The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_vlan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  * 
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD$
   30  */
   31 
   32 /*
   33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
   34  * Might be extended some day to also handle IEEE 802.1p priority
   35  * tagging.  This is sort of sneaky in the implementation, since
   36  * we need to pretend to be enough of an Ethernet implementation
   37  * to make arp work.  The way we do this is by telling everyone
   38  * that we are an Ethernet, and then catch the packets that
   39  * ether_output() left on our output queue when it calls
   40  * if_start(), rewrite them for use by the real outgoing interface,
   41  * and ask it to send them.
   42  */
   43 
   44 #include "opt_vlan.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/kernel.h>
   48 #include <sys/lock.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/module.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/queue.h>
   54 #include <sys/socket.h>
   55 #include <sys/sockio.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/systm.h>
   58 
   59 #include <net/bpf.h>
   60 #include <net/ethernet.h>
   61 #include <net/if.h>
   62 #include <net/if_clone.h>
   63 #include <net/if_dl.h>
   64 #include <net/if_types.h>
   65 #include <net/if_vlan_var.h>
   66 
   67 #define VLANNAME        "vlan"
   68 #define VLAN_DEF_HWIDTH 4
   69 #define VLAN_IFFLAGS    (IFF_BROADCAST | IFF_MULTICAST)
   70 
   71 #define UP_AND_RUNNING(ifp) \
   72     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
   73 
   74 LIST_HEAD(ifvlanhead, ifvlan);
   75 
   76 struct ifvlantrunk {
   77         struct  ifnet   *parent;        /* parent interface of this trunk */
   78         struct  rwlock  rw;
   79 #ifdef VLAN_ARRAY
   80 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1)
   81         struct  ifvlan  *vlans[VLAN_ARRAY_SIZE]; /* static table */
   82 #else
   83         struct  ifvlanhead *hash;       /* dynamic hash-list table */
   84         uint16_t        hmask;
   85         uint16_t        hwidth;
   86 #endif
   87         int             refcnt;
   88 };
   89 
   90 struct vlan_mc_entry {
   91         struct ether_addr               mc_addr;
   92         SLIST_ENTRY(vlan_mc_entry)      mc_entries;
   93 };
   94 
   95 struct  ifvlan {
   96         struct  ifvlantrunk *ifv_trunk;
   97         struct  ifnet *ifv_ifp;
   98 #define TRUNK(ifv)      ((ifv)->ifv_trunk)
   99 #define PARENT(ifv)     ((ifv)->ifv_trunk->parent)
  100         int     ifv_pflags;     /* special flags we have set on parent */
  101         struct  ifv_linkmib {
  102                 int     ifvm_encaplen;  /* encapsulation length */
  103                 int     ifvm_mtufudge;  /* MTU fudged by this much */
  104                 int     ifvm_mintu;     /* min transmission unit */
  105                 uint16_t ifvm_proto;    /* encapsulation ethertype */
  106                 uint16_t ifvm_tag;      /* tag to apply on packets leaving if */
  107         }       ifv_mib;
  108         SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
  109 #ifndef VLAN_ARRAY
  110         LIST_ENTRY(ifvlan) ifv_list;
  111 #endif
  112 };
  113 #define ifv_proto       ifv_mib.ifvm_proto
  114 #define ifv_tag         ifv_mib.ifvm_tag
  115 #define ifv_encaplen    ifv_mib.ifvm_encaplen
  116 #define ifv_mtufudge    ifv_mib.ifvm_mtufudge
  117 #define ifv_mintu       ifv_mib.ifvm_mintu
  118 
  119 /* Special flags we should propagate to parent. */
  120 static struct {
  121         int flag;
  122         int (*func)(struct ifnet *, int);
  123 } vlan_pflags[] = {
  124         {IFF_PROMISC, ifpromisc},
  125         {IFF_ALLMULTI, if_allmulti},
  126         {0, NULL}
  127 };
  128 
  129 SYSCTL_DECL(_net_link);
  130 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
  131 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
  132 
  133 static int soft_pad = 0;
  134 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
  135            "pad short frames before tagging");
  136 
  137 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
  138 
  139 static eventhandler_tag ifdetach_tag;
  140 
  141 /*
  142  * We have a global mutex, that is used to serialize configuration
  143  * changes and isn't used in normal packet delivery.
  144  *
  145  * We also have a per-trunk rwlock, that is locked shared on packet
  146  * processing and exclusive when configuration is changed.
  147  *
  148  * The VLAN_ARRAY substitutes the dynamic hash with a static array
  149  * with 4096 entries. In theory this can give a boost in processing,
  150  * however on practice it does not. Probably this is because array
  151  * is too big to fit into CPU cache.
