The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_vlan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  * 
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD: releng/5.0/sys/net/if_vlan.c 106932 2002-11-14 23:43:16Z sam $
   30  */
   31 
   32 /*
   33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
   34  * Might be extended some day to also handle IEEE 802.1p priority
   35  * tagging.  This is sort of sneaky in the implementation, since
   36  * we need to pretend to be enough of an Ethernet implementation
   37  * to make arp work.  The way we do this is by telling everyone
   38  * that we are an Ethernet, and then catch the packets that
   39  * ether_output() left on our output queue when it calls
   40  * if_start(), rewrite them for use by the real outgoing interface,
   41  * and ask it to send them.
   42  */
   43 
   44 #include "opt_inet.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/kernel.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mbuf.h>
   50 #include <sys/module.h>
   51 #include <sys/queue.h>
   52 #include <sys/socket.h>
   53 #include <sys/sockio.h>
   54 #include <sys/sysctl.h>
   55 #include <sys/systm.h>
   56 
   57 #include <net/bpf.h>
   58 #include <net/ethernet.h>
   59 #include <net/if.h>
   60 #include <net/if_arp.h>
   61 #include <net/if_dl.h>
   62 #include <net/if_types.h>
   63 #include <net/if_vlan_var.h>
   64 
   65 #ifdef INET
   66 #include <netinet/in.h>
   67 #include <netinet/if_ether.h>
   68 #endif
   69 
   70 #define VLANNAME        "vlan"
   71 
   72 struct vlan_mc_entry {
   73         struct ether_addr               mc_addr;
   74         SLIST_ENTRY(vlan_mc_entry)      mc_entries;
   75 };
   76 
   77 struct  ifvlan {
   78         struct  arpcom ifv_ac;  /* make this an interface */
   79         struct  ifnet *ifv_p;   /* parent inteface of this vlan */
   80         struct  ifv_linkmib {
   81                 int     ifvm_parent;
   82                 int     ifvm_encaplen;  /* encapsulation length */
   83                 int     ifvm_mtufudge;  /* MTU fudged by this much */
   84                 int     ifvm_mintu;     /* min transmission unit */
   85                 u_int16_t ifvm_proto; /* encapsulation ethertype */
   86                 u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
   87         }       ifv_mib;
   88         SLIST_HEAD(__vlan_mchead, vlan_mc_entry)        vlan_mc_listhead;
   89         LIST_ENTRY(ifvlan) ifv_list;
   90         int     ifv_flags;
   91 };
   92 #define ifv_if  ifv_ac.ac_if
   93 #define ifv_tag ifv_mib.ifvm_tag
   94 #define ifv_encaplen    ifv_mib.ifvm_encaplen
   95 #define ifv_mtufudge    ifv_mib.ifvm_mtufudge
   96 #define ifv_mintu       ifv_mib.ifvm_mintu
   97 
   98 #define IFVF_PROMISC    0x01            /* promiscuous mode enabled */
   99 
  100 SYSCTL_DECL(_net_link);
  101 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
  102 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
  103 
  104 static MALLOC_DEFINE(M_VLAN, "vlan", "802.1Q Virtual LAN Interface");
  105 static LIST_HEAD(, ifvlan) ifv_list;
  106 
  107 static  int vlan_clone_create(struct if_clone *, int);
  108 static  void vlan_clone_destroy(struct ifnet *);
  109 static  void vlan_start(struct ifnet *ifp);
  110 static  void vlan_ifinit(void *foo);
  111 static  void vlan_input(struct ifnet *ifp, struct mbuf *m);
  112 static  int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
  113 static  int vlan_setmulti(struct ifnet *ifp);
  114 static  int vlan_unconfig(struct ifnet *ifp);
  115 static  int vlan_config(struct ifvlan *ifv, struct ifnet *p);
  116 
  117 struct if_clone vlan_cloner = IF_CLONE_INITIALIZER("vlan",
  118     vlan_clone_create, vlan_clone_destroy, 0, IF_MAXUNIT);
  119 
  120 /*
  121  * Program our multicast filter. What we're actually doing is
  122  * programming the multicast filter of the parent. This has the
  123  * side effect of causing the parent interface to receive multicast
  124  * traffic that it doesn't really want, which ends up being discarded
  125  * later by the upper protocol layers. Unfortunately, there's no way
  126  * to avoid this: there really is only one physical interface.
