
   89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
   90                                struct pipe_buffer *buf)
   91 {
   92         return 1;
   93 }
   94 
   95 
   96 /* Pipe buffer operations for a socket. */
   97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
   98         .can_merge = 0,
   99         .map = generic_pipe_buf_map,
  100         .unmap = generic_pipe_buf_unmap,
  101         .confirm = generic_pipe_buf_confirm,
  102         .release = sock_pipe_buf_release,
  103         .steal = sock_pipe_buf_steal,
  104         .get = sock_pipe_buf_get,
  105 };
  106 
  107 /*
  108  *      Keep out-of-line to prevent kernel bloat.
  109  *      __builtin_return_address is not used because it is not always
  110  *      reliable.
  111  */
  112 
  113 /**
  114  *      skb_over_panic  -       private function
  115  *      @skb: buffer
  116  *      @sz: size
  117  *      @here: address
  118  *
  119  *      Out of line support code for skb_put(). Not user callable.
  120  */
  121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
  122 {
  123         pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
  124                  __func__, here, skb->len, sz, skb->head, skb->data,
  125                  (unsigned long)skb->tail, (unsigned long)skb->end,
  126                  skb->dev ? skb->dev->name : "<NULL>");
  127         BUG();
  128 }
  129 
  130 /**
  131  *      skb_under_panic -       private function
  132  *      @skb: buffer
  133  *      @sz: size
  134  *      @here: address
  135  *
  136  *      Out of line support code for skb_push(). Not user callable.
  137  */
  138 
  139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
  140 {
  141         pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
  142                  __func__, here, skb->len, sz, skb->head, skb->data,
  143                  (unsigned long)skb->tail, (unsigned long)skb->end,
  144                  skb->dev ? skb->dev->name : "<NULL>");
  145         BUG();
  146 }
  147 
  148 
  149 /*
  150  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
  151  * the caller if emergency pfmemalloc reserves are being used. If it is and
  152  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
  153  * may be used. Otherwise, the packet data may be discarded until enough
  154  * memory is free
  155  */
  156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
  157          __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
  158 void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip,
  159                          bool *pfmemalloc)
  160 {
  161         void *obj;
  162         bool ret_pfmemalloc = false;
  163 
  164         /*
  165          * Try a regular allocation, when that fails and we're not entitled
  166          * to the reserves, fail.
  167          */
  168         obj = kmalloc_node_track_caller(size,
  169                                         flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
  170                                         node);
  171         if (obj || !(gfp_pfmemalloc_allowed(flags)))
  172                 goto out;
  173 
  174         /* Try again but now we are using pfmemalloc reserves */
  175         ret_pfmemalloc = true;
  176         obj = kmalloc_node_track_caller(size, flags, node);
  177 
  178 out:
  179         if (pfmemalloc)
  180                 *pfmemalloc = ret_pfmemalloc;
  181 
  182         return obj;
  183 }
  184 
  185 /*      Allocate a new skbuff. We do this ourselves so we can fill in a few
  186  *      'private' fields and also do memory statistics to find all the
  187  *      [BEEP] leaks.
  188  *
  189  */
  190 
  191 /**
  192  *      __alloc_skb     -       allocate a network buffer
  193  *      @size: size to allocate
  194  *      @gfp_mask: allocation mask
  195  *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
  196  *              instead of head cache and allocate a cloned (child) skb.
  197  *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
  198  *              allocations in case the data is required for writeback
  199  *      @node: numa node to allocate memory on
  200  *
  201  *      Allocate a new &sk_buff. The returned buffer has no headroom and a
  202  *      tail room of at least size bytes. The object has a reference count
  203  *      of one. The return is the buffer. On a failure the return is %NULL.
  204  *
  205  *      Buffers may only be allocated from interrupts using a @gfp_mask of
  206  *      %GFP_ATOMIC.
  207  */
  208 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
  209                             int flags, int node)
  210 {
  211         struct kmem_cache *cache;
  212         struct skb_shared_info *shinfo;
  213         struct sk_buff *skb;
  214         u8 *data;
  215         bool pfmemalloc;
  216 
  217         cache = (flags & SKB_ALLOC_FCLONE)
  218                 ? skbuff_fclone_cache : skbuff_head_cache;
  219 
  220         if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
  221                 gfp_mask |= __GFP_MEMALLOC;
  222 
  223         /* Get the HEAD */
  224         skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
  225         if (!skb)
  226                 goto out;
  227         prefetchw(skb);
  228 
  229         /* We do our best to align skb_shared_info on a separate cache
  230          * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
  231          * aligned memory blocks, unless SLUB/SLAB debug is enabled.
  232          * Both skb->head and skb_shared_info are cache line aligned.
  233          */
  234         size = SKB_DATA_ALIGN(size);
  235         size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  236         data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
  237         if (!data)
  238                 goto nodata;
  239         /* kmalloc(size) might give us more room than requested.
  240          * Put skb_shared_info exactly at the end of allocated zone,
  241          * to allow max possible filling before reallocation.
  242          */
  243         size = SKB_WITH_OVERHEAD(ksize(data));
  244         prefetchw(data + size);
  245 
  246         /*
  247          * Only clear those fields we need to clear, not those that we will
  248          * actually initialise below. Hence, don't put any more fields after
  249          * the tail pointer in struct sk_buff!
  250          */
  251         memset(skb, 0, offsetof(struct sk_buff, tail));
  252         /* Account for allocated memory : skb + skb->head */
  253         skb->truesize = SKB_TRUESIZE(size);
  254         skb->pfmemalloc = pfmemalloc;
  255         atomic_set(&skb->users, 1);
  256         skb->head = data;
  257         skb->data = data;
  258         skb_reset_tail_pointer(skb);
  259         skb->end = skb->tail + size;
  260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
  261         skb->mac_header = ~0U;
  262 #endif
  263 
  264         /* make sure we initialize shinfo sequentially */
  265         shinfo = skb_shinfo(skb);
  266         memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
  267         atomic_set(&shinfo->dataref, 1);
  268         kmemcheck_annotate_variable(shinfo->destructor_arg);
  269 
  270         if (flags & SKB_ALLOC_FCLONE) {
  271                 struct sk_buff *child = skb + 1;
  272                 atomic_t *fclone_ref = (atomic_t *) (child + 1);
  273 
  274                 kmemcheck_annotate_bitfield(child, flags1);
  275                 kmemcheck_annotate_bitfield(child, flags2);
  276                 skb->fclone = SKB_FCLONE_ORIG;
  277                 atomic_set(fclone_ref, 1);
  278 
  279                 child->fclone = SKB_FCLONE_UNAVAILABLE;
  280                 child->pfmemalloc = pfmemalloc;
  281         }
  282 out:
  283         return skb;
  284 nodata:
  285         kmem_cache_free(cache, skb);
  286         skb = NULL;
  287         goto out;
  288 }
  289 EXPORT_SYMBOL(__alloc_skb);
  290 
  291 /**
  292  * build_skb - build a network buffer
  293  * @data: data buffer provided by caller
  294  * @frag_size: size of fragment, or 0 if head was kmalloced
  295  *
  296  * Allocate a new &sk_buff. Caller provides space holding head and
  297  * skb_shared_info. @data must have been allocated by kmalloc()
  298  * The return is the new skb buffer.
  299  * On a failure the return is %NULL, and @data is not freed.
  300  * Notes :
  301  *  Before IO, driver allocates only data buffer where NIC put incoming frame
  302  *  Driver should add room at head (NET_SKB_PAD) and
  303  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
  304  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
  305  *  before giving packet to stack.
  306  *  RX rings only contains data buffers, not full skbs.
  307  */
  308 struct sk_buff *build_skb(void *data, unsigned int frag_size)
  309 {
  310         struct skb_shared_info *shinfo;
  311         struct sk_buff *skb;
  312         unsigned int size = frag_size ? : ksize(data);
  313 
  314         skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
  315         if (!skb)
  316                 return NULL;
  317 
  318         size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  319 
  320         memset(skb, 0, offsetof(struct sk_buff, tail));
  321         skb->truesize = SKB_TRUESIZE(size);
  322         skb->head_frag = frag_size != 0;
  323         atomic_set(&skb->users, 1);
  324         skb->head = data;
  325         skb->data = data;
  326         skb_reset_tail_pointer(skb);
  327         skb->end = skb->tail + size;
  328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
  329         skb->mac_header = ~0U;
  330 #endif
  331 
  332         /* make sure we initialize shinfo sequentially */
  333         shinfo = skb_shinfo(skb);
  334         memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
  335         atomic_set(&shinfo->dataref, 1);
  336         kmemcheck_annotate_variable(shinfo->destructor_arg);
  337 
  338         return skb;
  339 }
  340 EXPORT_SYMBOL(build_skb);
  341 
  342 struct netdev_alloc_cache {
  343         struct page_frag        frag;
  344         /* we maintain a pagecount bias, so that we dont dirty cache line
  345          * containing page->_count every time we allocate a fragment.
  346          */
  347         unsigned int            pagecnt_bias;
  348 };
  349 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
  350 
  351 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
  352 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
  353 #define NETDEV_PAGECNT_MAX_BIAS    NETDEV_FRAG_PAGE_MAX_SIZE
  354 
  355 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
  356 {
  357         struct netdev_alloc_cache *nc;
  358         void *data = NULL;
  359         int order;
  360         unsigned long flags;
  361 
  362         local_irq_save(flags);
  363         nc = &__get_cpu_var(netdev_alloc_cache);
  364         if (unlikely(!nc->frag.page)) {
  365 refill:
  366                 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
  367                         gfp_t gfp = gfp_mask;
  368 
  369                         if (order)
  370                                 gfp |= __GFP_COMP | __GFP_NOWARN;
  371                         nc->frag.page = alloc_pages(gfp, order);
  372                         if (likely(nc->frag.page))
  373                                 break;
  374                         if (--order < 0)
  375                                 goto end;
  376                 }
  377                 nc->frag.size = PAGE_SIZE << order;
  378 recycle:
  379                 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
  380                 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
  381                 nc->frag.offset = 0;
  382         }
  383 
  384         if (nc->frag.offset + fragsz > nc->frag.size) {
  385                 /* avoid unnecessary locked operations if possible */
  386                 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
  387                     atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
  388                         goto recycle;
  389                 goto refill;
  390         }
  391 
  392         data = page_address(nc->frag.page) + nc->frag.offset;
  393         nc->frag.offset += fragsz;
  394         nc->pagecnt_bias--;
  395 end:
  396         local_irq_restore(flags);
  397         return data;
  398 }
  399 
  400 /**
  401  * netdev_alloc_frag - allocate a page fragment
  402  * @fragsz: fragment size
  403  *
  404  * Allocates a frag from a page for receive buffer.
  405  * Uses GFP_ATOMIC allocations.
  406  */
  407 void *netdev_alloc_frag(unsigned int fragsz)
  408 {
  409         return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
  410 }
  411 EXPORT_SYMBOL(netdev_alloc_frag);
  412 
  413 /**
  414  *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
  415  *      @dev: network device to receive on
  416  *      @length: length to allocate
  417  *      @gfp_mask: get_free_pages mask, passed to alloc_skb
  418  *
  419  *      Allocate a new &sk_buff and assign it a usage count of one. The
  420  *      buffer has unspecified headroom built in. Users should allocate
  421  *      the headroom they think they need without accounting for the
  422  *      built in space. The built in space is used for optimisations.
  423  *
  424  *      %NULL is returned if there is no free memory.
  425  */
  426 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  427                                    unsigned int length, gfp_t gfp_mask)
  428 {
  429         struct sk_buff *skb = NULL;
  430         unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
  431                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  432 
  433         if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
  434                 void *data;
  435 
  436                 if (sk_memalloc_socks())
  437                         gfp_mask |= __GFP_MEMALLOC;
  438 
  439                 data = __netdev_alloc_frag(fragsz, gfp_mask);
  440 
  441                 if (likely(data)) {
  442                         skb = build_skb(data, fragsz);
  443                         if (unlikely(!skb))
  444                                 put_page(virt_to_head_page(data));
  445                 }
  446         } else {
  447                 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
  448                                   SKB_ALLOC_RX, NUMA_NO_NODE);
  449         }
  450         if (likely(skb)) {
  451                 skb_reserve(skb, NET_SKB_PAD);
  452                 skb->dev = dev;
  453         }
  454         return skb;
  455 }
  456 EXPORT_SYMBOL(__netdev_alloc_skb);
  457 
  458 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  459                      int size, unsigned int truesize)
  460 {
  461         skb_fill_page_desc(skb, i, page, off, size);
  462         skb->len += size;
  463         skb->data_len += size;
  464         skb->truesize += truesize;
  465 }
  466 EXPORT_SYMBOL(skb_add_rx_frag);
  467 
  468 static void skb_drop_list(struct sk_buff **listp)
  469 {
  470         struct sk_buff *list = *listp;
  471 
  472         *listp = NULL;
  473 
  474         do {
  475                 struct sk_buff *this = list;
  476                 list = list->next;
  477                 kfree_skb(this);
  478         } while (list);
  479 }
  480 
  481 static inline void skb_drop_fraglist(struct sk_buff *skb)
  482 {
  483         skb_drop_list(&skb_shinfo(skb)->frag_list);
  484 }
  485 
  486 static void skb_clone_fraglist(struct sk_buff *skb)
  487 {
  488         struct sk_buff *list;
  489 
  490         skb_walk_frags(skb, list)
  491                 skb_get(list);
  492 }
  493 
  494 static void skb_free_head(struct sk_buff *skb)
  495 {
  496         if (skb->head_frag)
  497                 put_page(virt_to_head_page(skb->head));
  498         else
  499                 kfree(skb->head);
  500 }
  501 
  502 static void skb_release_data(struct sk_buff *skb)
  503 {
  504         if (!skb->cloned ||
  505             !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
  506                                &skb_shinfo(skb)->dataref)) {
  507                 if (skb_shinfo(skb)->nr_frags) {
  508                         int i;
  509                         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  510                                 skb_frag_unref(skb, i);
  511                 }
  512 
  513                 /*
  514                  * If skb buf is from userspace, we need to notify the caller
  515                  * the lower device DMA has done;
  516                  */
  517                 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
  518                         struct ubuf_info *uarg;
  519 
  520                         uarg = skb_shinfo(skb)->destructor_arg;
  521                         if (uarg->callback)
  522                                 uarg->callback(uarg, true);
  523                 }
  524 
  525                 if (skb_has_frag_list(skb))
  526                         skb_drop_fraglist(skb);
  527 
  528                 skb_free_head(skb);
  529         }
  530 }
  531 
  532 /*
  533  *      Free an skbuff by memory without cleaning the state.
