The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_ethersubr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)if_ethersubr.c      8.1 (Berkeley) 6/10/93
   30  * $FreeBSD$
   31  */
   32 
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 #include "opt_netgraph.h"
   36 #include "opt_mbuf_profiling.h"
   37 #include "opt_rss.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/bus.h>
   42 #include <sys/eventhandler.h>
   43 #include <sys/jail.h>
   44 #include <sys/kernel.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/module.h>
   48 #include <sys/mbuf.h>
   49 #include <sys/proc.h>
   50 #include <sys/priv.h>
   51 #include <sys/random.h>
   52 #include <sys/socket.h>
   53 #include <sys/sockio.h>
   54 #include <sys/sysctl.h>
   55 #include <sys/uuid.h>
   56 
   57 #include <net/ieee_oui.h>
   58 #include <net/if.h>
   59 #include <net/if_var.h>
   60 #include <net/if_arp.h>
   61 #include <net/netisr.h>
   62 #include <net/route.h>
   63 #include <net/if_llc.h>
   64 #include <net/if_dl.h>
   65 #include <net/if_types.h>
   66 #include <net/bpf.h>
   67 #include <net/ethernet.h>
   68 #include <net/if_bridgevar.h>
   69 #include <net/if_vlan_var.h>
   70 #include <net/if_llatbl.h>
   71 #include <net/pfil.h>
   72 #include <net/rss_config.h>
   73 #include <net/vnet.h>
   74 
   75 #include <netpfil/pf/pf_mtag.h>
   76 
   77 #if defined(INET) || defined(INET6)
   78 #include <netinet/in.h>
   79 #include <netinet/in_var.h>
   80 #include <netinet/if_ether.h>
   81 #include <netinet/ip_carp.h>
   82 #include <netinet/ip_var.h>
   83 #endif
   84 #ifdef INET6
   85 #include <netinet6/nd6.h>
   86 #endif
   87 #include <security/mac/mac_framework.h>
   88 
   89 #include <crypto/sha1.h>
   90 
   91 #ifdef CTASSERT
   92 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
   93 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
   94 #endif
   95 
   96 VNET_DEFINE(struct pfil_head, link_pfil_hook);  /* Packet filter hooks */
   97 
   98 /* netgraph node hooks for ng_ether(4) */
   99 void    (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
  100 void    (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
  101 int     (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
  102 void    (*ng_ether_attach_p)(struct ifnet *ifp);
  103 void    (*ng_ether_detach_p)(struct ifnet *ifp);
  104 
  105 void    (*vlan_input_p)(struct ifnet *, struct mbuf *);
  106 
  107 /* if_bridge(4) support */
  108 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 
  109 int     (*bridge_output_p)(struct ifnet *, struct mbuf *, 
  110                 struct sockaddr *, struct rtentry *);
  111 void    (*bridge_dn_p)(struct mbuf *, struct ifnet *);
  112 
  113 /* if_lagg(4) support */
  114 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 
  115 
  116 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
  117                         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  118 
  119 static  int ether_resolvemulti(struct ifnet *, struct sockaddr **,
  120                 struct sockaddr *);
  121 #ifdef VIMAGE
  122 static  void ether_reassign(struct ifnet *, struct vnet *, char *);
  123 #endif
  124 static  int ether_requestencap(struct ifnet *, struct if_encap_req *);
  125 
  126 
  127 #define senderr(e) do { error = (e); goto bad;} while (0)
  128 
  129 static void
  130 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
  131 {
  132         int csum_flags = 0;
  133 
  134         if (src->m_pkthdr.csum_flags & CSUM_IP)
  135                 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
  136         if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
  137                 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
  138         if (src->m_pkthdr.csum_flags & CSUM_SCTP)
  139                 csum_flags |= CSUM_SCTP_VALID;
  140         dst->m_pkthdr.csum_flags |= csum_flags;
  141         if (csum_flags & CSUM_DATA_VALID)
  142                 dst->m_pkthdr.csum_data = 0xffff;
  143 }
  144 
  145 /*
  146  * Handle link-layer encapsulation requests.
  147  */
  148 static int
  149 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
  150 {
  151         struct ether_header *eh;
  152         struct arphdr *ah;
  153         uint16_t etype;
  154         const u_char *lladdr;
  155 
  156         if (req->rtype != IFENCAP_LL)
  157                 return (EOPNOTSUPP);
  158 
  159         if (req->bufsize < ETHER_HDR_LEN)
  160                 return (ENOMEM);
  161 
  162         eh = (struct ether_header *)req->buf;
  163         lladdr = req->lladdr;
  164         req->lladdr_off = 0;
  165 
  166         switch (req->family) {
  167         case AF_INET:
  168                 etype = htons(ETHERTYPE_IP);
  169                 break;
  170         case AF_INET6:
  171                 etype = htons(ETHERTYPE_IPV6);
  172                 break;
  173         case AF_ARP:
  174                 ah = (struct arphdr *)req->hdata;
  175                 ah->ar_hrd = htons(ARPHRD_ETHER);
  176 
  177                 switch(ntohs(ah->ar_op)) {
  178                 case ARPOP_REVREQUEST:
  179                 case ARPOP_REVREPLY:
  180                         etype = htons(ETHERTYPE_REVARP);
  181                         break;
  182                 case ARPOP_REQUEST:
  183                 case ARPOP_REPLY:
  184                 default:
  185                         etype = htons(ETHERTYPE_ARP);
  186                         break;
  187                 }
  188 
  189                 if (req->flags & IFENCAP_FLAG_BROADCAST)
  190                         lladdr = ifp->if_broadcastaddr;
  191                 break;
  192         default:
  193                 return (EAFNOSUPPORT);
  194         }
  195 
  196         memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
  197         memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
  198         memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
  199         req->bufsize = sizeof(struct ether_header);
  200 
  201         return (0);
  202 }
  203 
  204 
  205 static int
  206 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
  207         const struct sockaddr *dst, struct route *ro, u_char *phdr,
  208         uint32_t *pflags, struct llentry **plle)
  209 {
  210         struct ether_header *eh;
  211         uint32_t lleflags = 0;
  212         int error = 0;
  213 #if defined(INET) || defined(INET6)
  214         uint16_t etype;
  215 #endif
  216 
  217         if (plle)
  218                 *plle = NULL;
  219         eh = (struct ether_header *)phdr;
  220 
  221         switch (dst->sa_family) {
  222 #ifdef INET
  223         case AF_INET:
  224                 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
  225                         error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
  226                             plle);
  227                 else {
