The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_tap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: if_tap.c,v 1.24.2.1 2009/12/03 09:44:35 sborrill Exp $ */
    2 
    3 /*
    4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
    5  *  All rights reserved.
    6  *
    7  *  This code is derived from software contributed to the NetBSD Foundation
    8  *   by Quentin Garnier.
    9  *
   10  *  Redistribution and use in source and binary forms, with or without
   11  *  modification, are permitted provided that the following conditions
   12  *  are met:
   13  *  1. Redistributions of source code must retain the above copyright
   14  *     notice, this list of conditions and the following disclaimer.
   15  *  2. Redistributions in binary form must reproduce the above copyright
   16  *     notice, this list of conditions and the following disclaimer in the
   17  *     documentation and/or other materials provided with the distribution.
   18  *  3. All advertising materials mentioning features or use of this software
   19  *     must display the following acknowledgement:
   20  *         This product includes software developed by the NetBSD
   21  *         Foundation, Inc. and its contributors.
   22  *  4. Neither the name of The NetBSD Foundation nor the names of its
   23  *     contributors may be used to endorse or promote products derived
   24  *     from this software without specific prior written permission.
   25  *
   26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   36  *  POSSIBILITY OF SUCH DAMAGE.
   37  */
   38 
   39 /*
   40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
   41  * device to the system, but can also be accessed by userland through a
   42  * character device interface, which allows reading and injecting frames.
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.24.2.1 2009/12/03 09:44:35 sborrill Exp $");
   47 
   48 #if defined(_KERNEL_OPT)
   49 #include "bpfilter.h"
   50 #endif
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/kernel.h>
   55 #include <sys/malloc.h>
   56 #include <sys/conf.h>
   57 #include <sys/device.h>
   58 #include <sys/file.h>
   59 #include <sys/filedesc.h>
   60 #include <sys/ksyms.h>
   61 #include <sys/poll.h>
   62 #include <sys/select.h>
   63 #include <sys/sockio.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/kauth.h>
   66 
   67 #include <net/if.h>
   68 #include <net/if_dl.h>
   69 #include <net/if_ether.h>
   70 #include <net/if_media.h>
   71 #include <net/if_tap.h>
   72 #if NBPFILTER > 0
   73 #include <net/bpf.h>
   74 #endif
   75 
   76 /*
   77  * sysctl node management
   78  *
   79  * It's not really possible to use a SYSCTL_SETUP block with
   80  * current LKM implementation, so it is easier to just define
   81  * our own function.
   82  *
   83  * The handler function is a "helper" in Andrew Brown's sysctl
   84  * framework terminology.  It is used as a gateway for sysctl
   85  * requests over the nodes.
   86  *
   87  * tap_log allows the module to log creations of nodes and
   88  * destroy them all at once using sysctl_teardown.
   89  */
   90 static int tap_node;
   91 static int      tap_sysctl_handler(SYSCTLFN_PROTO);
   92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
   93 
   94 /*
   95  * Since we're an Ethernet device, we need the 3 following
   96  * components: a leading struct device, a struct ethercom,
   97  * and also a struct ifmedia since we don't attach a PHY to
   98  * ourselves. We could emulate one, but there's no real
   99  * point.
  100  */
  101 
  102 struct tap_softc {
  103         struct device   sc_dev;
  104         struct ifmedia  sc_im;
  105         struct ethercom sc_ec;
  106         int             sc_flags;
  107 #define TAP_INUSE       0x00000001      /* tap device can only be opened once */
  108 #define TAP_ASYNCIO     0x00000002      /* user is using async I/O (SIGIO) on the device */
  109 #define TAP_NBIO        0x00000004      /* user wants calls to avoid blocking */
  110 #define TAP_GOING       0x00000008      /* interface is being destroyed */
  111         struct selinfo  sc_rsel;
  112         pid_t           sc_pgid; /* For async. IO */
  113         struct lock     sc_rdlock;
  114         struct simplelock       sc_kqlock;
  115 };
  116 
  117 /* autoconf(9) glue */
  118 
  119 void    tapattach(int);
  120 
  121 static int      tap_match(struct device *, struct cfdata *, void *);
  122 static void     tap_attach(struct device *, struct device *, void *);
  123 static int      tap_detach(struct device*, int);
  124 
  125 CFATTACH_DECL(tap, sizeof(struct tap_softc),
  126     tap_match, tap_attach, tap_detach, NULL);
  127 extern struct cfdriver tap_cd;
  128 
  129 /* Real device access routines */
  130 static int      tap_dev_close(struct tap_softc *);
  131 static int      tap_dev_read(int, struct uio *, int);
  132 static int      tap_dev_write(int, struct uio *, int);
  133 static int      tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
  134 static int      tap_dev_poll(int, int, struct lwp *);
  135 static int      tap_dev_kqfilter(int, struct knote *);
  136 
  137 /* Fileops access routines */
  138 static int      tap_fops_close(struct file *, struct lwp *);
  139 static int      tap_fops_read(struct file *, off_t *, struct uio *,
  140     kauth_cred_t, int);
  141 static int      tap_fops_write(struct file *, off_t *, struct uio *,
  142     kauth_cred_t, int);
  143 static int      tap_fops_ioctl(struct file *, u_long, void *,
  144     struct lwp *);
  145 static int      tap_fops_poll(struct file *, int, struct lwp *);
  146 static int      tap_fops_kqfilter(struct file *, struct knote *);
  147 
  148 static const struct fileops tap_fileops = {
  149         tap_fops_read,
  150         tap_fops_write,
  151         tap_fops_ioctl,
  152         fnullop_fcntl,
  153         tap_fops_poll,
  154         fbadop_stat,
  155         tap_fops_close,
  156         tap_fops_kqfilter,
  157 };
  158 
  159 /* Helper for cloning open() */
  160 static int      tap_dev_cloner(struct lwp *);
  161 
  162 /* Character device routines */
  163 static int      tap_cdev_open(dev_t, int, int, struct lwp *);
  164 static int      tap_cdev_close(dev_t, int, int, struct lwp *);
  165 static int      tap_cdev_read(dev_t, struct uio *, int);
  166 static int      tap_cdev_write(dev_t, struct uio *, int);
  167 static int      tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
  168 static int      tap_cdev_poll(dev_t, int, struct lwp *);
  169 static int      tap_cdev_kqfilter(dev_t, struct knote *);
  170 
  171 const struct cdevsw tap_cdevsw = {
  172         tap_cdev_open, tap_cdev_close,
  173         tap_cdev_read, tap_cdev_write,
  174         tap_cdev_ioctl, nostop, notty,
  175         tap_cdev_poll, nommap,
  176         tap_cdev_kqfilter,
  177         D_OTHER,
  178 };
  179 
  180 #define TAP_CLONER      0xfffff         /* Maximal minor value */
  181 
  182 /* kqueue-related routines */
  183 static void     tap_kqdetach(struct knote *);
  184 static int      tap_kqread(struct knote *, long);
  185 
  186 /*
  187  * Those are needed by the if_media interface.