  127  */
  128 static int
  129 vlan_setmulti(struct ifnet *ifp)
  130 {
  131         struct ifnet            *ifp_p;
  132         struct ifmultiaddr      *ifma, *rifma = NULL;
  133         struct ifvlan           *sc;
  134         struct vlan_mc_entry    *mc = NULL;
  135         struct sockaddr_dl      sdl;
  136         int                     error;
  137 
  138         /* Find the parent. */
  139         sc = ifp->if_softc;
  140         ifp_p = sc->ifv_p;
  141 
  142         /*
  143          * If we don't have a parent, just remember the membership for
  144          * when we do.
  145          */
  146         if (ifp_p == NULL)
  147                 return(0);
  148 
  149         bzero((char *)&sdl, sizeof sdl);
  150         sdl.sdl_len = sizeof sdl;
  151         sdl.sdl_family = AF_LINK;
  152         sdl.sdl_index = ifp_p->if_index;
  153         sdl.sdl_type = IFT_ETHER;
  154         sdl.sdl_alen = ETHER_ADDR_LEN;
  155 
  156         /* First, remove any existing filter entries. */
  157         while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
  158                 mc = SLIST_FIRST(&sc->vlan_mc_listhead);
  159                 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
  160                 error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
  161                 if (error)
  162                         return(error);
  163                 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
  164                 free(mc, M_VLAN);
  165         }
  166 
  167         /* Now program new ones. */
  168         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  169                 if (ifma->ifma_addr->sa_family != AF_LINK)
  170                         continue;
  171                 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
  172                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
  173                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
  174                 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
  175                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
  176                     LLADDR(&sdl), ETHER_ADDR_LEN);
  177                 error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
  178                 if (error)
  179                         return(error);
  180         }
  181 
  182         return(0);
  183 }
  184 
  185 /*
  186  * VLAN support can be loaded as a module.  The only place in the
  187  * system that's intimately aware of this is ether_input.  We hook
  188  * into this code through vlan_input_p which is defined there and
  189  * set here.  Noone else in the system should be aware of this so
  190  * we use an explicit reference here.
  191  *
  192  * NB: Noone should ever need to check if vlan_input_p is null or
  193  *     not.  This is because interfaces have a count of the number
  194  *     of active vlans (if_nvlans) and this should never be bumped
  195  *     except by vlan_config--which is in this module so therefore
  196  *     the module must be loaded and vlan_input_p must be non-NULL.
  197  */
  198 extern  void (*vlan_input_p)(struct ifnet *, struct mbuf *);
  199 
  200 static int
  201 vlan_modevent(module_t mod, int type, void *data) 
  202 { 
  203 
  204         switch (type) { 
  205         case MOD_LOAD: 
  206                 LIST_INIT(&ifv_list);
  207                 vlan_input_p = vlan_input;
  208                 if_clone_attach(&vlan_cloner);
  209                 break; 
  210         case MOD_UNLOAD: 
  211                 if_clone_detach(&vlan_cloner);
  212                 vlan_input_p = NULL;
  213                 while (!LIST_EMPTY(&ifv_list))
  214                         vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
  215                 break;
  216         } 
  217         return 0; 
  218 } 
  219 
  220 static moduledata_t vlan_mod = { 
  221         "if_vlan", 
  222         vlan_modevent, 
  223         0
  224 }; 
  225 
  226 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
  227 
  228 static int
  229 vlan_clone_create(struct if_clone *ifc, int unit)
  230 {
  231         struct ifvlan *ifv;
  232         struct ifnet *ifp;
  233         int s;
  234 
  235         ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
  236         ifp = &ifv->ifv_if;
  237         SLIST_INIT(&ifv->vlan_mc_listhead);
  238 
  239         s = splnet();
  240         LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
  241         splx(s);
  242 
  243         ifp->if_softc = ifv;
  244         ifp->if_name = "vlan";
  245         ifp->if_unit = unit;
  246         /* NB: flags are not set here */
  247         ifp->if_linkmib = &ifv->ifv_mib;
  248         ifp->if_linkmiblen = sizeof ifv->ifv_mib;
  249         /* NB: mtu is not set here */
  250 
  251         ifp->if_init = vlan_ifinit;
  252         ifp->if_start = vlan_start;
  253         ifp->if_ioctl = vlan_ioctl;
  254         ifp->if_snd.ifq_maxlen = ifqmaxlen;