  228                         if (m->m_flags & M_BCAST)
  229                                 memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
  230                                     ETHER_ADDR_LEN);
  231                         else {
  232                                 const struct in_addr *a;
  233                                 a = &(((const struct sockaddr_in *)dst)->sin_addr);
  234                                 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
  235                         }
  236                         etype = htons(ETHERTYPE_IP);
  237                         memcpy(&eh->ether_type, &etype, sizeof(etype));
  238                         memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
  239                 }
  240                 break;
  241 #endif
  242 #ifdef INET6
  243         case AF_INET6:
  244                 if ((m->m_flags & M_MCAST) == 0)
  245                         error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
  246                             plle);
  247                 else {
  248                         const struct in6_addr *a6;
  249                         a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
  250                         ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
  251                         etype = htons(ETHERTYPE_IPV6);
  252                         memcpy(&eh->ether_type, &etype, sizeof(etype));
  253                         memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
  254                 }
  255                 break;
  256 #endif
  257         default:
  258                 if_printf(ifp, "can't handle af%d\n", dst->sa_family);
  259                 if (m != NULL)
  260                         m_freem(m);
  261                 return (EAFNOSUPPORT);
  262         }
  263 
  264         if (error == EHOSTDOWN) {
  265                 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
  266                         error = EHOSTUNREACH;
  267         }
  268 
  269         if (error != 0)
  270                 return (error);
  271 
  272         *pflags = RT_MAY_LOOP;
  273         if (lleflags & LLE_IFADDR)
  274                 *pflags |= RT_L2_ME;
  275 
  276         return (0);
  277 }
  278 
  279 /*
  280  * Ethernet output routine.
  281  * Encapsulate a packet of type family for the local net.
  282  * Use trailer local net encapsulation if enough data in first
  283  * packet leaves a multiple of 512 bytes of data in remainder.
  284  */
  285 int
  286 ether_output(struct ifnet *ifp, struct mbuf *m,
  287         const struct sockaddr *dst, struct route *ro)
  288 {
  289         int error = 0;
  290         char linkhdr[ETHER_HDR_LEN], *phdr;
  291         struct ether_header *eh;
  292         struct pf_mtag *t;
  293         int loop_copy = 1;
  294         int hlen;       /* link layer header length */
  295         uint32_t pflags;
  296         struct llentry *lle = NULL;
  297         struct rtentry *rt0 = NULL;
  298         int addref = 0;
  299 
  300         phdr = NULL;
  301         pflags = 0;
  302         if (ro != NULL) {
  303                 /* XXX BPF uses ro_prepend */
  304                 if (ro->ro_prepend != NULL) {
  305                         phdr = ro->ro_prepend;
  306                         hlen = ro->ro_plen;
  307                 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
  308                         if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
  309                                 lle = ro->ro_lle;
  310                                 if (lle != NULL &&
  311                                     (lle->la_flags & LLE_VALID) == 0) {
  312                                         LLE_FREE(lle);
  313                                         lle = NULL;     /* redundant */
  314                                         ro->ro_lle = NULL;
  315                                 }
  316                                 if (lle == NULL) {
  317                                         /* if we lookup, keep cache */
  318                                         addref = 1;
  319                                 } else
  320                                         /*
  321                                          * Notify LLE code that
  322                                          * the entry was used
  323                                          * by datapath.
  324                                          */
  325                                         llentry_mark_used(lle);
  326                         }
  327                         if (lle != NULL) {
  328                                 phdr = lle->r_linkdata;
  329                                 hlen = lle->r_hdrlen;
  330                                 pflags = lle->r_flags;
  331                         }
  332                 }
  333                 rt0 = ro->ro_rt;
  334         }
  335 
  336 #ifdef MAC
  337         error = mac_ifnet_check_transmit(ifp, m);
  338         if (error)
  339                 senderr(error);
  340 #endif
  341 
  342         M_PROFILE(m);
  343         if (ifp->if_flags & IFF_MONITOR)
  344                 senderr(ENETDOWN);
  345         if (!((ifp->if_flags & IFF_UP) &&
  346             (ifp->if_drv_flags & IFF_DRV_RUNNING)))
  347                 senderr(ENETDOWN);
  348 
  349         if (phdr == NULL) {
  350                 /* No prepend data supplied. Try to calculate ourselves. */
  351                 phdr = linkhdr;
  352                 hlen = ETHER_HDR_LEN;
  353                 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
  354                     addref ? &lle : NULL);
  355                 if (addref && lle != NULL)
  356                         ro->ro_lle = lle;
  357                 if (error != 0)
  358                         return (error == EWOULDBLOCK ? 0 : error);
  359         }
  360 
  361         if ((pflags & RT_L2_ME) != 0) {
  362                 update_mbuf_csumflags(m, m);
  363                 return (if_simloop(ifp, m, dst->sa_family, 0));
  364         }
  365         loop_copy = pflags & RT_MAY_LOOP;
  366 
  367         /*
  368          * Add local net header.  If no space in first mbuf,
  369          * allocate another.
  370          *
  371          * Note that we do prepend regardless of RT_HAS_HEADER flag.
  372          * This is done because BPF code shifts m_data pointer
  373          * to the end of ethernet header prior to calling if_output().
  374          */
  375         M_PREPEND(m, hlen, M_NOWAIT);
  376         if (m == NULL)
  377                 senderr(ENOBUFS);
  378         if ((pflags & RT_HAS_HEADER) == 0) {
  379                 eh = mtod(m, struct ether_header *);
  380                 memcpy(eh, phdr, hlen);
  381         }
  382 
  383         /*
  384          * If a simplex interface, and the packet is being sent to our
  385          * Ethernet address or a broadcast address, loopback a copy.
