The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_ethersubr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)if_ethersubr.c      8.1 (Berkeley) 6/10/93
   30  * $FreeBSD: releng/11.1/sys/net/if_ethersubr.c 318397 2017-05-17 05:53:25Z rpokala $
   31  */
   32 
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 #include "opt_netgraph.h"
   36 #include "opt_mbuf_profiling.h"
   37 #include "opt_rss.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/lock.h>
   43 #include <sys/malloc.h>
   44 #include <sys/module.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/random.h>
   47 #include <sys/socket.h>
   48 #include <sys/sockio.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/uuid.h>
   51 
   52 #include <net/if.h>
   53 #include <net/if_var.h>
   54 #include <net/if_arp.h>
   55 #include <net/netisr.h>
   56 #include <net/route.h>
   57 #include <net/if_llc.h>
   58 #include <net/if_dl.h>
   59 #include <net/if_types.h>
   60 #include <net/bpf.h>
   61 #include <net/ethernet.h>
   62 #include <net/if_bridgevar.h>
   63 #include <net/if_vlan_var.h>
   64 #include <net/if_llatbl.h>
   65 #include <net/pfil.h>
   66 #include <net/rss_config.h>
   67 #include <net/vnet.h>
   68 
   69 #include <netpfil/pf/pf_mtag.h>
   70 
   71 #if defined(INET) || defined(INET6)
   72 #include <netinet/in.h>
   73 #include <netinet/in_var.h>
   74 #include <netinet/if_ether.h>
   75 #include <netinet/ip_carp.h>
   76 #include <netinet/ip_var.h>
   77 #endif
   78 #ifdef INET6
   79 #include <netinet6/nd6.h>
   80 #endif
   81 #include <security/mac/mac_framework.h>
   82 
   83 #ifdef CTASSERT
   84 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
   85 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
   86 #endif
   87 
   88 VNET_DEFINE(struct pfil_head, link_pfil_hook);  /* Packet filter hooks */
   89 
   90 /* netgraph node hooks for ng_ether(4) */
   91 void    (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
   92 void    (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
   93 int     (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
   94 void    (*ng_ether_attach_p)(struct ifnet *ifp);
   95 void    (*ng_ether_detach_p)(struct ifnet *ifp);
   96 
   97 void    (*vlan_input_p)(struct ifnet *, struct mbuf *);
   98 
   99 /* if_bridge(4) support */
  100 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 
  101 int     (*bridge_output_p)(struct ifnet *, struct mbuf *, 
  102                 struct sockaddr *, struct rtentry *);
  103 void    (*bridge_dn_p)(struct mbuf *, struct ifnet *);
  104 
  105 /* if_lagg(4) support */
  106 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 
  107 
  108 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
  109                         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  110 
  111 static  int ether_resolvemulti(struct ifnet *, struct sockaddr **,
  112                 struct sockaddr *);
  113 #ifdef VIMAGE
  114 static  void ether_reassign(struct ifnet *, struct vnet *, char *);
  115 #endif
  116 static  int ether_requestencap(struct ifnet *, struct if_encap_req *);
  117 
  118 #define ETHER_IS_BROADCAST(addr) \
  119         (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0)
  120 
  121 #define senderr(e) do { error = (e); goto bad;} while (0)
  122 
  123 static void
  124 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
  125 {
  126         int csum_flags = 0;
  127 
  128         if (src->m_pkthdr.csum_flags & CSUM_IP)
  129                 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
  130         if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
  131                 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
  132         if (src->m_pkthdr.csum_flags & CSUM_SCTP)
  133                 csum_flags |= CSUM_SCTP_VALID;
  134         dst->m_pkthdr.csum_flags |= csum_flags;
  135         if (csum_flags & CSUM_DATA_VALID)
  136                 dst->m_pkthdr.csum_data = 0xffff;
  137 }
  138 
  139 /*
  140  * Handle link-layer encapsulation requests.