  255         ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr);
  256         /* Now undo some of the damage... */
  257         ifp->if_baudrate = 0;
  258         ifp->if_type = IFT_L2VLAN;
  259         ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
  260 
  261         return (0);
  262 }
  263 
  264 static void
  265 vlan_clone_destroy(struct ifnet *ifp)
  266 {
  267         struct ifvlan *ifv = ifp->if_softc;
  268         int s;
  269 
  270         s = splnet();
  271         LIST_REMOVE(ifv, ifv_list);
  272         vlan_unconfig(ifp);
  273         splx(s);
  274 
  275         ether_ifdetach(ifp);
  276 
  277         free(ifv, M_VLAN);
  278 }
  279 
  280 static void
  281 vlan_ifinit(void *foo)
  282 {
  283         return;
  284 }
  285 
  286 static void
  287 vlan_start(struct ifnet *ifp)
  288 {
  289         struct ifvlan *ifv;
  290         struct ifnet *p;
  291         struct ether_vlan_header *evl;
  292         struct mbuf *m;
  293 
  294         ifv = ifp->if_softc;
  295         p = ifv->ifv_p;
  296 
  297         ifp->if_flags |= IFF_OACTIVE;
  298         for (;;) {
  299                 IF_DEQUEUE(&ifp->if_snd, m);
  300                 if (m == 0)
  301                         break;
  302                 BPF_MTAP(ifp, m);
  303 
  304                 /*
  305                  * Do not run parent's if_start() if the parent is not up,
  306                  * or parent's driver will cause a system crash.
  307                  */
  308                 if ((p->if_flags & (IFF_UP | IFF_RUNNING)) !=
  309                                         (IFF_UP | IFF_RUNNING)) {
  310                         m_freem(m);
  311                         ifp->if_collisions++;
  312                         continue;
  313                 }
  314 
  315                 /*
  316                  * If underlying interface can do VLAN tag insertion itself,
  317                  * just pass the packet along. However, we need some way to
  318                  * tell the interface where the packet came from so that it
  319                  * knows how to find the VLAN tag to use, so we attach a
  320                  * packet tag that holds it.
  321                  */
  322                 if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
  323                         struct m_tag *mtag = m_tag_alloc(MTAG_VLAN,
  324                                                          MTAG_VLAN_TAG,
  325                                                          sizeof (u_int),
  326                                                          M_DONTWAIT);
  327                         if (mtag == NULL) {
  328                                 ifp->if_oerrors++;
  329                                 m_freem(m);
  330                                 continue;
  331                         }
  332                         *(u_int*)(mtag+1) = ifv->ifv_tag;
  333                         m_tag_prepend(m, mtag);
  334                 } else {
  335                         M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
  336                         if (m == NULL) {
  337                                 if_printf(ifp, "unable to prepend VLAN header");
  338                                 ifp->if_ierrors++;
  339                                 continue;
  340                         }
  341                         /* M_PREPEND takes care of m_len, m_pkthdr.len for us */
  342 
  343                         if (m->m_len < sizeof(*evl)) {
  344                                 m = m_pullup(m, sizeof(*evl));
  345                                 if (m == NULL) {
  346                                         if_printf(ifp,
  347                                             "cannot pullup VLAN header");
  348                                         ifp->if_ierrors++;
  349                                         continue;
  350                                 }
  351                         }
  352 
  353                         /*
  354                          * Transform the Ethernet header into an Ethernet header
  355                          * with 802.1Q encapsulation.
  356                          */
  357                         bcopy(mtod(m, char *) + ifv->ifv_encaplen,
  358                               mtod(m, char *), sizeof(struct ether_header));
  359                         evl = mtod(m, struct ether_vlan_header *);
  360                         evl->evl_proto = evl->evl_encap_proto;
  361                         evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
  362                         evl->evl_tag = htons(ifv->ifv_tag);
  363 #ifdef DEBUG
  364                         printf("vlan_start: %*D\n", (int)sizeof *evl,
  365                             (unsigned char *)evl, ":");
  366 #endif
  367                 }
  368 
  369                 /*
  370                  * Send it, precisely as ether_output() would have.
  371                  * We are already running at splimp.
