The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_fwsubr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Doug Rabson
    3  * Copyright (c) 1982, 1989, 1993
    4  *      The Regents of the University of California.  All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  * $FreeBSD$
   31  */
   32 
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/kernel.h>
   39 #include <sys/malloc.h>
   40 #include <sys/mbuf.h>
   41 #include <sys/module.h>
   42 #include <sys/socket.h>
   43 #include <sys/sockio.h>
   44 
   45 #include <net/if.h>
   46 #include <net/if_var.h>
   47 #include <net/netisr.h>
   48 #include <net/route.h>
   49 #include <net/if_llc.h>
   50 #include <net/if_dl.h>
   51 #include <net/if_types.h>
   52 #include <net/bpf.h>
   53 #include <net/firewire.h>
   54 #include <net/if_llatbl.h>
   55 
   56 #if defined(INET) || defined(INET6)
   57 #include <netinet/in.h>
   58 #include <netinet/in_var.h>
   59 #include <netinet/if_ether.h>
   60 #endif
   61 #ifdef INET6
   62 #include <netinet6/nd6.h>
   63 #endif
   64 
   65 #include <security/mac/mac_framework.h>
   66 
   67 static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
   68 
   69 struct fw_hwaddr firewire_broadcastaddr = {
   70         0xffffffff,
   71         0xffffffff,
   72         0xff,
   73         0xff,
   74         0xffff,
   75         0xffffffff
   76 };
   77 
   78 static int
   79 firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   80     struct route *ro)
   81 {
   82         struct fw_com *fc = IFP2FWC(ifp);
   83         int error, type;
   84         struct m_tag *mtag;
   85         union fw_encap *enc;
   86         struct fw_hwaddr *destfw;
   87         uint8_t speed;
   88         uint16_t psize, fsize, dsize;
   89         struct mbuf *mtail;
   90         int unicast, dgl, foff;
   91         static int next_dgl;
   92 #if defined(INET) || defined(INET6)
   93         int is_gw = 0;
   94 #endif
   95 
   96 #ifdef MAC
   97         error = mac_ifnet_check_transmit(ifp, m);
   98         if (error)
   99                 goto bad;
  100 #endif
  101 
  102         if (!((ifp->if_flags & IFF_UP) &&
  103            (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
  104                 error = ENETDOWN;
  105                 goto bad;
  106         }
  107 
  108 #if defined(INET) || defined(INET6)
  109         if (ro != NULL)
  110                 is_gw = (ro->ro_flags & RT_HAS_GW) != 0;
  111 #endif
  112         /*
  113          * For unicast, we make a tag to store the lladdr of the
  114          * destination. This might not be the first time we have seen
  115          * the packet (for instance, the arp code might be trying to
  116          * re-send it after receiving an arp reply) so we only
  117          * allocate a tag if there isn't one there already. For
  118          * multicast, we will eventually use a different tag to store
  119          * the channel number.
  120          */
  121         unicast = !(m->m_flags & (M_BCAST | M_MCAST));
  122         if (unicast) {
  123                 mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
  124                 if (!mtag) {
  125                         mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
  126                             sizeof (struct fw_hwaddr), M_NOWAIT);
  127                         if (!mtag) {
  128                                 error = ENOMEM;
  129                                 goto bad;
  130                         }
  131                         m_tag_prepend(m, mtag);
  132                 }
  133                 destfw = (struct fw_hwaddr *)(mtag + 1);
  134         } else {
  135                 destfw = NULL;
  136         }
  137 
  138         switch (dst->sa_family) {
  139 #ifdef INET
  140         case AF_INET:
  141                 /*
  142                  * Only bother with arp for unicast. Allocation of
  143                  * channels etc. for firewire is quite different and
  144                  * doesn't fit into the arp model.