  188  */
  189 
  190 static int      tap_mediachange(struct ifnet *);
  191 static void     tap_mediastatus(struct ifnet *, struct ifmediareq *);
  192 
  193 /*
  194  * Those are needed by the ifnet interface, and would typically be
  195  * there for any network interface driver.
  196  * Some other routines are optional: watchdog and drain.
  197  */
  198 
  199 static void     tap_start(struct ifnet *);
  200 static void     tap_stop(struct ifnet *, int);
  201 static int      tap_init(struct ifnet *);
  202 static int      tap_ioctl(struct ifnet *, u_long, caddr_t);
  203 
  204 /* This is an internal function to keep tap_ioctl readable */
  205 static int      tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
  206 
  207 /*
  208  * tap is a clonable interface, although it is highly unrealistic for
  209  * an Ethernet device.
  210  *
  211  * Here are the bits needed for a clonable interface.
  212  */
  213 static int      tap_clone_create(struct if_clone *, int);
  214 static int      tap_clone_destroy(struct ifnet *);
  215 
  216 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
  217                                         tap_clone_create,
  218                                         tap_clone_destroy);
  219 
  220 /* Helper functionis shared by the two cloning code paths */
  221 static struct tap_softc *       tap_clone_creator(int);
  222 int     tap_clone_destroyer(struct device *);
  223 
  224 void
  225 tapattach(int n)
  226 {
  227         int error;
  228 
  229         error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
  230         if (error) {
  231                 aprint_error("%s: unable to register cfattach\n",
  232                     tap_cd.cd_name);
  233                 (void)config_cfdriver_detach(&tap_cd);
  234                 return;
  235         }
  236 
  237         if_clone_attach(&tap_cloners);
  238 }
  239 
  240 /* Pretty much useless for a pseudo-device */
  241 static int
  242 tap_match(struct device *self, struct cfdata *cfdata,
  243     void *arg)
  244 {
  245         return (1);
  246 }
  247 
  248 void
  249 tap_attach(struct device *parent, struct device *self,
  250     void *aux)
  251 {
  252         struct tap_softc *sc = (struct tap_softc *)self;
  253         struct ifnet *ifp;
  254         const struct sysctlnode *node;
  255         u_int8_t enaddr[ETHER_ADDR_LEN] =
  256             { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
  257         char enaddrstr[3 * ETHER_ADDR_LEN];
  258         struct timeval tv;
  259         uint32_t ui;
  260         int error;
  261 
  262         aprint_normal("%s: faking Ethernet device\n",
  263             self->dv_xname);
  264 
  265         /*
  266          * In order to obtain unique initial Ethernet address on a host,
  267          * do some randomisation using the current uptime.  It's not meant
  268          * for anything but avoiding hard-coding an address.
  269          */
  270         getmicrouptime(&tv);
  271         ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
  272         memcpy(enaddr+3, (u_int8_t *)&ui, 3);
  273 
  274         aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
  275             ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
  276 
  277         /*
  278          * Why 1000baseT? Why not? You can add more.
  279          *
  280          * Note that there are 3 steps: init, one or several additions to
  281          * list of supported media, and in the end, the selection of one
  282          * of them.
  283          */
  284         ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
  285         ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
  286         ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
  287         ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
  288         ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
  289         ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
  290         ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
  291         ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
  292         ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
  293 
  294         /*
  295          * One should note that an interface must do multicast in order
  296          * to support IPv6.
  297          */
  298         ifp = &sc->sc_ec.ec_if;
  299         strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
  300         ifp->if_softc   = sc;
  301         ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  302         ifp->if_ioctl   = tap_ioctl;
  303         ifp->if_start   = tap_start;
  304         ifp->if_stop    = tap_stop;
  305         ifp->if_init    = tap_init;
  306         IFQ_SET_READY(&ifp->if_snd);
  307 
  308         sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
  309 
  310         /* Those steps are mandatory for an Ethernet driver, the fisrt call
  311          * being common to all network interface drivers. */
  312         if_attach(ifp);
  313         ether_ifattach(ifp, enaddr);
  314 
  315         sc->sc_flags = 0;
  316 
  317         /*
  318          * Add a sysctl node for that interface.
