The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_ethersubr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1982, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)if_ethersubr.c      8.1 (Berkeley) 6/10/93
   30  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
   31  */
   32 
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 #include "opt_ipx.h"
   36 #include "opt_mpls.h"
   37 #include "opt_netgraph.h"
   38 #include "opt_carp.h"
   39 #include "opt_rss.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/globaldata.h>
   44 #include <sys/kernel.h>
   45 #include <sys/ktr.h>
   46 #include <sys/lock.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mbuf.h>
   49 #include <sys/msgport.h>
   50 #include <sys/socket.h>
   51 #include <sys/sockio.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/thread.h>
   54 
   55 #include <sys/thread2.h>
   56 #include <sys/mplock2.h>
   57 
   58 #include <net/if.h>
   59 #include <net/netisr.h>
   60 #include <net/route.h>
   61 #include <net/if_llc.h>
   62 #include <net/if_dl.h>
   63 #include <net/if_types.h>
   64 #include <net/ifq_var.h>
   65 #include <net/bpf.h>
   66 #include <net/ethernet.h>
   67 #include <net/vlan/if_vlan_ether.h>
   68 #include <net/vlan/if_vlan_var.h>
   69 #include <net/netmsg2.h>
   70 #include <net/netisr2.h>
   71 
   72 #if defined(INET) || defined(INET6)
   73 #include <netinet/in.h>
   74 #include <netinet/ip_var.h>
   75 #include <netinet/tcp_var.h>
   76 #include <netinet/if_ether.h>
   77 #include <netinet/ip_flow.h>
   78 #include <net/ipfw/ip_fw.h>
   79 #include <net/dummynet/ip_dummynet.h>
   80 #endif
   81 #ifdef INET6
   82 #include <netinet6/nd6.h>
   83 #endif
   84 
   85 #ifdef CARP
   86 #include <netinet/ip_carp.h>
   87 #endif
   88 
   89 #ifdef IPX
   90 #include <netproto/ipx/ipx.h>
   91 #include <netproto/ipx/ipx_if.h>
   92 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m);
   93 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst,
   94                   short *tp, int *hlen);
   95 #endif
   96 
   97 #ifdef MPLS
   98 #include <netproto/mpls/mpls.h>
   99 #endif
  100 
  101 /* netgraph node hooks for ng_ether(4) */
  102 void    (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
  103 void    (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
  104 int     (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
  105 void    (*ng_ether_attach_p)(struct ifnet *ifp);
  106 void    (*ng_ether_detach_p)(struct ifnet *ifp);
  107 
  108 void    (*vlan_input_p)(struct mbuf *);
  109 
  110 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
  111                         struct rtentry *);
  112 static void ether_restore_header(struct mbuf **, const struct ether_header *,
  113                                  const struct ether_header *);
  114 static int ether_characterize(struct mbuf **);
  115 static void ether_dispatch(int, struct mbuf *);
  116 
  117 /*
  118  * if_bridge support
  119  */
  120 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
  121 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
  122 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
  123 struct ifnet *(*bridge_interface_p)(void *if_bridge);
  124 
  125 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
  126                               struct sockaddr *);
  127 
  128 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
  129         0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  130 };
  131 
  132 #define gotoerr(e) do { error = (e); goto bad; } while (0)
  133 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
  134 
  135 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
  136                                 struct ip_fw **rule,
  137                                 const struct ether_header *eh);
  138 
  139 static int ether_ipfw;
  140 static u_long ether_restore_hdr;
  141 static u_long ether_prepend_hdr;
  142 static u_long ether_input_wronghash;
  143 static int ether_debug;
  144 
  145 #ifdef RSS_DEBUG
  146 static u_long ether_pktinfo_try;
  147 static u_long ether_pktinfo_hit;
  148 static u_long ether_rss_nopi;
  149 static u_long ether_rss_nohash;
  150 static u_long ether_input_requeue;
  151 #endif
  152 static u_long ether_input_wronghwhash;
  153 static int ether_input_ckhash;
  154 
  155 #define ETHER_TSOLEN_DEFAULT    (4 * ETHERMTU)
  156 
  157 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
  158 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
  159 
  160 SYSCTL_DECL(_net_link);
  161 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
  162 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
  163     &ether_debug, 0, "Ether debug");
  164 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
  165     &ether_ipfw, 0, "Pass ether pkts through firewall");
  166 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
  167     &ether_restore_hdr, 0, "# of ether header restoration");
  168 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
  169     &ether_prepend_hdr, 0,
  170     "# of ether header restoration which prepends mbuf");
  171 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
  172     &ether_input_wronghash, 0, "# of input packets with wrong hash");
  173 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
  174     &ether_tsolen_default, 0, "Default max TSO length");
  175 
  176 #ifdef RSS_DEBUG
  177 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
  178     &ether_rss_nopi, 0, "# of packets do not have pktinfo");
  179 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
  180     &ether_rss_nohash, 0, "# of packets do not have hash");
  181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
  182     &ether_pktinfo_try, 0,
  183     "# of tries to find packets' msgport using pktinfo");
  184 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
  185     &ether_pktinfo_hit, 0,
  186     "# of packets whose msgport are found using pktinfo");
  187 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
  188     &ether_input_requeue, 0, "# of input packets gets requeued");
  189 #endif
  190 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
  191     &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
  192 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
  193     &ether_input_ckhash, 0, "always check hash");
  194 
  195 #define ETHER_KTR_STR           "ifp=%p"
  196 #define ETHER_KTR_ARGS  struct ifnet *ifp
  197 #ifndef KTR_ETHERNET
  198 #define KTR_ETHERNET            KTR_ALL
  199 #endif
  200 KTR_INFO_MASTER(ether);
  201 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
  202 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
  203 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
  204 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
  205 #define logether(name, arg)     KTR_LOG(ether_ ## name, arg)
  206 
  207 /*
  208  * Ethernet output routine.
  209  * Encapsulate a packet of type family for the local net.
  210  * Use trailer local net encapsulation if enough data in first
  211  * packet leaves a multiple of 512 bytes of data in remainder.
  212  * Assumes that ifp is actually pointer to arpcom structure.
  213  */
  214 static int
  215 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
  216              struct rtentry *rt)
  217 {
  218         struct ether_header *eh, *deh;
  219         u_char *edst;
  220         int loop_copy = 0;
  221         int hlen = ETHER_HDR_LEN;       /* link layer header length */
  222         struct arpcom *ac = IFP2AC(ifp);
  223         int error;
  224 
  225         ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
  226 
  227         if (ifp->if_flags & IFF_MONITOR)
  228                 gotoerr(ENETDOWN);
  229         if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
  230                 gotoerr(ENETDOWN);
  231 
  232         M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT);
  233         if (m == NULL)
  234                 return (ENOBUFS);
  235         m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
  236         eh = mtod(m, struct ether_header *);
  237         edst = eh->ether_dhost;
  238 
  239         /*
  240          * Fill in the destination ethernet address and frame type.