  152  */
  153 static struct mtx ifv_mtx;
  154 #define VLAN_LOCK_INIT()        mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
  155 #define VLAN_LOCK_DESTROY()     mtx_destroy(&ifv_mtx)
  156 #define VLAN_LOCK_ASSERT()      mtx_assert(&ifv_mtx, MA_OWNED)
  157 #define VLAN_LOCK()             mtx_lock(&ifv_mtx)
  158 #define VLAN_UNLOCK()           mtx_unlock(&ifv_mtx)
  159 #define TRUNK_LOCK_INIT(trunk)  rw_init(&(trunk)->rw, VLANNAME)
  160 #define TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
  161 #define TRUNK_LOCK(trunk)       rw_wlock(&(trunk)->rw)
  162 #define TRUNK_UNLOCK(trunk)     rw_wunlock(&(trunk)->rw)
  163 #define TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
  164 #define TRUNK_RLOCK(trunk)      rw_rlock(&(trunk)->rw)
  165 #define TRUNK_RUNLOCK(trunk)    rw_runlock(&(trunk)->rw)
  166 #define TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
  167 
  168 #ifndef VLAN_ARRAY
  169 static  void vlan_inithash(struct ifvlantrunk *trunk);
  170 static  void vlan_freehash(struct ifvlantrunk *trunk);
  171 static  int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
  172 static  int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
  173 static  void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
  174 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
  175         uint16_t tag);
  176 #endif
  177 static  void trunk_destroy(struct ifvlantrunk *trunk);
  178 
  179 static  void vlan_start(struct ifnet *ifp);
  180 static  void vlan_init(void *foo);
  181 static  void vlan_input(struct ifnet *ifp, struct mbuf *m);
  182 static  int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
  183 static  int vlan_setflag(struct ifnet *ifp, int flag, int status,
  184     int (*func)(struct ifnet *, int));
  185 static  int vlan_setflags(struct ifnet *ifp, int status);
  186 static  int vlan_setmulti(struct ifnet *ifp);
  187 static  int vlan_unconfig(struct ifnet *ifp);
  188 static  int vlan_unconfig_locked(struct ifnet *ifp);
  189 static  int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
  190 static  void vlan_link_state(struct ifnet *ifp, int link);
  191 static  void vlan_capabilities(struct ifvlan *ifv);
  192 static  void vlan_trunk_capabilities(struct ifnet *ifp);
  193 
  194 static  struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
  195     const char *, int *);
  196 static  int vlan_clone_match(struct if_clone *, const char *);
  197 static  int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
  198 static  int vlan_clone_destroy(struct if_clone *, struct ifnet *);
  199 
  200 static  void vlan_ifdetach(void *arg, struct ifnet *ifp);
  201 
  202 static  struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
  203     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
  204 
  205 #ifndef VLAN_ARRAY
  206 #define HASH(n, m)      ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
  207 
  208 static void
  209 vlan_inithash(struct ifvlantrunk *trunk)
  210 {
  211         int i, n;
  212         
  213         /*
  214          * The trunk must not be locked here since we call malloc(M_WAITOK).
  215          * It is OK in case this function is called before the trunk struct
  216          * gets hooked up and becomes visible from other threads.
  217          */
  218 
  219         KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
  220             ("%s: hash already initialized", __func__));
  221 
  222         trunk->hwidth = VLAN_DEF_HWIDTH;
  223         n = 1 << trunk->hwidth;
  224         trunk->hmask = n - 1;
  225         trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
  226         for (i = 0; i < n; i++)
  227                 LIST_INIT(&trunk->hash[i]);
  228 }
  229 
  230 static void
  231 vlan_freehash(struct ifvlantrunk *trunk)
  232 {
  233 #ifdef INVARIANTS
  234         int i;
  235 
  236         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  237         for (i = 0; i < (1 << trunk->hwidth); i++)
  238                 KASSERT(LIST_EMPTY(&trunk->hash[i]),
  239                     ("%s: hash table not empty", __func__));
  240 #endif
  241         free(trunk->hash, M_VLAN);
  242         trunk->hash = NULL;
  243         trunk->hwidth = trunk->hmask = 0;
  244 }
  245 
  246 static int
  247 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  248 {
  249         int i, b;
  250         struct ifvlan *ifv2;
  251 
  252         TRUNK_LOCK_ASSERT(trunk);
  253         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  254 
  255         b = 1 << trunk->hwidth;
  256         i = HASH(ifv->ifv_tag, trunk->hmask);
  257         LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
  258                 if (ifv->ifv_tag == ifv2->ifv_tag)
  259                         return (EEXIST);
  260 
  261         /*
  262          * Grow the hash when the number of vlans exceeds half of the number of
  263          * hash buckets squared. This will make the average linked-list length
  264          * buckets/2.