  386          * XXX To make a simplex device behave exactly like a duplex
  387          * device, we should copy in the case of sending to our own
  388          * ethernet address (thus letting the original actually appear
  389          * on the wire). However, we don't do that here for security
  390          * reasons and compatibility with the original behavior.
  391          */
  392         if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
  393             ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
  394                 struct mbuf *n;
  395 
  396                 /*
  397                  * Because if_simloop() modifies the packet, we need a
  398                  * writable copy through m_dup() instead of a readonly
  399                  * one as m_copy[m] would give us. The alternative would
  400                  * be to modify if_simloop() to handle the readonly mbuf,
  401                  * but performancewise it is mostly equivalent (trading
  402                  * extra data copying vs. extra locking).
  403                  *
  404                  * XXX This is a local workaround.  A number of less
  405                  * often used kernel parts suffer from the same bug.
  406                  * See PR kern/105943 for a proposed general solution.
  407                  */
  408                 if ((n = m_dup(m, M_NOWAIT)) != NULL) {
  409                         update_mbuf_csumflags(m, n);
  410                         (void)if_simloop(ifp, n, dst->sa_family, hlen);
  411                 } else
  412                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
  413         }
  414 
  415        /*
  416         * Bridges require special output handling.
  417         */
  418         if (ifp->if_bridge) {
  419                 BRIDGE_OUTPUT(ifp, m, error);
  420                 return (error);
  421         }
  422 
  423 #if defined(INET) || defined(INET6)
  424         if (ifp->if_carp &&
  425             (error = (*carp_output_p)(ifp, m, dst)))
  426                 goto bad;
  427 #endif
  428 
  429         /* Handle ng_ether(4) processing, if any */
  430         if (ifp->if_l2com != NULL) {
  431                 KASSERT(ng_ether_output_p != NULL,
  432                     ("ng_ether_output_p is NULL"));
  433                 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
  434 bad:                    if (m != NULL)
  435                                 m_freem(m);
  436                         return (error);
  437                 }
  438                 if (m == NULL)
  439                         return (0);
  440         }
  441 
  442         /* Continue with link-layer output */
  443         return ether_output_frame(ifp, m);
  444 }
  445 
  446 static bool
  447 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
  448 {
  449         struct ether_header *eh;
  450 
  451         eh = mtod(*mp, struct ether_header *);
  452         if (ntohs(eh->ether_type) == ETHERTYPE_VLAN ||
  453             ether_8021q_frame(mp, ifp, ifp, 0, pcp))
  454                 return (true);
  455         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
  456         return (false);
  457 }
  458 
  459 /*
  460  * Ethernet link layer output routine to send a raw frame to the device.
  461  *
  462  * This assumes that the 14 byte Ethernet header is present and contiguous
  463  * in the first mbuf (if BRIDGE'ing).
  464  */
  465 int
  466 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
  467 {
  468         int error;
  469         uint8_t pcp;
  470 
  471         pcp = ifp->if_pcp;
  472         if (pcp != IFNET_PCP_NONE && !ether_set_pcp(&m, ifp, pcp))
  473                 return (0);
  474 
  475         if (PFIL_HOOKED(&V_link_pfil_hook)) {
  476                 error = pfil_run_hooks(&V_link_pfil_hook, &m, ifp,
  477                     PFIL_OUT, 0, NULL);
  478                 if (error != 0)
  479                         return (EACCES);
  480 
  481                 if (m == NULL)
  482                         return (0);
  483         }
  484 
  485         /*
  486          * Queue message on interface, update output statistics if
  487          * successful, and start output if interface not yet active.
  488          */
  489         return ((ifp->if_transmit)(ifp, m));
  490 }
  491 
  492 /*
  493  * Process a received Ethernet packet; the packet is in the
  494  * mbuf chain m with the ethernet header at the front.
  495  */
  496 static void
  497 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
  498 {
  499         struct ether_header *eh;
  500         u_short etype;
  501 
  502         if ((ifp->if_flags & IFF_UP) == 0) {
  503                 m_freem(m);
  504                 return;
  505         }
  506 #ifdef DIAGNOSTIC
  507         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
  508                 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
  509                 m_freem(m);
  510                 return;
  511         }
  512 #endif
  513         if (m->m_len < ETHER_HDR_LEN) {
  514                 /* XXX maybe should pullup? */
  515                 if_printf(ifp, "discard frame w/o leading ethernet "
  516                                 "header (len %u pkt len %u)\n",
  517                                 m->m_len, m->m_pkthdr.len);
  518                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
  519                 m_freem(m);
  520                 return;
  521         }
  522         eh = mtod(m, struct ether_header *);
  523         etype = ntohs(eh->ether_type);
  524         random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER);
  525 
  526         CURVNET_SET_QUIET(ifp->if_vnet);
  527 
  528         if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
  529                 if (ETHER_IS_BROADCAST(eh->ether_dhost))
  530                         m->m_flags |= M_BCAST;
  531                 else
  532                         m->m_flags |= M_MCAST;
  533                 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
  534         }
  535 
  536 #ifdef MAC
  537         /*
  538          * Tag the mbuf with an appropriate MAC label before any other
  539          * consumers can get to it.
  540          */
  541         mac_ifnet_create_mbuf(ifp, m);
  542 #endif
  543 
  544         /*
  545          * Give bpf a chance at the packet.
  546          */
  547         ETHER_BPF_MTAP(ifp, m);
  548 
  549         /*
  550          * If the CRC is still on the packet, trim it off. We do this once
  551          * and once only in case we are re-entered. Nothing else on the
  552          * Ethernet receive path expects to see the FCS.
