The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_vlan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  * 
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD$
   30  */
   31 
   32 /*
   33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
   34  * Might be extended some day to also handle IEEE 802.1p priority
   35  * tagging.  This is sort of sneaky in the implementation, since
   36  * we need to pretend to be enough of an Ethernet implementation
   37  * to make arp work.  The way we do this is by telling everyone
   38  * that we are an Ethernet, and then catch the packets that
   39  * ether_output() left on our output queue queue when it calls
   40  * if_start(), rewrite them for use by the real outgoing interface,
   41  * and ask it to send them.
   42  *
   43  *
   44  * XXX It's incorrect to assume that we must always kludge up
   45  * headers on the physical device's behalf: some devices support
   46  * VLAN tag insersion and extraction in firmware. For these cases,
   47  * one can change the behavior of the vlan interface by setting
   48  * the LINK0 flag on it (that is setting the vlan interface's LINK0
   49  * flag, _not_ the parent's LINK0 flag; we try to leave the parent
   50  * alone). If the interface as the LINK0 flag set, then it will
   51  * not modify the ethernet header on output because the parent
   52  * can do that for itself. On input, the parent can call vlan_input_tag()
   53  * directly in order to supply us with an incoming mbuf and the vlan
   54  * tag value that goes with it.
   55  */
   56 
   57 #include "vlan.h"
   58 #if NVLAN > 0
   59 #include "opt_inet.h"
   60 #include "bpfilter.h"
   61 
   62 #include <sys/param.h>
   63 #include <sys/kernel.h>
   64 #include <sys/malloc.h>
   65 #include <sys/mbuf.h>
   66 #include <sys/queue.h>
   67 #include <sys/socket.h>
   68 #include <sys/sockio.h>
   69 #include <sys/sysctl.h>
   70 #include <sys/systm.h>
   71 
   72 #if NBPFILTER > 0
   73 #include <net/bpf.h>
   74 #endif
   75 #include <net/ethernet.h>
   76 #include <net/if.h>
   77 #include <net/if_arp.h>
   78 #include <net/if_dl.h>
   79 #include <net/if_types.h>
   80 #include <net/if_vlan_var.h>
   81 
   82 #ifdef INET
   83 #include <netinet/in.h>
   84 #include <netinet/if_ether.h>
   85 #endif
   86 
   87 SYSCTL_NODE(_net_link, IFT_8021_VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
   88 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
   89 
   90 u_int   vlan_proto = ETHERTYPE_VLAN;
   91 SYSCTL_INT(_net_link_vlan_link, VLANCTL_PROTO, proto, CTLFLAG_RW, &vlan_proto,
   92            0, "Ethernet protocol used for VLAN encapsulation");
   93 
   94 static  struct ifvlan ifv_softc[NVLAN];
   95 
   96 static  void vlan_start(struct ifnet *ifp);
   97 static  void vlan_ifinit(void *foo);
   98 static  int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
   99 static  int vlan_setmulti(struct ifnet *ifp);
  100 static  int vlan_unconfig(struct ifnet *ifp);
  101 static  int vlan_config(struct ifvlan *ifv, struct ifnet *p);
  102 
  103 /*
  104  * Program our multicast filter. What we're actually doing is
  105  * programming the multicast filter of the parent. This has the
  106  * side effect of causing the parent interface to receive multicast
  107  * traffic that it doesn't really want, which ends up being discarded
  108  * later by the upper protocol layers. Unfortunately, there's no way
  109  * to avoid this: there really is only one physical interface.