  145                  */
  146                 if (unicast) {
  147                         error = arpresolve(ifp, is_gw, m, dst,
  148                             (u_char *) destfw, NULL, NULL);
  149                         if (error)
  150                                 return (error == EWOULDBLOCK ? 0 : error);
  151                 }
  152                 type = ETHERTYPE_IP;
  153                 break;
  154 
  155         case AF_ARP:
  156         {
  157                 struct arphdr *ah;
  158                 ah = mtod(m, struct arphdr *);
  159                 ah->ar_hrd = htons(ARPHRD_IEEE1394);
  160                 type = ETHERTYPE_ARP;
  161                 if (unicast)
  162                         *destfw = *(struct fw_hwaddr *) ar_tha(ah);
  163 
  164                 /*
  165                  * The standard arp code leaves a hole for the target
  166                  * hardware address which we need to close up.
  167                  */
  168                 bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
  169                 m_adj(m, -ah->ar_hln);
  170                 break;
  171         }
  172 #endif
  173 
  174 #ifdef INET6
  175         case AF_INET6:
  176                 if (unicast) {
  177                         error = nd6_resolve(fc->fc_ifp, is_gw, m, dst,
  178                             (u_char *) destfw, NULL, NULL);
  179                         if (error)
  180                                 return (error == EWOULDBLOCK ? 0 : error);
  181                 }
  182                 type = ETHERTYPE_IPV6;
  183                 break;
  184 #endif
  185 
  186         default:
  187                 if_printf(ifp, "can't handle af%d\n", dst->sa_family);
  188                 error = EAFNOSUPPORT;
  189                 goto bad;
  190         }
  191 
  192         /*
  193          * Let BPF tap off a copy before we encapsulate.
  194          */
  195         if (bpf_peers_present(ifp->if_bpf)) {
  196                 struct fw_bpfhdr h;
  197                 if (unicast)
  198                         bcopy(destfw, h.firewire_dhost, 8);
  199                 else
  200                         bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
  201                 bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
  202                 h.firewire_type = htons(type);
  203                 bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
  204         }
  205 
  206         /*
  207          * Punt on MCAP for now and send all multicast packets on the
  208          * broadcast channel.
  209          */
  210         if (m->m_flags & M_MCAST)
  211                 m->m_flags |= M_BCAST;
  212 
  213         /*
  214          * Figure out what speed to use and what the largest supported
  215          * packet size is. For unicast, this is the minimum of what we
  216          * can speak and what they can hear. For broadcast, lets be
  217          * conservative and use S100. We could possibly improve that
  218          * by examining the bus manager's speed map or similar. We
  219          * also reduce the packet size for broadcast to account for
  220          * the GASP header.
  221          */
  222         if (unicast) {
  223                 speed = min(fc->fc_speed, destfw->sspd);
  224                 psize = min(512 << speed, 2 << destfw->sender_max_rec);
  225         } else {
  226                 speed = 0;
  227                 psize = 512 - 2*sizeof(uint32_t);
  228         }
  229 
  230         /*
  231          * Next, we encapsulate, possibly fragmenting the original
  232          * datagram if it won't fit into a single packet.
  233          */
  234         if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
  235                 /*
  236                  * No fragmentation is necessary.
  237                  */
  238                 M_PREPEND(m, sizeof(uint32_t), M_NOWAIT);
  239                 if (!m) {
  240                         error = ENOBUFS;
  241                         goto bad;
  242                 }
  243                 enc = mtod(m, union fw_encap *);
  244                 enc->unfrag.ether_type = type;
  245                 enc->unfrag.lf = FW_ENCAP_UNFRAG;
  246                 enc->unfrag.reserved = 0;
  247 
  248                 /*
  249                  * Byte swap the encapsulation header manually.
  250                  */
  251                 enc->ul[0] = htonl(enc->ul[0]);
  252 
  253                 error = (ifp->if_transmit)(ifp, m);
  254                 return (error);
  255         } else {
  256                 /*
  257                  * Fragment the datagram, making sure to leave enough
  258                  * space for the encapsulation header in each packet.