  553          */
  554         if (m->m_flags & M_HASFCS) {
  555                 m_adj(m, -ETHER_CRC_LEN);
  556                 m->m_flags &= ~M_HASFCS;
  557         }
  558 
  559         if (!(ifp->if_capenable & IFCAP_HWSTATS))
  560                 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
  561 
  562         /* Allow monitor mode to claim this frame, after stats are updated. */
  563         if (ifp->if_flags & IFF_MONITOR) {
  564                 m_freem(m);
  565                 CURVNET_RESTORE();
  566                 return;
  567         }
  568 
  569         /* Handle input from a lagg(4) port */
  570         if (ifp->if_type == IFT_IEEE8023ADLAG) {
  571                 KASSERT(lagg_input_p != NULL,
  572                     ("%s: if_lagg not loaded!", __func__));
  573                 m = (*lagg_input_p)(ifp, m);
  574                 if (m != NULL)
  575                         ifp = m->m_pkthdr.rcvif;
  576                 else {
  577                         CURVNET_RESTORE();
  578                         return;
  579                 }
  580         }
  581 
  582         /*
  583          * If the hardware did not process an 802.1Q tag, do this now,
  584          * to allow 802.1P priority frames to be passed to the main input
  585          * path correctly.
  586          * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
  587          */
  588         if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
  589                 struct ether_vlan_header *evl;
  590 
  591                 if (m->m_len < sizeof(*evl) &&
  592                     (m = m_pullup(m, sizeof(*evl))) == NULL) {
  593 #ifdef DIAGNOSTIC
  594                         if_printf(ifp, "cannot pullup VLAN header\n");
  595 #endif
  596                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
  597                         CURVNET_RESTORE();
  598                         return;
  599                 }
  600 
  601                 evl = mtod(m, struct ether_vlan_header *);
  602                 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
  603                 m->m_flags |= M_VLANTAG;
  604 
  605                 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
  606                     ETHER_HDR_LEN - ETHER_TYPE_LEN);
  607                 m_adj(m, ETHER_VLAN_ENCAP_LEN);
  608                 eh = mtod(m, struct ether_header *);
  609         }
  610 
  611         M_SETFIB(m, ifp->if_fib);
  612 
  613         /* Allow ng_ether(4) to claim this frame. */
  614         if (ifp->if_l2com != NULL) {
  615                 KASSERT(ng_ether_input_p != NULL,
  616                     ("%s: ng_ether_input_p is NULL", __func__));
  617                 m->m_flags &= ~M_PROMISC;
  618                 (*ng_ether_input_p)(ifp, &m);
  619                 if (m == NULL) {
  620                         CURVNET_RESTORE();
  621                         return;
  622                 }
  623                 eh = mtod(m, struct ether_header *);
  624         }
  625 
  626         /*
  627          * Allow if_bridge(4) to claim this frame.
  628          * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
  629          * and the frame should be delivered locally.
  630          */
  631         if (ifp->if_bridge != NULL) {
  632                 m->m_flags &= ~M_PROMISC;
  633                 BRIDGE_INPUT(ifp, m);
  634                 if (m == NULL) {
  635                         CURVNET_RESTORE();
  636                         return;
  637                 }
  638                 eh = mtod(m, struct ether_header *);
  639         }
  640 
  641 #if defined(INET) || defined(INET6)
  642         /*
  643          * Clear M_PROMISC on frame so that carp(4) will see it when the
  644          * mbuf flows up to Layer 3.
  645          * FreeBSD's implementation of carp(4) uses the inprotosw
  646          * to dispatch IPPROTO_CARP. carp(4) also allocates its own
  647          * Ethernet addresses of the form 00:00:5e:00:01:xx, which
  648          * is outside the scope of the M_PROMISC test below.
  649          * TODO: Maintain a hash table of ethernet addresses other than
  650          * ether_dhost which may be active on this ifp.
  651          */
  652         if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
  653                 m->m_flags &= ~M_PROMISC;
  654         } else
  655 #endif
  656         {
  657                 /*
  658                  * If the frame received was not for our MAC address, set the
  659                  * M_PROMISC flag on the mbuf chain. The frame may need to
  660                  * be seen by the rest of the Ethernet input path in case of
  661                  * re-entry (e.g. bridge, vlan, netgraph) but should not be
  662                  * seen by upper protocol layers.
  663                  */
  664                 if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
  665                     bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
  666                         m->m_flags |= M_PROMISC;
  667         }
  668 
  669         ether_demux(ifp, m);
  670         CURVNET_RESTORE();
  671 }
  672 
  673 /*
  674  * Ethernet input dispatch; by default, direct dispatch here regardless of
  675  * global configuration.  However, if RSS is enabled, hook up RSS affinity
  676  * so that when deferred or hybrid dispatch is enabled, we can redistribute
  677  * load based on RSS.
  678  *
  679  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
  680  * not it had already done work distribution via multi-queue.  Then we could
  681  * direct dispatch in the event load balancing was already complete and
  682  * handle the case of interfaces with different capabilities better.
  683  *
  684  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
  685  * at multiple layers?
  686  *
  687  * XXXRW: For now, enable all this only if RSS is compiled in, although it
  688  * works fine without RSS.  Need to characterise the performance overhead
  689  * of the detour through the netisr code in the event the result is always
  690  * direct dispatch.