  534  */
  535 static void kfree_skbmem(struct sk_buff *skb)
  536 {
  537         struct sk_buff *other;
  538         atomic_t *fclone_ref;
  539 
  540         switch (skb->fclone) {
  541         case SKB_FCLONE_UNAVAILABLE:
  542                 kmem_cache_free(skbuff_head_cache, skb);
  543                 break;
  544 
  545         case SKB_FCLONE_ORIG:
  546                 fclone_ref = (atomic_t *) (skb + 2);
  547                 if (atomic_dec_and_test(fclone_ref))
  548                         kmem_cache_free(skbuff_fclone_cache, skb);
  549                 break;
  550 
  551         case SKB_FCLONE_CLONE:
  552                 fclone_ref = (atomic_t *) (skb + 1);
  553                 other = skb - 1;
  554 
  555                 /* The clone portion is available for
  556                  * fast-cloning again.
  557                  */
  558                 skb->fclone = SKB_FCLONE_UNAVAILABLE;
  559 
  560                 if (atomic_dec_and_test(fclone_ref))
  561                         kmem_cache_free(skbuff_fclone_cache, other);
  562                 break;
  563         }
  564 }
  565 
  566 static void skb_release_head_state(struct sk_buff *skb)
  567 {
  568         skb_dst_drop(skb);
  569 #ifdef CONFIG_XFRM
  570         secpath_put(skb->sp);
  571 #endif
  572         if (skb->destructor) {
  573                 WARN_ON(in_irq());
  574                 skb->destructor(skb);
  575         }
  576 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
  577         nf_conntrack_put(skb->nfct);
  578 #endif
  579 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  580         nf_conntrack_put_reasm(skb->nfct_reasm);
  581 #endif
  582 #ifdef CONFIG_BRIDGE_NETFILTER
  583         nf_bridge_put(skb->nf_bridge);
  584 #endif
  585 /* XXX: IS this still necessary? - JHS */
  586 #ifdef CONFIG_NET_SCHED
  587         skb->tc_index = 0;
  588 #ifdef CONFIG_NET_CLS_ACT
  589         skb->tc_verd = 0;
  590 #endif
  591 #endif
  592 }
  593 
  594 /* Free everything but the sk_buff shell. */
  595 static void skb_release_all(struct sk_buff *skb)
  596 {
  597         skb_release_head_state(skb);
  598         skb_release_data(skb);
  599 }
  600 
  601 /**
  602  *      __kfree_skb - private function
  603  *      @skb: buffer
  604  *
  605  *      Free an sk_buff. Release anything attached to the buffer.
  606  *      Clean the state. This is an internal helper function. Users should
  607  *      always call kfree_skb
  608  */
  609 
  610 void __kfree_skb(struct sk_buff *skb)
  611 {
  612         skb_release_all(skb);
  613         kfree_skbmem(skb);
  614 }
  615 EXPORT_SYMBOL(__kfree_skb);
  616 
  617 /**
  618  *      kfree_skb - free an sk_buff
  619  *      @skb: buffer to free
  620  *
  621  *      Drop a reference to the buffer and free it if the usage count has
  622  *      hit zero.
  623  */
  624 void kfree_skb(struct sk_buff *skb)
  625 {
  626         if (unlikely(!skb))
  627                 return;
  628         if (likely(atomic_read(&skb->users) == 1))
  629                 smp_rmb();
  630         else if (likely(!atomic_dec_and_test(&skb->users)))
  631                 return;
  632         trace_kfree_skb(skb, __builtin_return_address(0));
  633         __kfree_skb(skb);
  634 }
  635 EXPORT_SYMBOL(kfree_skb);
  636 
  637 /**
  638  *      skb_tx_error - report an sk_buff xmit error
  639  *      @skb: buffer that triggered an error
  640  *
  641  *      Report xmit error if a device callback is tracking this skb.
  642  *      skb must be freed afterwards.
  643  */
  644 void skb_tx_error(struct sk_buff *skb)
  645 {
  646         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
  647                 struct ubuf_info *uarg;
  648 
  649                 uarg = skb_shinfo(skb)->destructor_arg;
  650                 if (uarg->callback)
  651                         uarg->callback(uarg, false);
  652                 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
  653         }
  654 }
  655 EXPORT_SYMBOL(skb_tx_error);
  656 
  657 /**
  658  *      consume_skb - free an skbuff
  659  *      @skb: buffer to free
  660  *
  661  *      Drop a ref to the buffer and free it if the usage count has hit zero
  662  *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
  663  *      is being dropped after a failure and notes that
  664  */
  665 void consume_skb(struct sk_buff *skb)
  666 {
  667         if (unlikely(!skb))
  668                 return;
  669         if (likely(atomic_read(&skb->users) == 1))
  670                 smp_rmb();
  671         else if (likely(!atomic_dec_and_test(&skb->users)))
  672                 return;
  673         trace_consume_skb(skb);
  674         __kfree_skb(skb);
  675 }
  676 EXPORT_SYMBOL(consume_skb);
  677 
  678 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  679 {
  680         new->tstamp             = old->tstamp;
  681         new->dev                = old->dev;
  682         new->transport_header   = old->transport_header;
  683         new->network_header     = old->network_header;
  684         new->mac_header         = old->mac_header;
  685         new->inner_transport_header = old->inner_transport_header;
  686         new->inner_network_header = old->inner_transport_header;
  687         skb_dst_copy(new, old);
  688         new->rxhash             = old->rxhash;
  689         new->ooo_okay           = old->ooo_okay;
  690         new->l4_rxhash          = old->l4_rxhash;
  691         new->no_fcs             = old->no_fcs;
  692         new->encapsulation      = old->encapsulation;
  693 #ifdef CONFIG_XFRM
  694         new->sp                 = secpath_get(old->sp);
  695 #endif
  696         memcpy(new->cb, old->cb, sizeof(old->cb));
  697         new->csum               = old->csum;
  698         new->local_df           = old->local_df;
  699         new->pkt_type           = old->pkt_type;
  700         new->ip_summed          = old->ip_summed;
  701         skb_copy_queue_mapping(new, old);
  702         new->priority           = old->priority;
  703 #if IS_ENABLED(CONFIG_IP_VS)
  704         new->ipvs_property      = old->ipvs_property;
  705 #endif
  706         new->pfmemalloc         = old->pfmemalloc;
  707         new->protocol           = old->protocol;
  708         new->mark               = old->mark;
  709         new->skb_iif            = old->skb_iif;
  710         __nf_copy(new, old);
  711 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
  712         new->nf_trace           = old->nf_trace;
  713 #endif
  714 #ifdef CONFIG_NET_SCHED
  715         new->tc_index           = old->tc_index;
  716 #ifdef CONFIG_NET_CLS_ACT
  717         new->tc_verd            = old->tc_verd;
  718 #endif
  719 #endif
  720         new->vlan_tci           = old->vlan_tci;
  721 
  722         skb_copy_secmark(new, old);
  723 }
  724 
  725 /*
  726  * You should not add any new code to this function.  Add it to
  727  * __copy_skb_header above instead.
  728  */
  729 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
  730 {
  731 #define C(x) n->x = skb->x
  732 
  733         n->next = n->prev = NULL;
  734         n->sk = NULL;
  735         __copy_skb_header(n, skb);
  736 
  737         C(len);
  738         C(data_len);
  739         C(mac_len);
  740         n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
  741         n->cloned = 1;
  742         n->nohdr = 0;
  743         n->destructor = NULL;
  744         C(tail);
  745         C(end);
  746         C(head);
  747         C(head_frag);
  748         C(data);
  749         C(truesize);
  750         atomic_set(&n->users, 1);
  751 
  752         atomic_inc(&(skb_shinfo(skb)->dataref));
  753         skb->cloned = 1;
  754 
  755         return n;
  756 #undef C
  757 }
  758 
  759 /**
  760  *      skb_morph       -       morph one skb into another
  761  *      @dst: the skb to receive the contents
  762  *      @src: the skb to supply the contents
  763  *
  764  *      This is identical to skb_clone except that the target skb is
  765  *      supplied by the user.
  766  *
  767  *      The target skb is returned upon exit.
  768  */
  769 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
  770 {
  771         skb_release_all(dst);
  772         return __skb_clone(dst, src);
  773 }
  774 EXPORT_SYMBOL_GPL(skb_morph);
  775 
  776 /**
  777  *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
  778  *      @skb: the skb to modify
  779  *      @gfp_mask: allocation priority
  780  *
  781  *      This must be called on SKBTX_DEV_ZEROCOPY skb.
  782  *      It will copy all frags into kernel and drop the reference
  783  *      to userspace pages.
  784  *
  785  *      If this function is called from an interrupt gfp_mask() must be
  786  *      %GFP_ATOMIC.
  787  *
  788  *      Returns 0 on success or a negative error code on failure
  789  *      to allocate kernel memory to copy to.
  790  */
  791 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
  792 {
  793         int i;
  794         int num_frags = skb_shinfo(skb)->nr_frags;
  795         struct page *page, *head = NULL;
  796         struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
  797 
  798         for (i = 0; i < num_frags; i++) {
  799                 u8 *vaddr;
  800                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
  801 
  802                 page = alloc_page(gfp_mask);
  803                 if (!page) {
  804                         while (head) {
  805                                 struct page *next = (struct page *)head->private;
  806                                 put_page(head);
  807                                 head = next;
  808                         }
  809                         return -ENOMEM;
  810                 }
  811                 vaddr = kmap_atomic(skb_frag_page(f));
  812                 memcpy(page_address(page),
  813                        vaddr + f->page_offset, skb_frag_size(f));
  814                 kunmap_atomic(vaddr);
  815                 page->private = (unsigned long)head;
  816                 head = page;
  817         }
  818 
  819         /* skb frags release userspace buffers */
  820         for (i = 0; i < num_frags; i++)
  821                 skb_frag_unref(skb, i);
  822 
  823         uarg->callback(uarg, false);
  824 
  825         /* skb frags point to kernel buffers */
  826         for (i = num_frags - 1; i >= 0; i--) {
  827                 __skb_fill_page_desc(skb, i, head, 0,
  828                                      skb_shinfo(skb)->frags[i].size);
  829                 head = (struct page *)head->private;
  830         }
  831 
  832         skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
  833         return 0;
  834 }
  835 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
  836 
  837 /**
  838  *      skb_clone       -       duplicate an sk_buff
  839  *      @skb: buffer to clone
  840  *      @gfp_mask: allocation priority
  841  *
  842  *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
  843  *      copies share the same packet data but not structure. The new
  844  *      buffer has a reference count of 1. If the allocation fails the
  845  *      function returns %NULL otherwise the new buffer is returned.
  846  *
  847  *      If this function is called from an interrupt gfp_mask() must be
  848  *      %GFP_ATOMIC.
  849  */
  850 
  851 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
  852 {
  853         struct sk_buff *n;
  854 
  855         if (skb_orphan_frags(skb, gfp_mask))
  856                 return NULL;
  857 
  858         n = skb + 1;
  859         if (skb->fclone == SKB_FCLONE_ORIG &&
  860             n->fclone == SKB_FCLONE_UNAVAILABLE) {
  861                 atomic_t *fclone_ref = (atomic_t *) (n + 1);
  862                 n->fclone = SKB_FCLONE_CLONE;
  863                 atomic_inc(fclone_ref);
  864         } else {
  865                 if (skb_pfmemalloc(skb))
  866                         gfp_mask |= __GFP_MEMALLOC;
  867 
  868                 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
  869                 if (!n)
  870                         return NULL;
  871 
  872                 kmemcheck_annotate_bitfield(n, flags1);
  873                 kmemcheck_annotate_bitfield(n, flags2);
  874                 n->fclone = SKB_FCLONE_UNAVAILABLE;
  875         }
  876 
  877         return __skb_clone(n, skb);
  878 }
  879 EXPORT_SYMBOL(skb_clone);
  880 
  881 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  882 {
  883 #ifndef NET_SKBUFF_DATA_USES_OFFSET
  884         /*
  885          *      Shift between the two data areas in bytes
  886          */
  887         unsigned long offset = new->data - old->data;
  888 #endif
  889 
  890         __copy_skb_header(new, old);
  891 
  892 #ifndef NET_SKBUFF_DATA_USES_OFFSET
  893         /* {transport,network,mac}_header are relative to skb->head */
  894         new->transport_header += offset;
  895         new->network_header   += offset;
  896         if (skb_mac_header_was_set(new))
  897                 new->mac_header       += offset;
  898         new->inner_transport_header += offset;
  899         new->inner_network_header   += offset;
  900 #endif
  901         skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
  902         skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
  903         skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
  904 }
  905 
  906 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
  907 {
  908         if (skb_pfmemalloc(skb))
  909                 return SKB_ALLOC_RX;
  910         return 0;
  911 }
  912 
  913 /**
  914  *      skb_copy        -       create private copy of an sk_buff
  915  *      @skb: buffer to copy
  916  *      @gfp_mask: allocation priority
  917  *
  918  *      Make a copy of both an &sk_buff and its data. This is used when the
  919  *      caller wishes to modify the data and needs a private copy of the
  920  *      data to alter. Returns %NULL on failure or the pointer to the buffer
  921  *      on success. The returned buffer has a reference count of 1.
  922  *
  923  *      As by-product this function converts non-linear &sk_buff to linear
  924  *      one, so that &sk_buff becomes completely private and caller is allowed
  925  *      to modify all the data of returned buffer. This means that this
  926  *      function is not recommended for use in circumstances when only
  927  *      header is going to be modified. Use pskb_copy() instead.
  928  */
  929 
  930 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
  931 {
  932         int headerlen = skb_headroom(skb);
  933         unsigned int size = skb_end_offset(skb) + skb->data_len;
  934         struct sk_buff *n = __alloc_skb(size, gfp_mask,
  935                                         skb_alloc_rx_flag(skb), NUMA_NO_NODE);
  936 
  937         if (!n)
  938                 return NULL;
  939 
  940         /* Set the data pointer */
  941         skb_reserve(n, headerlen);
  942         /* Set the tail pointer and length */
  943         skb_put(n, skb->len);
  944 
  945         if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
  946                 BUG();
  947 
  948         copy_skb_header(n, skb);
  949         return n;
  950 }
  951 EXPORT_SYMBOL(skb_copy);
  952 
  953 /**
  954  *      __pskb_copy     -       create copy of an sk_buff with private head.
  955  *      @skb: buffer to copy
  956  *      @headroom: headroom of new skb
  957  *      @gfp_mask: allocation priority
  958  *
  959  *      Make a copy of both an &sk_buff and part of its data, located
  960  *      in header. Fragmented data remain shared. This is used when
  961  *      the caller wishes to modify only header of &sk_buff and needs
  962  *      private copy of the header to alter. Returns %NULL on failure
  963  *      or the pointer to the buffer on success.