  141  */
  142 static int
  143 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
  144 {
  145         struct ether_header *eh;
  146         struct arphdr *ah;
  147         uint16_t etype;
  148         const u_char *lladdr;
  149 
  150         if (req->rtype != IFENCAP_LL)
  151                 return (EOPNOTSUPP);
  152 
  153         if (req->bufsize < ETHER_HDR_LEN)
  154                 return (ENOMEM);
  155 
  156         eh = (struct ether_header *)req->buf;
  157         lladdr = req->lladdr;
  158         req->lladdr_off = 0;
  159 
  160         switch (req->family) {
  161         case AF_INET:
  162                 etype = htons(ETHERTYPE_IP);
  163                 break;
  164         case AF_INET6:
  165                 etype = htons(ETHERTYPE_IPV6);
  166                 break;
  167         case AF_ARP:
  168                 ah = (struct arphdr *)req->hdata;
  169                 ah->ar_hrd = htons(ARPHRD_ETHER);
  170 
  171                 switch(ntohs(ah->ar_op)) {
  172                 case ARPOP_REVREQUEST:
  173                 case ARPOP_REVREPLY:
  174                         etype = htons(ETHERTYPE_REVARP);
  175                         break;
  176                 case ARPOP_REQUEST:
  177                 case ARPOP_REPLY:
  178                 default:
  179                         etype = htons(ETHERTYPE_ARP);
  180                         break;
  181                 }
  182 
  183                 if (req->flags & IFENCAP_FLAG_BROADCAST)
  184                         lladdr = ifp->if_broadcastaddr;
  185                 break;
  186         default:
  187                 return (EAFNOSUPPORT);
  188         }
  189 
  190         memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
  191         memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
  192         memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
  193         req->bufsize = sizeof(struct ether_header);
  194 
  195         return (0);
  196 }
  197 
  198 
  199 static int
  200 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
  201         const struct sockaddr *dst, struct route *ro, u_char *phdr,
  202         uint32_t *pflags, struct llentry **plle)
  203 {
  204         struct ether_header *eh;
  205         uint32_t lleflags = 0;
  206         int error = 0;
  207 #if defined(INET) || defined(INET6)
  208         uint16_t etype;
  209 #endif
  210 
  211         if (plle)
  212                 *plle = NULL;
  213         eh = (struct ether_header *)phdr;
  214 
  215         switch (dst->sa_family) {
  216 #ifdef INET
  217         case AF_INET:
  218                 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
  219                         error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
  220                             plle);
  221                 else {
  222                         if (m->m_flags & M_BCAST)
  223                                 memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
  224                                     ETHER_ADDR_LEN);
  225                         else {
  226                                 const struct in_addr *a;
  227                                 a = &(((const struct sockaddr_in *)dst)->sin_addr);
  228                                 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
  229                         }
  230                         etype = htons(ETHERTYPE_IP);
  231                         memcpy(&eh->ether_type, &etype, sizeof(etype));
  232                         memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
  233                 }
  234                 break;
  235 #endif
  236 #ifdef INET6
  237         case AF_INET6:
  238                 if ((m->m_flags & M_MCAST) == 0)
  239                         error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
  240                             plle);
  241                 else {
  242                         const struct in6_addr *a6;
  243                         a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
  244                         ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
  245                         etype = htons(ETHERTYPE_IPV6);
  246                         memcpy(&eh->ether_type, &etype, sizeof(etype));
  247                         memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
  248                 }
  249                 break;
  250 #endif
  251         default:
  252                 if_printf(ifp, "can't handle af%d\n", dst->sa_family);
  253                 if (m != NULL)
  254                         m_freem(m);
  255                 return (EAFNOSUPPORT);
  256         }
  257 
  258         if (error == EHOSTDOWN) {
  259                 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
  260                         error = EHOSTUNREACH;
  261         }
  262 
  263         if (error != 0)
  264                 return (error);
  265 
  266         *pflags = RT_MAY_LOOP;
  267         if (lleflags & LLE_IFADDR)
  268                 *pflags |= RT_L2_ME;
  269 
  270         return (0);
  271 }
  272 
  273 /*
  274  * Ethernet output routine.
  275  * Encapsulate a packet of type family for the local net.
  276  * Use trailer local net encapsulation if enough data in first
  277  * packet leaves a multiple of 512 bytes of data in remainder.
  278  */
  279 int
  280 ether_output(struct ifnet *ifp, struct mbuf *m,
  281         const struct sockaddr *dst, struct route *ro)
  282 {
  283         int error = 0;
  284         char linkhdr[ETHER_HDR_LEN], *phdr;
  285         struct ether_header *eh;
  286         struct pf_mtag *t;
  287         int loop_copy = 1;
  288         int hlen;       /* link layer header length */
  289         uint32_t pflags;
  290         struct llentry *lle = NULL;
  291         struct rtentry *rt0 = NULL;
  292         int addref = 0;
  293 
  294         phdr = NULL;
  295         pflags = 0;
  296         if (ro != NULL) {
  297                 /* XXX BPF uses ro_prepend */
  298                 if (ro->ro_prepend != NULL) {
  299                         phdr = ro->ro_prepend;
  300                         hlen = ro->ro_plen;
  301                 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
  302                         if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
  303                                 lle = ro->ro_lle;
  304                                 if (lle != NULL &&
  305                                     (lle->la_flags & LLE_VALID) == 0) {
  306                                         LLE_FREE(lle);
  307                                         lle = NULL;     /* redundant */
  308                                         ro->ro_lle = NULL;
  309                                 }
  310                                 if (lle == NULL) {
  311                                         /* if we lookup, keep cache */
  312                                         addref = 1;
  313                                 }
  314                         }
  315                         if (lle != NULL) {
  316                                 phdr = lle->r_linkdata;
  317                                 hlen = lle->r_hdrlen;
  318                                 pflags = lle->r_flags;
  319                         }
  320                 }
  321                 rt0 = ro->ro_rt;
  322         }
  323 
  324 #ifdef MAC
  325         error = mac_ifnet_check_transmit(ifp, m);
  326         if (error)
  327                 senderr(error);
  328 #endif
  329 
  330         M_PROFILE(m);
  331         if (ifp->if_flags & IFF_MONITOR)
  332                 senderr(ENETDOWN);
  333         if (!((ifp->if_flags & IFF_UP) &&
  334             (ifp->if_drv_flags & IFF_DRV_RUNNING)))
  335                 senderr(ENETDOWN);
  336 
  337         if (phdr == NULL) {
  338                 /* No prepend data supplied. Try to calculate ourselves. */
  339                 phdr = linkhdr;
  340                 hlen = ETHER_HDR_LEN;
  341                 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
  342                     addref ? &lle : NULL);
  343                 if (addref && lle != NULL)
  344                         ro->ro_lle = lle;
  345                 if (error != 0)
  346                         return (error == EWOULDBLOCK ? 0 : error);
  347         }
  348 
  349         if ((pflags & RT_L2_ME) != 0) {
  350                 update_mbuf_csumflags(m, m);
  351                 return (if_simloop(ifp, m, dst->sa_family, 0));
  352         }
  353         loop_copy = pflags & RT_MAY_LOOP;
  354 
  355         /*
  356          * Add local net header.  If no space in first mbuf,
  357          * allocate another.