  319          *
  320          * The pointer transmitted is not a string, but instead a pointer to
  321          * the softc structure, which we can use to build the string value on
  322          * the fly in the helper function of the node.  See the comments for
  323          * tap_sysctl_handler for details.
  324          *
  325          * Usually sysctl_createv is called with CTL_CREATE as the before-last
  326          * component.  However, we can allocate a number ourselves, as we are
  327          * the only consumer of the net.link.<iface> node.  In this case, the
  328          * unit number is conveniently used to number the node.  CTL_CREATE
  329          * would just work, too.
  330          */
  331         if ((error = sysctl_createv(NULL, 0, NULL,
  332             &node, CTLFLAG_READWRITE,
  333             CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
  334             tap_sysctl_handler, 0, sc, 18,
  335             CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
  336             CTL_EOL)) != 0)
  337                 aprint_error("%s: sysctl_createv returned %d, ignoring\n",
  338                     sc->sc_dev.dv_xname, error);
  339 
  340         /*
  341          * Initialize the two locks for the device.
  342          *
  343          * We need a lock here because even though the tap device can be
  344          * opened only once, the file descriptor might be passed to another
  345          * process, say a fork(2)ed child.
  346          *
  347          * The Giant saves us from most of the hassle, but since the read
  348          * operation can sleep, we don't want two processes to wake up at
  349          * the same moment and both try and dequeue a single packet.
  350          *
  351          * The queue for event listeners (used by kqueue(9), see below) has
  352          * to be protected, too, but we don't need the same level of
  353          * complexity for that lock, so a simple spinning lock is fine.
  354          */
  355         lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
  356         simple_lock_init(&sc->sc_kqlock);
  357 }
  358 
  359 /*
  360  * When detaching, we do the inverse of what is done in the attach
  361  * routine, in reversed order.
  362  */
  363 static int
  364 tap_detach(struct device* self, int flags)
  365 {
  366         struct tap_softc *sc = (struct tap_softc *)self;
  367         struct ifnet *ifp = &sc->sc_ec.ec_if;
  368         int error, s;
  369 
  370         /*
  371          * Some processes might be sleeping on "tap", so we have to make
  372          * them release their hold on the device.
  373          *
  374          * The LK_DRAIN operation will wait for every locked process to
  375          * release their hold.
  376          */
  377         sc->sc_flags |= TAP_GOING;
  378         s = splnet();
  379         tap_stop(ifp, 1);
  380         if_down(ifp);
  381         splx(s);
  382         lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
  383 
  384         /*
  385          * Destroying a single leaf is a very straightforward operation using
  386          * sysctl_destroyv.  One should be sure to always end the path with
  387          * CTL_EOL.
  388          */
  389         if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
  390             device_unit(&sc->sc_dev), CTL_EOL)) != 0)
  391                 aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
  392                     sc->sc_dev.dv_xname, error);
  393         ether_ifdetach(ifp);
  394         if_detach(ifp);
  395         ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
  396 
  397         return (0);
  398 }
  399 
  400 /*
  401  * This function is called by the ifmedia layer to notify the driver
  402  * that the user requested a media change.  A real driver would
  403  * reconfigure the hardware.
  404  */
  405 static int
  406 tap_mediachange(struct ifnet *ifp)
  407 {
  408         return (0);
  409 }
  410 
  411 /*
  412  * Here the user asks for the currently used media.
  413  */
  414 static void
  415 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
  416 {
  417         struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
  418         imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
  419 }
  420 
  421 /*
  422  * This is the function where we SEND packets.
  423  *
  424  * There is no 'receive' equivalent.  A typical driver will get
  425  * interrupts from the hardware, and from there will inject new packets
  426  * into the network stack.
  427  *
  428  * Once handled, a packet must be freed.  A real driver might not be able
  429  * to fit all the pending packets into the hardware, and is allowed to
  430  * return before having sent all the packets.  It should then use the
  431  * if_flags flag IFF_OACTIVE to notify the upper layer.
  432  *
  433  * There are also other flags one should check, such as IFF_PAUSE.
  434  *
  435  * It is our duty to make packets available to BPF listeners.
  436  *
  437  * You should be aware that this function is called by the Ethernet layer
  438  * at splnet().
  439  *
  440  * When the device is opened, we have to pass the packet(s) to the
  441  * userland.  For that we stay in OACTIVE mode while the userland gets
  442  * the packets, and we send a signal to the processes waiting to read.
  443  *
  444  * wakeup(sc) is the counterpart to the tsleep call in
  445  * tap_dev_read, while selnotify() is used for kevent(2) and
  446  * poll(2) (which includes select(2)) listeners.
  447  */
  448 static void
  449 tap_start(struct ifnet *ifp)
  450 {
  451         struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
  452         struct mbuf *m0;
  453 
  454         if ((sc->sc_flags & TAP_INUSE) == 0) {
  455                 /* Simply drop packets */
  456                 for(;;) {
  457                         IFQ_DEQUEUE(&ifp->if_snd, m0);
  458                         if (m0 == NULL)
  459                                 return;
  460 
  461                         ifp->if_opackets++;
  462 #if NBPFILTER > 0
  463                         if (ifp->if_bpf)
  464                                 bpf_mtap(ifp->if_bpf, m0);
  465 #endif
  466 
  467                         m_freem(m0);
  468                 }
  469         } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
  470                 ifp->if_flags |= IFF_OACTIVE;
  471                 wakeup(sc);
  472                 selnotify(&sc->sc_rsel, 1);
  473                 if (sc->sc_flags & TAP_ASYNCIO)
  474                         fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
  475                             POLLIN|POLLRDNORM, NULL);
  476         }
  477 }
  478 
  479 /*
  480  * A typical driver will only contain the following handlers for
  481  * ioctl calls, except SIOCSIFPHYADDR.