  110  */
  111 static int vlan_setmulti(struct ifnet *ifp)
  112 {
  113         struct ifnet            *ifp_p;
  114         struct ifmultiaddr      *ifma, *rifma = NULL;
  115         struct ifvlan           *sc;
  116         struct vlan_mc_entry    *mc = NULL;
  117         struct sockaddr_dl      sdl;
  118         int                     error;
  119 
  120         /* Find the parent. */
  121         sc = ifp->if_softc;
  122         ifp_p = sc->ifv_p;
  123 
  124         sdl.sdl_len = ETHER_ADDR_LEN;
  125         sdl.sdl_family = AF_LINK;
  126 
  127         /* First, remove any existing filter entries. */
  128         while(sc->vlan_mc_listhead.slh_first != NULL) {
  129                 mc = sc->vlan_mc_listhead.slh_first;
  130                 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
  131                 error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
  132                 if (error)
  133                         return(error);
  134                 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
  135                 free(mc, M_DEVBUF);
  136         }
  137 
  138         /* Now program new ones. */
  139         for (ifma = ifp->if_multiaddrs.lh_first;
  140             ifma != NULL;ifma = ifma->ifma_link.le_next) {
  141                 if (ifma->ifma_addr->sa_family != AF_LINK)
  142                         continue;
  143                 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
  144                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
  145                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
  146                 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
  147                 error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
  148                 if (error)
  149                         return(error);
  150         }
  151 
  152         return(0);
  153 }
  154 
  155 static void
  156 vlaninit(void *dummy)
  157 {
  158         int i;
  159 
  160         for (i = 0; i < NVLAN; i++) {
  161                 struct ifnet *ifp = &ifv_softc[i].ifv_if;
  162 
  163                 ifp->if_softc = &ifv_softc[i];
  164                 ifp->if_name = "vlan";
  165                 ifp->if_unit = i;
  166                 /* NB: flags are not set here */
  167                 ifp->if_linkmib = &ifv_softc[i].ifv_mib;
  168                 ifp->if_linkmiblen = sizeof ifv_softc[i].ifv_mib;
  169                 /* NB: mtu is not set here */
  170 
  171                 ifp->if_init = vlan_ifinit;
  172                 ifp->if_start = vlan_start;
  173                 ifp->if_ioctl = vlan_ioctl;
  174                 ifp->if_output = ether_output;
  175                 ifp->if_snd.ifq_maxlen = ifqmaxlen;
  176                 if_attach(ifp);
  177                 ether_ifattach(ifp);
  178 #if NBPFILTER > 0
  179                 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
  180 #endif
  181                 /* Now undo some of the damage... */
  182                 ifp->if_data.ifi_type = IFT_8021_VLAN;
  183                 ifp->if_data.ifi_hdrlen = EVL_ENCAPLEN;
  184                 ifp->if_resolvemulti = 0;
  185         }
  186 }
  187 PSEUDO_SET(vlaninit, if_vlan);
  188 
  189 static void
  190 vlan_ifinit(void *foo)
  191 {
  192         return;
  193 }
  194 
  195 static void
  196 vlan_start(struct ifnet *ifp)
  197 {
  198         struct ifvlan *ifv;
  199         struct ifnet *p;
  200         struct ether_vlan_header *evl;
  201         struct mbuf *m;
  202 
  203         ifv = ifp->if_softc;
  204         p = ifv->ifv_p;
  205 
  206         ifp->if_flags |= IFF_OACTIVE;
  207         for (;;) {
  208                 IF_DEQUEUE(&ifp->if_snd, m);
  209                 if (m == 0)
  210                         break;
  211 #if NBPFILTER > 0
  212                 if (ifp->if_bpf)
  213                         bpf_mtap(ifp, m);
  214 #endif /* NBPFILTER > 0 */
  215 
  216                 /*
  217                  * If the LINK0 flag is set, it means the underlying interface
  218                  * can do VLAN tag insertion itself and doesn't require us to
  219                  * create a special header for it. In this case, we just pass
  220                  * the packet along. However, we need some way to tell the
  221                  * interface where the packet came from so that it knows how
  222                  * to find the VLAN tag to use, so we set the rcvif in the
  223                  * mbuf header to our ifnet.
  224                  *
  225                  * Note: we also set the M_PROTO1 flag in the mbuf to let
  226                  * the parent driver know that the rcvif pointer is really
  227                  * valid. We need to do this because sometimes mbufs will
  228                  * be allocated by other parts of the system that contain
  229                  * garbage in the rcvif pointer. Using the M_PROTO1 flag
  230                  * lets the driver perform a proper sanity check and avoid
  231                  * following potentially bogus rcvif pointers off into
  232                  * never-never land.