  265          */
  266         if (trunk->refcnt > (b * b) / 2) {
  267                 vlan_growhash(trunk, 1);
  268                 i = HASH(ifv->ifv_tag, trunk->hmask);
  269         }
  270         LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
  271         trunk->refcnt++;
  272 
  273         return (0);
  274 }
  275 
  276 static int
  277 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  278 {
  279         int i, b;
  280         struct ifvlan *ifv2;
  281 
  282         TRUNK_LOCK_ASSERT(trunk);
  283         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  284         
  285         b = 1 << trunk->hwidth;
  286         i = HASH(ifv->ifv_tag, trunk->hmask);
  287         LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
  288                 if (ifv2 == ifv) {
  289                         trunk->refcnt--;
  290                         LIST_REMOVE(ifv2, ifv_list);
  291                         if (trunk->refcnt < (b * b) / 2)
  292                                 vlan_growhash(trunk, -1);
  293                         return (0);
  294                 }
  295 
  296         panic("%s: vlan not found\n", __func__);
  297         return (ENOENT); /*NOTREACHED*/
  298 }
  299 
  300 /*
  301  * Grow the hash larger or smaller if memory permits.
  302  */
  303 static void
  304 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
  305 {
  306         struct ifvlan *ifv;
  307         struct ifvlanhead *hash2;
  308         int hwidth2, i, j, n, n2;
  309 
  310         TRUNK_LOCK_ASSERT(trunk);
  311         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  312 
  313         if (howmuch == 0) {
  314                 /* Harmless yet obvious coding error */
  315                 printf("%s: howmuch is 0\n", __func__);
  316                 return;
  317         }
  318 
  319         hwidth2 = trunk->hwidth + howmuch;
  320         n = 1 << trunk->hwidth;
  321         n2 = 1 << hwidth2;
  322         /* Do not shrink the table below the default */
  323         if (hwidth2 < VLAN_DEF_HWIDTH)
  324                 return;
  325 
  326         /* M_NOWAIT because we're called with trunk mutex held */
  327         hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
  328         if (hash2 == NULL) {
  329                 printf("%s: out of memory -- hash size not changed\n",
  330                     __func__);
  331                 return;         /* We can live with the old hash table */
  332         }
  333         for (j = 0; j < n2; j++)
  334                 LIST_INIT(&hash2[j]);
  335         for (i = 0; i < n; i++)
  336                 while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
  337                         LIST_REMOVE(ifv, ifv_list);
  338                         j = HASH(ifv->ifv_tag, n2 - 1);
  339                         LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
  340                 }
  341         free(trunk->hash, M_VLAN);
  342         trunk->hash = hash2;
  343         trunk->hwidth = hwidth2;
  344         trunk->hmask = n2 - 1;
  345 
  346         if (bootverbose)
  347                 if_printf(trunk->parent,
  348                     "VLAN hash table resized from %d to %d buckets\n", n, n2);
  349 }
  350 
  351 static __inline struct ifvlan *
  352 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
  353 {
  354         struct ifvlan *ifv;
  355 
  356         TRUNK_LOCK_RASSERT(trunk);
  357 
  358         LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
  359                 if (ifv->ifv_tag == tag)
  360                         return (ifv);
  361         return (NULL);
  362 }
  363 
  364 #if 0
  365 /* Debugging code to view the hashtables. */
  366 static void
  367 vlan_dumphash(struct ifvlantrunk *trunk)
  368 {
  369         int i;
  370         struct ifvlan *ifv;
  371 
  372         for (i = 0; i < (1 << trunk->hwidth); i++) {
  373                 printf("%d: ", i);
  374                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
  375                         printf("%s ", ifv->ifv_ifp->if_xname);
  376                 printf("\n");
  377         }
  378 }
  379 #endif /* 0 */
  380 #endif /* !VLAN_ARRAY */
  381 
  382 static void
  383 trunk_destroy(struct ifvlantrunk *trunk)
  384 {
  385         VLAN_LOCK_ASSERT();
  386 
  387         TRUNK_LOCK(trunk);
  388 #ifndef VLAN_ARRAY
  389         vlan_freehash(trunk);
  390 #endif
  391         trunk->parent->if_vlantrunk = NULL;
  392         TRUNK_UNLOCK(trunk);
  393         TRUNK_LOCK_DESTROY(trunk);
  394         free(trunk, M_VLAN);
  395 }
  396 
  397 /*
  398  * Program our multicast filter. What we're actually doing is
  399  * programming the multicast filter of the parent. This has the
  400  * side effect of causing the parent interface to receive multicast
  401  * traffic that it doesn't really want, which ends up being discarded
  402  * later by the upper protocol layers. Unfortunately, there's no way
  403  * to avoid this: there really is only one physical interface.
  404  *
  405  * XXX: There is a possible race here if more than one thread is
  406  *      modifying the multicast state of the vlan interface at the same time.