  241          */
  242         switch (dst->sa_family) {
  243 #ifdef INET
  244         case AF_INET:
  245                 if (!arpresolve(ifp, rt, m, dst, edst))
  246                         return (0);     /* if not yet resolved */
  247 #ifdef MPLS
  248                 if (m->m_flags & M_MPLSLABELED)
  249                         eh->ether_type = htons(ETHERTYPE_MPLS);
  250                 else
  251 #endif
  252                         eh->ether_type = htons(ETHERTYPE_IP);
  253                 break;
  254 #endif
  255 #ifdef INET6
  256         case AF_INET6:
  257                 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
  258                         return (0);             /* Something bad happenned. */
  259                 eh->ether_type = htons(ETHERTYPE_IPV6);
  260                 break;
  261 #endif
  262 #ifdef IPX
  263         case AF_IPX:
  264                 if (ef_outputp != NULL) {
  265                         /*
  266                          * Hold BGL and recheck ef_outputp
  267                          */
  268                         get_mplock();
  269                         if (ef_outputp != NULL) {
  270                                 error = ef_outputp(ifp, &m, dst,
  271                                                    &eh->ether_type, &hlen);
  272                                 rel_mplock();
  273                                 if (error)
  274                                         goto bad;
  275                                 else
  276                                         break;
  277                         }
  278                         rel_mplock();
  279                 }
  280                 eh->ether_type = htons(ETHERTYPE_IPX);
  281                 bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host),
  282                       edst, ETHER_ADDR_LEN);
  283                 break;
  284 #endif
  285         case pseudo_AF_HDRCMPLT:
  286         case AF_UNSPEC:
  287                 loop_copy = -1; /* if this is for us, don't do it */
  288                 deh = (struct ether_header *)dst->sa_data;
  289                 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
  290                 eh->ether_type = deh->ether_type;
  291                 break;
  292 
  293         default:
  294                 if_printf(ifp, "can't handle af%d\n", dst->sa_family);
  295                 gotoerr(EAFNOSUPPORT);
  296         }
  297 
  298         if (dst->sa_family == pseudo_AF_HDRCMPLT)       /* unlikely */
  299                 memcpy(eh->ether_shost,
  300                        ((struct ether_header *)dst->sa_data)->ether_shost,
  301                        ETHER_ADDR_LEN);
  302         else
  303                 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
  304 
  305         /*
  306          * Bridges require special output handling.
  307          */
  308         if (ifp->if_bridge) {
  309                 KASSERT(bridge_output_p != NULL,
  310                         ("%s: if_bridge not loaded!", __func__));
  311                 return bridge_output_p(ifp, m);
  312         }
  313 
  314         /*
  315          * If a simplex interface, and the packet is being sent to our
  316          * Ethernet address or a broadcast address, loopback a copy.
  317          * XXX To make a simplex device behave exactly like a duplex
  318          * device, we should copy in the case of sending to our own
  319          * ethernet address (thus letting the original actually appear
  320          * on the wire). However, we don't do that here for security
  321          * reasons and compatibility with the original behavior.
  322          */
  323         if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
  324                 int csum_flags = 0;
  325 
  326                 if (m->m_pkthdr.csum_flags & CSUM_IP)
  327                         csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
  328                 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
  329                         csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
  330                 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
  331                         struct mbuf *n;
  332 
  333                         if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) {
  334                                 n->m_pkthdr.csum_flags |= csum_flags;
  335                                 if (csum_flags & CSUM_DATA_VALID)
  336                                         n->m_pkthdr.csum_data = 0xffff;
  337                                 if_simloop(ifp, n, dst->sa_family, hlen);
  338                         } else
  339                                 IFNET_STAT_INC(ifp, iqdrops, 1);
  340                 } else if (bcmp(eh->ether_dhost, eh->ether_shost,
  341                                 ETHER_ADDR_LEN) == 0) {
  342                         m->m_pkthdr.csum_flags |= csum_flags;
  343                         if (csum_flags & CSUM_DATA_VALID)
  344                                 m->m_pkthdr.csum_data = 0xffff;
  345                         if_simloop(ifp, m, dst->sa_family, hlen);
  346                         return (0);     /* XXX */
  347                 }
  348         }
  349 
  350 #ifdef CARP
  351         if (ifp->if_type == IFT_CARP) {
  352                 ifp = carp_parent(ifp);
  353                 if (ifp == NULL)
  354                         gotoerr(ENETUNREACH);
  355 
  356                 ac = IFP2AC(ifp);
  357 
  358                 /*
  359                  * Check precondition again
  360                  */
  361                 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
  362 
  363                 if (ifp->if_flags & IFF_MONITOR)
  364                         gotoerr(ENETDOWN);
  365                 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
  366                     (IFF_UP | IFF_RUNNING))
  367                         gotoerr(ENETDOWN);
  368         }
  369 #endif
  370 
  371         /* Handle ng_ether(4) processing, if any */
  372         if (ng_ether_output_p != NULL) {
  373                 /*
  374                  * Hold BGL and recheck ng_ether_output_p
  375                  */
  376                 get_mplock();
  377                 if (ng_ether_output_p != NULL) {
  378                         if ((error = ng_ether_output_p(ifp, &m)) != 0) {
  379                                 rel_mplock();
  380                                 goto bad;
  381                         }
  382                         if (m == NULL) {
  383                                 rel_mplock();
  384                                 return (0);
  385                         }
  386                 }
  387                 rel_mplock();
  388         }
  389 
  390         /* Continue with link-layer output */
  391         return ether_output_frame(ifp, m);
  392 
  393 bad:
  394         m_freem(m);
  395         return (error);
  396 }
  397 
  398 /*
  399  * Returns the bridge interface an ifp is associated
  400  * with.
  401  *
  402  * Only call if ifp->if_bridge != NULL.
  403  */
  404 struct ifnet *
  405 ether_bridge_interface(struct ifnet *ifp)
  406 {
  407         if (bridge_interface_p)
  408                 return(bridge_interface_p(ifp->if_bridge));
  409         return (ifp);
  410 }
  411 
  412 /*
  413  * Ethernet link layer output routine to send a raw frame to the device.
  414  *
  415  * This assumes that the 14 byte Ethernet header is present and contiguous
  416  * in the first mbuf.