  233                  */
  234                 if (ifp->if_flags & IFF_LINK0) {
  235                         m->m_pkthdr.rcvif = ifp;
  236                         m->m_flags |= M_PROTO1;
  237                 } else {
  238                         M_PREPEND(m, EVL_ENCAPLEN, M_DONTWAIT);
  239                         if (m == 0)
  240                                 continue;
  241                         /* M_PREPEND takes care of m_len, m_pkthdr.len for us */
  242 
  243                         /*
  244                          * Transform the Ethernet header into an Ethernet header
  245                          * with 802.1Q encapsulation.
  246                          */
  247                         bcopy(mtod(m, char *) + EVL_ENCAPLEN, mtod(m, char *),
  248                               sizeof(struct ether_header));
  249                         evl = mtod(m, struct ether_vlan_header *);
  250                         evl->evl_proto = evl->evl_encap_proto;
  251                         evl->evl_encap_proto = htons(vlan_proto);
  252                         evl->evl_tag = htons(ifv->ifv_tag);
  253 #ifdef DEBUG
  254                         printf("vlan_start: %*D\n", sizeof *evl,
  255                             (char *)evl, ":");
  256 #endif
  257                 }
  258 
  259                 /*
  260                  * Send it, precisely as ether_output() would have.
  261                  * We are already running at splimp.
  262                  */
  263                 if (IF_QFULL(&p->if_snd)) {
  264                         IF_DROP(&p->if_snd);
  265                                 /* XXX stats */
  266                         ifp->if_oerrors++;
  267                         m_freem(m);
  268                         continue;
  269                 }
  270                 IF_ENQUEUE(&p->if_snd, m);
  271                 if ((p->if_flags & IFF_OACTIVE) == 0) {
  272                         p->if_start(p);
  273                         ifp->if_opackets++;
  274                 }
  275         }
  276         ifp->if_flags &= ~IFF_OACTIVE;
  277 }
  278 
  279 int
  280 vlan_input_tag(struct ether_header *eh, struct mbuf *m, u_int16_t t)
  281 {
  282         int i;
  283         struct ifvlan *ifv;
  284 
  285         for (i = 0; i < NVLAN; i++) {
  286                 ifv = &ifv_softc[i];
  287                 if (ifv->ifv_tag == t)
  288                         break;
  289         }
  290 
  291         if (i >= NVLAN || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
  292                 m_free(m);
  293                 return -1;      /* So the parent can take note */
  294         }
  295 
  296         /*
  297          * Having found a valid vlan interface corresponding to
  298          * the given source interface and vlan tag, run the
  299          * the real packet through ethert_input().
  300          */
  301         m->m_pkthdr.rcvif = &ifv->ifv_if;
  302 
  303         if (ifv->ifv_if.if_bpf) {
  304                 /*
  305                  * Do the usual BPF fakery.  Note that we don't support
  306                  * promiscuous mode here, since it would require the
  307                  * drivers to know about VLANs and we're not ready for
  308                  * that yet.
  309                  */
  310                 struct mbuf m0;
  311                 m0.m_next = m;
  312                 m0.m_len = sizeof(struct ether_header);
  313                 m0.m_data = (char *)eh;
  314                 bpf_mtap(&ifv->ifv_if, &m0);
  315         }
  316         ifv->ifv_if.if_ipackets++;
  317         ether_input(&ifv->ifv_if, eh, m);
  318         return 0;
  319 }
  320 
  321 int
  322 vlan_input(struct ether_header *eh, struct mbuf *m)
  323 {
  324         int i;
  325         struct ifvlan *ifv;
  326 
  327         for (i = 0; i < NVLAN; i++) {
  328                 ifv = &ifv_softc[i];
  329                 if (m->m_pkthdr.rcvif == ifv->ifv_p
  330                     && (EVL_VLANOFTAG(ntohs(*mtod(m, u_int16_t *)))
  331                         == ifv->ifv_tag))
  332                         break;
  333         }
  334 
  335         if (i >= NVLAN || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
  336                 m_freem(m);
  337                 return -1;      /* so ether_input can take note */
  338         }
  339 
  340         /*
  341          * Having found a valid vlan interface corresponding to
  342          * the given source interface and vlan tag, remove the
  343          * encapsulation, and run the real packet through
  344          * ether_input() a second time (it had better be
  345          * reentrant!).