  407  */
  408 static int
  409 vlan_setmulti(struct ifnet *ifp)
  410 {
  411         struct ifnet            *ifp_p;
  412         struct ifmultiaddr      *ifma, *rifma = NULL;
  413         struct ifvlan           *sc;
  414         struct vlan_mc_entry    *mc;
  415         struct sockaddr_dl      sdl;
  416         int                     error;
  417 
  418         /*VLAN_LOCK_ASSERT();*/
  419 
  420         /* Find the parent. */
  421         sc = ifp->if_softc;
  422         ifp_p = PARENT(sc);
  423 
  424         bzero((char *)&sdl, sizeof(sdl));
  425         sdl.sdl_len = sizeof(sdl);
  426         sdl.sdl_family = AF_LINK;
  427         sdl.sdl_index = ifp_p->if_index;
  428         sdl.sdl_type = IFT_ETHER;
  429         sdl.sdl_alen = ETHER_ADDR_LEN;
  430 
  431         /* First, remove any existing filter entries. */
  432         while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
  433                 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
  434                 error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
  435                 if (error)
  436                         return (error);
  437                 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
  438                 free(mc, M_VLAN);
  439         }
  440 
  441         /* Now program new ones. */
  442         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  443                 if (ifma->ifma_addr->sa_family != AF_LINK)
  444                         continue;
  445                 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
  446                 if (mc == NULL)
  447                         return (ENOMEM);
  448                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
  449                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
  450                 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
  451                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
  452                     LLADDR(&sdl), ETHER_ADDR_LEN);
  453                 error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
  454                 if (error)
  455                         return (error);
  456         }
  457 
  458         return (0);
  459 }
  460 
  461 /*
  462  * A handler for network interface departure events.
  463  * Track departure of trunks here so that we don't access invalid
  464  * pointers or whatever if a trunk is ripped from under us, e.g.,
  465  * by ejecting its hot-plug card.
  466  */
  467 static void
  468 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
  469 {
  470         struct ifvlan *ifv;
  471         int i;
  472 
  473         /*
  474          * Check if it's a trunk interface first of all
  475          * to avoid needless locking.
  476          */
  477         if (ifp->if_vlantrunk == NULL)
  478                 return;
  479 
  480         VLAN_LOCK();
  481         /*
  482          * OK, it's a trunk.  Loop over and detach all vlan's on it.
  483          * Check trunk pointer after each vlan_unconfig() as it will
  484          * free it and set to NULL after the last vlan was detached.
  485          */
  486 #ifdef VLAN_ARRAY
  487         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
  488                 if ((ifv = ifp->if_vlantrunk->vlans[i])) {
  489                         vlan_unconfig_locked(ifv->ifv_ifp);
  490                         if (ifp->if_vlantrunk == NULL)
  491                                 break;
  492                 }
  493 #else /* VLAN_ARRAY */
  494 restart:
  495         for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
  496                 if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
  497                         vlan_unconfig_locked(ifv->ifv_ifp);
  498                         if (ifp->if_vlantrunk)
  499                                 goto restart;   /* trunk->hwidth can change */
  500                         else
  501                                 break;
  502                 }
  503 #endif /* VLAN_ARRAY */
  504         /* Trunk should have been destroyed in vlan_unconfig(). */
  505         KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
  506         VLAN_UNLOCK();
  507 }
  508 
  509 /*
  510  * VLAN support can be loaded as a module.  The only place in the
  511  * system that's intimately aware of this is ether_input.  We hook
  512  * into this code through vlan_input_p which is defined there and
  513  * set here.  Noone else in the system should be aware of this so
  514  * we use an explicit reference here.
  515  */
  516 extern  void (*vlan_input_p)(struct ifnet *, struct mbuf *);
  517 
  518 /* For if_link_state_change() eyes only... */
  519 extern  void (*vlan_link_state_p)(struct ifnet *, int);
  520 
  521 static int
  522 vlan_modevent(module_t mod, int type, void *data)
  523 {
  524 
  525         switch (type) {
  526         case MOD_LOAD:
  527                 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
  528                     vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
  529                 if (ifdetach_tag == NULL)
  530                         return (ENOMEM);
  531                 VLAN_LOCK_INIT();
  532                 vlan_input_p = vlan_input;
  533                 vlan_link_state_p = vlan_link_state;
  534                 vlan_trunk_cap_p = vlan_trunk_capabilities;
  535                 if_clone_attach(&vlan_cloner);
  536                 if (bootverbose)
  537                         printf("vlan: initialized, using "
  538 #ifdef VLAN_ARRAY
  539                                "full-size arrays"
  540 #else
  541                                "hash tables with chaining"
  542 #endif
  543                         
  544                                "\n");
  545                 break;
  546         case MOD_UNLOAD:
  547                 if_clone_detach(&vlan_cloner);
  548                 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
  549                 vlan_input_p = NULL;
  550                 vlan_link_state_p = NULL;
  551                 vlan_trunk_cap_p = NULL;
  552                 VLAN_LOCK_DESTROY();
  553                 if (bootverbose)
  554                         printf("vlan: unloaded\n");
  555                 break;
  556         default:
  557                 return (EOPNOTSUPP);
  558         }
  559         return (0);
  560 }
  561 
  562 static moduledata_t vlan_mod = {
  563         "if_vlan",
  564         vlan_modevent,
  565         0
  566 };
  567 
  568 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
  569 MODULE_VERSION(if_vlan, 3);
  570 MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
  571 
  572 static struct ifnet *
  573 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
  574 {
  575         const char *cp;
  576         struct ifnet *ifp;
  577         int t = 0;
  578 
  579         /* Check for <etherif>.<vlan> style interface names. */
  580         IFNET_RLOCK();
  581         TAILQ_FOREACH(ifp, &ifnet, if_link) {
  582                 if (ifp->if_type != IFT_ETHER)
  583                         continue;
  584                 if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
  585                         continue;
  586                 cp = name + strlen(ifp->if_xname);
  587                 if (*cp != '.')