  691  */
  692 static void
  693 ether_nh_input(struct mbuf *m)
  694 {
  695 
  696         M_ASSERTPKTHDR(m);
  697         KASSERT(m->m_pkthdr.rcvif != NULL,
  698             ("%s: NULL interface pointer", __func__));
  699         ether_input_internal(m->m_pkthdr.rcvif, m);
  700 }
  701 
  702 static struct netisr_handler    ether_nh = {
  703         .nh_name = "ether",
  704         .nh_handler = ether_nh_input,
  705         .nh_proto = NETISR_ETHER,
  706 #ifdef RSS
  707         .nh_policy = NETISR_POLICY_CPU,
  708         .nh_dispatch = NETISR_DISPATCH_DIRECT,
  709         .nh_m2cpuid = rss_m2cpuid,
  710 #else
  711         .nh_policy = NETISR_POLICY_SOURCE,
  712         .nh_dispatch = NETISR_DISPATCH_DIRECT,
  713 #endif
  714 };
  715 
  716 static void
  717 ether_init(__unused void *arg)
  718 {
  719 
  720         netisr_register(&ether_nh);
  721 }
  722 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
  723 
  724 static void
  725 vnet_ether_init(__unused void *arg)
  726 {
  727         int i;
  728 
  729         /* Initialize packet filter hooks. */
  730         V_link_pfil_hook.ph_type = PFIL_TYPE_AF;
  731         V_link_pfil_hook.ph_af = AF_LINK;
  732         if ((i = pfil_head_register(&V_link_pfil_hook)) != 0)
  733                 printf("%s: WARNING: unable to register pfil link hook, "
  734                         "error %d\n", __func__, i);
  735 #ifdef VIMAGE
  736         netisr_register_vnet(&ether_nh);
  737 #endif
  738 }
  739 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
  740     vnet_ether_init, NULL);
  741  
  742 #ifdef VIMAGE
  743 static void
  744 vnet_ether_pfil_destroy(__unused void *arg)
  745 {
  746         int i;
  747 
  748         if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0)
  749                 printf("%s: WARNING: unable to unregister pfil link hook, "
  750                         "error %d\n", __func__, i);
  751 }
  752 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
  753     vnet_ether_pfil_destroy, NULL);
  754 
  755 static void
  756 vnet_ether_destroy(__unused void *arg)
  757 {
  758 
  759         netisr_unregister_vnet(&ether_nh);
  760 }
  761 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
  762     vnet_ether_destroy, NULL);
  763 #endif
  764 
  765 
  766 
  767 static void
  768 ether_input(struct ifnet *ifp, struct mbuf *m)
  769 {
  770 
  771         struct mbuf *mn;
  772 
  773         /*
  774          * The drivers are allowed to pass in a chain of packets linked with
  775          * m_nextpkt. We split them up into separate packets here and pass
  776          * them up. This allows the drivers to amortize the receive lock.
  777          */
  778         while (m) {
  779                 mn = m->m_nextpkt;
  780                 m->m_nextpkt = NULL;
  781 
  782                 /*
  783                  * We will rely on rcvif being set properly in the deferred context,
  784                  * so assert it is correct here.
  785                  */
  786                 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
  787                     "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
  788                 CURVNET_SET_QUIET(ifp->if_vnet);
  789                 netisr_dispatch(NETISR_ETHER, m);
  790                 CURVNET_RESTORE();
  791                 m = mn;
  792         }
  793 }
  794 
  795 /*
  796  * Upper layer processing for a received Ethernet packet.
  797  */
  798 void
  799 ether_demux(struct ifnet *ifp, struct mbuf *m)
  800 {
  801         struct ether_header *eh;
  802         int i, isr;
  803         u_short ether_type;
  804 
  805         KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
  806 
  807         /* Do not grab PROMISC frames in case we are re-entered. */
  808         if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) {
  809                 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, 0,
  810                     NULL);
  811 
  812                 if (i != 0 || m == NULL)
  813                         return;
  814         }
  815 
  816         eh = mtod(m, struct ether_header *);
  817         ether_type = ntohs(eh->ether_type);
  818 
  819         /*
  820          * If this frame has a VLAN tag other than 0, call vlan_input()
  821          * if its module is loaded. Otherwise, drop.
  822          */
  823         if ((m->m_flags & M_VLANTAG) &&
  824             EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
  825                 if (ifp->if_vlantrunk == NULL) {
  826                         if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
  827                         m_freem(m);
  828                         return;
  829                 }
  830                 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
  831                     __func__));
  832                 /* Clear before possibly re-entering ether_input(). */
  833                 m->m_flags &= ~M_PROMISC;
  834                 (*vlan_input_p)(ifp, m);
  835                 return;
  836         }
  837 
  838         /*
  839          * Pass promiscuously received frames to the upper layer if the user
  840          * requested this by setting IFF_PPROMISC. Otherwise, drop them.
  841          */
  842         if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
  843                 m_freem(m);
  844                 return;
  845         }
  846 
  847         /*
  848          * Reset layer specific mbuf flags to avoid confusing upper layers.
  849          * Strip off Ethernet header.
  850          */
  851         m->m_flags &= ~M_VLANTAG;
  852         m_clrprotoflags(m);
  853         m_adj(m, ETHER_HDR_LEN);
  854 
  855         /*
  856          * Dispatch frame to upper layer.
  857          */
  858         switch (ether_type) {
  859 #ifdef INET
  860         case ETHERTYPE_IP:
  861                 isr = NETISR_IP;
  862                 break;
  863 
  864         case ETHERTYPE_ARP:
  865                 if (ifp->if_flags & IFF_NOARP) {
  866                         /* Discard packet if ARP is disabled on interface */
  867                         m_freem(m);
  868                         return;
  869                 }
  870                 isr = NETISR_ARP;
  871                 break;
  872 #endif
  873 #ifdef INET6
  874         case ETHERTYPE_IPV6:
  875                 isr = NETISR_IPV6;
  876                 break;
  877 #endif
  878         default:
  879                 goto discard;
  880         }
  881         netisr_dispatch(isr, m);
  882         return;
  883 
  884 discard:
  885         /*
  886          * Packet is to be discarded.  If netgraph is present,
  887          * hand the packet to it for last chance processing;
  888          * otherwise dispose of it.
  889          */
  890         if (ifp->if_l2com != NULL) {
  891                 KASSERT(ng_ether_input_orphan_p != NULL,
  892                     ("ng_ether_input_orphan_p is NULL"));
  893                 /*
  894                  * Put back the ethernet header so netgraph has a
  895                  * consistent view of inbound packets.
  896                  */
  897                 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
  898                 (*ng_ether_input_orphan_p)(ifp, m);
  899                 return;
  900         }
  901         m_freem(m);
  902 }
  903 
  904 /*
  905  * Convert Ethernet address to printable (loggable) representation.
  906  * This routine is for compatibility; it's better to just use
  907  *
  908  *      printf("%6D", <pointer to address>, ":");
  909  *
  910  * since there's no static buffer involved.