  358          *
  359          * Note that we do prepend regardless of RT_HAS_HEADER flag.
  360          * This is done because BPF code shifts m_data pointer
  361          * to the end of ethernet header prior to calling if_output().
  362          */
  363         M_PREPEND(m, hlen, M_NOWAIT);
  364         if (m == NULL)
  365                 senderr(ENOBUFS);
  366         if ((pflags & RT_HAS_HEADER) == 0) {
  367                 eh = mtod(m, struct ether_header *);
  368                 memcpy(eh, phdr, hlen);
  369         }
  370 
  371         /*
  372          * If a simplex interface, and the packet is being sent to our
  373          * Ethernet address or a broadcast address, loopback a copy.
  374          * XXX To make a simplex device behave exactly like a duplex
  375          * device, we should copy in the case of sending to our own
  376          * ethernet address (thus letting the original actually appear
  377          * on the wire). However, we don't do that here for security
  378          * reasons and compatibility with the original behavior.
  379          */
  380         if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
  381             ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
  382                 struct mbuf *n;
  383 
  384                 /*
  385                  * Because if_simloop() modifies the packet, we need a
  386                  * writable copy through m_dup() instead of a readonly
  387                  * one as m_copy[m] would give us. The alternative would
  388                  * be to modify if_simloop() to handle the readonly mbuf,
  389                  * but performancewise it is mostly equivalent (trading
  390                  * extra data copying vs. extra locking).
  391                  *
  392                  * XXX This is a local workaround.  A number of less
  393                  * often used kernel parts suffer from the same bug.
  394                  * See PR kern/105943 for a proposed general solution.
  395                  */
  396                 if ((n = m_dup(m, M_NOWAIT)) != NULL) {
  397                         update_mbuf_csumflags(m, n);
  398                         (void)if_simloop(ifp, n, dst->sa_family, hlen);
  399                 } else
  400                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
  401         }
  402 
  403        /*
  404         * Bridges require special output handling.
  405         */
  406         if (ifp->if_bridge) {
  407                 BRIDGE_OUTPUT(ifp, m, error);
  408                 return (error);
  409         }
  410 
  411 #if defined(INET) || defined(INET6)
  412         if (ifp->if_carp &&
  413             (error = (*carp_output_p)(ifp, m, dst)))
  414                 goto bad;
  415 #endif
  416 
  417         /* Handle ng_ether(4) processing, if any */
  418         if (ifp->if_l2com != NULL) {
  419                 KASSERT(ng_ether_output_p != NULL,
  420                     ("ng_ether_output_p is NULL"));
  421                 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
  422 bad:                    if (m != NULL)
  423                                 m_freem(m);
  424                         return (error);
  425                 }
  426                 if (m == NULL)
  427                         return (0);
  428         }
  429 
  430         /* Continue with link-layer output */
  431         return ether_output_frame(ifp, m);
  432 }
  433 
  434 /*
  435  * Ethernet link layer output routine to send a raw frame to the device.
  436  *
  437  * This assumes that the 14 byte Ethernet header is present and contiguous
  438  * in the first mbuf (if BRIDGE'ing).
  439  */
  440 int
  441 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
  442 {
  443         int i;
  444 
  445         if (PFIL_HOOKED(&V_link_pfil_hook)) {
  446                 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL);
  447 
  448                 if (i != 0)
  449                         return (EACCES);
  450 
  451                 if (m == NULL)
  452                         return (0);
  453         }
  454 
  455         /*
  456          * Queue message on interface, update output statistics if
  457          * successful, and start output if interface not yet active.
  458          */
  459         return ((ifp->if_transmit)(ifp, m));
  460 }
  461 
  462 /*
  463  * Process a received Ethernet packet; the packet is in the
  464  * mbuf chain m with the ethernet header at the front.