  964  *      The returned buffer has a reference count of 1.
  965  */
  966 
  967 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
  968 {
  969         unsigned int size = skb_headlen(skb) + headroom;
  970         struct sk_buff *n = __alloc_skb(size, gfp_mask,
  971                                         skb_alloc_rx_flag(skb), NUMA_NO_NODE);
  972 
  973         if (!n)
  974                 goto out;
  975 
  976         /* Set the data pointer */
  977         skb_reserve(n, headroom);
  978         /* Set the tail pointer and length */
  979         skb_put(n, skb_headlen(skb));
  980         /* Copy the bytes */
  981         skb_copy_from_linear_data(skb, n->data, n->len);
  982 
  983         n->truesize += skb->data_len;
  984         n->data_len  = skb->data_len;
  985         n->len       = skb->len;
  986 
  987         if (skb_shinfo(skb)->nr_frags) {
  988                 int i;
  989 
  990                 if (skb_orphan_frags(skb, gfp_mask)) {
  991                         kfree_skb(n);
  992                         n = NULL;
  993                         goto out;
  994                 }
  995                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  996                         skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
  997                         skb_frag_ref(skb, i);
  998                 }
  999                 skb_shinfo(n)->nr_frags = i;
 1000         }
 1001 
 1002         if (skb_has_frag_list(skb)) {
 1003                 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
 1004                 skb_clone_fraglist(n);
 1005         }
 1006 
 1007         copy_skb_header(n, skb);
 1008 out:
 1009         return n;
 1010 }
 1011 EXPORT_SYMBOL(__pskb_copy);
 1012 
 1013 /**
 1014  *      pskb_expand_head - reallocate header of &sk_buff
 1015  *      @skb: buffer to reallocate
 1016  *      @nhead: room to add at head
 1017  *      @ntail: room to add at tail
 1018  *      @gfp_mask: allocation priority
 1019  *
 1020  *      Expands (or creates identical copy, if &nhead and &ntail are zero)
 1021  *      header of skb. &sk_buff itself is not changed. &sk_buff MUST have
 1022  *      reference count of 1. Returns zero in the case of success or error,
 1023  *      if expansion failed. In the last case, &sk_buff is not changed.
 1024  *
 1025  *      All the pointers pointing into skb header may change and must be
 1026  *      reloaded after call to this function.
 1027  */
 1028 
 1029 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
 1030                      gfp_t gfp_mask)
 1031 {
 1032         int i;
 1033         u8 *data;
 1034         int size = nhead + skb_end_offset(skb) + ntail;
 1035         long off;
 1036 
 1037         BUG_ON(nhead < 0);
 1038 
 1039         if (skb_shared(skb))
 1040                 BUG();
 1041 
 1042         size = SKB_DATA_ALIGN(size);
 1043 
 1044         if (skb_pfmemalloc(skb))
 1045                 gfp_mask |= __GFP_MEMALLOC;
 1046         data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
 1047                                gfp_mask, NUMA_NO_NODE, NULL);
 1048         if (!data)
 1049                 goto nodata;
 1050         size = SKB_WITH_OVERHEAD(ksize(data));
 1051 
 1052         /* Copy only real data... and, alas, header. This should be
 1053          * optimized for the cases when header is void.
 1054          */
 1055         memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
 1056 
 1057         memcpy((struct skb_shared_info *)(data + size),
 1058                skb_shinfo(skb),
 1059                offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
 1060 
 1061         /*
 1062          * if shinfo is shared we must drop the old head gracefully, but if it
 1063          * is not we can just drop the old head and let the existing refcount
 1064          * be since all we did is relocate the values
 1065          */
 1066         if (skb_cloned(skb)) {
 1067                 /* copy this zero copy skb frags */
 1068                 if (skb_orphan_frags(skb, gfp_mask))
 1069                         goto nofrags;
 1070                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 1071                         skb_frag_ref(skb, i);
 1072 
 1073                 if (skb_has_frag_list(skb))
 1074                         skb_clone_fraglist(skb);
 1075 
 1076                 skb_release_data(skb);
 1077         } else {
 1078                 skb_free_head(skb);
 1079         }
 1080         off = (data + nhead) - skb->head;
 1081 
 1082         skb->head     = data;
 1083         skb->head_frag = 0;
 1084         skb->data    += off;
 1085 #ifdef NET_SKBUFF_DATA_USES_OFFSET
 1086         skb->end      = size;
 1087         off           = nhead;
 1088 #else
 1089         skb->end      = skb->head + size;
 1090 #endif
 1091         /* {transport,network,mac}_header and tail are relative to skb->head */
 1092         skb->tail             += off;
 1093         skb->transport_header += off;
 1094         skb->network_header   += off;
 1095         if (skb_mac_header_was_set(skb))
 1096                 skb->mac_header += off;
 1097         skb->inner_transport_header += off;
 1098         skb->inner_network_header += off;
 1099         /* Only adjust this if it actually is csum_start rather than csum */
 1100         if (skb->ip_summed == CHECKSUM_PARTIAL)
 1101                 skb->csum_start += nhead;
 1102         skb->cloned   = 0;
 1103         skb->hdr_len  = 0;
 1104         skb->nohdr    = 0;
 1105         atomic_set(&skb_shinfo(skb)->dataref, 1);
 1106         return 0;
 1107 
 1108 nofrags:
 1109         kfree(data);
 1110 nodata:
 1111         return -ENOMEM;
 1112 }
 1113 EXPORT_SYMBOL(pskb_expand_head);
 1114 
 1115 /* Make private copy of skb with writable head and some headroom */
 1116 
 1117 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
 1118 {
 1119         struct sk_buff *skb2;
 1120         int delta = headroom - skb_headroom(skb);
 1121 
 1122         if (delta <= 0)
 1123                 skb2 = pskb_copy(skb, GFP_ATOMIC);
 1124         else {
 1125                 skb2 = skb_clone(skb, GFP_ATOMIC);
 1126                 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
 1127                                              GFP_ATOMIC)) {
 1128                         kfree_skb(skb2);
 1129                         skb2 = NULL;
 1130                 }
 1131         }
 1132         return skb2;
 1133 }
 1134 EXPORT_SYMBOL(skb_realloc_headroom);
 1135 
 1136 /**
 1137  *      skb_copy_expand -       copy and expand sk_buff
 1138  *      @skb: buffer to copy
 1139  *      @newheadroom: new free bytes at head
 1140  *      @newtailroom: new free bytes at tail
 1141  *      @gfp_mask: allocation priority
 1142  *
 1143  *      Make a copy of both an &sk_buff and its data and while doing so
 1144  *      allocate additional space.
 1145  *
 1146  *      This is used when the caller wishes to modify the data and needs a
 1147  *      private copy of the data to alter as well as more space for new fields.
 1148  *      Returns %NULL on failure or the pointer to the buffer
 1149  *      on success. The returned buffer has a reference count of 1.
 1150  *
 1151  *      You must pass %GFP_ATOMIC as the allocation priority if this function
 1152  *      is called from an interrupt.
 1153  */
 1154 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 1155                                 int newheadroom, int newtailroom,
 1156                                 gfp_t gfp_mask)
 1157 {
 1158         /*
 1159          *      Allocate the copy buffer
 1160          */
 1161         struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
 1162                                         gfp_mask, skb_alloc_rx_flag(skb),
 1163                                         NUMA_NO_NODE);
 1164         int oldheadroom = skb_headroom(skb);
 1165         int head_copy_len, head_copy_off;
 1166         int off;
 1167 
 1168         if (!n)
 1169                 return NULL;
 1170 
 1171         skb_reserve(n, newheadroom);
 1172 
 1173         /* Set the tail pointer and length */
 1174         skb_put(n, skb->len);
 1175 
 1176         head_copy_len = oldheadroom;
 1177         head_copy_off = 0;
 1178         if (newheadroom <= head_copy_len)
 1179                 head_copy_len = newheadroom;
 1180         else
 1181                 head_copy_off = newheadroom - head_copy_len;
 1182 
 1183         /* Copy the linear header and data. */
 1184         if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
 1185                           skb->len + head_copy_len))
 1186                 BUG();
 1187 
 1188         copy_skb_header(n, skb);
 1189 
 1190         off                  = newheadroom - oldheadroom;
 1191         if (n->ip_summed == CHECKSUM_PARTIAL)
 1192                 n->csum_start += off;
 1193 #ifdef NET_SKBUFF_DATA_USES_OFFSET
 1194         n->transport_header += off;
 1195         n->network_header   += off;
 1196         if (skb_mac_header_was_set(skb))
 1197                 n->mac_header += off;
 1198         n->inner_transport_header += off;
 1199         n->inner_network_header    += off;
 1200 #endif
 1201 
 1202         return n;
 1203 }
 1204 EXPORT_SYMBOL(skb_copy_expand);
 1205 
 1206 /**
 1207  *      skb_pad                 -       zero pad the tail of an skb
 1208  *      @skb: buffer to pad
 1209  *      @pad: space to pad
 1210  *
 1211  *      Ensure that a buffer is followed by a padding area that is zero
 1212  *      filled. Used by network drivers which may DMA or transfer data
 1213  *      beyond the buffer end onto the wire.
 1214  *
 1215  *      May return error in out of memory cases. The skb is freed on error.
 1216  */
 1217 
 1218 int skb_pad(struct sk_buff *skb, int pad)
 1219 {
 1220         int err;
 1221         int ntail;
 1222 
 1223         /* If the skbuff is non linear tailroom is always zero.. */
 1224         if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
 1225                 memset(skb->data+skb->len, 0, pad);
 1226                 return 0;
 1227         }
 1228 
 1229         ntail = skb->data_len + pad - (skb->end - skb->tail);
 1230         if (likely(skb_cloned(skb) || ntail > 0)) {
 1231                 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
 1232                 if (unlikely(err))
 1233                         goto free_skb;
 1234         }
 1235 
 1236         /* FIXME: The use of this function with non-linear skb's really needs
 1237          * to be audited.
 1238          */
 1239         err = skb_linearize(skb);
 1240         if (unlikely(err))
 1241                 goto free_skb;
 1242 
 1243         memset(skb->data + skb->len, 0, pad);
 1244         return 0;
 1245 
 1246 free_skb:
 1247         kfree_skb(skb);
 1248         return err;
 1249 }
 1250 EXPORT_SYMBOL(skb_pad);
 1251 
 1252 /**
 1253  *      skb_put - add data to a buffer
 1254  *      @skb: buffer to use
 1255  *      @len: amount of data to add
 1256  *
 1257  *      This function extends the used data area of the buffer. If this would
 1258  *      exceed the total buffer size the kernel will panic. A pointer to the
 1259  *      first byte of the extra data is returned.
 1260  */
 1261 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
 1262 {
 1263         unsigned char *tmp = skb_tail_pointer(skb);
 1264         SKB_LINEAR_ASSERT(skb);
 1265         skb->tail += len;
 1266         skb->len  += len;
 1267         if (unlikely(skb->tail > skb->end))
 1268                 skb_over_panic(skb, len, __builtin_return_address(0));
 1269         return tmp;
 1270 }
 1271 EXPORT_SYMBOL(skb_put);
 1272 
 1273 /**
 1274  *      skb_push - add data to the start of a buffer
 1275  *      @skb: buffer to use
 1276  *      @len: amount of data to add
 1277  *
 1278  *      This function extends the used data area of the buffer at the buffer
 1279  *      start. If this would exceed the total buffer headroom the kernel will
 1280  *      panic. A pointer to the first byte of the extra data is returned.
 1281  */
 1282 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
 1283 {
 1284         skb->data -= len;
 1285         skb->len  += len;
 1286         if (unlikely(skb->data<skb->head))
 1287                 skb_under_panic(skb, len, __builtin_return_address(0));
 1288         return skb->data;
 1289 }
 1290 EXPORT_SYMBOL(skb_push);
 1291 
 1292 /**
 1293  *      skb_pull - remove data from the start of a buffer
 1294  *      @skb: buffer to use
 1295  *      @len: amount of data to remove
 1296  *
 1297  *      This function removes data from the start of a buffer, returning
 1298  *      the memory to the headroom. A pointer to the next data in the buffer
 1299  *      is returned. Once the data has been pulled future pushes will overwrite
 1300  *      the old data.
 1301  */
 1302 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
 1303 {
 1304         return skb_pull_inline(skb, len);
 1305 }
 1306 EXPORT_SYMBOL(skb_pull);
 1307 
 1308 /**
 1309  *      skb_trim - remove end from a buffer
 1310  *      @skb: buffer to alter
 1311  *      @len: new length
 1312  *
 1313  *      Cut the length of a buffer down by removing data from the tail. If
 1314  *      the buffer is already under the length specified it is not modified.
 1315  *      The skb must be linear.
 1316  */
 1317 void skb_trim(struct sk_buff *skb, unsigned int len)
 1318 {
 1319         if (skb->len > len)
 1320                 __skb_trim(skb, len);
 1321 }
 1322 EXPORT_SYMBOL(skb_trim);
 1323 
 1324 /* Trims skb to length len. It can change skb pointers.
 1325  */
 1326 
 1327 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
 1328 {
 1329         struct sk_buff **fragp;
 1330         struct sk_buff *frag;
 1331         int offset = skb_headlen(skb);
 1332         int nfrags = skb_shinfo(skb)->nr_frags;
 1333         int i;
 1334         int err;
 1335 
 1336         if (skb_cloned(skb) &&
 1337             unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
 1338                 return err;
 1339 
 1340         i = 0;
 1341         if (offset >= len)
 1342                 goto drop_pages;
 1343 
 1344         for (; i < nfrags; i++) {
 1345                 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
 1346 
 1347                 if (end < len) {
 1348                         offset = end;
 1349                         continue;
 1350                 }
 1351 
 1352                 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
 1353 
 1354 drop_pages:
 1355                 skb_shinfo(skb)->nr_frags = i;
 1356 
 1357                 for (; i < nfrags; i++)
 1358                         skb_frag_unref(skb, i);
 1359 
 1360                 if (skb_has_frag_list(skb))
 1361                         skb_drop_fraglist(skb);
 1362                 goto done;
 1363         }
 1364 
 1365         for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
 1366              fragp = &frag->next) {
 1367                 int end = offset + frag->len;
 1368 
 1369                 if (skb_shared(frag)) {
 1370                         struct sk_buff *nfrag;
 1371 
 1372                         nfrag = skb_clone(frag, GFP_ATOMIC);
 1373                         if (unlikely(!nfrag))
 1374                                 return -ENOMEM;
 1375 
 1376                         nfrag->next = frag->next;
 1377                         consume_skb(frag);
 1378                         frag = nfrag;
 1379                         *fragp = frag;
 1380                 }
 1381 
 1382                 if (end < len) {
 1383                         offset = end;
 1384                         continue;
 1385                 }
 1386 
 1387                 if (end > len &&
 1388                     unlikely((err = pskb_trim(frag, len - offset))))
 1389                         return err;
 1390 
 1391                 if (frag->next)
 1392                         skb_drop_list(&frag->next);
 1393                 break;
 1394         }
 1395 
 1396 done:
 1397         if (len > skb_headlen(skb)) {
 1398                 skb->data_len -= skb->len - len;
 1399                 skb->len       = len;
 1400         } else {
 1401                 skb->len       = len;
 1402                 skb->data_len  = 0;
 1403                 skb_set_tail_pointer(skb, len);
 1404         }
 1405 
 1406         return 0;
 1407 }
 1408 EXPORT_SYMBOL(___pskb_trim);
 1409 
 1410 /**
 1411  *      __pskb_pull_tail - advance tail of skb header
 1412  *      @skb: buffer to reallocate
 1413  *      @delta: number of bytes to advance tail
 1414  *
 1415  *      The function makes a sense only on a fragmented &sk_buff,
 1416  *      it expands header moving its tail forward and copying necessary
 1417  *      data from fragmented part.