  417  */
  418 int
  419 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
  420 {
  421         struct ip_fw *rule = NULL;
  422         int error = 0;
  423         struct altq_pktattr pktattr;
  424 
  425         ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
  426 
  427         if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
  428                 struct m_tag *mtag;
  429 
  430                 /* Extract info from dummynet tag */
  431                 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
  432                 KKASSERT(mtag != NULL);
  433                 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
  434                 KKASSERT(rule != NULL);
  435 
  436                 m_tag_delete(m, mtag);
  437                 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
  438         }
  439 
  440         if (ifq_is_enabled(&ifp->if_snd))
  441                 altq_etherclassify(&ifp->if_snd, m, &pktattr);
  442         crit_enter();
  443         if (IPFW_LOADED && ether_ipfw != 0) {
  444                 struct ether_header save_eh, *eh;
  445 
  446                 eh = mtod(m, struct ether_header *);
  447                 save_eh = *eh;
  448                 m_adj(m, ETHER_HDR_LEN);
  449                 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
  450                         crit_exit();
  451                         if (m != NULL) {
  452                                 m_freem(m);
  453                                 return ENOBUFS; /* pkt dropped */
  454                         } else
  455                                 return 0;       /* consumed e.g. in a pipe */
  456                 }
  457 
  458                 /* packet was ok, restore the ethernet header */
  459                 ether_restore_header(&m, eh, &save_eh);
  460                 if (m == NULL) {
  461                         crit_exit();
  462                         return ENOBUFS;
  463                 }
  464         }
  465         crit_exit();
  466 
  467         /*
  468          * Queue message on interface, update output statistics if
  469          * successful, and start output if interface not yet active.
  470          */
  471         error = ifq_dispatch(ifp, m, &pktattr);
  472         return (error);
  473 }
  474 
  475 /*
  476  * ipfw processing for ethernet packets (in and out).
  477  * The second parameter is NULL from ether_demux(), and ifp from
  478  * ether_output_frame().
  479  */
  480 static boolean_t
  481 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
  482                const struct ether_header *eh)
  483 {
  484         struct ether_header save_eh = *eh;      /* might be a ptr in *m0 */
  485         struct ip_fw_args args;
  486         struct m_tag *mtag;
  487         struct mbuf *m;
  488         int i;
  489 
  490         if (*rule != NULL && fw_one_pass)
  491                 return TRUE; /* dummynet packet, already partially processed */
  492 
  493         /*
  494          * I need some amount of data to be contiguous.
  495          */
  496         i = min((*m0)->m_pkthdr.len, max_protohdr);
  497         if ((*m0)->m_len < i) {
  498                 *m0 = m_pullup(*m0, i);
  499                 if (*m0 == NULL)
  500                         return FALSE;
  501         }
  502 
  503         /*
  504          * Clean up tags
  505          */
  506         if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
  507                 m_tag_delete(*m0, mtag);
  508         if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
  509                 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
  510                 KKASSERT(mtag != NULL);
  511                 m_tag_delete(*m0, mtag);
  512                 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
  513         }
  514 
  515         args.m = *m0;           /* the packet we are looking at         */
  516         args.oif = dst;         /* destination, if any                  */
  517         args.rule = *rule;      /* matching rule to restart             */
  518         args.eh = &save_eh;     /* MAC header for bridged/MAC packets   */
  519         i = ip_fw_chk_ptr(&args);
  520         *m0 = args.m;
  521         *rule = args.rule;
  522 
  523         if (*m0 == NULL)
  524                 return FALSE;
  525 
  526         switch (i) {
  527         case IP_FW_PASS:
  528                 return TRUE;
  529 
  530         case IP_FW_DIVERT:
  531         case IP_FW_TEE:
  532         case IP_FW_DENY:
  533                 /*
  534                  * XXX at some point add support for divert/forward actions.
  535                  * If none of the above matches, we have to drop the pkt.
  536                  */
  537                 return FALSE;
  538 
  539         case IP_FW_DUMMYNET:
  540                 /*
  541                  * Pass the pkt to dummynet, which consumes it.
  542                  */
  543                 m = *m0;        /* pass the original to dummynet */
  544                 *m0 = NULL;     /* and nothing back to the caller */
  545 
  546                 ether_restore_header(&m, eh, &save_eh);
  547                 if (m == NULL)
  548                         return FALSE;
  549 
  550                 ip_fw_dn_io_ptr(m, args.cookie,
  551                                 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
  552                 ip_dn_queue(m);
  553                 return FALSE;
  554 
  555         default:
  556                 panic("unknown ipfw return value: %d", i);
  557         }
  558 }
  559 
  560 static void
  561 ether_input(struct ifnet *ifp, struct mbuf *m)
  562 {
  563         ether_input_pkt(ifp, m, NULL);
  564 }
  565 
  566 /*
  567  * Perform common duties while attaching to interface list
  568  */
  569 void
  570 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
  571     lwkt_serialize_t serializer)
  572 {
  573         ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
  574             serializer);
  575 }
  576 
  577 void
  578 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
  579     u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
  580 {
  581         struct sockaddr_dl *sdl;
  582         char ethstr[ETHER_ADDRSTRLEN + 1];
  583         struct ifaltq *ifq;
  584         int i;
  585 
  586         ifp->if_type = IFT_ETHER;
  587         ifp->if_addrlen = ETHER_ADDR_LEN;
  588         ifp->if_hdrlen = ETHER_HDR_LEN;
  589         if_attach(ifp, serializer);
  590         ifq = &ifp->if_snd;
  591         for (i = 0; i < ifq->altq_subq_cnt; ++i) {
  592                 struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
  593 
  594                 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
  595                     (ETHER_MAX_LEN - ETHER_CRC_LEN);
  596         }
  597         ifp->if_mtu = ETHERMTU;
  598         if (ifp->if_tsolen <= 0) {
  599                 if ((ether_tsolen_default / ETHERMTU) < 2) {
  600                         kprintf("ether TSO maxlen %d -> %d\n",
  601                             ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
  602                         ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
  603                 }
  604                 ifp->if_tsolen = ether_tsolen_default;
  605         }
  606         if (ifp->if_baudrate == 0)
  607                 ifp->if_baudrate = 10000000;
  608         ifp->if_output = ether_output;
  609         ifp->if_input = ether_input;
  610         ifp->if_resolvemulti = ether_resolvemulti;
  611         ifp->if_broadcastaddr = etherbroadcastaddr;
  612         sdl = IF_LLSOCKADDR(ifp);
  613         sdl->sdl_type = IFT_ETHER;
  614         sdl->sdl_alen = ifp->if_addrlen;
  615         bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
  616         /*
  617          * XXX Keep the current drivers happy.