  465  */
  466 static void
  467 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
  468 {
  469         struct ether_header *eh;
  470         u_short etype;
  471 
  472         if ((ifp->if_flags & IFF_UP) == 0) {
  473                 m_freem(m);
  474                 return;
  475         }
  476 #ifdef DIAGNOSTIC
  477         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
  478                 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
  479                 m_freem(m);
  480                 return;
  481         }
  482 #endif
  483         if (m->m_len < ETHER_HDR_LEN) {
  484                 /* XXX maybe should pullup? */
  485                 if_printf(ifp, "discard frame w/o leading ethernet "
  486                                 "header (len %u pkt len %u)\n",
  487                                 m->m_len, m->m_pkthdr.len);
  488                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
  489                 m_freem(m);
  490                 return;
  491         }
  492         eh = mtod(m, struct ether_header *);
  493         etype = ntohs(eh->ether_type);
  494         random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER);
  495 
  496         CURVNET_SET_QUIET(ifp->if_vnet);
  497 
  498         if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
  499                 if (ETHER_IS_BROADCAST(eh->ether_dhost))
  500                         m->m_flags |= M_BCAST;
  501                 else
  502                         m->m_flags |= M_MCAST;
  503                 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
  504         }
  505 
  506 #ifdef MAC
  507         /*
  508          * Tag the mbuf with an appropriate MAC label before any other
  509          * consumers can get to it.
  510          */
  511         mac_ifnet_create_mbuf(ifp, m);
  512 #endif
  513 
  514         /*
  515          * Give bpf a chance at the packet.
  516          */
  517         ETHER_BPF_MTAP(ifp, m);
  518 
  519         /*
  520          * If the CRC is still on the packet, trim it off. We do this once
  521          * and once only in case we are re-entered. Nothing else on the
  522          * Ethernet receive path expects to see the FCS.
  523          */
  524         if (m->m_flags & M_HASFCS) {
  525                 m_adj(m, -ETHER_CRC_LEN);
  526                 m->m_flags &= ~M_HASFCS;
  527         }
  528 
  529         if (!(ifp->if_capenable & IFCAP_HWSTATS))
  530                 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
  531 
  532         /* Allow monitor mode to claim this frame, after stats are updated. */
  533         if (ifp->if_flags & IFF_MONITOR) {
  534                 m_freem(m);
  535                 CURVNET_RESTORE();
  536                 return;
  537         }
  538 
  539         /* Handle input from a lagg(4) port */
  540         if (ifp->if_type == IFT_IEEE8023ADLAG) {
  541                 KASSERT(lagg_input_p != NULL,
  542                     ("%s: if_lagg not loaded!", __func__));
  543                 m = (*lagg_input_p)(ifp, m);
  544                 if (m != NULL)
  545                         ifp = m->m_pkthdr.rcvif;
  546                 else {
  547                         CURVNET_RESTORE();
  548                         return;
  549                 }
  550         }
  551 
  552         /*
  553          * If the hardware did not process an 802.1Q tag, do this now,
  554          * to allow 802.1P priority frames to be passed to the main input
  555          * path correctly.
  556          * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
  557          */
  558         if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
  559                 struct ether_vlan_header *evl;
  560 
  561                 if (m->m_len < sizeof(*evl) &&
  562                     (m = m_pullup(m, sizeof(*evl))) == NULL) {
  563 #ifdef DIAGNOSTIC
  564                         if_printf(ifp, "cannot pullup VLAN header\n");
  565 #endif
  566                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
  567                         CURVNET_RESTORE();
  568                         return;
  569                 }
  570 
  571                 evl = mtod(m, struct ether_vlan_header *);
  572                 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
  573                 m->m_flags |= M_VLANTAG;
  574 
  575                 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
  576                     ETHER_HDR_LEN - ETHER_TYPE_LEN);
  577                 m_adj(m, ETHER_VLAN_ENCAP_LEN);
  578                 eh = mtod(m, struct ether_header *);
  579         }
  580 
  581         M_SETFIB(m, ifp->if_fib);
  582 
  583         /* Allow ng_ether(4) to claim this frame. */
  584         if (ifp->if_l2com != NULL) {
  585                 KASSERT(ng_ether_input_p != NULL,
  586                     ("%s: ng_ether_input_p is NULL", __func__));
  587                 m->m_flags &= ~M_PROMISC;
  588                 (*ng_ether_input_p)(ifp, &m);
  589                 if (m == NULL) {
  590                         CURVNET_RESTORE();
  591                         return;
  592                 }
  593                 eh = mtod(m, struct ether_header *);
  594         }
  595 
  596         /*
  597          * Allow if_bridge(4) to claim this frame.
  598          * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
  599          * and the frame should be delivered locally.
  600          */
  601         if (ifp->if_bridge != NULL) {
  602                 m->m_flags &= ~M_PROMISC;
  603                 BRIDGE_INPUT(ifp, m);
  604                 if (m == NULL) {
  605                         CURVNET_RESTORE();
  606                         return;
  607                 }
  608                 eh = mtod(m, struct ether_header *);
  609         }
  610 
  611 #if defined(INET) || defined(INET6)
  612         /*
  613          * Clear M_PROMISC on frame so that carp(4) will see it when the
  614          * mbuf flows up to Layer 3.
  615          * FreeBSD's implementation of carp(4) uses the inprotosw
  616          * to dispatch IPPROTO_CARP. carp(4) also allocates its own
  617          * Ethernet addresses of the form 00:00:5e:00:01:xx, which
  618          * is outside the scope of the M_PROMISC test below.
  619          * TODO: Maintain a hash table of ethernet addresses other than
  620          * ether_dhost which may be active on this ifp.