  911  */
  912 char *
  913 ether_sprintf(const u_char *ap)
  914 {
  915         static char etherbuf[18];
  916         snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
  917         return (etherbuf);
  918 }
  919 
  920 /*
  921  * Perform common duties while attaching to interface list
  922  */
  923 void
  924 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
  925 {
  926         int i;
  927         struct ifaddr *ifa;
  928         struct sockaddr_dl *sdl;
  929 
  930         ifp->if_addrlen = ETHER_ADDR_LEN;
  931         ifp->if_hdrlen = ETHER_HDR_LEN;
  932         if_attach(ifp);
  933         ifp->if_mtu = ETHERMTU;
  934         ifp->if_output = ether_output;
  935         ifp->if_input = ether_input;
  936         ifp->if_resolvemulti = ether_resolvemulti;
  937         ifp->if_requestencap = ether_requestencap;
  938 #ifdef VIMAGE
  939         ifp->if_reassign = ether_reassign;
  940 #endif
  941         if (ifp->if_baudrate == 0)
  942                 ifp->if_baudrate = IF_Mbps(10);         /* just a default */
  943         ifp->if_broadcastaddr = etherbroadcastaddr;
  944 
  945         ifa = ifp->if_addr;
  946         KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
  947         sdl = (struct sockaddr_dl *)ifa->ifa_addr;
  948         sdl->sdl_type = IFT_ETHER;
  949         sdl->sdl_alen = ifp->if_addrlen;
  950         bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
  951 
  952         if (ifp->if_hw_addr != NULL)
  953                 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
  954 
  955         bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
  956         if (ng_ether_attach_p != NULL)
  957                 (*ng_ether_attach_p)(ifp);
  958 
  959         /* Announce Ethernet MAC address if non-zero. */
  960         for (i = 0; i < ifp->if_addrlen; i++)
  961                 if (lla[i] != 0)
  962                         break; 
  963         if (i != ifp->if_addrlen)
  964                 if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
  965 
  966         uuid_ether_add(LLADDR(sdl));
  967 
  968         /* Add necessary bits are setup; announce it now. */
  969         EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
  970         if (IS_DEFAULT_VNET(curvnet))
  971                 devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
  972 }
  973 
  974 /*
  975  * Perform common duties while detaching an Ethernet interface
  976  */
  977 void
  978 ether_ifdetach(struct ifnet *ifp)
  979 {
  980         struct sockaddr_dl *sdl;
  981 
  982         sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
  983         uuid_ether_del(LLADDR(sdl));
  984 
  985         if (ifp->if_l2com != NULL) {
  986                 KASSERT(ng_ether_detach_p != NULL,
  987                     ("ng_ether_detach_p is NULL"));
  988                 (*ng_ether_detach_p)(ifp);
  989         }
  990 
  991         bpfdetach(ifp);
  992         if_detach(ifp);
  993 }
  994 
  995 #ifdef VIMAGE
  996 void
  997 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
  998 {
  999 
 1000         if (ifp->if_l2com != NULL) {
 1001                 KASSERT(ng_ether_detach_p != NULL,
 1002                     ("ng_ether_detach_p is NULL"));
 1003                 (*ng_ether_detach_p)(ifp);
 1004         }
 1005 
 1006         if (ng_ether_attach_p != NULL) {
 1007                 CURVNET_SET_QUIET(new_vnet);
 1008                 (*ng_ether_attach_p)(ifp);
 1009                 CURVNET_RESTORE();
 1010         }
 1011 }
 1012 #endif
 1013 
 1014 SYSCTL_DECL(_net_link);
 1015 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
 1016 
 1017 #if 0
 1018 /*
 1019  * This is for reference.  We have a table-driven version
 1020  * of the little-endian crc32 generator, which is faster
 1021  * than the double-loop.
 1022  */
 1023 uint32_t
 1024 ether_crc32_le(const uint8_t *buf, size_t len)
 1025 {
 1026         size_t i;
 1027         uint32_t crc;
 1028         int bit;
 1029         uint8_t data;
 1030 
 1031         crc = 0xffffffff;       /* initial value */
 1032 
 1033         for (i = 0; i < len; i++) {
 1034                 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
 1035                         carry = (crc ^ data) & 1;
 1036                         crc >>= 1;
 1037                         if (carry)
 1038                                 crc = (crc ^ ETHER_CRC_POLY_LE);
 1039                 }
 1040         }
 1041 
 1042         return (crc);
 1043 }
 1044 #else
 1045 uint32_t
 1046 ether_crc32_le(const uint8_t *buf, size_t len)
 1047 {
 1048         static const uint32_t crctab[] = {
 1049                 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
 1050                 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
 1051                 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
 1052                 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
 1053         };
 1054         size_t i;
 1055         uint32_t crc;
 1056 
 1057         crc = 0xffffffff;       /* initial value */
 1058 
 1059         for (i = 0; i < len; i++) {
 1060                 crc ^= buf[i];
 1061                 crc = (crc >> 4) ^ crctab[crc & 0xf];
 1062                 crc = (crc >> 4) ^ crctab[crc & 0xf];
 1063         }
 1064 
 1065         return (crc);
 1066 }
 1067 #endif
 1068 
 1069 uint32_t
 1070 ether_crc32_be(const uint8_t *buf, size_t len)
 1071 {
 1072         size_t i;
 1073         uint32_t crc, carry;
 1074         int bit;
 1075         uint8_t data;
 1076 
 1077         crc = 0xffffffff;       /* initial value */
 1078 
 1079         for (i = 0; i < len; i++) {
 1080                 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
 1081                         carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
 1082                         crc <<= 1;
 1083                         if (carry)
 1084                                 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
 1085                 }
 1086         }
 1087 
 1088         return (crc);
 1089 }
 1090 
 1091 int
 1092 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1093 {
 1094         struct ifaddr *ifa = (struct ifaddr *) data;
 1095         struct ifreq *ifr = (struct ifreq *) data;
 1096         int error = 0;
 1097 
 1098         switch (command) {
 1099         case SIOCSIFADDR:
 1100                 ifp->if_flags |= IFF_UP;
 1101 
 1102                 switch (ifa->ifa_addr->sa_family) {
 1103 #ifdef INET
 1104                 case AF_INET:
 1105                         ifp->if_init(ifp->if_softc);    /* before arpwhohas */
 1106                         arp_ifinit(ifp, ifa);
 1107                         break;
 1108 #endif
 1109                 default:
 1110                         ifp->if_init(ifp->if_softc);
 1111                         break;
 1112                 }
 1113                 break;
 1114 
 1115         case SIOCGIFADDR:
 1116                 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
 1117                     ETHER_ADDR_LEN);
 1118                 break;
 1119 
 1120         case SIOCSIFMTU:
 1121                 /*
 1122                  * Set the interface MTU.