 1418  *
 1419  *      &sk_buff MUST have reference count of 1.
 1420  *
 1421  *      Returns %NULL (and &sk_buff does not change) if pull failed
 1422  *      or value of new tail of skb in the case of success.
 1423  *
 1424  *      All the pointers pointing into skb header may change and must be
 1425  *      reloaded after call to this function.
 1426  */
 1427 
 1428 /* Moves tail of skb head forward, copying data from fragmented part,
 1429  * when it is necessary.
 1430  * 1. It may fail due to malloc failure.
 1431  * 2. It may change skb pointers.
 1432  *
 1433  * It is pretty complicated. Luckily, it is called only in exceptional cases.
 1434  */
 1435 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
 1436 {
 1437         /* If skb has not enough free space at tail, get new one
 1438          * plus 128 bytes for future expansions. If we have enough
 1439          * room at tail, reallocate without expansion only if skb is cloned.
 1440          */
 1441         int i, k, eat = (skb->tail + delta) - skb->end;
 1442 
 1443         if (eat > 0 || skb_cloned(skb)) {
 1444                 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
 1445                                      GFP_ATOMIC))
 1446                         return NULL;
 1447         }
 1448 
 1449         if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
 1450                 BUG();
 1451 
 1452         /* Optimization: no fragments, no reasons to preestimate
 1453          * size of pulled pages. Superb.
 1454          */
 1455         if (!skb_has_frag_list(skb))
 1456                 goto pull_pages;
 1457 
 1458         /* Estimate size of pulled pages. */
 1459         eat = delta;
 1460         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 1461                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
 1462 
 1463                 if (size >= eat)
 1464                         goto pull_pages;
 1465                 eat -= size;
 1466         }
 1467 
 1468         /* If we need update frag list, we are in troubles.
 1469          * Certainly, it possible to add an offset to skb data,
 1470          * but taking into account that pulling is expected to
 1471          * be very rare operation, it is worth to fight against
 1472          * further bloating skb head and crucify ourselves here instead.
 1473          * Pure masohism, indeed. 8)8)
 1474          */
 1475         if (eat) {
 1476                 struct sk_buff *list = skb_shinfo(skb)->frag_list;
 1477                 struct sk_buff *clone = NULL;
 1478                 struct sk_buff *insp = NULL;
 1479 
 1480                 do {
 1481                         BUG_ON(!list);
 1482 
 1483                         if (list->len <= eat) {
 1484                                 /* Eaten as whole. */
 1485                                 eat -= list->len;
 1486                                 list = list->next;
 1487                                 insp = list;
 1488                         } else {
 1489                                 /* Eaten partially. */
 1490 
 1491                                 if (skb_shared(list)) {
 1492                                         /* Sucks! We need to fork list. :-( */
 1493                                         clone = skb_clone(list, GFP_ATOMIC);
 1494                                         if (!clone)
 1495                                                 return NULL;
 1496                                         insp = list->next;
 1497                                         list = clone;
 1498                                 } else {
 1499                                         /* This may be pulled without
 1500                                          * problems. */
 1501                                         insp = list;
 1502                                 }
 1503                                 if (!pskb_pull(list, eat)) {
 1504                                         kfree_skb(clone);
 1505                                         return NULL;
 1506                                 }
 1507                                 break;
 1508                         }
 1509                 } while (eat);
 1510 
 1511                 /* Free pulled out fragments. */
 1512                 while ((list = skb_shinfo(skb)->frag_list) != insp) {
 1513                         skb_shinfo(skb)->frag_list = list->next;
 1514                         kfree_skb(list);
 1515                 }
 1516                 /* And insert new clone at head. */
 1517                 if (clone) {
 1518                         clone->next = list;
 1519                         skb_shinfo(skb)->frag_list = clone;
 1520                 }
 1521         }
 1522         /* Success! Now we may commit changes to skb data. */
 1523 
 1524 pull_pages:
 1525         eat = delta;
 1526         k = 0;
 1527         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 1528                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
 1529 
 1530                 if (size <= eat) {
 1531                         skb_frag_unref(skb, i);
 1532                         eat -= size;
 1533                 } else {
 1534                         skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
 1535                         if (eat) {
 1536                                 skb_shinfo(skb)->frags[k].page_offset += eat;
 1537                                 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
 1538                                 eat = 0;
 1539                         }
 1540                         k++;
 1541                 }
 1542         }
 1543         skb_shinfo(skb)->nr_frags = k;
 1544 
 1545         skb->tail     += delta;
 1546         skb->data_len -= delta;
 1547 
 1548         return skb_tail_pointer(skb);
 1549 }
 1550 EXPORT_SYMBOL(__pskb_pull_tail);
 1551 
 1552 /**
 1553  *      skb_copy_bits - copy bits from skb to kernel buffer
 1554  *      @skb: source skb
 1555  *      @offset: offset in source
 1556  *      @to: destination buffer
 1557  *      @len: number of bytes to copy
 1558  *
 1559  *      Copy the specified number of bytes from the source skb to the
 1560  *      destination buffer.
 1561  *
 1562  *      CAUTION ! :
 1563  *              If its prototype is ever changed,
 1564  *              check arch/{*}/net/{*}.S files,
 1565  *              since it is called from BPF assembly code.
 1566  */
 1567 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
 1568 {
 1569         int start = skb_headlen(skb);
 1570         struct sk_buff *frag_iter;
 1571         int i, copy;
 1572 
 1573         if (offset > (int)skb->len - len)
 1574                 goto fault;
 1575 
 1576         /* Copy header. */
 1577         if ((copy = start - offset) > 0) {
 1578                 if (copy > len)
 1579                         copy = len;
 1580                 skb_copy_from_linear_data_offset(skb, offset, to, copy);
 1581                 if ((len -= copy) == 0)
 1582                         return 0;
 1583                 offset += copy;
 1584                 to     += copy;
 1585         }
 1586 
 1587         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 1588                 int end;
 1589                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 1590 
 1591                 WARN_ON(start > offset + len);
 1592 
 1593                 end = start + skb_frag_size(f);
 1594                 if ((copy = end - offset) > 0) {
 1595                         u8 *vaddr;
 1596 
 1597                         if (copy > len)
 1598                                 copy = len;
 1599 
 1600                         vaddr = kmap_atomic(skb_frag_page(f));
 1601                         memcpy(to,
 1602                                vaddr + f->page_offset + offset - start,
 1603                                copy);
 1604                         kunmap_atomic(vaddr);
 1605 
 1606                         if ((len -= copy) == 0)
 1607                                 return 0;
 1608                         offset += copy;
 1609                         to     += copy;
 1610                 }
 1611                 start = end;
 1612         }
 1613 
 1614         skb_walk_frags(skb, frag_iter) {
 1615                 int end;
 1616 
 1617                 WARN_ON(start > offset + len);
 1618 
 1619                 end = start + frag_iter->len;
 1620                 if ((copy = end - offset) > 0) {
 1621                         if (copy > len)
 1622                                 copy = len;
 1623                         if (skb_copy_bits(frag_iter, offset - start, to, copy))
 1624                                 goto fault;
 1625                         if ((len -= copy) == 0)
 1626                                 return 0;
 1627                         offset += copy;
 1628                         to     += copy;
 1629                 }
 1630                 start = end;
 1631         }
 1632 
 1633         if (!len)
 1634                 return 0;
 1635 
 1636 fault:
 1637         return -EFAULT;
 1638 }
 1639 EXPORT_SYMBOL(skb_copy_bits);
 1640 
 1641 /*
 1642  * Callback from splice_to_pipe(), if we need to release some pages
 1643  * at the end of the spd in case we error'ed out in filling the pipe.
 1644  */
 1645 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
 1646 {
 1647         put_page(spd->pages[i]);
 1648 }
 1649 
 1650 static struct page *linear_to_page(struct page *page, unsigned int *len,
 1651                                    unsigned int *offset,
 1652                                    struct sock *sk)
 1653 {
 1654         struct page_frag *pfrag = sk_page_frag(sk);
 1655 
 1656         if (!sk_page_frag_refill(sk, pfrag))
 1657                 return NULL;
 1658 
 1659         *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
 1660 
 1661         memcpy(page_address(pfrag->page) + pfrag->offset,
 1662                page_address(page) + *offset, *len);
 1663         *offset = pfrag->offset;
 1664         pfrag->offset += *len;
 1665 
 1666         return pfrag->page;
 1667 }
 1668 
 1669 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
 1670                              struct page *page,
 1671                              unsigned int offset)
 1672 {
 1673         return  spd->nr_pages &&
 1674                 spd->pages[spd->nr_pages - 1] == page &&
 1675                 (spd->partial[spd->nr_pages - 1].offset +
 1676                  spd->partial[spd->nr_pages - 1].len == offset);
 1677 }
 1678 
 1679 /*
 1680  * Fill page/offset/length into spd, if it can hold more pages.
 1681  */
 1682 static bool spd_fill_page(struct splice_pipe_desc *spd,
 1683                           struct pipe_inode_info *pipe, struct page *page,
 1684                           unsigned int *len, unsigned int offset,
 1685                           bool linear,
 1686                           struct sock *sk)
 1687 {
 1688         if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
 1689                 return true;
 1690 
 1691         if (linear) {
 1692                 page = linear_to_page(page, len, &offset, sk);
 1693                 if (!page)
 1694                         return true;
 1695         }
 1696         if (spd_can_coalesce(spd, page, offset)) {
 1697                 spd->partial[spd->nr_pages - 1].len += *len;
 1698                 return false;
 1699         }
 1700         get_page(page);
 1701         spd->pages[spd->nr_pages] = page;
 1702         spd->partial[spd->nr_pages].len = *len;
 1703         spd->partial[spd->nr_pages].offset = offset;
 1704         spd->nr_pages++;
 1705 
 1706         return false;
 1707 }
 1708 
 1709 static bool __splice_segment(struct page *page, unsigned int poff,
 1710                              unsigned int plen, unsigned int *off,
 1711                              unsigned int *len,
 1712                              struct splice_pipe_desc *spd, bool linear,
 1713                              struct sock *sk,
 1714                              struct pipe_inode_info *pipe)
 1715 {
 1716         if (!*len)
 1717                 return true;
 1718 
 1719         /* skip this segment if already processed */
 1720         if (*off >= plen) {
 1721                 *off -= plen;
 1722                 return false;
 1723         }
 1724 
 1725         /* ignore any bits we already processed */
 1726         poff += *off;
 1727         plen -= *off;
 1728         *off = 0;
 1729 
 1730         do {
 1731                 unsigned int flen = min(*len, plen);
 1732 
 1733                 if (spd_fill_page(spd, pipe, page, &flen, poff,
 1734                                   linear, sk))
 1735                         return true;
 1736                 poff += flen;
 1737                 plen -= flen;
 1738                 *len -= flen;
 1739         } while (*len && plen);
 1740 
 1741         return false;
 1742 }
 1743 
 1744 /*
 1745  * Map linear and fragment data from the skb to spd. It reports true if the
 1746  * pipe is full or if we already spliced the requested length.
 1747  */
 1748 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
 1749                               unsigned int *offset, unsigned int *len,
 1750                               struct splice_pipe_desc *spd, struct sock *sk)
 1751 {
 1752         int seg;
 1753 
 1754         /* map the linear part :
 1755          * If skb->head_frag is set, this 'linear' part is backed by a
 1756          * fragment, and if the head is not shared with any clones then
 1757          * we can avoid a copy since we own the head portion of this page.
 1758          */
 1759         if (__splice_segment(virt_to_page(skb->data),
 1760                              (unsigned long) skb->data & (PAGE_SIZE - 1),
 1761                              skb_headlen(skb),
 1762                              offset, len, spd,
 1763                              skb_head_is_locked(skb),
 1764                              sk, pipe))
 1765                 return true;
 1766 
 1767         /*
 1768          * then map the fragments
 1769          */
 1770         for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
 1771                 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
 1772 
 1773                 if (__splice_segment(skb_frag_page(f),
 1774                                      f->page_offset, skb_frag_size(f),
 1775                                      offset, len, spd, false, sk, pipe))
 1776                         return true;
 1777         }
 1778 
 1779         return false;
 1780 }
 1781 
 1782 /*
 1783  * Map data from the skb to a pipe. Should handle both the linear part,
 1784  * the fragments, and the frag list. It does NOT handle frag lists within
 1785  * the frag list, if such a thing exists. We'd probably need to recurse to
 1786  * handle that cleanly.
 1787  */
 1788 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
 1789                     struct pipe_inode_info *pipe, unsigned int tlen,
 1790                     unsigned int flags)
 1791 {
 1792         struct partial_page partial[MAX_SKB_FRAGS];
 1793         struct page *pages[MAX_SKB_FRAGS];
 1794         struct splice_pipe_desc spd = {
 1795                 .pages = pages,
 1796                 .partial = partial,
 1797                 .nr_pages_max = MAX_SKB_FRAGS,
 1798                 .flags = flags,
 1799                 .ops = &sock_pipe_buf_ops,
 1800                 .spd_release = sock_spd_release,
 1801         };
 1802         struct sk_buff *frag_iter;
 1803         struct sock *sk = skb->sk;
 1804         int ret = 0;
 1805 
 1806         /*
 1807          * __skb_splice_bits() only fails if the output has no room left,
 1808          * so no point in going over the frag_list for the error case.