  259                  */
  260                 fsize = psize - 2*sizeof(uint32_t);
  261                 dgl = next_dgl++;
  262                 dsize = m->m_pkthdr.len;
  263                 foff = 0;
  264                 while (m) {
  265                         if (m->m_pkthdr.len > fsize) {
  266                                 /*
  267                                  * Split off the tail segment from the
  268                                  * datagram, copying our tags over.
  269                                  */
  270                                 mtail = m_split(m, fsize, M_NOWAIT);
  271                                 m_tag_copy_chain(mtail, m, M_NOWAIT);
  272                         } else {
  273                                 mtail = NULL;
  274                         }
  275 
  276                         /*
  277                          * Add our encapsulation header to this
  278                          * fragment and hand it off to the link.
  279                          */
  280                         M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
  281                         if (!m) {
  282                                 error = ENOBUFS;
  283                                 goto bad;
  284                         }
  285                         enc = mtod(m, union fw_encap *);
  286                         if (foff == 0) {
  287                                 enc->firstfrag.lf = FW_ENCAP_FIRST;
  288                                 enc->firstfrag.reserved1 = 0;
  289                                 enc->firstfrag.reserved2 = 0;
  290                                 enc->firstfrag.datagram_size = dsize - 1;
  291                                 enc->firstfrag.ether_type = type;
  292                                 enc->firstfrag.dgl = dgl;
  293                         } else {
  294                                 if (mtail)
  295                                         enc->nextfrag.lf = FW_ENCAP_NEXT;
  296                                 else
  297                                         enc->nextfrag.lf = FW_ENCAP_LAST;
  298                                 enc->nextfrag.reserved1 = 0;
  299                                 enc->nextfrag.reserved2 = 0;
  300                                 enc->nextfrag.reserved3 = 0;
  301                                 enc->nextfrag.datagram_size = dsize - 1;
  302                                 enc->nextfrag.fragment_offset = foff;
  303                                 enc->nextfrag.dgl = dgl;
  304                         }
  305                         foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
  306 
  307                         /*
  308                          * Byte swap the encapsulation header manually.
  309                          */
  310                         enc->ul[0] = htonl(enc->ul[0]);
  311                         enc->ul[1] = htonl(enc->ul[1]);
  312 
  313                         error = (ifp->if_transmit)(ifp, m);
  314                         if (error) {
  315                                 if (mtail)
  316                                         m_freem(mtail);
  317                                 return (ENOBUFS);
  318                         }
  319 
  320                         m = mtail;
  321                 }
  322 
  323                 return (0);
  324         }
  325 
  326 bad:
  327         if (m)
  328                 m_freem(m);
  329         return (error);
  330 }
  331 
  332 static struct mbuf *
  333 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
  334 {
  335         union fw_encap *enc;
  336         struct fw_reass *r;
  337         struct mbuf *mf, *mprev;
  338         int dsize;
  339         int fstart, fend, start, end, islast;
  340         uint32_t id;
  341 
  342         /*
  343          * Find an existing reassembly buffer or create a new one.
  344          */
  345         enc = mtod(m, union fw_encap *);
  346         id = enc->firstfrag.dgl | (src << 16);
  347         STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
  348                 if (r->fr_id == id)
  349                         break;
  350         if (!r) {
  351                 r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
  352                 if (!r) {
  353                         m_freem(m);
  354                         return 0;
  355                 }
  356                 r->fr_id = id;
  357                 r->fr_frags = 0;
  358                 STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
  359         }
  360 
  361         /*
  362          * If this fragment overlaps any other fragment, we must discard
  363          * the partial reassembly and start again.
  364          */
  365         if (enc->firstfrag.lf == FW_ENCAP_FIRST)
  366                 fstart = 0;
  367         else
  368                 fstart = enc->nextfrag.fragment_offset;
  369         fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
  370         dsize = enc->nextfrag.datagram_size;
  371         islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
  372 
  373         for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
  374                 enc = mtod(mf, union fw_encap *);
  375                 if (enc->nextfrag.datagram_size != dsize) {
  376                         /*
  377                          * This fragment must be from a different
  378                          * packet.