 1123                  */
 1124                 if (ifr->ifr_mtu > ETHERMTU) {
 1125                         error = EINVAL;
 1126                 } else {
 1127                         ifp->if_mtu = ifr->ifr_mtu;
 1128                 }
 1129                 break;
 1130 
 1131         case SIOCSLANPCP:
 1132                 error = priv_check(curthread, PRIV_NET_SETLANPCP);
 1133                 if (error != 0)
 1134                         break;
 1135                 if (ifr->ifr_lan_pcp > 7 &&
 1136                     ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
 1137                         error = EINVAL;
 1138                 } else {
 1139                         ifp->if_pcp = ifr->ifr_lan_pcp;
 1140                         /* broadcast event about PCP change */
 1141                         EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
 1142                 }
 1143                 break;
 1144 
 1145         case SIOCGLANPCP:
 1146                 ifr->ifr_lan_pcp = ifp->if_pcp;
 1147                 break;
 1148 
 1149         default:
 1150                 error = EINVAL;                 /* XXX netbsd has ENOTTY??? */
 1151                 break;
 1152         }
 1153         return (error);
 1154 }
 1155 
 1156 static int
 1157 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
 1158         struct sockaddr *sa)
 1159 {
 1160         struct sockaddr_dl *sdl;
 1161 #ifdef INET
 1162         struct sockaddr_in *sin;
 1163 #endif
 1164 #ifdef INET6
 1165         struct sockaddr_in6 *sin6;
 1166 #endif
 1167         u_char *e_addr;
 1168 
 1169         switch(sa->sa_family) {
 1170         case AF_LINK:
 1171                 /*
 1172                  * No mapping needed. Just check that it's a valid MC address.
 1173                  */
 1174                 sdl = (struct sockaddr_dl *)sa;
 1175                 e_addr = LLADDR(sdl);
 1176                 if (!ETHER_IS_MULTICAST(e_addr))
 1177                         return EADDRNOTAVAIL;
 1178                 *llsa = NULL;
 1179                 return 0;
 1180 
 1181 #ifdef INET
 1182         case AF_INET:
 1183                 sin = (struct sockaddr_in *)sa;
 1184                 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
 1185                         return EADDRNOTAVAIL;
 1186                 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
 1187                 sdl->sdl_alen = ETHER_ADDR_LEN;
 1188                 e_addr = LLADDR(sdl);
 1189                 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
 1190                 *llsa = (struct sockaddr *)sdl;
 1191                 return 0;
 1192 #endif
 1193 #ifdef INET6
 1194         case AF_INET6:
 1195                 sin6 = (struct sockaddr_in6 *)sa;
 1196                 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
 1197                         /*
 1198                          * An IP6 address of 0 means listen to all
 1199                          * of the Ethernet multicast address used for IP6.
 1200                          * (This is used for multicast routers.)
 1201                          */
 1202                         ifp->if_flags |= IFF_ALLMULTI;
 1203                         *llsa = NULL;
 1204                         return 0;
 1205                 }
 1206                 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
 1207                         return EADDRNOTAVAIL;
 1208                 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
 1209                 sdl->sdl_alen = ETHER_ADDR_LEN;
 1210                 e_addr = LLADDR(sdl);
 1211                 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
 1212                 *llsa = (struct sockaddr *)sdl;
 1213                 return 0;
 1214 #endif
 1215 
 1216         default:
 1217                 /*
 1218                  * Well, the text isn't quite right, but it's the name
 1219                  * that counts...
 1220                  */
 1221                 return EAFNOSUPPORT;
 1222         }
 1223 }
 1224 
 1225 static moduledata_t ether_mod = {
 1226         .name = "ether",
 1227 };
 1228 
 1229 void
 1230 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
 1231 {
 1232         struct ether_vlan_header vlan;
 1233         struct mbuf mv, mb;
 1234 
 1235         KASSERT((m->m_flags & M_VLANTAG) != 0,
 1236             ("%s: vlan information not present", __func__));
 1237         KASSERT(m->m_len >= sizeof(struct ether_header),
 1238             ("%s: mbuf not large enough for header", __func__));
 1239         bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
 1240         vlan.evl_proto = vlan.evl_encap_proto;
 1241         vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
 1242         vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
 1243         m->m_len -= sizeof(struct ether_header);
 1244         m->m_data += sizeof(struct ether_header);
 1245         /*
 1246          * If a data link has been supplied by the caller, then we will need to
 1247          * re-create a stack allocated mbuf chain with the following structure:
 1248          *
 1249          * (1) mbuf #1 will contain the supplied data link
 1250          * (2) mbuf #2 will contain the vlan header
 1251          * (3) mbuf #3 will contain the original mbuf's packet data
 1252          *
 1253          * Otherwise, submit the packet and vlan header via bpf_mtap2().