 1809          */
 1810         if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
 1811                 goto done;
 1812         else if (!tlen)
 1813                 goto done;
 1814 
 1815         /*
 1816          * now see if we have a frag_list to map
 1817          */
 1818         skb_walk_frags(skb, frag_iter) {
 1819                 if (!tlen)
 1820                         break;
 1821                 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
 1822                         break;
 1823         }
 1824 
 1825 done:
 1826         if (spd.nr_pages) {
 1827                 /*
 1828                  * Drop the socket lock, otherwise we have reverse
 1829                  * locking dependencies between sk_lock and i_mutex
 1830                  * here as compared to sendfile(). We enter here
 1831                  * with the socket lock held, and splice_to_pipe() will
 1832                  * grab the pipe inode lock. For sendfile() emulation,
 1833                  * we call into ->sendpage() with the i_mutex lock held
 1834                  * and networking will grab the socket lock.
 1835                  */
 1836                 release_sock(sk);
 1837                 ret = splice_to_pipe(pipe, &spd);
 1838                 lock_sock(sk);
 1839         }
 1840 
 1841         return ret;
 1842 }
 1843 
 1844 /**
 1845  *      skb_store_bits - store bits from kernel buffer to skb
 1846  *      @skb: destination buffer
 1847  *      @offset: offset in destination
 1848  *      @from: source buffer
 1849  *      @len: number of bytes to copy
 1850  *
 1851  *      Copy the specified number of bytes from the source buffer to the
 1852  *      destination skb.  This function handles all the messy bits of
 1853  *      traversing fragment lists and such.
 1854  */
 1855 
 1856 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
 1857 {
 1858         int start = skb_headlen(skb);
 1859         struct sk_buff *frag_iter;
 1860         int i, copy;
 1861 
 1862         if (offset > (int)skb->len - len)
 1863                 goto fault;
 1864 
 1865         if ((copy = start - offset) > 0) {
 1866                 if (copy > len)
 1867                         copy = len;
 1868                 skb_copy_to_linear_data_offset(skb, offset, from, copy);
 1869                 if ((len -= copy) == 0)
 1870                         return 0;
 1871                 offset += copy;
 1872                 from += copy;
 1873         }
 1874 
 1875         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 1876                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 1877                 int end;
 1878 
 1879                 WARN_ON(start > offset + len);
 1880 
 1881                 end = start + skb_frag_size(frag);
 1882                 if ((copy = end - offset) > 0) {
 1883                         u8 *vaddr;
 1884 
 1885                         if (copy > len)
 1886                                 copy = len;
 1887 
 1888                         vaddr = kmap_atomic(skb_frag_page(frag));
 1889                         memcpy(vaddr + frag->page_offset + offset - start,
 1890                                from, copy);
 1891                         kunmap_atomic(vaddr);
 1892 
 1893                         if ((len -= copy) == 0)
 1894                                 return 0;
 1895                         offset += copy;
 1896                         from += copy;
 1897                 }
 1898                 start = end;
 1899         }
 1900 
 1901         skb_walk_frags(skb, frag_iter) {
 1902                 int end;
 1903 
 1904                 WARN_ON(start > offset + len);
 1905 
 1906                 end = start + frag_iter->len;
 1907                 if ((copy = end - offset) > 0) {
 1908                         if (copy > len)
 1909                                 copy = len;
 1910                         if (skb_store_bits(frag_iter, offset - start,
 1911                                            from, copy))
 1912                                 goto fault;
 1913                         if ((len -= copy) == 0)
 1914                                 return 0;
 1915                         offset += copy;
 1916                         from += copy;
 1917                 }
 1918                 start = end;
 1919         }
 1920         if (!len)
 1921                 return 0;
 1922 
 1923 fault:
 1924         return -EFAULT;
 1925 }
 1926 EXPORT_SYMBOL(skb_store_bits);
 1927 
 1928 /* Checksum skb data. */
 1929 
 1930 __wsum skb_checksum(const struct sk_buff *skb, int offset,
 1931                           int len, __wsum csum)
 1932 {
 1933         int start = skb_headlen(skb);
 1934         int i, copy = start - offset;
 1935         struct sk_buff *frag_iter;
 1936         int pos = 0;
 1937 
 1938         /* Checksum header. */
 1939         if (copy > 0) {
 1940                 if (copy > len)
 1941                         copy = len;
 1942                 csum = csum_partial(skb->data + offset, copy, csum);
 1943                 if ((len -= copy) == 0)
 1944                         return csum;
 1945                 offset += copy;
 1946                 pos     = copy;
 1947         }
 1948 
 1949         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 1950                 int end;
 1951                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 1952 
 1953                 WARN_ON(start > offset + len);
 1954 
 1955                 end = start + skb_frag_size(frag);
 1956                 if ((copy = end - offset) > 0) {
 1957                         __wsum csum2;
 1958                         u8 *vaddr;
 1959 
 1960                         if (copy > len)
 1961                                 copy = len;
 1962                         vaddr = kmap_atomic(skb_frag_page(frag));
 1963                         csum2 = csum_partial(vaddr + frag->page_offset +
 1964                                              offset - start, copy, 0);
 1965                         kunmap_atomic(vaddr);
 1966                         csum = csum_block_add(csum, csum2, pos);
 1967                         if (!(len -= copy))
 1968                                 return csum;
 1969                         offset += copy;
 1970                         pos    += copy;
 1971                 }
 1972                 start = end;
 1973         }
 1974 
 1975         skb_walk_frags(skb, frag_iter) {
 1976                 int end;
 1977 
 1978                 WARN_ON(start > offset + len);
 1979 
 1980                 end = start + frag_iter->len;
 1981                 if ((copy = end - offset) > 0) {
 1982                         __wsum csum2;
 1983                         if (copy > len)
 1984                                 copy = len;
 1985                         csum2 = skb_checksum(frag_iter, offset - start,
 1986                                              copy, 0);
 1987                         csum = csum_block_add(csum, csum2, pos);
 1988                         if ((len -= copy) == 0)
 1989                                 return csum;
 1990                         offset += copy;
 1991                         pos    += copy;
 1992                 }
 1993                 start = end;
 1994         }
 1995         BUG_ON(len);
 1996 
 1997         return csum;
 1998 }
 1999 EXPORT_SYMBOL(skb_checksum);
 2000 
 2001 /* Both of above in one bottle. */
 2002 
 2003 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
 2004                                     u8 *to, int len, __wsum csum)
 2005 {
 2006         int start = skb_headlen(skb);
 2007         int i, copy = start - offset;
 2008         struct sk_buff *frag_iter;
 2009         int pos = 0;
 2010 
 2011         /* Copy header. */
 2012         if (copy > 0) {
 2013                 if (copy > len)
 2014                         copy = len;
 2015                 csum = csum_partial_copy_nocheck(skb->data + offset, to,
 2016                                                  copy, csum);
 2017                 if ((len -= copy) == 0)
 2018                         return csum;
 2019                 offset += copy;
 2020                 to     += copy;
 2021                 pos     = copy;
 2022         }
 2023 
 2024         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 2025                 int end;
 2026 
 2027                 WARN_ON(start > offset + len);
 2028 
 2029                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
 2030                 if ((copy = end - offset) > 0) {
 2031                         __wsum csum2;
 2032                         u8 *vaddr;
 2033                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 2034 
 2035                         if (copy > len)
 2036                                 copy = len;
 2037                         vaddr = kmap_atomic(skb_frag_page(frag));
 2038                         csum2 = csum_partial_copy_nocheck(vaddr +
 2039                                                           frag->page_offset +
 2040                                                           offset - start, to,
 2041                                                           copy, 0);
 2042                         kunmap_atomic(vaddr);
 2043                         csum = csum_block_add(csum, csum2, pos);
 2044                         if (!(len -= copy))
 2045                                 return csum;
 2046                         offset += copy;
 2047                         to     += copy;
 2048                         pos    += copy;
 2049                 }
 2050                 start = end;
 2051         }
 2052 
 2053         skb_walk_frags(skb, frag_iter) {
 2054                 __wsum csum2;
 2055                 int end;
 2056 
 2057                 WARN_ON(start > offset + len);
 2058 
 2059                 end = start + frag_iter->len;
 2060                 if ((copy = end - offset) > 0) {
 2061                         if (copy > len)
 2062                                 copy = len;
 2063                         csum2 = skb_copy_and_csum_bits(frag_iter,
 2064                                                        offset - start,
 2065                                                        to, copy, 0);
 2066                         csum = csum_block_add(csum, csum2, pos);
 2067                         if ((len -= copy) == 0)
 2068                                 return csum;
 2069                         offset += copy;
 2070                         to     += copy;
 2071                         pos    += copy;
 2072                 }
 2073                 start = end;
 2074         }
 2075         BUG_ON(len);
 2076         return csum;
 2077 }
 2078 EXPORT_SYMBOL(skb_copy_and_csum_bits);
 2079 
 2080 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
 2081 {
 2082         __wsum csum;
 2083         long csstart;
 2084 
 2085         if (skb->ip_summed == CHECKSUM_PARTIAL)
 2086                 csstart = skb_checksum_start_offset(skb);
 2087         else
 2088                 csstart = skb_headlen(skb);
 2089 
 2090         BUG_ON(csstart > skb_headlen(skb));
 2091 
 2092         skb_copy_from_linear_data(skb, to, csstart);
 2093 
 2094         csum = 0;
 2095         if (csstart != skb->len)
 2096                 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
 2097                                               skb->len - csstart, 0);
 2098 
 2099         if (skb->ip_summed == CHECKSUM_PARTIAL) {
 2100                 long csstuff = csstart + skb->csum_offset;
 2101 
 2102                 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
 2103         }
 2104 }
 2105 EXPORT_SYMBOL(skb_copy_and_csum_dev);
 2106 
 2107 /**
 2108  *      skb_dequeue - remove from the head of the queue
 2109  *      @list: list to dequeue from
 2110  *
 2111  *      Remove the head of the list. The list lock is taken so the function
 2112  *      may be used safely with other locking list functions. The head item is
 2113  *      returned or %NULL if the list is empty.
 2114  */
 2115 
 2116 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
 2117 {
 2118         unsigned long flags;
 2119         struct sk_buff *result;
 2120 
 2121         spin_lock_irqsave(&list->lock, flags);
 2122         result = __skb_dequeue(list);
 2123         spin_unlock_irqrestore(&list->lock, flags);
 2124         return result;
 2125 }
 2126 EXPORT_SYMBOL(skb_dequeue);
 2127 
 2128 /**
 2129  *      skb_dequeue_tail - remove from the tail of the queue
 2130  *      @list: list to dequeue from
 2131  *
 2132  *      Remove the tail of the list. The list lock is taken so the function
 2133  *      may be used safely with other locking list functions. The tail item is
 2134  *      returned or %NULL if the list is empty.
 2135  */
 2136 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
 2137 {
 2138         unsigned long flags;
 2139         struct sk_buff *result;
 2140 
 2141         spin_lock_irqsave(&list->lock, flags);
 2142         result = __skb_dequeue_tail(list);
 2143         spin_unlock_irqrestore(&list->lock, flags);
 2144         return result;
 2145 }
 2146 EXPORT_SYMBOL(skb_dequeue_tail);
 2147 
 2148 /**
 2149  *      skb_queue_purge - empty a list
 2150  *      @list: list to empty
 2151  *
 2152  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
 2153  *      the list and one reference dropped. This function takes the list
 2154  *      lock and is atomic with respect to other list locking functions.
 2155  */
 2156 void skb_queue_purge(struct sk_buff_head *list)
 2157 {
 2158         struct sk_buff *skb;
 2159         while ((skb = skb_dequeue(list)) != NULL)
 2160                 kfree_skb(skb);
 2161 }
 2162 EXPORT_SYMBOL(skb_queue_purge);
 2163 
 2164 /**
 2165  *      skb_queue_head - queue a buffer at the list head
 2166  *      @list: list to use
 2167  *      @newsk: buffer to queue
 2168  *
 2169  *      Queue a buffer at the start of the list. This function takes the
 2170  *      list lock and can be used safely with other locking &sk_buff functions
 2171  *      safely.
 2172  *
 2173  *      A buffer cannot be placed on two lists at the same time.
 2174  */
 2175 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
 2176 {
 2177         unsigned long flags;
 2178 
 2179         spin_lock_irqsave(&list->lock, flags);
 2180         __skb_queue_head(list, newsk);
 2181         spin_unlock_irqrestore(&list->lock, flags);
 2182 }
 2183 EXPORT_SYMBOL(skb_queue_head);
 2184 
 2185 /**
 2186  *      skb_queue_tail - queue a buffer at the list tail
 2187  *      @list: list to use
 2188  *      @newsk: buffer to queue
 2189  *
 2190  *      Queue a buffer at the tail of the list. This function takes the
 2191  *      list lock and can be used safely with other locking &sk_buff functions
 2192  *      safely.
 2193  *
 2194  *      A buffer cannot be placed on two lists at the same time.
 2195  */
 2196 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
 2197 {
 2198         unsigned long flags;
 2199 
 2200         spin_lock_irqsave(&list->lock, flags);
 2201         __skb_queue_tail(list, newsk);
 2202         spin_unlock_irqrestore(&list->lock, flags);
 2203 }
 2204 EXPORT_SYMBOL(skb_queue_tail);
 2205 
 2206 /**
 2207  *      skb_unlink      -       remove a buffer from a list
 2208  *      @skb: buffer to remove
 2209  *      @list: list to use
 2210  *
 2211  *      Remove a packet from a list. The list locks are taken and this
 2212  *      function is atomic with respect to other list locked calls
 2213  *
 2214  *      You must know what list the SKB is on.
 2215  */
 2216 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
 2217 {
 2218         unsigned long flags;
 2219 
 2220         spin_lock_irqsave(&list->lock, flags);
 2221         __skb_unlink(skb, list);
 2222         spin_unlock_irqrestore(&list->lock, flags);
 2223 }
 2224 EXPORT_SYMBOL(skb_unlink);
 2225 
 2226 /**
 2227  *      skb_append      -       append a buffer
 2228  *      @old: buffer to insert after
 2229  *      @newsk: buffer to insert
 2230  *      @list: list to use
 2231  *
 2232  *      Place a packet after a given packet in a list. The list locks are taken
 2233  *      and this function is atomic with respect to other list locked calls.
 2234  *      A buffer cannot be placed on two lists at the same time.