  482  * The latter is a hack I used to set the Ethernet address of the
  483  * faked device.
  484  *
  485  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
  486  * called under splnet().
  487  */
  488 static int
  489 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
  490 {
  491         struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
  492         struct ifreq *ifr = (struct ifreq *)data;
  493         int s, error;
  494 
  495         s = splnet();
  496 
  497         switch (cmd) {
  498         case SIOCSIFMEDIA:
  499         case SIOCGIFMEDIA:
  500                 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
  501                 break;
  502         case SIOCSIFPHYADDR:
  503                 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
  504                 break;
  505         default:
  506                 error = ether_ioctl(ifp, cmd, data);
  507                 if (error == ENETRESET)
  508                         error = 0;
  509                 break;
  510         }
  511 
  512         splx(s);
  513 
  514         return (error);
  515 }
  516 
  517 /*
  518  * Helper function to set Ethernet address.  This shouldn't be done there,
  519  * and should actually be available to all Ethernet drivers, real or not.
  520  */
  521 static int
  522 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
  523 {
  524         struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
  525 
  526         if (sa->sa_family != AF_LINK)
  527                 return (EINVAL);
  528 
  529         memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
  530 
  531         return (0);
  532 }
  533 
  534 /*
  535  * _init() would typically be called when an interface goes up,
  536  * meaning it should configure itself into the state in which it
  537  * can send packets.
  538  */
  539 static int
  540 tap_init(struct ifnet *ifp)
  541 {
  542         ifp->if_flags |= IFF_RUNNING;
  543 
  544         tap_start(ifp);
  545 
  546         return (0);
  547 }
  548 
  549 /*
  550  * _stop() is called when an interface goes down.  It is our
  551  * responsability to validate that state by clearing the
  552  * IFF_RUNNING flag.
  553  *
  554  * We have to wake up all the sleeping processes to have the pending
  555  * read requests cancelled.
  556  */
  557 static void
  558 tap_stop(struct ifnet *ifp, int disable)
  559 {
  560         struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
  561 
  562         ifp->if_flags &= ~IFF_RUNNING;
  563         wakeup(sc);
  564         selnotify(&sc->sc_rsel, 1);
  565         if (sc->sc_flags & TAP_ASYNCIO)
  566                 fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
  567 }
  568 
  569 /*
  570  * The 'create' command of ifconfig can be used to create
  571  * any numbered instance of a given device.  Thus we have to
  572  * make sure we have enough room in cd_devs to create the
  573  * user-specified instance.  config_attach_pseudo will do this
  574  * for us.
  575  */
  576 static int
  577 tap_clone_create(struct if_clone *ifc, int unit)
  578 {
  579         if (tap_clone_creator(unit) == NULL) {
  580                 aprint_error("%s%d: unable to attach an instance\n",
  581                     tap_cd.cd_name, unit);
  582                 return (ENXIO);
  583         }
  584 
  585         return (0);
  586 }
  587 
  588 /*
  589  * tap(4) can be cloned by two ways:
  590  *   using 'ifconfig tap0 create', which will use the network
  591  *     interface cloning API, and call tap_clone_create above.
  592  *   opening the cloning device node, whose minor number is TAP_CLONER.
  593  *     See below for an explanation on how this part work.
  594  *
  595  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
  596  * autoconf(9) choose a unit number for us.  This is what happens when
  597  * the cloner is openend, while the ifcloner interface creates a device
  598  * with a specific unit number.
  599  */
  600 static struct tap_softc *
  601 tap_clone_creator(int unit)
  602 {
  603         struct cfdata *cf;
  604 
  605         cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
  606         cf->cf_name = tap_cd.cd_name;
  607         cf->cf_atname = tap_ca.ca_name;
  608         cf->cf_unit = unit;
  609         cf->cf_fstate = FSTATE_STAR;
  610 
  611         return (struct tap_softc *)config_attach_pseudo(cf);
  612 }
  613 
  614 /*
  615  * The clean design of if_clone and autoconf(9) makes that part
  616  * really straightforward.  The second argument of config_detach
  617  * means neither QUIET nor FORCED.
  618  */
  619 static int
  620 tap_clone_destroy(struct ifnet *ifp)
  621 {
  622         return tap_clone_destroyer((struct device *)ifp->if_softc);
  623 }
  624 
  625 int
  626 tap_clone_destroyer(struct device *dev)
  627 {
  628         struct cfdata *cf = device_cfdata(dev);
  629         int error;
  630 
  631         if ((error = config_detach(dev, 0)) != 0)
  632                 aprint_error("%s: unable to detach instance\n",
  633                     dev->dv_xname);
  634         free(cf, M_DEVBUF);
  635 
  636         return (error);
  637 }
  638 
  639 /*
  640  * tap(4) is a bit of an hybrid device.  It can be used in two different
  641  * ways:
  642  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
  643  *  2. open /dev/tap, get a new interface created and read/write off it.
  644  *     That interface is destroyed when the process that had it created exits.