  588                         continue;
  589                 for(; *cp != '\0'; cp++) {
  590                         if (*cp < '' || *cp > '9')
  591                                 continue;
  592                         t = (t * 10) + (*cp - '');
  593                 }
  594                 if (tag != NULL)
  595                         *tag = t;
  596                 break;
  597         }
  598         IFNET_RUNLOCK();
  599 
  600         return (ifp);
  601 }
  602 
  603 static int
  604 vlan_clone_match(struct if_clone *ifc, const char *name)
  605 {
  606         const char *cp;
  607 
  608         if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
  609                 return (1);
  610 
  611         if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
  612                 return (0);
  613         for (cp = name + 4; *cp != '\0'; cp++) {
  614                 if (*cp < '' || *cp > '9')
  615                         return (0);
  616         }
  617 
  618         return (1);
  619 }
  620 
  621 static int
  622 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
  623 {
  624         char *dp;
  625         int wildcard;
  626         int unit;
  627         int error;
  628         int tag;
  629         int ethertag;
  630         struct ifvlan *ifv;
  631         struct ifnet *ifp;
  632         struct ifnet *p;
  633         struct vlanreq vlr;
  634         static const u_char eaddr[ETHER_ADDR_LEN];      /* 00:00:00:00:00:00 */
  635 
  636         /*
  637          * There are 3 (ugh) ways to specify the cloned device:
  638          * o pass a parameter block with the clone request.
  639          * o specify parameters in the text of the clone device name
  640          * o specify no parameters and get an unattached device that
  641          *   must be configured separately.
  642          * The first technique is preferred; the latter two are
  643          * supported for backwards compatibilty.
  644          */
  645         if (params) {
  646                 error = copyin(params, &vlr, sizeof(vlr));
  647                 if (error)
  648                         return error;
  649                 p = ifunit(vlr.vlr_parent);
  650                 if (p == NULL)
  651                         return ENXIO;
  652                 /*
  653                  * Don't let the caller set up a VLAN tag with
  654                  * anything except VLID bits.
  655                  */
  656                 if (vlr.vlr_tag & ~EVL_VLID_MASK)
  657                         return (EINVAL);
  658                 error = ifc_name2unit(name, &unit);
  659                 if (error != 0)
  660                         return (error);
  661 
  662                 ethertag = 1;
  663                 tag = vlr.vlr_tag;
  664                 wildcard = (unit < 0);
  665         } else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
  666                 ethertag = 1;
  667                 unit = -1;
  668                 wildcard = 0;
  669 
  670                 /*
  671                  * Don't let the caller set up a VLAN tag with
  672                  * anything except VLID bits.
  673                  */
  674                 if (tag & ~EVL_VLID_MASK)
  675                         return (EINVAL);
  676         } else {
  677                 ethertag = 0;
  678 
  679                 error = ifc_name2unit(name, &unit);
  680                 if (error != 0)
  681                         return (error);
  682 
  683                 wildcard = (unit < 0);
  684         }
  685 
  686         error = ifc_alloc_unit(ifc, &unit);
  687         if (error != 0)
  688                 return (error);
  689 
  690         /* In the wildcard case, we need to update the name. */
  691         if (wildcard) {
  692                 for (dp = name; *dp != '\0'; dp++);
  693                 if (snprintf(dp, len - (dp-name), "%d", unit) >
  694                     len - (dp-name) - 1) {
  695                         panic("%s: interface name too long", __func__);
  696                 }
  697         }
  698 
  699         ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
  700         ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
  701         if (ifp == NULL) {
  702                 ifc_free_unit(ifc, unit);
  703                 free(ifv, M_VLAN);
  704                 return (ENOSPC);
  705         }
  706         SLIST_INIT(&ifv->vlan_mc_listhead);
  707 
  708         ifp->if_softc = ifv;
  709         /*
  710          * Set the name manually rather than using if_initname because
  711          * we don't conform to the default naming convention for interfaces.