  372                  */
  373                 if (IF_HANDOFF(&p->if_snd, m, p))
  374                         ifp->if_opackets++;
  375                 else
  376                         ifp->if_oerrors++;
  377         }
  378         ifp->if_flags &= ~IFF_OACTIVE;
  379 
  380         return;
  381 }
  382 
  383 static void
  384 vlan_input(struct ifnet *ifp, struct mbuf *m)
  385 {
  386         struct ether_vlan_header *evl;
  387         struct ifvlan *ifv;
  388         struct m_tag *mtag;
  389         u_int tag;
  390 
  391         mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
  392         if (mtag != NULL) {
  393                 /*
  394                  * Packet is tagged, m contains a normal
  395                  * Ethernet frame; the tag is stored out-of-band.
  396                  */
  397                 tag = *(u_int*)(mtag+1);
  398                 m_tag_delete(m, mtag);
  399         } else {
  400                 switch (ifp->if_type) {
  401                 case IFT_ETHER:
  402                         if (m->m_len < sizeof (*evl) &&
  403                             (m = m_pullup(m, sizeof (*evl))) == NULL) {
  404                                 if_printf(ifp, "cannot pullup VLAN header\n");
  405                                 return;
  406                         }
  407                         evl = mtod(m, struct ether_vlan_header *);
  408                         KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
  409                                 ("vlan_input: bad encapsulated protocols (%u)",
  410                                  ntohs(evl->evl_encap_proto)));
  411 
  412                         tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
  413 
  414                         /*
  415                          * Restore the original ethertype.  We'll remove
  416                          * the encapsulation after we've found the vlan
  417                          * interface corresponding to the tag.
  418                          */
  419                         evl->evl_encap_proto = evl->evl_proto;
  420                         break;
  421                 default:
  422                         tag = (u_int) -1;
  423 #ifdef DIAGNOSTIC
  424                         panic("vlan_input: unsupported if type %u", ifp->if_type);
  425 #endif
  426                         break;
  427                 }
  428         }
  429 
  430         for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
  431             ifv = LIST_NEXT(ifv, ifv_list))
  432                 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
  433                         break;
  434 
  435         if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
  436                 m_freem(m);
  437                 ifp->if_noproto++;
  438                 return; 
  439         }
  440 
  441         if (mtag == NULL) {
  442                 /*
  443                  * Packet had an in-line encapsulation header;
  444                  * remove it.  The original header has already
  445                  * been fixed up above.
  446                  */
  447                 bcopy(mtod(m, caddr_t),
  448                       mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
  449                       sizeof (struct ether_header));
  450                 m_adj(m, ETHER_VLAN_ENCAP_LEN);
  451         }
  452 
  453         m->m_pkthdr.rcvif = &ifv->ifv_if;
  454         ifv->ifv_if.if_ipackets++;
  455 
  456         /* Pass it back through the parent's input routine. */
  457         (*ifp->if_input)(&ifv->ifv_if, m);
  458 }
  459 
  460 static int
  461 vlan_config(struct ifvlan *ifv, struct ifnet *p)
  462 {
  463         struct ifaddr *ifa1, *ifa2;
  464         struct sockaddr_dl *sdl1, *sdl2;
  465 
  466         if (p->if_data.ifi_type != IFT_ETHER)
  467                 return EPROTONOSUPPORT;
  468         if (ifv->ifv_p)
  469                 return EBUSY;
  470 
  471         ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
  472         ifv->ifv_mintu = ETHERMIN;
  473         ifv->ifv_flags = 0;
  474 
  475         /*
  476          * If the parent supports the VLAN_MTU capability,
  477          * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
  478          * enable it.
  479          */
  480         p->if_nvlans++;
  481         if (p->if_nvlans == 1 && (p->if_capabilities & IFCAP_VLAN_MTU) != 0) {
  482                 /*
  483                  * Enable Tx/Rx of VLAN-sized frames.
  484                  */
  485                 p->if_capenable |= IFCAP_VLAN_MTU;
  486                 if (p->if_flags & IFF_UP) {
  487                         struct ifreq ifr;
  488                         int error;
  489 
  490                         ifr.ifr_flags = p->if_flags;
  491                         error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
  492                             (caddr_t) &ifr);
  493                         if (error) {
  494                                 p->if_nvlans--;
  495                                 if (p->if_nvlans == 0)
  496                                         p->if_capenable &= ~IFCAP_VLAN_MTU;
  497                                 return (error);
  498                         }
  499                 }
  500                 ifv->ifv_mtufudge = 0;
  501         } else if ((p->if_capabilities & IFCAP_VLAN_MTU) == 0) {
  502                 /*
  503                  * Fudge the MTU by the encapsulation size.  This
  504                  * makes us incompatible with strictly compliant
  505                  * 802.1Q implementations, but allows us to use
  506                  * the feature with other NetBSD implementations,
  507                  * which might still be useful.