  379                          */
  380                         goto bad;
  381                 }
  382                 if (enc->firstfrag.lf == FW_ENCAP_FIRST)
  383                         start = 0;
  384                 else
  385                         start = enc->nextfrag.fragment_offset;
  386                 end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
  387                 if ((fstart < end && fend > start) ||
  388                     (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
  389                         /*
  390                          * Overlap - discard reassembly buffer and start
  391                          * again with this fragment.
  392                          */
  393                         goto bad;
  394                 }
  395         }
  396 
  397         /*
  398          * Find where to put this fragment in the list.
  399          */
  400         for (mf = r->fr_frags, mprev = NULL; mf;
  401             mprev = mf, mf = mf->m_nextpkt) {
  402                 enc = mtod(mf, union fw_encap *);
  403                 if (enc->firstfrag.lf == FW_ENCAP_FIRST)
  404                         start = 0;
  405                 else
  406                         start = enc->nextfrag.fragment_offset;
  407                 if (start >= fend)
  408                         break;
  409         }
  410 
  411         /*
  412          * If this is a last fragment and we are not adding at the end
  413          * of the list, discard the buffer.
  414          */
  415         if (islast && mprev && mprev->m_nextpkt)
  416                 goto bad;
  417 
  418         if (mprev) {
  419                 m->m_nextpkt = mprev->m_nextpkt;
  420                 mprev->m_nextpkt = m;
  421 
  422                 /*
  423                  * Coalesce forwards and see if we can make a whole
  424                  * datagram.
  425                  */
  426                 enc = mtod(mprev, union fw_encap *);
  427                 if (enc->firstfrag.lf == FW_ENCAP_FIRST)
  428                         start = 0;
  429                 else
  430                         start = enc->nextfrag.fragment_offset;
  431                 end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
  432                 while (end == fstart) {
  433                         /*
  434                          * Strip off the encap header from m and
  435                          * append it to mprev, freeing m.
  436                          */
  437                         m_adj(m, 2*sizeof(uint32_t));
  438                         mprev->m_nextpkt = m->m_nextpkt;
  439                         mprev->m_pkthdr.len += m->m_pkthdr.len;
  440                         m_cat(mprev, m);
  441 
  442                         if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
  443                                 /*
  444                                  * We have assembled a complete packet
  445                                  * we must be finished. Make sure we have
  446                                  * merged the whole chain.
  447                                  */
  448                                 STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
  449                                 free(r, M_TEMP);
  450                                 m = mprev->m_nextpkt;
  451                                 while (m) {
  452                                         mf = m->m_nextpkt;
  453                                         m_freem(m);
  454                                         m = mf;
  455                                 }
  456                                 mprev->m_nextpkt = NULL;
  457 
  458                                 return (mprev);
  459                         }
  460 
  461                         /*
  462                          * See if we can continue merging forwards.
  463                          */
  464                         end = fend;
  465                         m = mprev->m_nextpkt;
  466                         if (m) {
  467                                 enc = mtod(m, union fw_encap *);
  468                                 if (enc->firstfrag.lf == FW_ENCAP_FIRST)
  469                                         fstart = 0;
  470                                 else
  471                                         fstart = enc->nextfrag.fragment_offset;
  472                                 fend = fstart + m->m_pkthdr.len
  473                                     - 2*sizeof(uint32_t);
  474                         } else {
  475                                 break;
  476                         }
  477                 }
  478         } else {
  479                 m->m_nextpkt = 0;
  480                 r->fr_frags = m;
  481         }
  482 
  483         return (0);
  484 
  485 bad:
  486         while (r->fr_frags) {
  487                 mf = r->fr_frags;
  488                 r->fr_frags = mf->m_nextpkt;
  489                 m_freem(mf);
  490         }
  491         m->m_nextpkt = 0;
  492         r->fr_frags = m;
  493 
  494         return (0);
  495 }
  496 
  497 void
  498 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
  499 {
  500         struct fw_com *fc = IFP2FWC(ifp);
  501         union fw_encap *enc;
  502         int type, isr;
  503 
  504         /*
  505          * The caller has already stripped off the packet header
  506          * (stream or wreqb) and marked the mbuf's M_BCAST flag
  507          * appropriately. We de-encapsulate the IP packet and pass it
  508          * up the line after handling link-level fragmentation.