  618          * XXX Remove once all drivers have been cleaned up
  619          */
  620         if (lla != IFP2AC(ifp)->ac_enaddr)
  621                 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
  622         bpfattach(ifp, dlt, hdrlen);
  623         if (ng_ether_attach_p != NULL)
  624                 (*ng_ether_attach_p)(ifp);
  625 
  626         if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
  627 }
  628 
  629 /*
  630  * Perform common duties while detaching an Ethernet interface
  631  */
  632 void
  633 ether_ifdetach(struct ifnet *ifp)
  634 {
  635         if_down(ifp);
  636 
  637         if (ng_ether_detach_p != NULL)
  638                 (*ng_ether_detach_p)(ifp);
  639         bpfdetach(ifp);
  640         if_detach(ifp);
  641 }
  642 
  643 int
  644 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
  645 {
  646         struct ifaddr *ifa = (struct ifaddr *) data;
  647         struct ifreq *ifr = (struct ifreq *) data;
  648         int error = 0;
  649 
  650 #define IF_INIT(ifp) \
  651 do { \
  652         if (((ifp)->if_flags & IFF_UP) == 0) { \
  653                 (ifp)->if_flags |= IFF_UP; \
  654                 (ifp)->if_init((ifp)->if_softc); \
  655         } \
  656 } while (0)
  657 
  658         ASSERT_IFNET_SERIALIZED_ALL(ifp);
  659 
  660         switch (command) {
  661         case SIOCSIFADDR:
  662                 switch (ifa->ifa_addr->sa_family) {
  663 #ifdef INET
  664                 case AF_INET:
  665                         IF_INIT(ifp);   /* before arpwhohas */
  666                         arp_ifinit(ifp, ifa);
  667                         break;
  668 #endif
  669 #ifdef IPX
  670                 /*
  671                  * XXX - This code is probably wrong
  672                  */
  673                 case AF_IPX:
  674                         {
  675                         struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr;
  676                         struct arpcom *ac = IFP2AC(ifp);
  677 
  678                         if (ipx_nullhost(*ina))
  679                                 ina->x_host = *(union ipx_host *) ac->ac_enaddr;
  680                         else
  681                                 bcopy(ina->x_host.c_host, ac->ac_enaddr,
  682                                       sizeof ac->ac_enaddr);
  683 
  684                         IF_INIT(ifp);   /* Set new address. */
  685                         break;
  686                         }
  687 #endif
  688                 default:
  689                         IF_INIT(ifp);
  690                         break;
  691                 }
  692                 break;
  693 
  694         case SIOCGIFADDR:
  695                 bcopy(IFP2AC(ifp)->ac_enaddr,
  696                       ((struct sockaddr *)ifr->ifr_data)->sa_data,
  697                       ETHER_ADDR_LEN);
  698                 break;
  699 
  700         case SIOCSIFMTU:
  701                 /*
  702                  * Set the interface MTU.
  703                  */
  704                 if (ifr->ifr_mtu > ETHERMTU) {
  705                         error = EINVAL;
  706                 } else {
  707                         ifp->if_mtu = ifr->ifr_mtu;
  708                 }
  709                 break;
  710         default:
  711                 error = EINVAL;
  712                 break;
  713         }
  714         return (error);
  715 
  716 #undef IF_INIT
  717 }
  718 
  719 int
  720 ether_resolvemulti(
  721         struct ifnet *ifp,
  722         struct sockaddr **llsa,
  723         struct sockaddr *sa)
  724 {
  725         struct sockaddr_dl *sdl;
  726 #ifdef INET
  727         struct sockaddr_in *sin;
  728 #endif
  729 #ifdef INET6
  730         struct sockaddr_in6 *sin6;
  731 #endif
  732         u_char *e_addr;
  733 
  734         switch(sa->sa_family) {
  735         case AF_LINK:
  736                 /*
  737                  * No mapping needed. Just check that it's a valid MC address.
  738                  */
  739                 sdl = (struct sockaddr_dl *)sa;
  740                 e_addr = LLADDR(sdl);
  741                 if ((e_addr[0] & 1) != 1)
  742                         return EADDRNOTAVAIL;
  743                 *llsa = NULL;
  744                 return 0;
  745 
  746 #ifdef INET
  747         case AF_INET:
  748                 sin = (struct sockaddr_in *)sa;
  749                 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
  750                         return EADDRNOTAVAIL;
  751                 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
  752                 sdl->sdl_len = sizeof *sdl;
  753                 sdl->sdl_family = AF_LINK;
  754                 sdl->sdl_index = ifp->if_index;
  755                 sdl->sdl_type = IFT_ETHER;
  756                 sdl->sdl_alen = ETHER_ADDR_LEN;
  757                 e_addr = LLADDR(sdl);
  758                 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
  759                 *llsa = (struct sockaddr *)sdl;
  760                 return 0;
  761 #endif
  762 #ifdef INET6
  763         case AF_INET6:
  764                 sin6 = (struct sockaddr_in6 *)sa;
  765                 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
  766                         /*
  767                          * An IP6 address of 0 means listen to all
  768                          * of the Ethernet multicast address used for IP6.
  769                          * (This is used for multicast routers.)
  770                          */
  771                         ifp->if_flags |= IFF_ALLMULTI;
  772                         *llsa = NULL;
  773                         return 0;
  774                 }
  775                 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
  776                         return EADDRNOTAVAIL;
  777                 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
  778                 sdl->sdl_len = sizeof *sdl;
  779                 sdl->sdl_family = AF_LINK;
  780                 sdl->sdl_index = ifp->if_index;
  781                 sdl->sdl_type = IFT_ETHER;
  782                 sdl->sdl_alen = ETHER_ADDR_LEN;
  783                 e_addr = LLADDR(sdl);
  784                 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
  785                 *llsa = (struct sockaddr *)sdl;
  786                 return 0;
  787 #endif
  788 
  789         default:
  790                 /*
  791                  * Well, the text isn't quite right, but it's the name
  792                  * that counts...
  793                  */
  794                 return EAFNOSUPPORT;
  795         }
  796 }
  797 
  798 #if 0
  799 /*
  800  * This is for reference.  We have a table-driven version
  801  * of the little-endian crc32 generator, which is faster
  802  * than the double-loop.