 1254          */
 1255         if (data != NULL) {
 1256                 mv.m_next = m;
 1257                 mv.m_data = (caddr_t)&vlan;
 1258                 mv.m_len = sizeof(vlan);
 1259                 mb.m_next = &mv;
 1260                 mb.m_data = data;
 1261                 mb.m_len = dlen;
 1262                 bpf_mtap(bp, &mb);
 1263         } else
 1264                 bpf_mtap2(bp, &vlan, sizeof(vlan), m);
 1265         m->m_len += sizeof(struct ether_header);
 1266         m->m_data -= sizeof(struct ether_header);
 1267 }
 1268 
 1269 struct mbuf *
 1270 ether_vlanencap(struct mbuf *m, uint16_t tag)
 1271 {
 1272         struct ether_vlan_header *evl;
 1273 
 1274         M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
 1275         if (m == NULL)
 1276                 return (NULL);
 1277         /* M_PREPEND takes care of m_len, m_pkthdr.len for us */
 1278 
 1279         if (m->m_len < sizeof(*evl)) {
 1280                 m = m_pullup(m, sizeof(*evl));
 1281                 if (m == NULL)
 1282                         return (NULL);
 1283         }
 1284 
 1285         /*
 1286          * Transform the Ethernet header into an Ethernet header
 1287          * with 802.1Q encapsulation.
 1288          */
 1289         evl = mtod(m, struct ether_vlan_header *);
 1290         bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
 1291             (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
 1292         evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
 1293         evl->evl_tag = htons(tag);
 1294         return (m);
 1295 }
 1296 
 1297 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0,
 1298     "IEEE 802.1Q VLAN");
 1299 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0,
 1300     "for consistency");
 1301 
 1302 static VNET_DEFINE(int, soft_pad);
 1303 #define V_soft_pad      VNET(soft_pad)
 1304 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
 1305     &VNET_NAME(soft_pad), 0,
 1306     "pad short frames before tagging");
 1307 
 1308 /*
 1309  * For now, make preserving PCP via an mbuf tag optional, as it increases
 1310  * per-packet memory allocations and frees.  In the future, it would be
 1311  * preferable to reuse ether_vtag for this, or similar.
 1312  */
 1313 int vlan_mtag_pcp = 0;
 1314 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW,
 1315     &vlan_mtag_pcp, 0,
 1316     "Retain VLAN PCP information as packets are passed up the stack");
 1317 
 1318 bool
 1319 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
 1320     uint16_t vid, uint8_t pcp)
 1321 {
 1322         struct m_tag *mtag;
 1323         int n;
 1324         uint16_t tag;
 1325         static const char pad[8];       /* just zeros */
 1326 
 1327         /*
 1328          * Pad the frame to the minimum size allowed if told to.
 1329          * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
 1330          * paragraph C.4.4.3.b.  It can help to work around buggy
 1331          * bridges that violate paragraph C.4.4.3.a from the same
 1332          * document, i.e., fail to pad short frames after untagging.
 1333          * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
 1334          * untagging it will produce a 62-byte frame, which is a runt
 1335          * and requires padding.  There are VLAN-enabled network
 1336          * devices that just discard such runts instead or mishandle
 1337          * them somehow.
 1338          */
 1339         if (V_soft_pad && p->if_type == IFT_ETHER) {
 1340                 for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
 1341                      n > 0; n -= sizeof(pad)) {
 1342                         if (!m_append(*mp, min(n, sizeof(pad)), pad))
 1343                                 break;
 1344                 }
 1345                 if (n > 0) {
 1346                         m_freem(*mp);
 1347                         *mp = NULL;
 1348                         if_printf(ife, "cannot pad short frame");
 1349                         return (false);
 1350                 }
 1351         }
 1352 
 1353         /*
 1354          * If underlying interface can do VLAN tag insertion itself,
 1355          * just pass the packet along. However, we need some way to
 1356          * tell the interface where the packet came from so that it
 1357          * knows how to find the VLAN tag to use, so we attach a
 1358          * packet tag that holds it.
 1359          */
 1360         if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
 1361             MTAG_8021Q_PCP_OUT, NULL)) != NULL)
 1362                 tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0);
 1363         else
 1364                 tag = EVL_MAKETAG(vid, pcp, 0);
 1365         if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
 1366                 (*mp)->m_pkthdr.ether_vtag = tag;
 1367                 (*mp)->m_flags |= M_VLANTAG;
 1368         } else {
 1369                 *mp = ether_vlanencap(*mp, tag);
 1370                 if (*mp == NULL) {
 1371                         if_printf(ife, "unable to prepend 802.1Q header");
 1372                         return (false);
 1373                 }
 1374         }
 1375         return (true);
 1376 }
 1377 
 1378 /*
 1379  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
 1380  * cryptographic hash function on the containing jail's name, UUID and the
 1381  * interface name to attempt to provide a unique but stable address.
 1382  * Pseudo-interfaces which require a MAC address should use this function to
 1383  * allocate non-locally-administered addresses.
 1384  */
 1385 void
 1386 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
 1387 {
 1388         SHA1_CTX ctx;
 1389         char *buf;
 1390         char uuid[HOSTUUIDLEN + 1];
 1391         uint64_t addr;
 1392         int i, sz;
 1393         char digest[SHA1_RESULTLEN];
 1394         char jailname[MAXHOSTNAMELEN];
 1395 
 1396         getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
 1397         /* If each (vnet) jail would also have a unique hostuuid this would not
 1398          * be necessary. */
 1399         getjailname(curthread->td_ucred, jailname, sizeof(jailname));
 1400         sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp),
 1401             jailname);
 1402         if (sz < 0) {
 1403                 /* Fall back to a random mac address. */
 1404                 arc4rand(hwaddr, sizeof(*hwaddr), 0);
 1405                 hwaddr->octet[0] = 0x02;
 1406                 return;
 1407         }
 1408 
 1409         SHA1Init(&ctx);
 1410         SHA1Update(&ctx, buf, sz);
 1411         SHA1Final(digest, &ctx);
 1412         free(buf, M_TEMP);
 1413 
 1414         addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
 1415             OUI_FREEBSD_GENERATED_MASK;
 1416         addr = OUI_FREEBSD(addr);
 1417         for (i = 0; i < ETHER_ADDR_LEN; ++i) {
 1418                 hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
 1419                     0xFF;
 1420         }
 1421 }
 1422 
 1423 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
 1424 MODULE_VERSION(ether, 1);

Cache object: b674bd1bcd3c10150007bdd99cae5e64


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.