 2235  */
 2236 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
 2237 {
 2238         unsigned long flags;
 2239 
 2240         spin_lock_irqsave(&list->lock, flags);
 2241         __skb_queue_after(list, old, newsk);
 2242         spin_unlock_irqrestore(&list->lock, flags);
 2243 }
 2244 EXPORT_SYMBOL(skb_append);
 2245 
 2246 /**
 2247  *      skb_insert      -       insert a buffer
 2248  *      @old: buffer to insert before
 2249  *      @newsk: buffer to insert
 2250  *      @list: list to use
 2251  *
 2252  *      Place a packet before a given packet in a list. The list locks are
 2253  *      taken and this function is atomic with respect to other list locked
 2254  *      calls.
 2255  *
 2256  *      A buffer cannot be placed on two lists at the same time.
 2257  */
 2258 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
 2259 {
 2260         unsigned long flags;
 2261 
 2262         spin_lock_irqsave(&list->lock, flags);
 2263         __skb_insert(newsk, old->prev, old, list);
 2264         spin_unlock_irqrestore(&list->lock, flags);
 2265 }
 2266 EXPORT_SYMBOL(skb_insert);
 2267 
 2268 static inline void skb_split_inside_header(struct sk_buff *skb,
 2269                                            struct sk_buff* skb1,
 2270                                            const u32 len, const int pos)
 2271 {
 2272         int i;
 2273 
 2274         skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
 2275                                          pos - len);
 2276         /* And move data appendix as is. */
 2277         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 2278                 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
 2279 
 2280         skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
 2281         skb_shinfo(skb)->nr_frags  = 0;
 2282         skb1->data_len             = skb->data_len;
 2283         skb1->len                  += skb1->data_len;
 2284         skb->data_len              = 0;
 2285         skb->len                   = len;
 2286         skb_set_tail_pointer(skb, len);
 2287 }
 2288 
 2289 static inline void skb_split_no_header(struct sk_buff *skb,
 2290                                        struct sk_buff* skb1,
 2291                                        const u32 len, int pos)
 2292 {
 2293         int i, k = 0;
 2294         const int nfrags = skb_shinfo(skb)->nr_frags;
 2295 
 2296         skb_shinfo(skb)->nr_frags = 0;
 2297         skb1->len                 = skb1->data_len = skb->len - len;
 2298         skb->len                  = len;
 2299         skb->data_len             = len - pos;
 2300 
 2301         for (i = 0; i < nfrags; i++) {
 2302                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
 2303 
 2304                 if (pos + size > len) {
 2305                         skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
 2306 
 2307                         if (pos < len) {
 2308                                 /* Split frag.
 2309                                  * We have two variants in this case:
 2310                                  * 1. Move all the frag to the second
 2311                                  *    part, if it is possible. F.e.
 2312                                  *    this approach is mandatory for TUX,
 2313                                  *    where splitting is expensive.
 2314                                  * 2. Split is accurately. We make this.
 2315                                  */
 2316                                 skb_frag_ref(skb, i);
 2317                                 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
 2318                                 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
 2319                                 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
 2320                                 skb_shinfo(skb)->nr_frags++;
 2321                         }
 2322                         k++;
 2323                 } else
 2324                         skb_shinfo(skb)->nr_frags++;
 2325                 pos += size;
 2326         }
 2327         skb_shinfo(skb1)->nr_frags = k;
 2328 }
 2329 
 2330 /**
 2331  * skb_split - Split fragmented skb to two parts at length len.
 2332  * @skb: the buffer to split
 2333  * @skb1: the buffer to receive the second part
 2334  * @len: new length for skb
 2335  */
 2336 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
 2337 {
 2338         int pos = skb_headlen(skb);
 2339 
 2340         if (len < pos)  /* Split line is inside header. */
 2341                 skb_split_inside_header(skb, skb1, len, pos);
 2342         else            /* Second chunk has no header, nothing to copy. */
 2343                 skb_split_no_header(skb, skb1, len, pos);
 2344 }
 2345 EXPORT_SYMBOL(skb_split);
 2346 
 2347 /* Shifting from/to a cloned skb is a no-go.
 2348  *
 2349  * Caller cannot keep skb_shinfo related pointers past calling here!
 2350  */
 2351 static int skb_prepare_for_shift(struct sk_buff *skb)
 2352 {
 2353         return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 2354 }
 2355 
 2356 /**
 2357  * skb_shift - Shifts paged data partially from skb to another
 2358  * @tgt: buffer into which tail data gets added
 2359  * @skb: buffer from which the paged data comes from
 2360  * @shiftlen: shift up to this many bytes
 2361  *
 2362  * Attempts to shift up to shiftlen worth of bytes, which may be less than
 2363  * the length of the skb, from skb to tgt. Returns number bytes shifted.
 2364  * It's up to caller to free skb if everything was shifted.
 2365  *
 2366  * If @tgt runs out of frags, the whole operation is aborted.
 2367  *
 2368  * Skb cannot include anything else but paged data while tgt is allowed
 2369  * to have non-paged data as well.
 2370  *
 2371  * TODO: full sized shift could be optimized but that would need
 2372  * specialized skb free'er to handle frags without up-to-date nr_frags.
 2373  */
 2374 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
 2375 {
 2376         int from, to, merge, todo;
 2377         struct skb_frag_struct *fragfrom, *fragto;
 2378 
 2379         BUG_ON(shiftlen > skb->len);
 2380         BUG_ON(skb_headlen(skb));       /* Would corrupt stream */
 2381 
 2382         todo = shiftlen;
 2383         from = 0;
 2384         to = skb_shinfo(tgt)->nr_frags;
 2385         fragfrom = &skb_shinfo(skb)->frags[from];
 2386 
 2387         /* Actual merge is delayed until the point when we know we can
 2388          * commit all, so that we don't have to undo partial changes
 2389          */
 2390         if (!to ||
 2391             !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
 2392                               fragfrom->page_offset)) {
 2393                 merge = -1;
 2394         } else {
 2395                 merge = to - 1;
 2396 
 2397                 todo -= skb_frag_size(fragfrom);
 2398                 if (todo < 0) {
 2399                         if (skb_prepare_for_shift(skb) ||
 2400                             skb_prepare_for_shift(tgt))
 2401                                 return 0;
 2402 
 2403                         /* All previous frag pointers might be stale! */
 2404                         fragfrom = &skb_shinfo(skb)->frags[from];
 2405                         fragto = &skb_shinfo(tgt)->frags[merge];
 2406 
 2407                         skb_frag_size_add(fragto, shiftlen);
 2408                         skb_frag_size_sub(fragfrom, shiftlen);
 2409                         fragfrom->page_offset += shiftlen;
 2410 
 2411                         goto onlymerged;
 2412                 }
 2413 
 2414                 from++;
 2415         }
 2416 
 2417         /* Skip full, not-fitting skb to avoid expensive operations */
 2418         if ((shiftlen == skb->len) &&
 2419             (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
 2420                 return 0;
 2421 
 2422         if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
 2423                 return 0;
 2424 
 2425         while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
 2426                 if (to == MAX_SKB_FRAGS)
 2427                         return 0;
 2428 
 2429                 fragfrom = &skb_shinfo(skb)->frags[from];
 2430                 fragto = &skb_shinfo(tgt)->frags[to];
 2431 
 2432                 if (todo >= skb_frag_size(fragfrom)) {
 2433                         *fragto = *fragfrom;
 2434                         todo -= skb_frag_size(fragfrom);
 2435                         from++;
 2436                         to++;
 2437 
 2438                 } else {
 2439                         __skb_frag_ref(fragfrom);
 2440                         fragto->page = fragfrom->page;
 2441                         fragto->page_offset = fragfrom->page_offset;
 2442                         skb_frag_size_set(fragto, todo);
 2443 
 2444                         fragfrom->page_offset += todo;
 2445                         skb_frag_size_sub(fragfrom, todo);
 2446                         todo = 0;
 2447 
 2448                         to++;
 2449                         break;
 2450                 }
 2451         }
 2452 
 2453         /* Ready to "commit" this state change to tgt */
 2454         skb_shinfo(tgt)->nr_frags = to;
 2455 
 2456         if (merge >= 0) {
 2457                 fragfrom = &skb_shinfo(skb)->frags[0];
 2458                 fragto = &skb_shinfo(tgt)->frags[merge];
 2459 
 2460                 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
 2461                 __skb_frag_unref(fragfrom);
 2462         }
 2463 
 2464         /* Reposition in the original skb */
 2465         to = 0;
 2466         while (from < skb_shinfo(skb)->nr_frags)
 2467                 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
 2468         skb_shinfo(skb)->nr_frags = to;
 2469 
 2470         BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
 2471 
 2472 onlymerged:
 2473         /* Most likely the tgt won't ever need its checksum anymore, skb on
 2474          * the other hand might need it if it needs to be resent
 2475          */
 2476         tgt->ip_summed = CHECKSUM_PARTIAL;
 2477         skb->ip_summed = CHECKSUM_PARTIAL;
 2478 
 2479         /* Yak, is it really working this way? Some helper please? */
 2480         skb->len -= shiftlen;
 2481         skb->data_len -= shiftlen;
 2482         skb->truesize -= shiftlen;
 2483         tgt->len += shiftlen;
 2484         tgt->data_len += shiftlen;
 2485         tgt->truesize += shiftlen;
 2486 
 2487         return shiftlen;
 2488 }
 2489 
 2490 /**
 2491  * skb_prepare_seq_read - Prepare a sequential read of skb data
 2492  * @skb: the buffer to read
 2493  * @from: lower offset of data to be read
 2494  * @to: upper offset of data to be read
 2495  * @st: state variable
 2496  *
 2497  * Initializes the specified state variable. Must be called before
 2498  * invoking skb_seq_read() for the first time.
 2499  */
 2500 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
 2501                           unsigned int to, struct skb_seq_state *st)
 2502 {
 2503         st->lower_offset = from;
 2504         st->upper_offset = to;
 2505         st->root_skb = st->cur_skb = skb;
 2506         st->frag_idx = st->stepped_offset = 0;
 2507         st->frag_data = NULL;
 2508 }
 2509 EXPORT_SYMBOL(skb_prepare_seq_read);
 2510 
 2511 /**
 2512  * skb_seq_read - Sequentially read skb data
 2513  * @consumed: number of bytes consumed by the caller so far
 2514  * @data: destination pointer for data to be returned
 2515  * @st: state variable
 2516  *
 2517  * Reads a block of skb data at &consumed relative to the
 2518  * lower offset specified to skb_prepare_seq_read(). Assigns
 2519  * the head of the data block to &data and returns the length
 2520  * of the block or 0 if the end of the skb data or the upper
 2521  * offset has been reached.
 2522  *
 2523  * The caller is not required to consume all of the data
 2524  * returned, i.e. &consumed is typically set to the number
 2525  * of bytes already consumed and the next call to
 2526  * skb_seq_read() will return the remaining part of the block.
 2527  *
 2528  * Note 1: The size of each block of data returned can be arbitrary,
 2529  *       this limitation is the cost for zerocopy seqeuental
 2530  *       reads of potentially non linear data.
 2531  *
 2532  * Note 2: Fragment lists within fragments are not implemented
 2533  *       at the moment, state->root_skb could be replaced with
 2534  *       a stack for this purpose.
 2535  */
 2536 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
 2537                           struct skb_seq_state *st)
 2538 {
 2539         unsigned int block_limit, abs_offset = consumed + st->lower_offset;
 2540         skb_frag_t *frag;
 2541 
 2542         if (unlikely(abs_offset >= st->upper_offset))
 2543                 return 0;
 2544 
 2545 next_skb:
 2546         block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
 2547 
 2548         if (abs_offset < block_limit && !st->frag_data) {
 2549                 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
 2550                 return block_limit - abs_offset;
 2551         }
 2552 
 2553         if (st->frag_idx == 0 && !st->frag_data)
 2554                 st->stepped_offset += skb_headlen(st->cur_skb);
 2555 
 2556         while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
 2557                 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
 2558                 block_limit = skb_frag_size(frag) + st->stepped_offset;
 2559 
 2560                 if (abs_offset < block_limit) {
 2561                         if (!st->frag_data)
 2562                                 st->frag_data = kmap_atomic(skb_frag_page(frag));
 2563 
 2564                         *data = (u8 *) st->frag_data + frag->page_offset +
 2565                                 (abs_offset - st->stepped_offset);
 2566 
 2567                         return block_limit - abs_offset;
 2568                 }
 2569 
 2570                 if (st->frag_data) {
 2571                         kunmap_atomic(st->frag_data);
 2572                         st->frag_data = NULL;
 2573                 }
 2574 
 2575                 st->frag_idx++;
 2576                 st->stepped_offset += skb_frag_size(frag);
 2577         }
 2578 
 2579         if (st->frag_data) {
 2580                 kunmap_atomic(st->frag_data);
 2581                 st->frag_data = NULL;
 2582         }
 2583 
 2584         if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
 2585                 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
 2586                 st->frag_idx = 0;
 2587                 goto next_skb;
 2588         } else if (st->cur_skb->next) {
 2589                 st->cur_skb = st->cur_skb->next;
 2590                 st->frag_idx = 0;
 2591                 goto next_skb;
 2592         }
 2593 
 2594         return 0;
 2595 }
 2596 EXPORT_SYMBOL(skb_seq_read);
 2597 
 2598 /**
 2599  * skb_abort_seq_read - Abort a sequential read of skb data
 2600  * @st: state variable
 2601  *
 2602  * Must be called if skb_seq_read() was not called until it
 2603  * returned 0.
 2604  */
 2605 void skb_abort_seq_read(struct skb_seq_state *st)
 2606 {
 2607         if (st->frag_data)
 2608                 kunmap_atomic(st->frag_data);
 2609 }
 2610 EXPORT_SYMBOL(skb_abort_seq_read);
 2611 
 2612 #define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
 2613 
 2614 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
 2615                                           struct ts_config *conf,
 2616                                           struct ts_state *state)
 2617 {
 2618         return skb_seq_read(offset, text, TS_SKB_CB(state));
 2619 }
 2620 
 2621 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
 2622 {
 2623         skb_abort_seq_read(TS_SKB_CB(state));
 2624 }
 2625 
 2626 /**
 2627  * skb_find_text - Find a text pattern in skb data
 2628  * @skb: the buffer to look in
 2629  * @from: search offset
 2630  * @to: search limit
 2631  * @config: textsearch configuration
 2632  * @state: uninitialized textsearch state variable
 2633  *
 2634  * Finds a pattern in the skb data according to the specified
 2635  * textsearch configuration. Use textsearch_next() to retrieve
 2636  * subsequent occurrences of the pattern. Returns the offset
 2637  * to the first occurrence or UINT_MAX if no match was found.