  712          */
  713         strlcpy(ifp->if_xname, name, IFNAMSIZ);
  714         ifp->if_dname = ifc->ifc_name;
  715         ifp->if_dunit = unit;
  716         /* NB: flags are not set here */
  717         ifp->if_linkmib = &ifv->ifv_mib;
  718         ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
  719         /* NB: mtu is not set here */
  720 
  721         ifp->if_init = vlan_init;
  722         ifp->if_start = vlan_start;
  723         ifp->if_ioctl = vlan_ioctl;
  724         ifp->if_snd.ifq_maxlen = ifqmaxlen;
  725         ifp->if_flags = VLAN_IFFLAGS;
  726         ether_ifattach(ifp, eaddr);
  727         /* Now undo some of the damage... */
  728         ifp->if_baudrate = 0;
  729         ifp->if_type = IFT_L2VLAN;
  730         ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
  731 
  732         if (ethertag) {
  733                 error = vlan_config(ifv, p, tag);
  734                 if (error != 0) {
  735                         /*
  736                          * Since we've partialy failed, we need to back
  737                          * out all the way, otherwise userland could get
  738                          * confused.  Thus, we destroy the interface.
  739                          */
  740                         ether_ifdetach(ifp);
  741                         vlan_unconfig(ifp);
  742                         if_free_type(ifp, IFT_ETHER);
  743                         free(ifv, M_VLAN);
  744 
  745                         return (error);
  746                 }
  747 
  748                 /* Update flags on the parent, if necessary. */
  749                 vlan_setflags(ifp, 1);
  750         }
  751 
  752         return (0);
  753 }
  754 
  755 static int
  756 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
  757 {
  758         struct ifvlan *ifv = ifp->if_softc;
  759         int unit = ifp->if_dunit;
  760 
  761         ether_ifdetach(ifp);    /* first, remove it from system-wide lists */
  762         vlan_unconfig(ifp);     /* now it can be unconfigured and freed */
  763         if_free_type(ifp, IFT_ETHER);
  764         free(ifv, M_VLAN);
  765         ifc_free_unit(ifc, unit);
  766 
  767         return (0);
  768 }
  769 
  770 /*
  771  * The ifp->if_init entry point for vlan(4) is a no-op.
  772  */
  773 static void
  774 vlan_init(void *foo __unused)
  775 {
  776 }
  777 
  778 /*
  779  * The if_start method for vlan(4) interface. It doesn't
  780  * raises the IFF_DRV_OACTIVE flag, since it is called
  781  * only from IFQ_HANDOFF() macro in ether_output_frame().
  782  * If the interface queue is full, and vlan_start() is
  783  * not called, the queue would never get emptied and
  784  * interface would stall forever.
  785  */
  786 static void
  787 vlan_start(struct ifnet *ifp)
  788 {
  789         struct ifvlan *ifv;
  790         struct ifnet *p;
  791         struct mbuf *m;
  792         int error;
  793 
  794         ifv = ifp->if_softc;
  795         p = PARENT(ifv);
  796 
  797         for (;;) {
  798                 IF_DEQUEUE(&ifp->if_snd, m);
  799                 if (m == NULL)
  800                         break;
  801                 BPF_MTAP(ifp, m);
  802 
  803                 /*
  804                  * Do not run parent's if_start() if the parent is not up,
  805                  * or parent's driver will cause a system crash.
  806                  */
  807                 if (!UP_AND_RUNNING(p)) {
  808                         m_freem(m);
  809                         ifp->if_collisions++;
  810                         continue;
  811                 }
  812 
  813                 /*
  814                  * Pad the frame to the minimum size allowed if told to.
  815                  * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
  816                  * paragraph C.4.4.3.b.  It can help to work around buggy
  817                  * bridges that violate paragraph C.4.4.3.a from the same
  818                  * document, i.e., fail to pad short frames after untagging.
  819                  * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
  820                  * untagging it will produce a 62-byte frame, which is a runt
  821                  * and requires padding.  There are VLAN-enabled network
  822                  * devices that just discard such runts instead or mishandle
  823                  * them somehow.
  824                  */
  825                 if (soft_pad) {
  826                         static char pad[8];     /* just zeros */
  827                         int n;
  828 
  829                         for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
  830                              n > 0; n -= sizeof(pad))
  831                                 if (!m_append(m, min(n, sizeof(pad)), pad))
  832                                         break;
  833 
  834                         if (n > 0) {
  835                                 if_printf(ifp, "cannot pad short frame\n");
  836                                 ifp->if_oerrors++;
  837                                 m_freem(m);
  838                                 continue;
  839                         }
  840                 }
  841 
  842                 /*
  843                  * If underlying interface can do VLAN tag insertion itself,
  844                  * just pass the packet along. However, we need some way to
  845                  * tell the interface where the packet came from so that it
  846                  * knows how to find the VLAN tag to use, so we attach a
  847                  * packet tag that holds it.