  621          */
  622         if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
  623                 m->m_flags &= ~M_PROMISC;
  624         } else
  625 #endif
  626         {
  627                 /*
  628                  * If the frame received was not for our MAC address, set the
  629                  * M_PROMISC flag on the mbuf chain. The frame may need to
  630                  * be seen by the rest of the Ethernet input path in case of
  631                  * re-entry (e.g. bridge, vlan, netgraph) but should not be
  632                  * seen by upper protocol layers.
  633                  */
  634                 if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
  635                     bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
  636                         m->m_flags |= M_PROMISC;
  637         }
  638 
  639         ether_demux(ifp, m);
  640         CURVNET_RESTORE();
  641 }
  642 
  643 /*
  644  * Ethernet input dispatch; by default, direct dispatch here regardless of
  645  * global configuration.  However, if RSS is enabled, hook up RSS affinity
  646  * so that when deferred or hybrid dispatch is enabled, we can redistribute
  647  * load based on RSS.
  648  *
  649  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
  650  * not it had already done work distribution via multi-queue.  Then we could
  651  * direct dispatch in the event load balancing was already complete and
  652  * handle the case of interfaces with different capabilities better.
  653  *
  654  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
  655  * at multiple layers?
  656  *
  657  * XXXRW: For now, enable all this only if RSS is compiled in, although it
  658  * works fine without RSS.  Need to characterise the performance overhead
  659  * of the detour through the netisr code in the event the result is always
  660  * direct dispatch.
  661  */
  662 static void
  663 ether_nh_input(struct mbuf *m)
  664 {
  665 
  666         M_ASSERTPKTHDR(m);
  667         KASSERT(m->m_pkthdr.rcvif != NULL,
  668             ("%s: NULL interface pointer", __func__));
  669         ether_input_internal(m->m_pkthdr.rcvif, m);
  670 }
  671 
  672 static struct netisr_handler    ether_nh = {
  673         .nh_name = "ether",
  674         .nh_handler = ether_nh_input,
  675         .nh_proto = NETISR_ETHER,
  676 #ifdef RSS
  677         .nh_policy = NETISR_POLICY_CPU,
  678         .nh_dispatch = NETISR_DISPATCH_DIRECT,
  679         .nh_m2cpuid = rss_m2cpuid,
  680 #else
  681         .nh_policy = NETISR_POLICY_SOURCE,
  682         .nh_dispatch = NETISR_DISPATCH_DIRECT,
  683 #endif
  684 };
  685 
  686 static void
  687 ether_init(__unused void *arg)
  688 {
  689 
  690         netisr_register(&ether_nh);
  691 }
  692 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
  693 
  694 static void
  695 vnet_ether_init(__unused void *arg)
  696 {
  697         int i;
  698 
  699         /* Initialize packet filter hooks. */
  700         V_link_pfil_hook.ph_type = PFIL_TYPE_AF;
  701         V_link_pfil_hook.ph_af = AF_LINK;
  702         if ((i = pfil_head_register(&V_link_pfil_hook)) != 0)
  703                 printf("%s: WARNING: unable to register pfil link hook, "
  704                         "error %d\n", __func__, i);
  705 #ifdef VIMAGE
  706         netisr_register_vnet(&ether_nh);
  707 #endif
  708 }
  709 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
  710     vnet_ether_init, NULL);
  711  
  712 #ifdef VIMAGE
  713 static void
  714 vnet_ether_pfil_destroy(__unused void *arg)
  715 {
  716         int i;
  717 
  718         if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0)
  719                 printf("%s: WARNING: unable to unregister pfil link hook, "
  720                         "error %d\n", __func__, i);
  721 }
  722 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
  723     vnet_ether_pfil_destroy, NULL);
  724 
  725 static void
  726 vnet_ether_destroy(__unused void *arg)
  727 {
  728 
  729         netisr_unregister_vnet(&ether_nh);
  730 }
  731 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
  732     vnet_ether_destroy, NULL);
  733 #endif
  734 
  735 
  736 
  737 static void
  738 ether_input(struct ifnet *ifp, struct mbuf *m)
  739 {
  740 
  741         struct mbuf *mn;
  742 
  743         /*
  744          * The drivers are allowed to pass in a chain of packets linked with
  745          * m_nextpkt. We split them up into separate packets here and pass
  746          * them up. This allows the drivers to amortize the receive lock.
  747          */
  748         while (m) {
  749                 mn = m->m_nextpkt;
  750                 m->m_nextpkt = NULL;
  751 
  752                 /*
  753                  * We will rely on rcvif being set properly in the deferred context,
  754                  * so assert it is correct here.
  755                  */
  756                 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
  757                     "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
  758                 CURVNET_SET_QUIET(ifp->if_vnet);
  759                 netisr_dispatch(NETISR_ETHER, m);
  760                 CURVNET_RESTORE();
  761                 m = mn;
  762         }
  763 }
  764 
  765 /*
  766  * Upper layer processing for a received Ethernet packet.
  767  */
  768 void
  769 ether_demux(struct ifnet *ifp, struct mbuf *m)
  770 {
  771         struct ether_header *eh;
  772         int i, isr;
  773         u_short ether_type;
  774 
  775         KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
  776 
  777         /* Do not grab PROMISC frames in case we are re-entered. */
  778         if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) {
  779                 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL);
  780 
  781                 if (i != 0 || m == NULL)
  782                         return;
  783         }
  784 
  785         eh = mtod(m, struct ether_header *);
  786         ether_type = ntohs(eh->ether_type);
  787 
  788         /*
  789          * If this frame has a VLAN tag other than 0, call vlan_input()
  790          * if its module is loaded. Otherwise, drop.