 2638  */
 2639 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
 2640                            unsigned int to, struct ts_config *config,
 2641                            struct ts_state *state)
 2642 {
 2643         unsigned int ret;
 2644 
 2645         config->get_next_block = skb_ts_get_next_block;
 2646         config->finish = skb_ts_finish;
 2647 
 2648         skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
 2649 
 2650         ret = textsearch_find(config, state);
 2651         return (ret <= to - from ? ret : UINT_MAX);
 2652 }
 2653 EXPORT_SYMBOL(skb_find_text);
 2654 
 2655 /**
 2656  * skb_append_datato_frags - append the user data to a skb
 2657  * @sk: sock  structure
 2658  * @skb: skb structure to be appened with user data.
 2659  * @getfrag: call back function to be used for getting the user data
 2660  * @from: pointer to user message iov
 2661  * @length: length of the iov message
 2662  *
 2663  * Description: This procedure append the user data in the fragment part
 2664  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
 2665  */
 2666 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 2667                         int (*getfrag)(void *from, char *to, int offset,
 2668                                         int len, int odd, struct sk_buff *skb),
 2669                         void *from, int length)
 2670 {
 2671         int frg_cnt = 0;
 2672         skb_frag_t *frag = NULL;
 2673         struct page *page = NULL;
 2674         int copy, left;
 2675         int offset = 0;
 2676         int ret;
 2677 
 2678         do {
 2679                 /* Return error if we don't have space for new frag */
 2680                 frg_cnt = skb_shinfo(skb)->nr_frags;
 2681                 if (frg_cnt >= MAX_SKB_FRAGS)
 2682                         return -EFAULT;
 2683 
 2684                 /* allocate a new page for next frag */
 2685                 page = alloc_pages(sk->sk_allocation, 0);
 2686 
 2687                 /* If alloc_page fails just return failure and caller will
 2688                  * free previous allocated pages by doing kfree_skb()
 2689                  */
 2690                 if (page == NULL)
 2691                         return -ENOMEM;
 2692 
 2693                 /* initialize the next frag */
 2694                 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
 2695                 skb->truesize += PAGE_SIZE;
 2696                 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
 2697 
 2698                 /* get the new initialized frag */
 2699                 frg_cnt = skb_shinfo(skb)->nr_frags;
 2700                 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
 2701 
 2702                 /* copy the user data to page */
 2703                 left = PAGE_SIZE - frag->page_offset;
 2704                 copy = (length > left)? left : length;
 2705 
 2706                 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
 2707                             offset, copy, 0, skb);
 2708                 if (ret < 0)
 2709                         return -EFAULT;
 2710 
 2711                 /* copy was successful so update the size parameters */
 2712                 skb_frag_size_add(frag, copy);
 2713                 skb->len += copy;
 2714                 skb->data_len += copy;
 2715                 offset += copy;
 2716                 length -= copy;
 2717 
 2718         } while (length > 0);
 2719 
 2720         return 0;
 2721 }
 2722 EXPORT_SYMBOL(skb_append_datato_frags);
 2723 
 2724 /**
 2725  *      skb_pull_rcsum - pull skb and update receive checksum
 2726  *      @skb: buffer to update
 2727  *      @len: length of data pulled
 2728  *
 2729  *      This function performs an skb_pull on the packet and updates
 2730  *      the CHECKSUM_COMPLETE checksum.  It should be used on
 2731  *      receive path processing instead of skb_pull unless you know
 2732  *      that the checksum difference is zero (e.g., a valid IP header)
 2733  *      or you are setting ip_summed to CHECKSUM_NONE.
 2734  */
 2735 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
 2736 {
 2737         BUG_ON(len > skb->len);
 2738         skb->len -= len;
 2739         BUG_ON(skb->len < skb->data_len);
 2740         skb_postpull_rcsum(skb, skb->data, len);
 2741         return skb->data += len;
 2742 }
 2743 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
 2744 
 2745 /**
 2746  *      skb_segment - Perform protocol segmentation on skb.
 2747  *      @skb: buffer to segment
 2748  *      @features: features for the output path (see dev->features)
 2749  *
 2750  *      This function performs segmentation on the given skb.  It returns
 2751  *      a pointer to the first in a list of new skbs for the segments.
 2752  *      In case of error it returns ERR_PTR(err).
 2753  */
 2754 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
 2755 {
 2756         struct sk_buff *segs = NULL;
 2757         struct sk_buff *tail = NULL;
 2758         struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
 2759         unsigned int mss = skb_shinfo(skb)->gso_size;
 2760         unsigned int doffset = skb->data - skb_mac_header(skb);
 2761         unsigned int offset = doffset;
 2762         unsigned int headroom;
 2763         unsigned int len;
 2764         int sg = !!(features & NETIF_F_SG);
 2765         int nfrags = skb_shinfo(skb)->nr_frags;
 2766         int err = -ENOMEM;
 2767         int i = 0;
 2768         int pos;
 2769 
 2770         __skb_push(skb, doffset);
 2771         headroom = skb_headroom(skb);
 2772         pos = skb_headlen(skb);
 2773 
 2774         do {
 2775                 struct sk_buff *nskb;
 2776                 skb_frag_t *frag;
 2777                 int hsize;
 2778                 int size;
 2779 
 2780                 len = skb->len - offset;
 2781                 if (len > mss)
 2782                         len = mss;
 2783 
 2784                 hsize = skb_headlen(skb) - offset;
 2785                 if (hsize < 0)
 2786                         hsize = 0;
 2787                 if (hsize > len || !sg)
 2788                         hsize = len;
 2789 
 2790                 if (!hsize && i >= nfrags) {
 2791                         BUG_ON(fskb->len != len);
 2792 
 2793                         pos += len;
 2794                         nskb = skb_clone(fskb, GFP_ATOMIC);
 2795                         fskb = fskb->next;
 2796 
 2797                         if (unlikely(!nskb))
 2798                                 goto err;
 2799 
 2800                         hsize = skb_end_offset(nskb);
 2801                         if (skb_cow_head(nskb, doffset + headroom)) {
 2802                                 kfree_skb(nskb);
 2803                                 goto err;
 2804                         }
 2805 
 2806                         nskb->truesize += skb_end_offset(nskb) - hsize;
 2807                         skb_release_head_state(nskb);
 2808                         __skb_push(nskb, doffset);
 2809                 } else {
 2810                         nskb = __alloc_skb(hsize + doffset + headroom,
 2811                                            GFP_ATOMIC, skb_alloc_rx_flag(skb),
 2812                                            NUMA_NO_NODE);
 2813 
 2814                         if (unlikely(!nskb))
 2815                                 goto err;
 2816 
 2817                         skb_reserve(nskb, headroom);
 2818                         __skb_put(nskb, doffset);
 2819                 }
 2820 
 2821                 if (segs)
 2822                         tail->next = nskb;
 2823                 else
 2824                         segs = nskb;
 2825                 tail = nskb;
 2826 
 2827                 __copy_skb_header(nskb, skb);
 2828                 nskb->mac_len = skb->mac_len;
 2829 
 2830                 /* nskb and skb might have different headroom */
 2831                 if (nskb->ip_summed == CHECKSUM_PARTIAL)
 2832                         nskb->csum_start += skb_headroom(nskb) - headroom;
 2833 
 2834                 skb_reset_mac_header(nskb);
 2835                 skb_set_network_header(nskb, skb->mac_len);
 2836                 nskb->transport_header = (nskb->network_header +
 2837                                           skb_network_header_len(skb));
 2838                 skb_copy_from_linear_data(skb, nskb->data, doffset);
 2839 
 2840                 if (fskb != skb_shinfo(skb)->frag_list)
 2841                         continue;
 2842 
 2843                 if (!sg) {
 2844                         nskb->ip_summed = CHECKSUM_NONE;
 2845                         nskb->csum = skb_copy_and_csum_bits(skb, offset,
 2846                                                             skb_put(nskb, len),
 2847                                                             len, 0);
 2848                         continue;
 2849                 }
 2850 
 2851                 frag = skb_shinfo(nskb)->frags;
 2852 
 2853                 skb_copy_from_linear_data_offset(skb, offset,
 2854                                                  skb_put(nskb, hsize), hsize);
 2855 
 2856                 while (pos < offset + len && i < nfrags) {
 2857                         *frag = skb_shinfo(skb)->frags[i];
 2858                         __skb_frag_ref(frag);
 2859                         size = skb_frag_size(frag);
 2860 
 2861                         if (pos < offset) {
 2862                                 frag->page_offset += offset - pos;
 2863                                 skb_frag_size_sub(frag, offset - pos);
 2864                         }
 2865 
 2866                         skb_shinfo(nskb)->nr_frags++;
 2867 
 2868                         if (pos + size <= offset + len) {
 2869                                 i++;
 2870                                 pos += size;
 2871                         } else {
 2872                                 skb_frag_size_sub(frag, pos + size - (offset + len));
 2873                                 goto skip_fraglist;
 2874                         }
 2875 
 2876                         frag++;
 2877                 }
 2878 
 2879                 if (pos < offset + len) {
 2880                         struct sk_buff *fskb2 = fskb;
 2881 
 2882                         BUG_ON(pos + fskb->len != offset + len);
 2883 
 2884                         pos += fskb->len;
 2885                         fskb = fskb->next;
 2886 
 2887                         if (fskb2->next) {
 2888                                 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
 2889                                 if (!fskb2)
 2890                                         goto err;
 2891                         } else
 2892                                 skb_get(fskb2);
 2893 
 2894                         SKB_FRAG_ASSERT(nskb);
 2895                         skb_shinfo(nskb)->frag_list = fskb2;
 2896                 }
 2897 
 2898 skip_fraglist:
 2899                 nskb->data_len = len - hsize;
 2900                 nskb->len += nskb->data_len;
 2901                 nskb->truesize += nskb->data_len;
 2902         } while ((offset += len) < skb->len);
 2903 
 2904         return segs;
 2905 
 2906 err:
 2907         while ((skb = segs)) {
 2908                 segs = skb->next;
 2909                 kfree_skb(skb);
 2910         }
 2911         return ERR_PTR(err);
 2912 }
 2913 EXPORT_SYMBOL_GPL(skb_segment);
 2914 
 2915 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
 2916 {
 2917         struct sk_buff *p = *head;
 2918         struct sk_buff *nskb;
 2919         struct skb_shared_info *skbinfo = skb_shinfo(skb);
 2920         struct skb_shared_info *pinfo = skb_shinfo(p);
 2921         unsigned int headroom;
 2922         unsigned int len = skb_gro_len(skb);
 2923         unsigned int offset = skb_gro_offset(skb);
 2924         unsigned int headlen = skb_headlen(skb);
 2925         unsigned int delta_truesize;
 2926 
 2927         if (p->len + len >= 65536)
 2928                 return -E2BIG;
 2929 
 2930         if (pinfo->frag_list)
 2931                 goto merge;
 2932         else if (headlen <= offset) {
 2933                 skb_frag_t *frag;
 2934                 skb_frag_t *frag2;
 2935                 int i = skbinfo->nr_frags;
 2936                 int nr_frags = pinfo->nr_frags + i;
 2937 
 2938                 offset -= headlen;
 2939 
 2940                 if (nr_frags > MAX_SKB_FRAGS)
 2941                         return -E2BIG;
 2942 
 2943                 pinfo->nr_frags = nr_frags;
 2944                 skbinfo->nr_frags = 0;
 2945 
 2946                 frag = pinfo->frags + nr_frags;
 2947                 frag2 = skbinfo->frags + i;
 2948                 do {
 2949                         *--frag = *--frag2;
 2950                 } while (--i);
 2951 
 2952                 frag->page_offset += offset;
 2953                 skb_frag_size_sub(frag, offset);
 2954 
 2955                 /* all fragments truesize : remove (head size + sk_buff) */
 2956                 delta_truesize = skb->truesize -
 2957                                  SKB_TRUESIZE(skb_end_offset(skb));
 2958 
 2959                 skb->truesize -= skb->data_len;
 2960                 skb->len -= skb->data_len;
 2961                 skb->data_len = 0;
 2962 
 2963                 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
 2964                 goto done;
 2965         } else if (skb->head_frag) {
 2966                 int nr_frags = pinfo->nr_frags;
 2967                 skb_frag_t *frag = pinfo->frags + nr_frags;
 2968                 struct page *page = virt_to_head_page(skb->head);
 2969                 unsigned int first_size = headlen - offset;
 2970                 unsigned int first_offset;
 2971 
 2972                 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
 2973                         return -E2BIG;
 2974 
 2975                 first_offset = skb->data -
 2976                                (unsigned char *)page_address(page) +
 2977                                offset;
 2978 
 2979                 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
 2980 
 2981                 frag->page.p      = page;
 2982                 frag->page_offset = first_offset;
 2983                 skb_frag_size_set(frag, first_size);
 2984 
 2985                 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
 2986                 /* We dont need to clear skbinfo->nr_frags here */
 2987 
 2988                 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
 2989                 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
 2990                 goto done;
 2991         } else if (skb_gro_len(p) != pinfo->gso_size)
 2992                 return -E2BIG;
 2993 
 2994         headroom = skb_headroom(p);
 2995         nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
 2996         if (unlikely(!nskb))
 2997                 return -ENOMEM;
 2998 
 2999         __copy_skb_header(nskb, p);
 3000         nskb->mac_len = p->mac_len;
 3001 
 3002         skb_reserve(nskb, headroom);
 3003         __skb_put(nskb, skb_gro_offset(p));
 3004 
 3005         skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
 3006         skb_set_network_header(nskb, skb_network_offset(p));
 3007         skb_set_transport_header(nskb, skb_transport_offset(p));
 3008 
 3009         __skb_pull(p, skb_gro_offset(p));
 3010         memcpy(skb_mac_header(nskb), skb_mac_header(p),
 3011                p->data - skb_mac_header(p));
 3012 
 3013         skb_shinfo(nskb)->frag_list = p;
 3014         skb_shinfo(nskb)->gso_size = pinfo->gso_size;
 3015         pinfo->gso_size = 0;
 3016         skb_header_release(p);
 3017         NAPI_GRO_CB(nskb)->last = p;
 3018 
 3019         nskb->data_len += p->len;
 3020         nskb->truesize += p->truesize;
 3021         nskb->len += p->len;
 3022 
 3023         *head = nskb;
 3024         nskb->next = p->next;
 3025         p->next = NULL;
 3026 
 3027         p = nskb;
 3028 
 3029 merge:
 3030         delta_truesize = skb->truesize;
 3031         if (offset > headlen) {
 3032                 unsigned int eat = offset - headlen;
 3033 
 3034                 skbinfo->frags[0].page_offset += eat;
 3035                 skb_frag_size_sub(&skbinfo->frags[0], eat);
 3036                 skb->data_len -= eat;
 3037                 skb->len -= eat;
 3038                 offset = headlen;
 3039         }
 3040 
 3041         __skb_pull(skb, offset);
 3042 
 3043         NAPI_GRO_CB(p)->last->next = skb;
 3044         NAPI_GRO_CB(p)->last = skb;
 3045         skb_header_release(skb);
 3046 
 3047 done:
 3048         NAPI_GRO_CB(p)->count++;
 3049         p->data_len += len;
 3050         p->truesize += delta_truesize;
 3051         p->len += len;
 3052 
 3053         NAPI_GRO_CB(skb)->same_flow = 1;
 3054         return 0;
 3055 }
 3056 EXPORT_SYMBOL_GPL(skb_gro_receive);
 3057 
 3058 void __init skb_init(void)
 3059 {
 3060         skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
 3061                                               sizeof(struct sk_buff),
 3062                                               0,
 3063                                               SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 3064                                               NULL);
 3065         skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
 3066                                                 (2*sizeof(struct sk_buff)) +
 3067                                                 sizeof(atomic_t),
 3068                                                 0,
 3069                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 3070                                                 NULL);
 3071 }
 3072 
 3073 /**
 3074  *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
 3075  *      @skb: Socket buffer containing the buffers to be mapped
 3076  *      @sg: The scatter-gather list to map into
 3077  *      @offset: The offset into the buffer's contents to start mapping
 3078  *      @len: Length of buffer space to be mapped
 3079  *
 3080  *      Fill the specified scatter-gather list with mappings/pointers into a
 3081  *      region of the buffer space attached to a socket buffer.