  508                  */
  509                 ifv->ifv_mtufudge = ifv->ifv_encaplen;
  510         }
  511 
  512         ifv->ifv_p = p;
  513         ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
  514         /*
  515          * Copy only a selected subset of flags from the parent.
  516          * Other flags are none of our business.
  517          */
  518         ifv->ifv_if.if_flags = (p->if_flags &
  519             (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT));
  520 
  521         /*
  522          * If the parent interface can do hardware-assisted
  523          * VLAN encapsulation, then propagate its hardware-
  524          * assisted checksumming flags.
  525          */
  526         if (p->if_capabilities & IFCAP_VLAN_HWTAGGING)
  527                 ifv->ifv_if.if_capabilities |= p->if_capabilities & IFCAP_HWCSUM;
  528 
  529         /*
  530          * Set up our ``Ethernet address'' to reflect the underlying
  531          * physical interface's.
  532          */
  533         ifa1 = ifaddr_byindex(ifv->ifv_if.if_index);
  534         ifa2 = ifaddr_byindex(p->if_index);
  535         sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
  536         sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
  537         sdl1->sdl_type = IFT_ETHER;
  538         sdl1->sdl_alen = ETHER_ADDR_LEN;
  539         bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
  540         bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
  541 
  542         /*
  543          * Configure multicast addresses that may already be
  544          * joined on the vlan device.
  545          */
  546         (void)vlan_setmulti(&ifv->ifv_if);
  547 
  548         return 0;
  549 }
  550 
  551 static int
  552 vlan_unconfig(struct ifnet *ifp)
  553 {
  554         struct ifaddr *ifa;
  555         struct sockaddr_dl *sdl;
  556         struct vlan_mc_entry *mc;
  557         struct ifvlan *ifv;
  558         struct ifnet *p;
  559         int error;
  560 
  561         ifv = ifp->if_softc;
  562         p = ifv->ifv_p;
  563 
  564         if (p) {
  565                 struct sockaddr_dl sdl;
  566 
  567                 /*
  568                  * Since the interface is being unconfigured, we need to
  569                  * empty the list of multicast groups that we may have joined
  570                  * while we were alive from the parent's list.
  571                  */
  572                 bzero((char *)&sdl, sizeof sdl);
  573                 sdl.sdl_len = sizeof sdl;
  574                 sdl.sdl_family = AF_LINK;
  575                 sdl.sdl_index = p->if_index;
  576                 sdl.sdl_type = IFT_ETHER;
  577                 sdl.sdl_alen = ETHER_ADDR_LEN;
  578 
  579                 while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
  580                         mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
  581                         bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
  582                         error = if_delmulti(p, (struct sockaddr *)&sdl);
  583                         if (error)
  584                                 return(error);
  585                         SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
  586                         free(mc, M_VLAN);
  587                 }
  588 
  589                 p->if_nvlans--;
  590                 if (p->if_nvlans == 0) {
  591                         /*
  592                          * Disable Tx/Rx of VLAN-sized frames.