  791          */
  792         if ((m->m_flags & M_VLANTAG) &&
  793             EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
  794                 if (ifp->if_vlantrunk == NULL) {
  795                         if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
  796                         m_freem(m);
  797                         return;
  798                 }
  799                 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
  800                     __func__));
  801                 /* Clear before possibly re-entering ether_input(). */
  802                 m->m_flags &= ~M_PROMISC;
  803                 (*vlan_input_p)(ifp, m);
  804                 return;
  805         }
  806 
  807         /*
  808          * Pass promiscuously received frames to the upper layer if the user
  809          * requested this by setting IFF_PPROMISC. Otherwise, drop them.
  810          */
  811         if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
  812                 m_freem(m);
  813                 return;
  814         }
  815 
  816         /*
  817          * Reset layer specific mbuf flags to avoid confusing upper layers.
  818          * Strip off Ethernet header.
  819          */
  820         m->m_flags &= ~M_VLANTAG;
  821         m_clrprotoflags(m);
  822         m_adj(m, ETHER_HDR_LEN);
  823 
  824         /*
  825          * Dispatch frame to upper layer.
  826          */
  827         switch (ether_type) {
  828 #ifdef INET
  829         case ETHERTYPE_IP:
  830                 isr = NETISR_IP;
  831                 break;
  832 
  833         case ETHERTYPE_ARP:
  834                 if (ifp->if_flags & IFF_NOARP) {
  835                         /* Discard packet if ARP is disabled on interface */
  836                         m_freem(m);
  837                         return;
  838                 }
  839                 isr = NETISR_ARP;
  840                 break;
  841 #endif
  842 #ifdef INET6
  843         case ETHERTYPE_IPV6:
  844                 isr = NETISR_IPV6;
  845                 break;
  846 #endif
  847         default:
  848                 goto discard;
  849         }
  850         netisr_dispatch(isr, m);
  851         return;
  852 
  853 discard:
  854         /*
  855          * Packet is to be discarded.  If netgraph is present,
  856          * hand the packet to it for last chance processing;
  857          * otherwise dispose of it.
  858          */
  859         if (ifp->if_l2com != NULL) {
  860                 KASSERT(ng_ether_input_orphan_p != NULL,
  861                     ("ng_ether_input_orphan_p is NULL"));
  862                 /*
  863                  * Put back the ethernet header so netgraph has a
  864                  * consistent view of inbound packets.
  865                  */
  866                 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
  867                 (*ng_ether_input_orphan_p)(ifp, m);
  868                 return;
  869         }
  870         m_freem(m);
  871 }
  872 
  873 /*
  874  * Convert Ethernet address to printable (loggable) representation.
  875  * This routine is for compatibility; it's better to just use
  876  *
  877  *      printf("%6D", <pointer to address>, ":");
  878  *
  879  * since there's no static buffer involved.
  880  */
  881 char *
  882 ether_sprintf(const u_char *ap)
  883 {
  884         static char etherbuf[18];
  885         snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
  886         return (etherbuf);
  887 }
  888 
  889 /*
  890  * Perform common duties while attaching to interface list
  891  */
  892 void
  893 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
  894 {
  895         int i;
  896         struct ifaddr *ifa;
  897         struct sockaddr_dl *sdl;
  898 
  899         ifp->if_addrlen = ETHER_ADDR_LEN;
  900         ifp->if_hdrlen = ETHER_HDR_LEN;
  901         if_attach(ifp);
  902         ifp->if_mtu = ETHERMTU;
  903         ifp->if_output = ether_output;
  904         ifp->if_input = ether_input;
  905         ifp->if_resolvemulti = ether_resolvemulti;
  906         ifp->if_requestencap = ether_requestencap;
  907 #ifdef VIMAGE
  908         ifp->if_reassign = ether_reassign;
  909 #endif
  910         if (ifp->if_baudrate == 0)
  911                 ifp->if_baudrate = IF_Mbps(10);         /* just a default */
  912         ifp->if_broadcastaddr = etherbroadcastaddr;
  913 
  914         ifa = ifp->if_addr;
  915         KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
  916         sdl = (struct sockaddr_dl *)ifa->ifa_addr;
  917         sdl->sdl_type = IFT_ETHER;
  918         sdl->sdl_alen = ifp->if_addrlen;
  919         bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
  920 
  921         if (ifp->if_hw_addr != NULL)
  922                 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
  923 
  924         bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
  925         if (ng_ether_attach_p != NULL)
  926                 (*ng_ether_attach_p)(ifp);
  927 
  928         /* Announce Ethernet MAC address if non-zero. */
  929         for (i = 0; i < ifp->if_addrlen; i++)
  930                 if (lla[i] != 0)
  931                         break; 
  932         if (i != ifp->if_addrlen)
  933                 if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
  934 
  935         uuid_ether_add(LLADDR(sdl));
  936 }
  937 
  938 /*
  939  * Perform common duties while detaching an Ethernet interface
  940  */
  941 void
  942 ether_ifdetach(struct ifnet *ifp)
  943 {
  944         struct sockaddr_dl *sdl;
  945 
  946         sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
  947         uuid_ether_del(LLADDR(sdl));
  948 
  949         if (ifp->if_l2com != NULL) {
  950                 KASSERT(ng_ether_detach_p != NULL,
  951                     ("ng_ether_detach_p is NULL"));
  952                 (*ng_ether_detach_p)(ifp);
  953         }
  954 
  955         bpfdetach(ifp);
  956         if_detach(ifp);
  957 }
  958 
  959 #ifdef VIMAGE
  960 void
  961 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
  962 {
  963 
  964         if (ifp->if_l2com != NULL) {
  965                 KASSERT(ng_ether_detach_p != NULL,
  966                     ("ng_ether_detach_p is NULL"));
  967                 (*ng_ether_detach_p)(ifp);
  968         }
  969 
  970         if (ng_ether_attach_p != NULL) {
  971                 CURVNET_SET_QUIET(new_vnet);
  972                 (*ng_ether_attach_p)(ifp);
  973                 CURVNET_RESTORE();
  974         }
  975 }
  976 #endif
  977 
  978 SYSCTL_DECL(_net_link);
  979 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
  980 
  981 #if 0
  982 /*
  983  * This is for reference.  We have a table-driven version
  984  * of the little-endian crc32 generator, which is faster
  985  * than the double-loop.