  848                  */
  849                 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
  850                         m->m_pkthdr.ether_vtag = ifv->ifv_tag;
  851                         m->m_flags |= M_VLANTAG;
  852                 } else {
  853                         m = ether_vlanencap(m, ifv->ifv_tag);
  854                         if (m == NULL) {
  855                                 if_printf(ifp,
  856                                     "unable to prepend VLAN header\n");
  857                                 ifp->if_oerrors++;
  858                                 continue;
  859                         }
  860                 }
  861 
  862                 /*
  863                  * Send it, precisely as ether_output() would have.
  864                  * We are already running at splimp.
  865                  */
  866                 IFQ_HANDOFF(p, m, error);
  867                 if (!error)
  868                         ifp->if_opackets++;
  869                 else
  870                         ifp->if_oerrors++;
  871         }
  872 }
  873 
  874 static void
  875 vlan_input(struct ifnet *ifp, struct mbuf *m)
  876 {
  877         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
  878         struct ifvlan *ifv;
  879         uint16_t tag;
  880 
  881         KASSERT(trunk != NULL, ("%s: no trunk", __func__));
  882 
  883         if (m->m_flags & M_VLANTAG) {
  884                 /*
  885                  * Packet is tagged, but m contains a normal
  886                  * Ethernet frame; the tag is stored out-of-band.
  887                  */
  888                 tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
  889                 m->m_flags &= ~M_VLANTAG;
  890         } else {
  891                 struct ether_vlan_header *evl;
  892 
  893                 /*
  894                  * Packet is tagged in-band as specified by 802.1q.
  895                  */
  896                 switch (ifp->if_type) {
  897                 case IFT_ETHER:
  898                         if (m->m_len < sizeof(*evl) &&
  899                             (m = m_pullup(m, sizeof(*evl))) == NULL) {
  900                                 if_printf(ifp, "cannot pullup VLAN header\n");
  901                                 return;
  902                         }
  903                         evl = mtod(m, struct ether_vlan_header *);
  904                         tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
  905 
  906                         /*
  907                          * Remove the 802.1q header by copying the Ethernet
  908                          * addresses over it and adjusting the beginning of
  909                          * the data in the mbuf.  The encapsulated Ethernet
  910                          * type field is already in place.
  911                          */
  912                         bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
  913                               ETHER_HDR_LEN - ETHER_TYPE_LEN);
  914                         m_adj(m, ETHER_VLAN_ENCAP_LEN);
  915                         break;
  916 
  917                 default:
  918 #ifdef INVARIANTS
  919                         panic("%s: %s has unsupported if_type %u",
  920                               __func__, ifp->if_xname, ifp->if_type);
  921 #endif
  922                         m_freem(m);
  923                         ifp->if_noproto++;
  924                         return;
  925                 }
  926         }
  927 
  928         TRUNK_RLOCK(trunk);
  929 #ifdef VLAN_ARRAY
  930         ifv = trunk->vlans[tag];
  931 #else
  932         ifv = vlan_gethash(trunk, tag);
  933 #endif
  934         if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
  935                 TRUNK_RUNLOCK(trunk);
  936                 m_freem(m);
  937                 ifp->if_noproto++;
  938                 return;
  939         }
  940         TRUNK_RUNLOCK(trunk);
  941 
  942         m->m_pkthdr.rcvif = ifv->ifv_ifp;
  943         ifv->ifv_ifp->if_ipackets++;
  944 
  945         /* Pass it back through the parent's input routine. */
  946         (*ifp->if_input)(ifv->ifv_ifp, m);
  947 }
  948 
  949 static int
  950 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
  951 {
  952         struct ifvlantrunk *trunk;
  953         struct ifnet *ifp;
  954         int error = 0;
  955 
  956         /* VID numbers 0x0 and 0xFFF are reserved */
  957         if (tag == 0 || tag == 0xFFF)
  958                 return (EINVAL);
  959         if (p->if_type != IFT_ETHER)
  960                 return (EPROTONOSUPPORT);
  961         if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
  962                 return (EPROTONOSUPPORT);
  963         if (ifv->ifv_trunk)
  964                 return (EBUSY);
  965 
  966         if (p->if_vlantrunk == NULL) {
  967                 trunk = malloc(sizeof(struct ifvlantrunk),
  968                     M_VLAN, M_WAITOK | M_ZERO);
  969 #ifndef VLAN_ARRAY
  970                 vlan_inithash(trunk);
  971 #endif
  972                 VLAN_LOCK();
  973                 if (p->if_vlantrunk != NULL) {
  974                         /* A race that that is very unlikely to be hit. */
  975 #ifndef VLAN_ARRAY
  976                         vlan_freehash(trunk);
  977 #endif
  978                         free(trunk, M_VLAN);
  979                         goto exists;
  980                 }
  981                 TRUNK_LOCK_INIT(trunk);
  982                 TRUNK_LOCK(trunk);
  983                 p->if_vlantrunk = trunk;
  984                 trunk->parent = p;
  985         } else {
  986                 VLAN_LOCK();
  987 exists:
  988                 trunk = p->if_vlantrunk;
  989                 TRUNK_LOCK(trunk);
  990         }
  991 
  992         ifv->ifv_tag = tag;     /* must set this before vlan_inshash() */
  993 #ifdef VLAN_ARRAY
  994         if (trunk->vlans[tag] != NULL) {
  995                 error = EEXIST;
  996                 goto done;
  997         }
  998         trunk->vlans[tag] = ifv;
  999         trunk->refcnt++;
 1000 #else
 1001         error = vlan_inshash(trunk, ifv);
 1002         if (error)
 1003                 goto done;
 1004 #endif
 1005         ifv->ifv_proto = ETHERTYPE_VLAN;
 1006         ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
 1007         ifv->ifv_mintu = ETHERMIN;
 1008         ifv->ifv_pflags = 0;
 1009 
 1010         /*
 1011          * If the parent supports the VLAN_MTU capability,
 1012          * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
 1013          * use it.