  645  *
  646  * The first way is managed by the cdevsw structure, and you access interfaces
  647  * through a (major, minor) mapping:  tap4 is obtained by the minor number
  648  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
  649  *
  650  * The second way is the so-called "cloning" device.  It's a special minor
  651  * number (chosen as the maximal number, to allow as much tap devices as
  652  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
  653  * call ends in tap_cdev_open.  The actual place where it is handled is
  654  * tap_dev_cloner.
  655  *
  656  * An tap device cannot be opened more than once at a time, so the cdevsw
  657  * part of open() does nothing but noting that the interface is being used and
  658  * hence ready to actually handle packets.
  659  */
  660 
  661 static int
  662 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
  663 {
  664         struct tap_softc *sc;
  665 
  666         if (minor(dev) == TAP_CLONER)
  667                 return tap_dev_cloner(l);
  668 
  669         sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
  670         if (sc == NULL)
  671                 return (ENXIO);
  672 
  673         /* The device can only be opened once */
  674         if (sc->sc_flags & TAP_INUSE)
  675                 return (EBUSY);
  676         sc->sc_flags |= TAP_INUSE;
  677         return (0);
  678 }
  679 
  680 /*
  681  * There are several kinds of cloning devices, and the most simple is the one
  682  * tap(4) uses.  What it does is change the file descriptor with a new one,
  683  * with its own fileops structure (which maps to the various read, write,
  684  * ioctl functions).  It starts allocating a new file descriptor with falloc,
  685  * then actually creates the new tap devices.
  686  *
  687  * Once those two steps are successful, we can re-wire the existing file
  688  * descriptor to its new self.  This is done with fdclone():  it fills the fp
  689  * structure as needed (notably f_data gets filled with the fifth parameter
  690  * passed, the unit of the tap device which will allows us identifying the
  691  * device later), and returns EMOVEFD.
  692  *
  693  * That magic value is interpreted by sys_open() which then replaces the
  694  * current file descriptor by the new one (through a magic member of struct
  695  * lwp, l_dupfd).
  696  *
  697  * The tap device is flagged as being busy since it otherwise could be
  698  * externally accessed through the corresponding device node with the cdevsw
  699  * interface.
  700  */
  701 
  702 static int
  703 tap_dev_cloner(struct lwp *l)
  704 {
  705         struct tap_softc *sc;
  706         struct file *fp;
  707         int error, fd;
  708 
  709         if ((error = falloc(l, &fp, &fd)) != 0)
  710                 return (error);
  711 
  712         if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
  713                 FILE_UNUSE(fp, l);
  714                 ffree(fp);
  715                 return (ENXIO);
  716         }
  717 
  718         sc->sc_flags |= TAP_INUSE;
  719 
  720         return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
  721             (void *)(intptr_t)device_unit(&sc->sc_dev));
  722 }
  723 
  724 /*
  725  * While all other operations (read, write, ioctl, poll and kqfilter) are
  726  * really the same whether we are in cdevsw or fileops mode, the close()
  727  * function is slightly different in the two cases.
  728  *
  729  * As for the other, the core of it is shared in tap_dev_close.  What
  730  * it does is sufficient for the cdevsw interface, but the cloning interface
  731  * needs another thing:  the interface is destroyed when the processes that
  732  * created it closes it.
  733  */
  734 static int
  735 tap_cdev_close(dev_t dev, int flags, int fmt,
  736     struct lwp *l)
  737 {
  738         struct tap_softc *sc =
  739             (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
  740 
  741         if (sc == NULL)
  742                 return (ENXIO);
  743 
  744         return tap_dev_close(sc);
  745 }
  746 
  747 /*
  748  * It might happen that the administrator used ifconfig to externally destroy
  749  * the interface.  In that case, tap_fops_close will be called while
  750  * tap_detach is already happening.  If we called it again from here, we
  751  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
  752  */
  753 static int
  754 tap_fops_close(struct file *fp, struct lwp *l)
  755 {
  756         int unit = (intptr_t)fp->f_data;
  757         struct tap_softc *sc;
  758         int error;
  759 
  760         sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
  761         if (sc == NULL)
  762                 return (ENXIO);
  763 
  764         /* tap_dev_close currently always succeeds, but it might not
  765          * always be the case. */
  766         if ((error = tap_dev_close(sc)) != 0)
  767                 return (error);
  768 
  769         /* Destroy the device now that it is no longer useful,
  770          * unless it's already being destroyed. */
  771         if ((sc->sc_flags & TAP_GOING) != 0)
  772                 return (0);
  773 
  774         return tap_clone_destroyer((struct device *)sc);
  775 }
  776 
  777 static int
  778 tap_dev_close(struct tap_softc *sc)
  779 {
  780         struct ifnet *ifp;
  781         int s;
  782 
  783         s = splnet();
  784         /* Let tap_start handle packets again */
  785         ifp = &sc->sc_ec.ec_if;
  786         ifp->if_flags &= ~IFF_OACTIVE;
  787 
  788         /* Purge output queue */
  789         if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
  790                 struct mbuf *m;
  791 
  792                 for (;;) {
  793                         IFQ_DEQUEUE(&ifp->if_snd, m);
  794                         if (m == NULL)
  795                                 break;
  796 
  797                         ifp->if_opackets++;
  798 #if NBPFILTER > 0
  799                         if (ifp->if_bpf)
  800                                 bpf_mtap(ifp->if_bpf, m);
  801 #endif
  802                         m_freem(m);
  803                 }
  804         }
  805         splx(s);
  806 
  807         sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
  808 
  809         return (0);
  810 }
  811 
  812 static int
  813 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
  814 {
  815         return tap_dev_read(minor(dev), uio, flags);
  816 }
  817 
  818 static int
  819 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
  820     kauth_cred_t cred, int flags)
  821 {
  822         return tap_dev_read((intptr_t)fp->f_data, uio, flags);
  823 }
  824 
  825 static int
  826 tap_dev_read(int unit, struct uio *uio, int flags)
  827 {
  828         struct tap_softc *sc =
  829             (struct tap_softc *)device_lookup(&tap_cd, unit);
  830         struct ifnet *ifp;
  831         struct mbuf *m, *n;
  832         int error = 0, s;
  833 
  834         if (sc == NULL)
  835                 return (ENXIO);
  836 
  837         ifp = &sc->sc_ec.ec_if;
  838         if ((ifp->if_flags & IFF_UP) == 0)
  839                 return (EHOSTDOWN);
  840 
  841         /*
  842          * In the TAP_NBIO case, we have to make sure we won't be sleeping
  843          */
  844         if ((sc->sc_flags & TAP_NBIO) &&
  845             lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
  846                 return (EWOULDBLOCK);
  847         error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
  848         if (error != 0)
  849                 return (error);
  850 
  851         s = splnet();
  852         if (IFQ_IS_EMPTY(&ifp->if_snd)) {
  853                 ifp->if_flags &= ~IFF_OACTIVE;
  854                 splx(s);
  855                 /*
  856                  * We must release the lock before sleeping, and re-acquire it
  857                  * after.