  346          */
  347         m->m_pkthdr.rcvif = &ifv->ifv_if;
  348         eh->ether_type = mtod(m, u_int16_t *)[1];
  349         m->m_data += EVL_ENCAPLEN;
  350         m->m_len -= EVL_ENCAPLEN;
  351         m->m_pkthdr.len -= EVL_ENCAPLEN;
  352 
  353 #if NBPFILTER > 0
  354         if (ifv->ifv_if.if_bpf) {
  355                 /*
  356                  * Do the usual BPF fakery.  Note that we don't support
  357                  * promiscuous mode here, since it would require the
  358                  * drivers to know about VLANs and we're not ready for
  359                  * that yet.
  360                  */
  361                 struct mbuf m0;
  362                 m0.m_next = m;
  363                 m0.m_len = sizeof(struct ether_header);
  364                 m0.m_data = (char *)eh;
  365                 bpf_mtap(&ifv->ifv_if, &m0);
  366         }
  367 #endif
  368         ether_input(&ifv->ifv_if, eh, m);
  369         return 0;
  370 }
  371 
  372 static int
  373 vlan_config(struct ifvlan *ifv, struct ifnet *p)
  374 {
  375         struct ifaddr *ifa1, *ifa2;
  376         struct sockaddr_dl *sdl1, *sdl2;
  377 
  378         if (p->if_data.ifi_type != IFT_ETHER)
  379                 return EPROTONOSUPPORT;
  380         if (ifv->ifv_p)
  381                 return EBUSY;
  382         ifv->ifv_p = p;
  383         if (p->if_data.ifi_hdrlen == sizeof(struct ether_vlan_header))
  384                 ifv->ifv_if.if_mtu = p->if_mtu;
  385         else
  386                 ifv->ifv_if.if_mtu = p->if_data.ifi_mtu - EVL_ENCAPLEN;
  387 
  388         /*
  389          * Preserve the state of the LINK0 flag for ourselves.
  390          */
  391         ifv->ifv_if.if_flags = (p->if_flags & ~(IFF_LINK0));
  392 
  393         /*
  394          * Set up our ``Ethernet address'' to reflect the underlying
  395          * physical interface's.
  396          */
  397         ifa1 = ifnet_addrs[ifv->ifv_if.if_index - 1];
  398         ifa2 = ifnet_addrs[p->if_index - 1];
  399         sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
  400         sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
  401         sdl1->sdl_type = IFT_ETHER;
  402         sdl1->sdl_alen = ETHER_ADDR_LEN;
  403         bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
  404         bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
  405         return 0;
  406 }
  407 
  408 static int
  409 vlan_unconfig(struct ifnet *ifp)
  410 {
  411         struct ifaddr *ifa;
  412         struct sockaddr_dl *sdl;
  413         struct vlan_mc_entry *mc;
  414         struct ifvlan *ifv;
  415         struct ifnet *p;
  416         int error;
  417 
  418         ifv = ifp->if_softc;
  419         p = ifv->ifv_p;
  420 
  421         /*
  422          * Since the interface is being unconfigured, we need to
  423          * empty the list of multicast groups that we may have joined
  424          * while we were alive and remove them from the parent's list
  425          * as well.