  509          */
  510         if (m->m_pkthdr.len < sizeof(uint32_t)) {
  511                 if_printf(ifp, "discarding frame without "
  512                     "encapsulation header (len %u pkt len %u)\n",
  513                     m->m_len, m->m_pkthdr.len);
  514         }
  515 
  516         m = m_pullup(m, sizeof(uint32_t));
  517         if (m == NULL)
  518                 return;
  519         enc = mtod(m, union fw_encap *);
  520 
  521         /*
  522          * Byte swap the encapsulation header manually.
  523          */
  524         enc->ul[0] = ntohl(enc->ul[0]);
  525 
  526         if (enc->unfrag.lf != 0) {
  527                 m = m_pullup(m, 2*sizeof(uint32_t));
  528                 if (!m)
  529                         return;
  530                 enc = mtod(m, union fw_encap *);
  531                 enc->ul[1] = ntohl(enc->ul[1]);
  532                 m = firewire_input_fragment(fc, m, src);
  533                 if (!m)
  534                         return;
  535                 enc = mtod(m, union fw_encap *);
  536                 type = enc->firstfrag.ether_type;
  537                 m_adj(m, 2*sizeof(uint32_t));
  538         } else {
  539                 type = enc->unfrag.ether_type;
  540                 m_adj(m, sizeof(uint32_t));
  541         }
  542 
  543         if (m->m_pkthdr.rcvif == NULL) {
  544                 if_printf(ifp, "discard frame w/o interface pointer\n");
  545                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
  546                 m_freem(m);
  547                 return;
  548         }
  549 #ifdef DIAGNOSTIC
  550         if (m->m_pkthdr.rcvif != ifp) {
  551                 if_printf(ifp, "Warning, frame marked as received on %s\n",
  552                         m->m_pkthdr.rcvif->if_xname);
  553         }
  554 #endif
  555 
  556 #ifdef MAC
  557         /*
  558          * Tag the mbuf with an appropriate MAC label before any other
  559          * consumers can get to it.
  560          */
  561         mac_ifnet_create_mbuf(ifp, m);
  562 #endif
  563 
  564         /*
  565          * Give bpf a chance at the packet. The link-level driver
  566          * should have left us a tag with the EUID of the sender.
  567          */
  568         if (bpf_peers_present(ifp->if_bpf)) {
  569                 struct fw_bpfhdr h;
  570                 struct m_tag *mtag;
  571 
  572                 mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
  573                 if (mtag)
  574                         bcopy(mtag + 1, h.firewire_shost, 8);
  575                 else
  576                         bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
  577                 bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
  578                 h.firewire_type = htons(type);
  579                 bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
  580         }
  581 
  582         if (ifp->if_flags & IFF_MONITOR) {
  583                 /*
  584                  * Interface marked for monitoring; discard packet.
  585                  */
  586                 m_freem(m);
  587                 return;
  588         }
  589 
  590         if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
  591 
  592         /* Discard packet if interface is not up */
  593         if ((ifp->if_flags & IFF_UP) == 0) {
  594                 m_freem(m);
  595                 return;
  596         }
  597 
  598         if (m->m_flags & (M_BCAST|M_MCAST))
  599                 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
  600 
  601         switch (type) {
  602 #ifdef INET
  603         case ETHERTYPE_IP:
  604                 isr = NETISR_IP;
  605                 break;
  606 
  607         case ETHERTYPE_ARP:
  608         {
  609                 struct arphdr *ah;
  610                 ah = mtod(m, struct arphdr *);
  611 
  612                 /*
  613                  * Adjust the arp packet to insert an empty tha slot.