  858                  */
  859                 (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
  860                 if (sc->sc_flags & TAP_NBIO)
  861                         error = EWOULDBLOCK;
  862                 else
  863                         error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
  864 
  865                 if (error != 0)
  866                         return (error);
  867                 /* The device might have been downed */
  868                 if ((ifp->if_flags & IFF_UP) == 0)
  869                         return (EHOSTDOWN);
  870                 if ((sc->sc_flags & TAP_NBIO) &&
  871                     lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
  872                         return (EWOULDBLOCK);
  873                 error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
  874                 if (error != 0)
  875                         return (error);
  876                 s = splnet();
  877         }
  878 
  879         IFQ_DEQUEUE(&ifp->if_snd, m);
  880         ifp->if_flags &= ~IFF_OACTIVE;
  881         splx(s);
  882         if (m == NULL) {
  883                 error = 0;
  884                 goto out;
  885         }
  886 
  887         ifp->if_opackets++;
  888 #if NBPFILTER > 0
  889         if (ifp->if_bpf)
  890                 bpf_mtap(ifp->if_bpf, m);
  891 #endif
  892 
  893         /*
  894          * One read is one packet.
  895          */
  896         do {
  897                 error = uiomove(mtod(m, caddr_t),
  898                     min(m->m_len, uio->uio_resid), uio);
  899                 MFREE(m, n);
  900                 m = n;
  901         } while (m != NULL && uio->uio_resid > 0 && error == 0);
  902 
  903         if (m != NULL)
  904                 m_freem(m);
  905 
  906 out:
  907         (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
  908         return (error);
  909 }
  910 
  911 static int
  912 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
  913 {
  914         return tap_dev_write(minor(dev), uio, flags);
  915 }
  916 
  917 static int
  918 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
  919     kauth_cred_t cred, int flags)
  920 {
  921         return tap_dev_write((intptr_t)fp->f_data, uio, flags);
  922 }
  923 
  924 static int
  925 tap_dev_write(int unit, struct uio *uio, int flags)
  926 {
  927         struct tap_softc *sc =
  928             (struct tap_softc *)device_lookup(&tap_cd, unit);
  929         struct ifnet *ifp;
  930         struct mbuf *m, **mp;
  931         int error = 0;
  932         int s;
  933 
  934         if (sc == NULL)
  935                 return (ENXIO);
  936 
  937         ifp = &sc->sc_ec.ec_if;
  938 
  939         /* One write, one packet, that's the rule */
  940         MGETHDR(m, M_DONTWAIT, MT_DATA);
  941         if (m == NULL) {
  942                 ifp->if_ierrors++;
  943                 return (ENOBUFS);
  944         }
  945         m->m_pkthdr.len = uio->uio_resid;
  946 
  947         mp = &m;
  948         while (error == 0 && uio->uio_resid > 0) {
  949                 if (*mp != m) {
  950                         MGET(*mp, M_DONTWAIT, MT_DATA);
  951                         if (*mp == NULL) {
  952                                 error = ENOBUFS;
  953                                 break;
  954                         }
  955                 }
  956                 (*mp)->m_len = min(MHLEN, uio->uio_resid);
  957                 error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
  958                 mp = &(*mp)->m_next;
  959         }
  960         if (error) {
  961                 ifp->if_ierrors++;
  962                 m_freem(m);
  963                 return (error);
  964         }
  965 
  966         ifp->if_ipackets++;
  967         m->m_pkthdr.rcvif = ifp;
  968 
  969 #if NBPFILTER > 0
  970         if (ifp->if_bpf)
  971                 bpf_mtap(ifp->if_bpf, m);
  972 #endif
  973         s =splnet();
  974         (*ifp->if_input)(ifp, m);
  975         splx(s);
  976 
  977         return (0);
  978 }
  979 
  980 static int
  981 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
  982     struct lwp *l)
  983 {
  984         return tap_dev_ioctl(minor(dev), cmd, data, l);
  985 }
  986 
  987 static int
  988 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
  989 {
  990         return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
  991 }
  992 
  993 static int
  994 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
  995 {
  996         struct tap_softc *sc =
  997             (struct tap_softc *)device_lookup(&tap_cd, unit);
  998         int error = 0;
  999 
 1000         if (sc == NULL)
 1001                 return (ENXIO);
 1002 
 1003         switch (cmd) {
 1004         case FIONREAD:
 1005                 {
 1006                         struct ifnet *ifp = &sc->sc_ec.ec_if;
 1007                         struct mbuf *m;
 1008                         int s;
 1009 
 1010                         s = splnet();
 1011                         IFQ_POLL(&ifp->if_snd, m);
 1012 
 1013                         if (m == NULL)
 1014                                 *(int *)data = 0;
 1015                         else