  803  */
  804 uint32_t
  805 ether_crc32_le(const uint8_t *buf, size_t len)
  806 {
  807         uint32_t c, crc, carry;
  808         size_t i, j;
  809 
  810         crc = 0xffffffffU;      /* initial value */
  811 
  812         for (i = 0; i < len; i++) {
  813                 c = buf[i];
  814                 for (j = 0; j < 8; j++) {
  815                         carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
  816                         crc >>= 1;
  817                         c >>= 1;
  818                         if (carry)
  819                                 crc = (crc ^ ETHER_CRC_POLY_LE);
  820                 }
  821         }
  822 
  823         return (crc);
  824 }
  825 #else
  826 uint32_t
  827 ether_crc32_le(const uint8_t *buf, size_t len)
  828 {
  829         static const uint32_t crctab[] = {
  830                 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
  831                 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
  832                 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
  833                 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
  834         };
  835         uint32_t crc;
  836         size_t i;
  837 
  838         crc = 0xffffffffU;      /* initial value */
  839 
  840         for (i = 0; i < len; i++) {
  841                 crc ^= buf[i];
  842                 crc = (crc >> 4) ^ crctab[crc & 0xf];
  843                 crc = (crc >> 4) ^ crctab[crc & 0xf];
  844         }
  845 
  846         return (crc);
  847 }
  848 #endif
  849 
  850 uint32_t
  851 ether_crc32_be(const uint8_t *buf, size_t len)
  852 {
  853         uint32_t c, crc, carry;
  854         size_t i, j;
  855 
  856         crc = 0xffffffffU;      /* initial value */
  857 
  858         for (i = 0; i < len; i++) {
  859                 c = buf[i];
  860                 for (j = 0; j < 8; j++) {
  861                         carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
  862                         crc <<= 1;
  863                         c >>= 1;
  864                         if (carry)
  865                                 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
  866                 }
  867         }
  868 
  869         return (crc);
  870 }
  871 
  872 /*
  873  * find the size of ethernet header, and call classifier
  874  */
  875 void
  876 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
  877                    struct altq_pktattr *pktattr)
  878 {
  879         struct ether_header *eh;
  880         uint16_t ether_type;
  881         int hlen, af, hdrsize;
  882 
  883         hlen = sizeof(struct ether_header);
  884         eh = mtod(m, struct ether_header *);
  885 
  886         ether_type = ntohs(eh->ether_type);
  887         if (ether_type < ETHERMTU) {
  888                 /* ick! LLC/SNAP */
  889                 struct llc *llc = (struct llc *)(eh + 1);
  890                 hlen += 8;
  891 
  892                 if (m->m_len < hlen ||
  893                     llc->llc_dsap != LLC_SNAP_LSAP ||
  894                     llc->llc_ssap != LLC_SNAP_LSAP ||
  895                     llc->llc_control != LLC_UI)
  896                         goto bad;  /* not snap! */
  897 
  898                 ether_type = ntohs(llc->llc_un.type_snap.ether_type);
  899         }
  900 
  901         if (ether_type == ETHERTYPE_IP) {
  902                 af = AF_INET;
  903                 hdrsize = 20;  /* sizeof(struct ip) */
  904 #ifdef INET6
  905         } else if (ether_type == ETHERTYPE_IPV6) {
  906                 af = AF_INET6;
  907                 hdrsize = 40;  /* sizeof(struct ip6_hdr) */
  908 #endif
  909         } else
  910                 goto bad;
  911 
  912         while (m->m_len <= hlen) {
  913                 hlen -= m->m_len;
  914                 m = m->m_next;
  915         }
  916         if (m->m_len < hlen + hdrsize) {
  917                 /*
  918                  * ip header is not in a single mbuf.  this should not
  919                  * happen in the current code.
  920                  * (todo: use m_pulldown in the future)
  921                  */
  922                 goto bad;
  923         }
  924         m->m_data += hlen;
  925         m->m_len -= hlen;
  926         ifq_classify(ifq, m, af, pktattr);
  927         m->m_data -= hlen;
  928         m->m_len += hlen;
  929 
  930         return;
  931 
  932 bad:
  933         pktattr->pattr_class = NULL;
  934         pktattr->pattr_hdr = NULL;
  935         pktattr->pattr_af = AF_UNSPEC;
  936 }
  937 
  938 static void
  939 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
  940                      const struct ether_header *save_eh)
  941 {
  942         struct mbuf *m = *m0;
  943 
  944         ether_restore_hdr++;
  945 
  946         /*
  947          * Prepend the header, optimize for the common case of
  948          * eh pointing into the mbuf.
  949          */
  950         if ((const void *)(eh + 1) == (void *)m->m_data) {
  951                 m->m_data -= ETHER_HDR_LEN;
  952                 m->m_len += ETHER_HDR_LEN;
  953                 m->m_pkthdr.len += ETHER_HDR_LEN;
  954         } else {
  955                 ether_prepend_hdr++;
  956 
  957                 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
  958                 if (m != NULL) {
  959                         bcopy(save_eh, mtod(m, struct ether_header *),
  960                               ETHER_HDR_LEN);
  961                 }
  962         }
  963         *m0 = m;
  964 }
  965 
  966 /*
  967  * Upper layer processing for a received Ethernet packet.
  968  */
  969 void
  970 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
  971 {
  972         struct ether_header *eh;
  973         int isr, discard = 0;
  974         u_short ether_type;
  975         struct ip_fw *rule = NULL;
  976 
  977         M_ASSERTPKTHDR(m);
  978         KASSERT(m->m_len >= ETHER_HDR_LEN,
  979                 ("ether header is not contiguous!"));
  980 
  981         eh = mtod(m, struct ether_header *);
  982 
  983         if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
  984                 struct m_tag *mtag;
  985 
  986                 /* Extract info from dummynet tag */
  987                 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
  988                 KKASSERT(mtag != NULL);
  989                 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
  990                 KKASSERT(rule != NULL);
  991 
  992                 m_tag_delete(m, mtag);
  993                 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
  994 
  995                 /* packet is passing the second time */
  996                 goto post_stats;
  997         }
  998 
  999         /*
 1000          * We got a packet which was unicast to a different Ethernet
 1001          * address.  If the driver is working properly, then this
 1002          * situation can only happen when the interface is in
 1003          * promiscuous mode.  We defer the packet discarding until the
 1004          * vlan processing is done, so that vlan/bridge or vlan/netgraph
 1005          * could work.
 1006          */
 1007         if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
 1008             !ETHER_IS_MULTICAST(eh->ether_dhost) &&
 1009             bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
 1010                 if (ether_debug & 1) {
 1011                         kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
 1012                                 "%02x:%02x:%02x:%02x:%02x:%02x "
 1013                                 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
 1014                                 eh->ether_dhost[0],
 1015                                 eh->ether_dhost[1],
 1016                                 eh->ether_dhost[2],
 1017                                 eh->ether_dhost[3],
 1018                                 eh->ether_dhost[4],
 1019                                 eh->ether_dhost[5],
 1020                                 eh->ether_shost[0],
 1021                                 eh->ether_shost[1],
 1022                                 eh->ether_shost[2],
 1023                                 eh->ether_shost[3],
 1024                                 eh->ether_shost[4],
 1025                                 eh->ether_shost[5],
 1026                                 eh->ether_type,
 1027                                 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
 1028                                 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
 1029                                 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
 1030                                 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
 1031                                 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
 1032                                 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
 1033                         );
 1034                 }
 1035                 if ((ether_debug & 2) == 0)
 1036                         discard = 1;
 1037         }
 1038 
 1039 post_stats:
 1040         if (IPFW_LOADED && ether_ipfw != 0 && !discard) {
 1041                 struct ether_header save_eh = *eh;
 1042 
 1043                 /* XXX old crufty stuff, needs to be removed */
 1044                 m_adj(m, sizeof(struct ether_header));
 1045 
 1046                 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
 1047                         m_freem(m);
 1048                         return;
 1049                 }
 1050 
 1051                 ether_restore_header(&m, eh, &save_eh);
 1052                 if (m == NULL)
 1053                         return;
 1054                 eh = mtod(m, struct ether_header *);
 1055         }
 1056 
 1057         ether_type = ntohs(eh->ether_type);
 1058         KKASSERT(ether_type != ETHERTYPE_VLAN);
 1059 
 1060         if (m->m_flags & M_VLANTAG) {
 1061                 void (*vlan_input_func)(struct mbuf *);
 1062 
 1063                 vlan_input_func = vlan_input_p;
 1064                 if (vlan_input_func != NULL) {
 1065                         vlan_input_func(m);
 1066                 } else {
 1067                         IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
 1068                         m_freem(m);
 1069                 }
 1070                 return;
 1071         }
 1072 
 1073         /*
 1074          * If we have been asked to discard this packet
 1075          * (e.g. not for us), drop it before entering
 1076          * the upper layer.