  986  */
  987 uint32_t
  988 ether_crc32_le(const uint8_t *buf, size_t len)
  989 {
  990         size_t i;
  991         uint32_t crc;
  992         int bit;
  993         uint8_t data;
  994 
  995         crc = 0xffffffff;       /* initial value */
  996 
  997         for (i = 0; i < len; i++) {
  998                 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
  999                         carry = (crc ^ data) & 1;
 1000                         crc >>= 1;
 1001                         if (carry)
 1002                                 crc = (crc ^ ETHER_CRC_POLY_LE);
 1003                 }
 1004         }
 1005 
 1006         return (crc);
 1007 }
 1008 #else
 1009 uint32_t
 1010 ether_crc32_le(const uint8_t *buf, size_t len)
 1011 {
 1012         static const uint32_t crctab[] = {
 1013                 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
 1014                 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
 1015                 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
 1016                 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
 1017         };
 1018         size_t i;
 1019         uint32_t crc;
 1020 
 1021         crc = 0xffffffff;       /* initial value */
 1022 
 1023         for (i = 0; i < len; i++) {
 1024                 crc ^= buf[i];
 1025                 crc = (crc >> 4) ^ crctab[crc & 0xf];
 1026                 crc = (crc >> 4) ^ crctab[crc & 0xf];
 1027         }
 1028 
 1029         return (crc);
 1030 }
 1031 #endif
 1032 
 1033 uint32_t
 1034 ether_crc32_be(const uint8_t *buf, size_t len)
 1035 {
 1036         size_t i;
 1037         uint32_t crc, carry;
 1038         int bit;
 1039         uint8_t data;
 1040 
 1041         crc = 0xffffffff;       /* initial value */
 1042 
 1043         for (i = 0; i < len; i++) {
 1044                 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
 1045                         carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
 1046                         crc <<= 1;
 1047                         if (carry)
 1048                                 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
 1049                 }
 1050         }
 1051 
 1052         return (crc);
 1053 }
 1054 
 1055 int
 1056 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1057 {
 1058         struct ifaddr *ifa = (struct ifaddr *) data;
 1059         struct ifreq *ifr = (struct ifreq *) data;
 1060         int error = 0;
 1061 
 1062         switch (command) {
 1063         case SIOCSIFADDR:
 1064                 ifp->if_flags |= IFF_UP;
 1065 
 1066                 switch (ifa->ifa_addr->sa_family) {
 1067 #ifdef INET
 1068                 case AF_INET:
 1069                         ifp->if_init(ifp->if_softc);    /* before arpwhohas */
 1070                         arp_ifinit(ifp, ifa);
 1071                         break;
 1072 #endif
 1073                 default:
 1074                         ifp->if_init(ifp->if_softc);
 1075                         break;
 1076                 }
 1077                 break;
 1078 
 1079         case SIOCGIFADDR:
 1080                 {
 1081                         struct sockaddr *sa;
 1082 
 1083                         sa = (struct sockaddr *) & ifr->ifr_data;
 1084                         bcopy(IF_LLADDR(ifp),
 1085                               (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
 1086                 }
 1087                 break;
 1088 
 1089         case SIOCSIFMTU:
 1090                 /*
 1091                  * Set the interface MTU.
 1092                  */
 1093                 if (ifr->ifr_mtu > ETHERMTU) {
 1094                         error = EINVAL;
 1095                 } else {
 1096                         ifp->if_mtu = ifr->ifr_mtu;
 1097                 }
 1098                 break;
 1099         default:
 1100                 error = EINVAL;                 /* XXX netbsd has ENOTTY??? */
 1101                 break;
 1102         }
 1103         return (error);
 1104 }
 1105 
 1106 static int
 1107 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
 1108         struct sockaddr *sa)
 1109 {
 1110         struct sockaddr_dl *sdl;
 1111 #ifdef INET
 1112         struct sockaddr_in *sin;
 1113 #endif
 1114 #ifdef INET6
 1115         struct sockaddr_in6 *sin6;
 1116 #endif
 1117         u_char *e_addr;
 1118 
 1119         switch(sa->sa_family) {
 1120         case AF_LINK:
 1121                 /*
 1122                  * No mapping needed. Just check that it's a valid MC address.