  614                  */
  615                 m->m_len += ah->ar_hln;
  616                 m->m_pkthdr.len += ah->ar_hln;
  617                 bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
  618                 isr = NETISR_ARP;
  619                 break;
  620         }
  621 #endif
  622 
  623 #ifdef INET6
  624         case ETHERTYPE_IPV6:
  625                 isr = NETISR_IPV6;
  626                 break;
  627 #endif
  628 
  629         default:
  630                 m_freem(m);
  631                 return;
  632         }
  633 
  634         M_SETFIB(m, ifp->if_fib);
  635         CURVNET_SET_QUIET(ifp->if_vnet);
  636         netisr_dispatch(isr, m);
  637         CURVNET_RESTORE();
  638 }
  639 
  640 int
  641 firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
  642 {
  643         struct ifaddr *ifa = (struct ifaddr *) data;
  644         struct ifreq *ifr = (struct ifreq *) data;
  645         int error = 0;
  646 
  647         switch (command) {
  648         case SIOCSIFADDR:
  649                 ifp->if_flags |= IFF_UP;
  650 
  651                 switch (ifa->ifa_addr->sa_family) {
  652 #ifdef INET
  653                 case AF_INET:
  654                         ifp->if_init(ifp->if_softc);    /* before arpwhohas */
  655                         arp_ifinit(ifp, ifa);
  656                         break;
  657 #endif
  658                 default:
  659                         ifp->if_init(ifp->if_softc);
  660                         break;
  661                 }
  662                 break;
  663 
  664         case SIOCGIFADDR:
  665                 bcopy(&IFP2FWC(ifp)->fc_hwaddr, &ifr->ifr_addr.sa_data[0],
  666                     sizeof(struct fw_hwaddr));
  667                 break;
  668 
  669         case SIOCSIFMTU:
  670                 /*
  671                  * Set the interface MTU.
  672                  */
  673                 if (ifr->ifr_mtu > 1500) {
  674                         error = EINVAL;
  675                 } else {
  676                         ifp->if_mtu = ifr->ifr_mtu;
  677                 }
  678                 break;
  679         default:
  680                 error = EINVAL;                 /* XXX netbsd has ENOTTY??? */
  681                 break;
  682         }
  683         return (error);
  684 }
  685 
  686 static int
  687 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
  688     struct sockaddr *sa)
  689 {
  690 #ifdef INET
  691         struct sockaddr_in *sin;
  692 #endif
  693 #ifdef INET6
  694         struct sockaddr_in6 *sin6;
  695 #endif
  696 
  697         switch(sa->sa_family) {
  698         case AF_LINK:
  699                 /*
  700                  * No mapping needed.
  701                  */
  702                 *llsa = NULL;
  703                 return 0;
  704 
  705 #ifdef INET
  706         case AF_INET:
  707                 sin = (struct sockaddr_in *)sa;
  708                 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
  709                         return EADDRNOTAVAIL;
  710                 *llsa = NULL;
  711                 return 0;
  712 #endif
  713 #ifdef INET6
  714         case AF_INET6:
  715                 sin6 = (struct sockaddr_in6 *)sa;
  716                 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
  717                         /*
  718                          * An IP6 address of 0 means listen to all
  719                          * of the Ethernet multicast address used for IP6.
  720                          * (This is used for multicast routers.)
  721                          */
  722                         ifp->if_flags |= IFF_ALLMULTI;
  723                         *llsa = NULL;
  724                         return 0;
  725                 }
  726                 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
  727                         return EADDRNOTAVAIL;
  728                 *llsa = NULL;
  729                 return 0;
  730 #endif
  731 
  732         default:
  733                 /*
  734                  * Well, the text isn't quite right, but it's the name
  735                  * that counts...