 1077          */
 1078         if (discard) {
 1079                 m_freem(m);
 1080                 return;
 1081         }
 1082 
 1083         /*
 1084          * Clear protocol specific flags,
 1085          * before entering the upper layer.
 1086          */
 1087         m->m_flags &= ~M_ETHER_FLAGS;
 1088 
 1089         /* Strip ethernet header. */
 1090         m_adj(m, sizeof(struct ether_header));
 1091 
 1092         switch (ether_type) {
 1093 #ifdef INET
 1094         case ETHERTYPE_IP:
 1095                 if ((m->m_flags & M_LENCHECKED) == 0) {
 1096                         if (!ip_lengthcheck(&m, 0))
 1097                                 return;
 1098                 }
 1099                 if (ipflow_fastforward(m))
 1100                         return;
 1101                 isr = NETISR_IP;
 1102                 break;
 1103 
 1104         case ETHERTYPE_ARP:
 1105                 if (ifp->if_flags & IFF_NOARP) {
 1106                         /* Discard packet if ARP is disabled on interface */
 1107                         m_freem(m);
 1108                         return;
 1109                 }
 1110                 isr = NETISR_ARP;
 1111                 break;
 1112 #endif
 1113 
 1114 #ifdef INET6
 1115         case ETHERTYPE_IPV6:
 1116                 isr = NETISR_IPV6;
 1117                 break;
 1118 #endif
 1119 
 1120 #ifdef IPX
 1121         case ETHERTYPE_IPX:
 1122                 if (ef_inputp) {
 1123                         /*
 1124                          * Hold BGL and recheck ef_inputp
 1125                          */
 1126                         get_mplock();
 1127                         if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
 1128                                 rel_mplock();
 1129                                 return;
 1130                         }
 1131                         rel_mplock();
 1132                 }
 1133                 isr = NETISR_IPX;
 1134                 break;
 1135 #endif
 1136 
 1137 #ifdef MPLS
 1138         case ETHERTYPE_MPLS:
 1139         case ETHERTYPE_MPLS_MCAST:
 1140                 /* Should have been set by ether_input_pkt(). */
 1141                 KKASSERT(m->m_flags & M_MPLSLABELED);
 1142                 isr = NETISR_MPLS;
 1143                 break;
 1144 #endif
 1145 
 1146         default:
 1147                 /*
 1148                  * The accurate msgport is not determined before
 1149                  * we reach here, so recharacterize packet.
 1150                  */
 1151                 m->m_flags &= ~M_HASH;
 1152 #ifdef IPX
 1153                 if (ef_inputp) {
 1154                         /*
 1155                          * Hold BGL and recheck ef_inputp
 1156                          */
 1157                         get_mplock();
 1158                         if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
 1159                                 rel_mplock();
 1160                                 return;
 1161                         }
 1162                         rel_mplock();
 1163                 }
 1164 #endif
 1165                 if (ng_ether_input_orphan_p != NULL) {
 1166                         /*
 1167                          * Put back the ethernet header so netgraph has a
 1168                          * consistent view of inbound packets.
 1169                          */
 1170                         M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
 1171                         if (m == NULL) {
 1172                                 /*
 1173                                  * M_PREPEND frees the mbuf in case of failure.
 1174                                  */
 1175                                 return;
 1176                         }
 1177                         /*
 1178                          * Hold BGL and recheck ng_ether_input_orphan_p
 1179                          */
 1180                         get_mplock();
 1181                         if (ng_ether_input_orphan_p != NULL) {
 1182                                 ng_ether_input_orphan_p(ifp, m);
 1183                                 rel_mplock();
 1184                                 return;
 1185                         }
 1186                         rel_mplock();
 1187                 }
 1188                 m_freem(m);
 1189                 return;
 1190         }
 1191 
 1192         if (m->m_flags & M_HASH) {
 1193                 if (&curthread->td_msgport ==
 1194                     netisr_hashport(m->m_pkthdr.hash)) {
 1195                         netisr_handle(isr, m);
 1196                         return;
 1197                 } else {
 1198                         /*
 1199                          * XXX Something is wrong,
 1200                          * we probably should panic here!
 1201                          */
 1202                         m->m_flags &= ~M_HASH;
 1203                         atomic_add_long(&ether_input_wronghash, 1);
 1204                 }
 1205         }
 1206 #ifdef RSS_DEBUG
 1207         atomic_add_long(&ether_input_requeue, 1);
 1208 #endif
 1209         netisr_queue(isr, m);
 1210 }
 1211 
 1212 /*
 1213  * First we perform any link layer operations, then continue to the
 1214  * upper layers with ether_demux_oncpu().
 1215  */
 1216 static void
 1217 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
 1218 {
 1219 #ifdef CARP
 1220         void *carp;
 1221 #endif
 1222 
 1223         if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
 1224                 /*
 1225                  * Receiving interface's flags are changed, when this
 1226                  * packet is waiting for processing; discard it.
 1227                  */
 1228                 m_freem(m);
 1229                 return;
 1230         }
 1231 
 1232         /*
 1233          * Tap the packet off here for a bridge.  bridge_input()
 1234          * will return NULL if it has consumed the packet, otherwise
 1235          * it gets processed as normal.  Note that bridge_input()
 1236          * will always return the original packet if we need to
 1237          * process it locally.
 1238          */
 1239         if (ifp->if_bridge) {
 1240                 KASSERT(bridge_input_p != NULL,
 1241                         ("%s: if_bridge not loaded!", __func__));
 1242 
 1243                 if(m->m_flags & M_ETHER_BRIDGED) {
 1244                         m->m_flags &= ~M_ETHER_BRIDGED;
 1245                 } else {
 1246                         m = bridge_input_p(ifp, m);
 1247                         if (m == NULL)
 1248                                 return;
 1249 
 1250                         KASSERT(ifp == m->m_pkthdr.rcvif,
 1251                                 ("bridge_input_p changed rcvif"));
 1252                 }
 1253         }
 1254 
 1255 #ifdef CARP
 1256         carp = ifp->if_carp;
 1257         if (carp) {
 1258                 m = carp_input(carp, m);
 1259                 if (m == NULL)
 1260                         return;
 1261                 KASSERT(ifp == m->m_pkthdr.rcvif,
 1262                     ("carp_input changed rcvif"));
 1263         }
 1264 #endif
 1265 
 1266         /* Handle ng_ether(4) processing, if any */
 1267         if (ng_ether_input_p != NULL) {
 1268                 /*
 1269                  * Hold BGL and recheck ng_ether_input_p
 1270                  */
 1271                 get_mplock();
 1272                 if (ng_ether_input_p != NULL)
 1273                         ng_ether_input_p(ifp, &m);
 1274                 rel_mplock();
 1275 
 1276                 if (m == NULL)
 1277                         return;
 1278         }
 1279 
 1280         /* Continue with upper layer processing */
 1281         ether_demux_oncpu(ifp, m);
 1282 }
 1283 
 1284 /*
 1285  * Perform certain functions of ether_input_pkt():
 1286  * - Test IFF_UP
 1287  * - Update statistics
 1288  * - Run bpf(4) tap if requested
 1289  * Then pass the packet to ether_input_oncpu().