 1016                                 *(int *)data = m->m_pkthdr.len;
 1017                         splx(s);
 1018                 } break;
 1019         case TIOCSPGRP:
 1020         case FIOSETOWN:
 1021                 error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
 1022                 break;
 1023         case TIOCGPGRP:
 1024         case FIOGETOWN:
 1025                 error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
 1026                 break;
 1027         case FIOASYNC:
 1028                 if (*(int *)data)
 1029                         sc->sc_flags |= TAP_ASYNCIO;
 1030                 else
 1031                         sc->sc_flags &= ~TAP_ASYNCIO;
 1032                 break;
 1033         case FIONBIO:
 1034                 if (*(int *)data)
 1035                         sc->sc_flags |= TAP_NBIO;
 1036                 else
 1037                         sc->sc_flags &= ~TAP_NBIO;
 1038                 break;
 1039         case TAPGIFNAME:
 1040                 {
 1041                         struct ifreq *ifr = (struct ifreq *)data;
 1042                         struct ifnet *ifp = &sc->sc_ec.ec_if;
 1043 
 1044                         strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
 1045                 } break;
 1046         default:
 1047                 error = ENOTTY;
 1048                 break;
 1049         }
 1050 
 1051         return (0);
 1052 }
 1053 
 1054 static int
 1055 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
 1056 {
 1057         return tap_dev_poll(minor(dev), events, l);
 1058 }
 1059 
 1060 static int
 1061 tap_fops_poll(struct file *fp, int events, struct lwp *l)
 1062 {
 1063         return tap_dev_poll((intptr_t)fp->f_data, events, l);
 1064 }
 1065 
 1066 static int
 1067 tap_dev_poll(int unit, int events, struct lwp *l)
 1068 {
 1069         struct tap_softc *sc =
 1070             (struct tap_softc *)device_lookup(&tap_cd, unit);
 1071         int revents = 0;
 1072 
 1073         if (sc == NULL)
 1074                 return (ENXIO);
 1075 
 1076         if (events & (POLLIN|POLLRDNORM)) {
 1077                 struct ifnet *ifp = &sc->sc_ec.ec_if;
 1078                 struct mbuf *m;
 1079                 int s;
 1080 
 1081                 s = splnet();
 1082                 IFQ_POLL(&ifp->if_snd, m);
 1083                 splx(s);
 1084 
 1085                 if (m != NULL)
 1086                         revents |= events & (POLLIN|POLLRDNORM);
 1087                 else {
 1088                         simple_lock(&sc->sc_kqlock);
 1089                         selrecord(l, &sc->sc_rsel);
 1090                         simple_unlock(&sc->sc_kqlock);
 1091                 }
 1092         }
 1093         revents |= events & (POLLOUT|POLLWRNORM);
 1094 
 1095         return (revents);
 1096 }
 1097 
 1098 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
 1099         tap_kqread };
 1100 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
 1101         filt_seltrue };
 1102 
 1103 static int
 1104 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
 1105 {
 1106         return tap_dev_kqfilter(minor(dev), kn);
 1107 }
 1108 
 1109 static int
 1110 tap_fops_kqfilter(struct file *fp, struct knote *kn)
 1111 {
 1112         return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
 1113 }
 1114 
 1115 static int
 1116 tap_dev_kqfilter(int unit, struct knote *kn)
 1117 {
 1118         struct tap_softc *sc =
 1119             (struct tap_softc *)device_lookup(&tap_cd, unit);
 1120 
 1121         if (sc == NULL)
 1122                 return (ENXIO);
 1123 
 1124         switch(kn->kn_filter) {
 1125         case EVFILT_READ:
 1126                 kn->kn_fop = &tap_read_filterops;
 1127                 break;
 1128         case EVFILT_WRITE:
 1129                 kn->kn_fop = &tap_seltrue_filterops;
 1130                 break;
 1131         default:
 1132                 return (1);
 1133         }
 1134 
 1135         kn->kn_hook = sc;
 1136         simple_lock(&sc->sc_kqlock);
 1137         SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
 1138         simple_unlock(&sc->sc_kqlock);
 1139         return (0);
 1140 }
 1141 
 1142 static void
 1143 tap_kqdetach(struct knote *kn)
 1144 {
 1145         struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
 1146 
 1147         simple_lock(&sc->sc_kqlock);
 1148         SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
 1149         simple_unlock(&sc->sc_kqlock);
 1150 }
 1151 
 1152 static int
 1153 tap_kqread(struct knote *kn, long hint)
 1154 {
 1155         struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
 1156         struct ifnet *ifp = &sc->sc_ec.ec_if;
 1157         struct mbuf *m;
 1158         int s;
 1159 
 1160         s = splnet();
 1161         IFQ_POLL(&ifp->if_snd, m);
 1162 
 1163         if (m == NULL)
 1164                 kn->kn_data = 0;
 1165         else
 1166                 kn->kn_data = m->m_pkthdr.len;
 1167         splx(s);
 1168         return (kn->kn_data != 0 ? 1 : 0);
 1169 }
 1170 
 1171 /*
 1172  * sysctl management routines
 1173  * You can set the address of an interface through:
 1174  * net.link.tap.tap<number>
 1175  *
 1176  * Note the consistent use of tap_log in order to use
 1177  * sysctl_teardown at unload time.