 3082  */
 3083 static int
 3084 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
 3085 {
 3086         int start = skb_headlen(skb);
 3087         int i, copy = start - offset;
 3088         struct sk_buff *frag_iter;
 3089         int elt = 0;
 3090 
 3091         if (copy > 0) {
 3092                 if (copy > len)
 3093                         copy = len;
 3094                 sg_set_buf(sg, skb->data + offset, copy);
 3095                 elt++;
 3096                 if ((len -= copy) == 0)
 3097                         return elt;
 3098                 offset += copy;
 3099         }
 3100 
 3101         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 3102                 int end;
 3103 
 3104                 WARN_ON(start > offset + len);
 3105 
 3106                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
 3107                 if ((copy = end - offset) > 0) {
 3108                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 3109 
 3110                         if (copy > len)
 3111                                 copy = len;
 3112                         sg_set_page(&sg[elt], skb_frag_page(frag), copy,
 3113                                         frag->page_offset+offset-start);
 3114                         elt++;
 3115                         if (!(len -= copy))
 3116                                 return elt;
 3117                         offset += copy;
 3118                 }
 3119                 start = end;
 3120         }
 3121 
 3122         skb_walk_frags(skb, frag_iter) {
 3123                 int end;
 3124 
 3125                 WARN_ON(start > offset + len);
 3126 
 3127                 end = start + frag_iter->len;
 3128                 if ((copy = end - offset) > 0) {
 3129                         if (copy > len)
 3130                                 copy = len;
 3131                         elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
 3132                                               copy);
 3133                         if ((len -= copy) == 0)
 3134                                 return elt;
 3135                         offset += copy;
 3136                 }
 3137                 start = end;
 3138         }
 3139         BUG_ON(len);
 3140         return elt;
 3141 }
 3142 
 3143 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
 3144 {
 3145         int nsg = __skb_to_sgvec(skb, sg, offset, len);
 3146 
 3147         sg_mark_end(&sg[nsg - 1]);
 3148 
 3149         return nsg;
 3150 }
 3151 EXPORT_SYMBOL_GPL(skb_to_sgvec);
 3152 
 3153 /**
 3154  *      skb_cow_data - Check that a socket buffer's data buffers are writable
 3155  *      @skb: The socket buffer to check.
 3156  *      @tailbits: Amount of trailing space to be added
 3157  *      @trailer: Returned pointer to the skb where the @tailbits space begins
 3158  *
 3159  *      Make sure that the data buffers attached to a socket buffer are
 3160  *      writable. If they are not, private copies are made of the data buffers
 3161  *      and the socket buffer is set to use these instead.
 3162  *
 3163  *      If @tailbits is given, make sure that there is space to write @tailbits
 3164  *      bytes of data beyond current end of socket buffer.  @trailer will be
 3165  *      set to point to the skb in which this space begins.
 3166  *
 3167  *      The number of scatterlist elements required to completely map the
 3168  *      COW'd and extended socket buffer will be returned.
 3169  */
 3170 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
 3171 {
 3172         int copyflag;
 3173         int elt;
 3174         struct sk_buff *skb1, **skb_p;
 3175 
 3176         /* If skb is cloned or its head is paged, reallocate
 3177          * head pulling out all the pages (pages are considered not writable
 3178          * at the moment even if they are anonymous).
 3179          */
 3180         if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
 3181             __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
 3182                 return -ENOMEM;
 3183 
 3184         /* Easy case. Most of packets will go this way. */
 3185         if (!skb_has_frag_list(skb)) {
 3186                 /* A little of trouble, not enough of space for trailer.
 3187                  * This should not happen, when stack is tuned to generate
 3188                  * good frames. OK, on miss we reallocate and reserve even more
 3189                  * space, 128 bytes is fair. */
 3190 
 3191                 if (skb_tailroom(skb) < tailbits &&
 3192                     pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
 3193                         return -ENOMEM;
 3194 
 3195                 /* Voila! */
 3196                 *trailer = skb;
 3197                 return 1;
 3198         }
 3199 
 3200         /* Misery. We are in troubles, going to mincer fragments... */
 3201 
 3202         elt = 1;
 3203         skb_p = &skb_shinfo(skb)->frag_list;
 3204         copyflag = 0;
 3205 
 3206         while ((skb1 = *skb_p) != NULL) {
 3207                 int ntail = 0;
 3208 
 3209                 /* The fragment is partially pulled by someone,
 3210                  * this can happen on input. Copy it and everything
 3211                  * after it. */
 3212 
 3213                 if (skb_shared(skb1))
 3214                         copyflag = 1;
 3215 
 3216                 /* If the skb is the last, worry about trailer. */
 3217 
 3218                 if (skb1->next == NULL && tailbits) {
 3219                         if (skb_shinfo(skb1)->nr_frags ||
 3220                             skb_has_frag_list(skb1) ||
 3221                             skb_tailroom(skb1) < tailbits)
 3222                                 ntail = tailbits + 128;
 3223                 }
 3224 
 3225                 if (copyflag ||
 3226                     skb_cloned(skb1) ||
 3227                     ntail ||
 3228                     skb_shinfo(skb1)->nr_frags ||
 3229                     skb_has_frag_list(skb1)) {
 3230                         struct sk_buff *skb2;
 3231 
 3232                         /* Fuck, we are miserable poor guys... */
 3233                         if (ntail == 0)
 3234                                 skb2 = skb_copy(skb1, GFP_ATOMIC);
 3235                         else
 3236                                 skb2 = skb_copy_expand(skb1,
 3237                                                        skb_headroom(skb1),
 3238                                                        ntail,
 3239                                                        GFP_ATOMIC);
 3240                         if (unlikely(skb2 == NULL))
 3241                                 return -ENOMEM;
 3242 
 3243                         if (skb1->sk)
 3244                                 skb_set_owner_w(skb2, skb1->sk);
 3245 
 3246                         /* Looking around. Are we still alive?
 3247                          * OK, link new skb, drop old one */
 3248 
 3249                         skb2->next = skb1->next;
 3250                         *skb_p = skb2;
 3251                         kfree_skb(skb1);
 3252                         skb1 = skb2;
 3253                 }
 3254                 elt++;
 3255                 *trailer = skb1;
 3256                 skb_p = &skb1->next;
 3257         }
 3258 
 3259         return elt;
 3260 }
 3261 EXPORT_SYMBOL_GPL(skb_cow_data);
 3262 
 3263 static void sock_rmem_free(struct sk_buff *skb)
 3264 {
 3265         struct sock *sk = skb->sk;
 3266 
 3267         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
 3268 }
 3269 
 3270 /*
 3271  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
 3272  */
 3273 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
 3274 {
 3275         int len = skb->len;
 3276 
 3277         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
 3278             (unsigned int)sk->sk_rcvbuf)
 3279                 return -ENOMEM;
 3280 
 3281         skb_orphan(skb);
 3282         skb->sk = sk;
 3283         skb->destructor = sock_rmem_free;
 3284         atomic_add(skb->truesize, &sk->sk_rmem_alloc);
 3285 
 3286         /* before exiting rcu section, make sure dst is refcounted */
 3287         skb_dst_force(skb);
 3288 
 3289         skb_queue_tail(&sk->sk_error_queue, skb);
 3290         if (!sock_flag(sk, SOCK_DEAD))
 3291                 sk->sk_data_ready(sk, len);
 3292         return 0;
 3293 }
 3294 EXPORT_SYMBOL(sock_queue_err_skb);
 3295 
 3296 void skb_tstamp_tx(struct sk_buff *orig_skb,
 3297                 struct skb_shared_hwtstamps *hwtstamps)
 3298 {
 3299         struct sock *sk = orig_skb->sk;
 3300         struct sock_exterr_skb *serr;
 3301         struct sk_buff *skb;
 3302         int err;
 3303 
 3304         if (!sk)
 3305                 return;
 3306 
 3307         skb = skb_clone(orig_skb, GFP_ATOMIC);
 3308         if (!skb)
 3309                 return;
 3310 
 3311         if (hwtstamps) {
 3312                 *skb_hwtstamps(skb) =
 3313                         *hwtstamps;
 3314         } else {
 3315                 /*
 3316                  * no hardware time stamps available,
 3317                  * so keep the shared tx_flags and only
 3318                  * store software time stamp
 3319                  */
 3320                 skb->tstamp = ktime_get_real();
 3321         }
 3322 
 3323         serr = SKB_EXT_ERR(skb);
 3324         memset(serr, 0, sizeof(*serr));
 3325         serr->ee.ee_errno = ENOMSG;
 3326         serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
 3327 
 3328         err = sock_queue_err_skb(sk, skb);
 3329 
 3330         if (err)
 3331                 kfree_skb(skb);
 3332 }
 3333 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
 3334 
 3335 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
 3336 {
 3337         struct sock *sk = skb->sk;
 3338         struct sock_exterr_skb *serr;
 3339         int err;
 3340 
 3341         skb->wifi_acked_valid = 1;
 3342         skb->wifi_acked = acked;
 3343 
 3344         serr = SKB_EXT_ERR(skb);
 3345         memset(serr, 0, sizeof(*serr));
 3346         serr->ee.ee_errno = ENOMSG;
 3347         serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
 3348 
 3349         err = sock_queue_err_skb(sk, skb);
 3350         if (err)
 3351                 kfree_skb(skb);
 3352 }
 3353 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
 3354 
 3355 
 3356 /**
 3357  * skb_partial_csum_set - set up and verify partial csum values for packet
 3358  * @skb: the skb to set
 3359  * @start: the number of bytes after skb->data to start checksumming.
 3360  * @off: the offset from start to place the checksum.
 3361  *
 3362  * For untrusted partially-checksummed packets, we need to make sure the values
 3363  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
 3364  *
 3365  * This function checks and sets those values and skb->ip_summed: if this
 3366  * returns false you should drop the packet.
 3367  */
 3368 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
 3369 {
 3370         if (unlikely(start > skb_headlen(skb)) ||
 3371             unlikely((int)start + off > skb_headlen(skb) - 2)) {
 3372                 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
 3373                                      start, off, skb_headlen(skb));
 3374                 return false;
 3375         }
 3376         skb->ip_summed = CHECKSUM_PARTIAL;
 3377         skb->csum_start = skb_headroom(skb) + start;
 3378         skb->csum_offset = off;
 3379         return true;
 3380 }
 3381 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
 3382 
 3383 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
 3384 {
 3385         net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
 3386                              skb->dev->name);
 3387 }
 3388 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
 3389 
 3390 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
 3391 {
 3392         if (head_stolen) {
 3393                 skb_release_head_state(skb);
 3394                 kmem_cache_free(skbuff_head_cache, skb);
 3395         } else {
 3396                 __kfree_skb(skb);
 3397         }
 3398 }
 3399 EXPORT_SYMBOL(kfree_skb_partial);
 3400 
 3401 /**
 3402  * skb_try_coalesce - try to merge skb to prior one
 3403  * @to: prior buffer
 3404  * @from: buffer to add
 3405  * @fragstolen: pointer to boolean
 3406  * @delta_truesize: how much more was allocated than was requested
 3407  */
 3408 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 3409                       bool *fragstolen, int *delta_truesize)
 3410 {
 3411         int i, delta, len = from->len;
 3412 
 3413         *fragstolen = false;
 3414 
 3415         if (skb_cloned(to))
 3416                 return false;
 3417 
 3418         if (len <= skb_tailroom(to)) {
 3419                 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
 3420                 *delta_truesize = 0;
 3421                 return true;
 3422         }
 3423 
 3424         if (skb_has_frag_list(to) || skb_has_frag_list(from))
 3425                 return false;
 3426 
 3427         if (skb_headlen(from) != 0) {
 3428                 struct page *page;
 3429                 unsigned int offset;
 3430 
 3431                 if (skb_shinfo(to)->nr_frags +
 3432                     skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
 3433                         return false;
 3434 
 3435                 if (skb_head_is_locked(from))
 3436                         return false;
 3437 
 3438                 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
 3439 
 3440                 page = virt_to_head_page(from->head);
 3441                 offset = from->data - (unsigned char *)page_address(page);
 3442 
 3443                 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
 3444                                    page, offset, skb_headlen(from));
 3445                 *fragstolen = true;
 3446         } else {
 3447                 if (skb_shinfo(to)->nr_frags +
 3448                     skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
 3449                         return false;
 3450 
 3451                 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
 3452         }
 3453 
 3454         WARN_ON_ONCE(delta < len);
 3455 
 3456         memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
 3457                skb_shinfo(from)->frags,
 3458                skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
 3459         skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
 3460 
 3461         if (!skb_cloned(from))
 3462                 skb_shinfo(from)->nr_frags = 0;
 3463 
 3464         /* if the skb is not cloned this does nothing
 3465          * since we set nr_frags to 0.
 3466          */
 3467         for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
 3468                 skb_frag_ref(from, i);
 3469 
 3470         to->truesize += delta;
 3471         to->len += len;
 3472         to->data_len += len;
 3473 
 3474         *delta_truesize = delta;
 3475         return true;
 3476 }
 3477 EXPORT_SYMBOL(skb_try_coalesce);

Cache object: f264c512f0a9b1eeb474e8686d98fe19


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.