 1290  *
 1291  * This function should be used by pseudo interface (e.g. vlan(4)),
 1292  * when it tries to claim that the packet is received by it.
 1293  *
 1294  * REINPUT_KEEPRCVIF
 1295  * REINPUT_RUNBPF
 1296  */
 1297 void
 1298 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
 1299 {
 1300         /* Discard packet if interface is not up */
 1301         if (!(ifp->if_flags & IFF_UP)) {
 1302                 m_freem(m);
 1303                 return;
 1304         }
 1305 
 1306         /*
 1307          * Change receiving interface.  The bridge will often pass a flag to
 1308          * ask that this not be done so ARPs get applied to the correct
 1309          * side.
 1310          */
 1311         if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
 1312             m->m_pkthdr.rcvif == NULL) {
 1313                 m->m_pkthdr.rcvif = ifp;
 1314         }
 1315 
 1316         /* Update statistics */
 1317         IFNET_STAT_INC(ifp, ipackets, 1);
 1318         IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
 1319         if (m->m_flags & (M_MCAST | M_BCAST))
 1320                 IFNET_STAT_INC(ifp, imcasts, 1);
 1321 
 1322         if (reinput_flags & REINPUT_RUNBPF)
 1323                 BPF_MTAP(ifp, m);
 1324 
 1325         ether_input_oncpu(ifp, m);
 1326 }
 1327 
 1328 static __inline boolean_t
 1329 ether_vlancheck(struct mbuf **m0)
 1330 {
 1331         struct mbuf *m = *m0;
 1332         struct ether_header *eh;
 1333         uint16_t ether_type;
 1334 
 1335         eh = mtod(m, struct ether_header *);
 1336         ether_type = ntohs(eh->ether_type);
 1337 
 1338         if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
 1339                 /*
 1340                  * Extract vlan tag if hardware does not do it for us
 1341                  */
 1342                 vlan_ether_decap(&m);
 1343                 if (m == NULL)
 1344                         goto failed;
 1345 
 1346                 eh = mtod(m, struct ether_header *);
 1347                 ether_type = ntohs(eh->ether_type);
 1348         }
 1349 
 1350         if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
 1351                 /*
 1352                  * To prevent possible dangerous recursion,
 1353                  * we don't do vlan-in-vlan
 1354                  */
 1355                 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
 1356                 goto failed;
 1357         }
 1358         KKASSERT(ether_type != ETHERTYPE_VLAN);
 1359 
 1360         m->m_flags |= M_ETHER_VLANCHECKED;
 1361         *m0 = m;
 1362         return TRUE;
 1363 failed:
 1364         if (m != NULL)
 1365                 m_freem(m);
 1366         *m0 = NULL;
 1367         return FALSE;
 1368 }
 1369 
 1370 static void
 1371 ether_input_handler(netmsg_t nmsg)
 1372 {
 1373         struct netmsg_packet *nmp = &nmsg->packet;      /* actual size */
 1374         struct ether_header *eh;
 1375         struct ifnet *ifp;
 1376         struct mbuf *m;
 1377 
 1378         m = nmp->nm_packet;
 1379         M_ASSERTPKTHDR(m);
 1380 
 1381         if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
 1382                 if (!ether_vlancheck(&m)) {
 1383                         KKASSERT(m == NULL);
 1384                         return;
 1385                 }
 1386         }
 1387         if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
 1388             __predict_false(ether_input_ckhash)) {
 1389                 int isr;
 1390 
 1391                 /*
 1392                  * Need to verify the hash supplied by the hardware
 1393                  * which could be wrong.
 1394                  */
 1395                 m->m_flags &= ~(M_HASH | M_CKHASH);
 1396                 isr = ether_characterize(&m);
 1397                 if (m == NULL)
 1398                         return;
 1399                 KKASSERT(m->m_flags & M_HASH);
 1400 
 1401                 if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
 1402                         /*
 1403                          * Wrong hardware supplied hash; redispatch
 1404                          */
 1405                         ether_dispatch(isr, m);
 1406                         if (__predict_false(ether_input_ckhash))
 1407                                 atomic_add_long(&ether_input_wronghwhash, 1);
 1408                         return;
 1409                 }
 1410         }
 1411         ifp = m->m_pkthdr.rcvif;
 1412 
 1413         eh = mtod(m, struct ether_header *);
 1414         if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
 1415                 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
 1416                          ifp->if_addrlen) == 0)
 1417                         m->m_flags |= M_BCAST;
 1418                 else
 1419                         m->m_flags |= M_MCAST;
 1420                 IFNET_STAT_INC(ifp, imcasts, 1);
 1421         }
 1422 
 1423         ether_input_oncpu(ifp, m);
 1424 }
 1425 
 1426 /*
 1427  * Send the packet to the target netisr msgport
 1428  *
 1429  * At this point the packet must be characterized (M_HASH set),
 1430  * so we know which netisr to send it to.
 1431  */
 1432 static void
 1433 ether_dispatch(int isr, struct mbuf *m)
 1434 {
 1435         struct netmsg_packet *pmsg;
 1436 
 1437         KKASSERT(m->m_flags & M_HASH);
 1438         pmsg = &m->m_hdr.mh_netmsg;
 1439         netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
 1440                     0, ether_input_handler);
 1441         pmsg->nm_packet = m;
 1442         pmsg->base.lmsg.u.ms_result = isr;
 1443 
 1444         logether(disp_beg, NULL);
 1445         lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
 1446         logether(disp_end, NULL);
 1447 }
 1448 
 1449 /*
 1450  * Process a received Ethernet packet.
 1451  *
 1452  * The ethernet header is assumed to be in the mbuf so the caller
 1453  * MUST MAKE SURE that there are at least sizeof(struct ether_header)
 1454  * bytes in the first mbuf.
 1455  */
 1456 void
 1457 ether_input_pkt(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi)
 1458 {
 1459         int isr;
 1460 
 1461         M_ASSERTPKTHDR(m);
 1462 
 1463         /* Discard packet if interface is not up */
 1464         if (!(ifp->if_flags & IFF_UP)) {
 1465                 m_freem(m);
 1466                 return;
 1467         }
 1468 
 1469         if (m->m_len < sizeof(struct ether_header)) {
 1470                 /* XXX error in the caller. */
 1471                 m_freem(m);
 1472                 return;
 1473         }
 1474 
 1475         m->m_pkthdr.rcvif = ifp;
 1476 
 1477         logether(pkt_beg, ifp);
 1478 
 1479         ETHER_BPF_MTAP(ifp, m);
 1480 
 1481         IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
 1482 
 1483         if (ifp->if_flags & IFF_MONITOR) {
 1484                 struct ether_header *eh;
 1485 
 1486                 eh = mtod(m, struct ether_header *);
 1487                 if (ETHER_IS_MULTICAST(eh->ether_dhost))
 1488                         IFNET_STAT_INC(ifp, imcasts, 1);
 1489 
 1490                 /*
 1491                  * Interface marked for monitoring; discard packet.