 1123                  */
 1124                 sdl = (struct sockaddr_dl *)sa;
 1125                 e_addr = LLADDR(sdl);
 1126                 if (!ETHER_IS_MULTICAST(e_addr))
 1127                         return EADDRNOTAVAIL;
 1128                 *llsa = NULL;
 1129                 return 0;
 1130 
 1131 #ifdef INET
 1132         case AF_INET:
 1133                 sin = (struct sockaddr_in *)sa;
 1134                 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
 1135                         return EADDRNOTAVAIL;
 1136                 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
 1137                 sdl->sdl_alen = ETHER_ADDR_LEN;
 1138                 e_addr = LLADDR(sdl);
 1139                 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
 1140                 *llsa = (struct sockaddr *)sdl;
 1141                 return 0;
 1142 #endif
 1143 #ifdef INET6
 1144         case AF_INET6:
 1145                 sin6 = (struct sockaddr_in6 *)sa;
 1146                 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
 1147                         /*
 1148                          * An IP6 address of 0 means listen to all
 1149                          * of the Ethernet multicast address used for IP6.
 1150                          * (This is used for multicast routers.)
 1151                          */
 1152                         ifp->if_flags |= IFF_ALLMULTI;
 1153                         *llsa = NULL;
 1154                         return 0;
 1155                 }
 1156                 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
 1157                         return EADDRNOTAVAIL;
 1158                 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
 1159                 sdl->sdl_alen = ETHER_ADDR_LEN;
 1160                 e_addr = LLADDR(sdl);
 1161                 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
 1162                 *llsa = (struct sockaddr *)sdl;
 1163                 return 0;
 1164 #endif
 1165 
 1166         default:
 1167                 /*
 1168                  * Well, the text isn't quite right, but it's the name
 1169                  * that counts...
 1170                  */
 1171                 return EAFNOSUPPORT;
 1172         }
 1173 }
 1174 
 1175 static moduledata_t ether_mod = {
 1176         .name = "ether",
 1177 };
 1178 
 1179 void
 1180 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
 1181 {
 1182         struct ether_vlan_header vlan;
 1183         struct mbuf mv, mb;
 1184 
 1185         KASSERT((m->m_flags & M_VLANTAG) != 0,
 1186             ("%s: vlan information not present", __func__));
 1187         KASSERT(m->m_len >= sizeof(struct ether_header),
 1188             ("%s: mbuf not large enough for header", __func__));
 1189         bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
 1190         vlan.evl_proto = vlan.evl_encap_proto;
 1191         vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
 1192         vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
 1193         m->m_len -= sizeof(struct ether_header);
 1194         m->m_data += sizeof(struct ether_header);
 1195         /*
 1196          * If a data link has been supplied by the caller, then we will need to
 1197          * re-create a stack allocated mbuf chain with the following structure:
 1198          *
 1199          * (1) mbuf #1 will contain the supplied data link
 1200          * (2) mbuf #2 will contain the vlan header
 1201          * (3) mbuf #3 will contain the original mbuf's packet data
 1202          *
 1203          * Otherwise, submit the packet and vlan header via bpf_mtap2().
 1204          */
 1205         if (data != NULL) {
 1206                 mv.m_next = m;
 1207                 mv.m_data = (caddr_t)&vlan;
 1208                 mv.m_len = sizeof(vlan);
 1209                 mb.m_next = &mv;
 1210                 mb.m_data = data;
 1211                 mb.m_len = dlen;
 1212                 bpf_mtap(bp, &mb);
 1213         } else
 1214                 bpf_mtap2(bp, &vlan, sizeof(vlan), m);
 1215         m->m_len += sizeof(struct ether_header);
 1216         m->m_data -= sizeof(struct ether_header);
 1217 }
 1218 
 1219 struct mbuf *
 1220 ether_vlanencap(struct mbuf *m, uint16_t tag)
 1221 {
 1222         struct ether_vlan_header *evl;
 1223 
 1224         M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
 1225         if (m == NULL)
 1226                 return (NULL);
 1227         /* M_PREPEND takes care of m_len, m_pkthdr.len for us */
 1228 
 1229         if (m->m_len < sizeof(*evl)) {
 1230                 m = m_pullup(m, sizeof(*evl));
 1231                 if (m == NULL)
 1232                         return (NULL);
 1233         }
 1234 
 1235         /*
 1236          * Transform the Ethernet header into an Ethernet header
 1237          * with 802.1Q encapsulation.
 1238          */
 1239         evl = mtod(m, struct ether_vlan_header *);
 1240         bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
 1241             (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
 1242         evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
 1243         evl->evl_tag = htons(tag);
 1244         return (m);
 1245 }
 1246 
 1247 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
 1248 MODULE_VERSION(ether, 1);

Cache object: f7ac25dbb3dd3617b9f2a8234fa44185


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.