 1178  *
 1179  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
 1180  * blocks register a function in a special section of the kernel
 1181  * (called a link set) which is used at init_sysctl() time to cycle
 1182  * through all those functions to create the kernel's sysctl tree.
 1183  *
 1184  * It is not (currently) possible to use link sets in a LKM, so the
 1185  * easiest is to simply call our own setup routine at load time.
 1186  *
 1187  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
 1188  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
 1189  * whole kernel sysctl tree is built, it is not possible to add any
 1190  * permanent node.
 1191  *
 1192  * It should be noted that we're not saving the sysctlnode pointer
 1193  * we are returned when creating the "tap" node.  That structure
 1194  * cannot be trusted once out of the calling function, as it might
 1195  * get reused.  So we just save the MIB number, and always give the
 1196  * full path starting from the root for later calls to sysctl_createv
 1197  * and sysctl_destroyv.
 1198  */
 1199 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
 1200 {
 1201         const struct sysctlnode *node;
 1202         int error = 0;
 1203 
 1204         if ((error = sysctl_createv(clog, 0, NULL, NULL,
 1205             CTLFLAG_PERMANENT,
 1206             CTLTYPE_NODE, "net", NULL,
 1207             NULL, 0, NULL, 0,
 1208             CTL_NET, CTL_EOL)) != 0)
 1209                 return;
 1210 
 1211         if ((error = sysctl_createv(clog, 0, NULL, NULL,
 1212             CTLFLAG_PERMANENT,
 1213             CTLTYPE_NODE, "link", NULL,
 1214             NULL, 0, NULL, 0,
 1215             CTL_NET, AF_LINK, CTL_EOL)) != 0)
 1216                 return;
 1217 
 1218         /*
 1219          * The first four parameters of sysctl_createv are for management.
 1220          *
 1221          * The four that follows, here starting with a '' for the flags,
 1222          * describe the node.
 1223          *
 1224          * The next series of four set its value, through various possible
 1225          * means.
 1226          *
 1227          * Last but not least, the path to the node is described.  That path
 1228          * is relative to the given root (third argument).  Here we're
 1229          * starting from the root.
 1230          */
 1231         if ((error = sysctl_createv(clog, 0, NULL, &node,
 1232             CTLFLAG_PERMANENT,
 1233             CTLTYPE_NODE, "tap", NULL,
 1234             NULL, 0, NULL, 0,
 1235             CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
 1236                 return;
 1237         tap_node = node->sysctl_num;
 1238 }
 1239 
 1240 /*
 1241  * The helper functions make Andrew Brown's interface really
 1242  * shine.  It makes possible to create value on the fly whether
 1243  * the sysctl value is read or written.
 1244  *
 1245  * As shown as an example in the man page, the first step is to
 1246  * create a copy of the node to have sysctl_lookup work on it.
 1247  *
 1248  * Here, we have more work to do than just a copy, since we have
 1249  * to create the string.  The first step is to collect the actual
 1250  * value of the node, which is a convenient pointer to the softc
 1251  * of the interface.  From there we create the string and use it
 1252  * as the value, but only for the *copy* of the node.
 1253  *
 1254  * Then we let sysctl_lookup do the magic, which consists in
 1255  * setting oldp and newp as required by the operation.  When the
 1256  * value is read, that means that the string will be copied to
 1257  * the user, and when it is written, the new value will be copied
 1258  * over in the addr array.
 1259  *
 1260  * If newp is NULL, the user was reading the value, so we don't
 1261  * have anything else to do.  If a new value was written, we
 1262  * have to check it.
 1263  *
 1264  * If it is incorrect, we can return an error and leave 'node' as
 1265  * it is:  since it is a copy of the actual node, the change will
 1266  * be forgotten.
 1267  *
 1268  * Upon a correct input, we commit the change to the ifnet
 1269  * structure of our interface.
 1270  */
 1271 static int
 1272 tap_sysctl_handler(SYSCTLFN_ARGS)
 1273 {
 1274         struct sysctlnode node;
 1275         struct tap_softc *sc;
 1276         struct ifnet *ifp;
 1277         int error;
 1278         size_t len;
 1279         char addr[3 * ETHER_ADDR_LEN];
 1280 
 1281         node = *rnode;
 1282         sc = node.sysctl_data;
 1283         ifp = &sc->sc_ec.ec_if;
 1284         (void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
 1285         node.sysctl_data = addr;
 1286         error = sysctl_lookup(SYSCTLFN_CALL(&node));
 1287         if (error || newp == NULL)
 1288                 return (error);
 1289 
 1290         len = strlen(addr);
 1291         if (len < 11 || len > 17)
 1292                 return (EINVAL);
 1293 
 1294         /* Commit change */
 1295         if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
 1296                 return (EINVAL);
 1297         return (error);
 1298 }

Cache object: c8ee0ac764cf19463a05cc7899149025


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.