 1492                  */
 1493                 m_freem(m);
 1494 
 1495                 logether(pkt_end, ifp);
 1496                 return;
 1497         }
 1498 
 1499         /*
 1500          * If the packet has been characterized (pi->pi_netisr / M_HASH)
 1501          * we can dispatch it immediately with trivial checks.
 1502          */
 1503         if (pi != NULL && (m->m_flags & M_HASH)) {
 1504 #ifdef RSS_DEBUG
 1505                 atomic_add_long(&ether_pktinfo_try, 1);
 1506 #endif
 1507                 netisr_hashcheck(pi->pi_netisr, m, pi);
 1508                 if (m->m_flags & M_HASH) {
 1509                         ether_dispatch(pi->pi_netisr, m);
 1510 #ifdef RSS_DEBUG
 1511                         atomic_add_long(&ether_pktinfo_hit, 1);
 1512 #endif
 1513                         logether(pkt_end, ifp);
 1514                         return;
 1515                 }
 1516         }
 1517 #ifdef RSS_DEBUG
 1518         else if (ifp->if_capenable & IFCAP_RSS) {
 1519                 if (pi == NULL)
 1520                         atomic_add_long(&ether_rss_nopi, 1);
 1521                 else
 1522                         atomic_add_long(&ether_rss_nohash, 1);
 1523         }
 1524 #endif
 1525 
 1526         /*
 1527          * Packet hash will be recalculated by software, so clear
 1528          * the M_HASH and M_CKHASH flag set by the driver; the hash
 1529          * value calculated by the hardware may not be exactly what
 1530          * we want.
 1531          */
 1532         m->m_flags &= ~(M_HASH | M_CKHASH);
 1533 
 1534         if (!ether_vlancheck(&m)) {
 1535                 KKASSERT(m == NULL);
 1536                 logether(pkt_end, ifp);
 1537                 return;
 1538         }
 1539 
 1540         isr = ether_characterize(&m);
 1541         if (m == NULL) {
 1542                 logether(pkt_end, ifp);
 1543                 return;
 1544         }
 1545 
 1546         /*
 1547          * Finally dispatch it
 1548          */
 1549         ether_dispatch(isr, m);
 1550 
 1551         logether(pkt_end, ifp);
 1552 }
 1553 
 1554 static int
 1555 ether_characterize(struct mbuf **m0)
 1556 {
 1557         struct mbuf *m = *m0;
 1558         struct ether_header *eh;
 1559         uint16_t ether_type;
 1560         int isr;
 1561 
 1562         eh = mtod(m, struct ether_header *);
 1563         ether_type = ntohs(eh->ether_type);
 1564 
 1565         /*
 1566          * Map ether type to netisr id.
 1567          */
 1568         switch (ether_type) {
 1569 #ifdef INET
 1570         case ETHERTYPE_IP:
 1571                 isr = NETISR_IP;
 1572                 break;
 1573 
 1574         case ETHERTYPE_ARP:
 1575                 isr = NETISR_ARP;
 1576                 break;
 1577 #endif
 1578 
 1579 #ifdef INET6
 1580         case ETHERTYPE_IPV6:
 1581                 isr = NETISR_IPV6;
 1582                 break;
 1583 #endif
 1584 
 1585 #ifdef IPX
 1586         case ETHERTYPE_IPX:
 1587                 isr = NETISR_IPX;
 1588                 break;
 1589 #endif
 1590 
 1591 #ifdef MPLS
 1592         case ETHERTYPE_MPLS:
 1593         case ETHERTYPE_MPLS_MCAST:
 1594                 m->m_flags |= M_MPLSLABELED;
 1595                 isr = NETISR_MPLS;
 1596                 break;
 1597 #endif
 1598 
 1599         default:
 1600                 /*
 1601                  * NETISR_MAX is an invalid value; it is chosen to let
 1602                  * netisr_characterize() know that we have no clear
 1603                  * idea where this packet should go.
 1604                  */
 1605                 isr = NETISR_MAX;
 1606                 break;
 1607         }
 1608 
 1609         /*
 1610          * Ask the isr to characterize the packet since we couldn't.
 1611          * This is an attempt to optimally get us onto the correct protocol
 1612          * thread.
 1613          */
 1614         netisr_characterize(isr, &m, sizeof(struct ether_header));
 1615 
 1616         *m0 = m;
 1617         return isr;
 1618 }
 1619 
 1620 static void
 1621 ether_demux_handler(netmsg_t nmsg)
 1622 {
 1623         struct netmsg_packet *nmp = &nmsg->packet;      /* actual size */
 1624         struct ifnet *ifp;
 1625         struct mbuf *m;
 1626 
 1627         m = nmp->nm_packet;
 1628         M_ASSERTPKTHDR(m);
 1629         ifp = m->m_pkthdr.rcvif;
 1630 
 1631         ether_demux_oncpu(ifp, m);
 1632 }
 1633 
 1634 void
 1635 ether_demux(struct mbuf *m)
 1636 {
 1637         struct netmsg_packet *pmsg;
 1638         int isr;
 1639 
 1640         isr = ether_characterize(&m);
 1641         if (m == NULL)
 1642                 return;
 1643 
 1644         KKASSERT(m->m_flags & M_HASH);
 1645         pmsg = &m->m_hdr.mh_netmsg;
 1646         netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
 1647             0, ether_demux_handler);
 1648         pmsg->nm_packet = m;
 1649         pmsg->base.lmsg.u.ms_result = isr;
 1650 
 1651         lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
 1652 }
 1653 
 1654 u_char *
 1655 kether_aton(const char *macstr, u_char *addr)
 1656 {
 1657         unsigned int o0, o1, o2, o3, o4, o5;
 1658         int n;
 1659 
 1660         if (macstr == NULL || addr == NULL)
 1661                 return NULL;
 1662 
 1663         n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
 1664             &o3, &o4, &o5);
 1665         if (n != 6)
 1666                 return NULL;
 1667 
 1668         addr[0] = o0;
 1669         addr[1] = o1;
 1670         addr[2] = o2;
 1671         addr[3] = o3;
 1672         addr[4] = o4;
 1673         addr[5] = o5;
 1674 
 1675         return addr;
 1676 }
 1677 
 1678 char *
 1679 kether_ntoa(const u_char *addr, char *buf)
 1680 {
 1681         int len = ETHER_ADDRSTRLEN + 1;
 1682         int n;
 1683 
 1684         n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
 1685             addr[1], addr[2], addr[3], addr[4], addr[5]);
 1686 
 1687         if (n < 17)
 1688                 return NULL;
 1689 
 1690         return buf;
 1691 }
 1692 
 1693 MODULE_VERSION(ether, 1);

Cache object: b3d6f85c1f1aad96bf34959a577faa73


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.