  736                  */
  737                 return EAFNOSUPPORT;
  738         }
  739 }
  740 
  741 void
  742 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
  743 {
  744         struct fw_com *fc = IFP2FWC(ifp);
  745         struct ifaddr *ifa;
  746         struct sockaddr_dl *sdl;
  747         static const char* speeds[] = {
  748                 "S100", "S200", "S400", "S800",
  749                 "S1600", "S3200"
  750         };
  751 
  752         fc->fc_speed = llc->sspd;
  753         STAILQ_INIT(&fc->fc_frags);
  754 
  755         ifp->if_addrlen = sizeof(struct fw_hwaddr);
  756         ifp->if_hdrlen = 0;
  757         if_attach(ifp);
  758         ifp->if_mtu = 1500;     /* XXX */
  759         ifp->if_output = firewire_output;
  760         ifp->if_resolvemulti = firewire_resolvemulti;
  761         ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
  762 
  763         ifa = ifp->if_addr;
  764         KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
  765         sdl = (struct sockaddr_dl *)ifa->ifa_addr;
  766         sdl->sdl_type = IFT_IEEE1394;
  767         sdl->sdl_alen = ifp->if_addrlen;
  768         bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
  769 
  770         bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
  771             sizeof(struct fw_hwaddr));
  772 
  773         if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
  774             (uint8_t *) &llc->sender_unique_ID_hi, ":",
  775             ntohs(llc->sender_unicast_FIFO_hi),
  776             ntohl(llc->sender_unicast_FIFO_lo),
  777             speeds[llc->sspd],
  778             (2 << llc->sender_max_rec));
  779 }
  780 
  781 void
  782 firewire_ifdetach(struct ifnet *ifp)
  783 {
  784         bpfdetach(ifp);
  785         if_detach(ifp);
  786 }
  787 
  788 void
  789 firewire_busreset(struct ifnet *ifp)
  790 {
  791         struct fw_com *fc = IFP2FWC(ifp);
  792         struct fw_reass *r;
  793         struct mbuf *m;
  794 
  795         /*
  796          * Discard any partial datagrams since the host ids may have changed.
  797          */
  798         while ((r = STAILQ_FIRST(&fc->fc_frags))) {
  799                 STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
  800                 while (r->fr_frags) {
  801                         m = r->fr_frags;
  802                         r->fr_frags = m->m_nextpkt;
  803                         m_freem(m);
  804                 }
  805                 free(r, M_TEMP);
  806         }
  807 }
  808 
  809 static void *
  810 firewire_alloc(u_char type, struct ifnet *ifp)
  811 {
  812         struct fw_com   *fc;
  813 
  814         fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
  815         fc->fc_ifp = ifp;
  816 
  817         return (fc);
  818 }
  819 
  820 static void
  821 firewire_free(void *com, u_char type)
  822 {
  823 
  824         free(com, M_FWCOM);
  825 }
  826 
  827 static int
  828 firewire_modevent(module_t mod, int type, void *data)
  829 {
  830 
  831         switch (type) {
  832         case MOD_LOAD:
  833                 if_register_com_alloc(IFT_IEEE1394,
  834                     firewire_alloc, firewire_free);
  835                 break;
  836         case MOD_UNLOAD:
  837                 if_deregister_com_alloc(IFT_IEEE1394);
  838                 break;
  839         default:
  840                 return (EOPNOTSUPP);
  841         }
  842 
  843         return (0);
  844 }
  845 
  846 static moduledata_t firewire_mod = {
  847         "if_firewire",
  848         firewire_modevent,
  849         0
  850 };
  851 
  852 DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
  853 MODULE_VERSION(if_firewire, 1);

Cache object: 4e30aba7c753c8b083a734eecb5d62d9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.