  593                          */
  594                         p->if_capenable &= ~IFCAP_VLAN_MTU;
  595                         if (p->if_flags & IFF_UP) {
  596                                 struct ifreq ifr;
  597 
  598                                 ifr.ifr_flags = p->if_flags;
  599                                 (*p->if_ioctl)(p, SIOCSIFFLAGS, (caddr_t) &ifr);
  600                         }
  601                 }
  602         }
  603 
  604         /* Disconnect from parent. */
  605         ifv->ifv_p = NULL;
  606         ifv->ifv_if.if_mtu = ETHERMTU;          /* XXX why not 0? */
  607         ifv->ifv_flags = 0;
  608 
  609         /* Clear our MAC address. */
  610         ifa = ifaddr_byindex(ifv->ifv_if.if_index);
  611         sdl = (struct sockaddr_dl *)ifa->ifa_addr;
  612         sdl->sdl_type = IFT_ETHER;
  613         sdl->sdl_alen = ETHER_ADDR_LEN;
  614         bzero(LLADDR(sdl), ETHER_ADDR_LEN);
  615         bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
  616 
  617         return 0;
  618 }
  619 
  620 static int
  621 vlan_set_promisc(struct ifnet *ifp)
  622 {
  623         struct ifvlan *ifv = ifp->if_softc;
  624         int error = 0;
  625 
  626         if ((ifp->if_flags & IFF_PROMISC) != 0) {
  627                 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
  628                         error = ifpromisc(ifv->ifv_p, 1);
  629                         if (error == 0)
  630                                 ifv->ifv_flags |= IFVF_PROMISC;
  631                 }
  632         } else {
  633                 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
  634                         error = ifpromisc(ifv->ifv_p, 0);
  635                         if (error == 0)
  636                                 ifv->ifv_flags &= ~IFVF_PROMISC;
  637                 }
  638         }
  639 
  640         return (error);
  641 }
  642 
  643 static int
  644 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
  645 {
  646         struct ifaddr *ifa;
  647         struct ifnet *p;
  648         struct ifreq *ifr;
  649         struct ifvlan *ifv;
  650         struct vlanreq vlr;
  651         int error = 0;
  652 
  653         ifr = (struct ifreq *)data;
  654         ifa = (struct ifaddr *)data;
  655         ifv = ifp->if_softc;
  656 
  657         switch (cmd) {
  658         case SIOCSIFADDR:
  659                 ifp->if_flags |= IFF_UP;
  660 
  661                 switch (ifa->ifa_addr->sa_family) {
  662 #ifdef INET
  663                 case AF_INET:
  664                         arp_ifinit(&ifv->ifv_if, ifa);
  665                         break;
  666 #endif
  667                 default:
  668                         break;
  669                 }
  670                 break;
  671 
  672         case SIOCGIFADDR:
  673                 {
  674                         struct sockaddr *sa;
  675 
  676                         sa = (struct sockaddr *) &ifr->ifr_data;
  677                         bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr,
  678                               (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
  679                 }
  680                 break;
  681 
  682         case SIOCSIFMTU:
  683                 /*
  684                  * Set the interface MTU.
  685                  */
  686                 if (ifv->ifv_p != NULL) {
  687                         if (ifr->ifr_mtu >
  688                              (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
  689                             ifr->ifr_mtu <
  690                              (ifv->ifv_mintu - ifv->ifv_mtufudge))
  691                                 error = EINVAL;
  692                         else
  693                                 ifp->if_mtu = ifr->ifr_mtu;
  694                 } else
  695                         error = EINVAL;
  696                 break;
  697 
  698         case SIOCSETVLAN:
  699                 error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
  700                 if (error)
  701                         break;
  702                 if (vlr.vlr_parent[0] == '\0') {
  703                         vlan_unconfig(ifp);
  704                         if (ifp->if_flags & IFF_UP) {
  705                                 int s = splimp();
  706                                 if_down(ifp);
  707                                 splx(s);
  708                         }               
  709                         ifp->if_flags &= ~IFF_RUNNING;
  710                         break;
  711                 }
  712                 p = ifunit(vlr.vlr_parent);
  713                 if (p == 0) {
  714                         error = ENOENT;
  715                         break;
  716                 }
  717                 error = vlan_config(ifv, p);
  718                 if (error)
  719                         break;
  720                 ifv->ifv_tag = vlr.vlr_tag;
  721                 ifp->if_flags |= IFF_RUNNING;
  722 
  723                 /* Update promiscuous mode, if necessary. */
  724                 vlan_set_promisc(ifp);
  725                 break;
  726                 
  727         case SIOCGETVLAN:
  728                 bzero(&vlr, sizeof vlr);
  729                 if (ifv->ifv_p) {
  730                         snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent),
  731                             "%s%d", ifv->ifv_p->if_name, ifv->ifv_p->if_unit);
  732                         vlr.vlr_tag = ifv->ifv_tag;
  733                 }
  734                 error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
  735                 break;
  736                 
  737         case SIOCSIFFLAGS:
  738                 /*
  739                  * For promiscuous mode, we enable promiscuous mode on
  740                  * the parent if we need promiscuous on the VLAN interface.
  741                  */
  742                 if (ifv->ifv_p != NULL)
  743                         error = vlan_set_promisc(ifp);
  744                 break;
  745 
  746         case SIOCADDMULTI:
  747         case SIOCDELMULTI:
  748                 error = vlan_setmulti(ifp);
  749                 break;
  750         default:
  751                 error = EINVAL;
  752         }
  753         return error;
  754 }

Cache object: 081395873943be055e4abf50b536a853


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.