  426          */
  427         while(ifv->vlan_mc_listhead.slh_first != NULL) {
  428                 struct sockaddr_dl      sdl;
  429 
  430                 sdl.sdl_len = ETHER_ADDR_LEN;
  431                 sdl.sdl_family = AF_LINK;
  432                 mc = ifv->vlan_mc_listhead.slh_first;
  433                 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
  434                 error = if_delmulti(p, (struct sockaddr *)&sdl);
  435                 error = if_delmulti(ifp, (struct sockaddr *)&sdl);
  436                 if (error)
  437                         return(error);
  438                 SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
  439                 free(mc, M_DEVBUF);
  440         }
  441 
  442         /* Disconnect from parent. */
  443         ifv->ifv_p = NULL;
  444         ifv->ifv_if.if_mtu = ETHERMTU;
  445 
  446         /* Clear our MAC address. */
  447         ifa = ifnet_addrs[ifv->ifv_if.if_index - 1];
  448         sdl = (struct sockaddr_dl *)ifa->ifa_addr;
  449         sdl->sdl_type = IFT_ETHER;
  450         sdl->sdl_alen = ETHER_ADDR_LEN;
  451         bzero(LLADDR(sdl), ETHER_ADDR_LEN);
  452         bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
  453 
  454         return 0;
  455 }
  456 
  457 static int
  458 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
  459 {
  460         struct ifaddr *ifa;
  461         struct ifnet *p;
  462         struct ifreq *ifr;
  463         struct ifvlan *ifv;
  464         struct vlanreq vlr;
  465         int error = 0;
  466 
  467         ifr = (struct ifreq *)data;
  468         ifa = (struct ifaddr *)data;
  469         ifv = ifp->if_softc;
  470 
  471         switch (cmd) {
  472         case SIOCSIFADDR:
  473                 ifp->if_flags |= IFF_UP;
  474 
  475                 switch (ifa->ifa_addr->sa_family) {
  476 #ifdef INET
  477                 case AF_INET:
  478                         arp_ifinit(&ifv->ifv_ac, ifa);
  479                         break;
  480 #endif
  481                 default:
  482                         break;
  483                 }
  484                 break;
  485 
  486         case SIOCGIFADDR:
  487                 {
  488                         struct sockaddr *sa;
  489 
  490                         sa = (struct sockaddr *) &ifr->ifr_data;
  491                         bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr,
  492                               (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
  493                 }
  494                 break;
  495 
  496         case SIOCSIFMTU:
  497                 /*
  498                  * Set the interface MTU.
  499                  * This is bogus.  The underlying interface might support
  500                  * jumbo frames.
  501                  */
  502                 if (ifr->ifr_mtu > ETHERMTU) {
  503                         error = EINVAL;
  504                 } else {
  505                         ifp->if_mtu = ifr->ifr_mtu;
  506                 }
  507                 break;
  508 
  509         case SIOCSETVLAN:
  510                 error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
  511                 if (error)
  512                         break;
  513                 if (vlr.vlr_parent[0] == '\0') {
  514                         vlan_unconfig(ifp);
  515                         ifv->ifv_p = 0;
  516                         if_down(ifp);
  517                         ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
  518                         break;
  519                 }
  520                 p = ifunit(vlr.vlr_parent);
  521                 if (p == 0) {
  522                         error = ENOENT;
  523                         break;
  524                 }
  525                 error = vlan_config(ifv, p);
  526                 if (error)
  527                         break;
  528                 ifv->ifv_tag = vlr.vlr_tag;
  529                 ifp->if_flags |= IFF_RUNNING;
  530                 break;
  531                 
  532         case SIOCGETVLAN:
  533                 bzero(&vlr, sizeof vlr);
  534                 if (ifv->ifv_p) {
  535                         snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent),
  536                             "%s%d", ifv->ifv_p->if_name, ifv->ifv_p->if_unit);
  537                         vlr.vlr_tag = ifv->ifv_tag;
  538                 }
  539                 error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
  540                 break;
  541                 
  542         case SIOCSIFFLAGS:
  543                 /*
  544                  * We don't support all-multicast or promiscuous modes
  545                  * right now because it would require help from the
  546                  * underlying drivers, which hasn't been implemented.
  547                  */
  548                 if (ifr->ifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
  549                         ifp->if_flags &= ~(IFF_PROMISC|IFF_ALLMULTI);
  550                         error = EINVAL;
  551                 }
  552                 break;
  553         case SIOCADDMULTI:
  554         case SIOCDELMULTI:
  555                 error = vlan_setmulti(ifp);
  556                 break;
  557         default:
  558                 error = EINVAL;
  559         }
  560         return error;
  561 }
  562 
  563 #endif /* NVLAN > 0 */

Cache object: 0d3d7dc365e34db5d518a35bd145e1f4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.