 1014          */
 1015         if (p->if_capenable & IFCAP_VLAN_MTU) {
 1016                 /*
 1017                  * No need to fudge the MTU since the parent can
 1018                  * handle extended frames.
 1019                  */
 1020                 ifv->ifv_mtufudge = 0;
 1021         } else {
 1022                 /*
 1023                  * Fudge the MTU by the encapsulation size.  This
 1024                  * makes us incompatible with strictly compliant
 1025                  * 802.1Q implementations, but allows us to use
 1026                  * the feature with other NetBSD implementations,
 1027                  * which might still be useful.
 1028                  */
 1029                 ifv->ifv_mtufudge = ifv->ifv_encaplen;
 1030         }
 1031 
 1032         ifv->ifv_trunk = trunk;
 1033         ifp = ifv->ifv_ifp;
 1034         ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
 1035         ifp->if_baudrate = p->if_baudrate;
 1036         /*
 1037          * Copy only a selected subset of flags from the parent.
 1038          * Other flags are none of our business.
 1039          */
 1040 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
 1041         ifp->if_flags &= ~VLAN_COPY_FLAGS;
 1042         ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
 1043 #undef VLAN_COPY_FLAGS
 1044 
 1045         ifp->if_link_state = p->if_link_state;
 1046 
 1047         vlan_capabilities(ifv);
 1048 
 1049         /*
 1050          * Set up our ``Ethernet address'' to reflect the underlying
 1051          * physical interface's.
 1052          */
 1053         bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
 1054 
 1055         /*
 1056          * Configure multicast addresses that may already be
 1057          * joined on the vlan device.
 1058          */
 1059         (void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
 1060 
 1061         /* We are ready for operation now. */
 1062         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1063 done:
 1064         TRUNK_UNLOCK(trunk);
 1065         if (error == 0)
 1066                 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
 1067         VLAN_UNLOCK();
 1068 
 1069         return (error);
 1070 }
 1071 
 1072 static int
 1073 vlan_unconfig(struct ifnet *ifp)
 1074 {
 1075         int ret;
 1076 
 1077         VLAN_LOCK();
 1078         ret = vlan_unconfig_locked(ifp);
 1079         VLAN_UNLOCK();
 1080         return (ret);
 1081 }
 1082 
 1083 static int
 1084 vlan_unconfig_locked(struct ifnet *ifp)
 1085 {
 1086         struct ifvlantrunk *trunk;
 1087         struct vlan_mc_entry *mc;
 1088         struct ifvlan *ifv;
 1089         struct ifnet  *parent;
 1090         int error;
 1091 
 1092         VLAN_LOCK_ASSERT();
 1093 
 1094         ifv = ifp->if_softc;
 1095         trunk = ifv->ifv_trunk;
 1096         parent = NULL;
 1097 
 1098         if (trunk != NULL) {
 1099                 struct sockaddr_dl sdl;
 1100 
 1101                 TRUNK_LOCK(trunk);
 1102                 parent = trunk->parent;
 1103 
 1104                 /*
 1105                  * Since the interface is being unconfigured, we need to
 1106                  * empty the list of multicast groups that we may have joined
 1107                  * while we were alive from the parent's list.
 1108                  */
 1109                 bzero((char *)&sdl, sizeof(sdl));
 1110                 sdl.sdl_len = sizeof(sdl);
 1111                 sdl.sdl_family = AF_LINK;
 1112                 sdl.sdl_index = parent->if_index;
 1113                 sdl.sdl_type = IFT_ETHER;
 1114                 sdl.sdl_alen = ETHER_ADDR_LEN;
 1115 
 1116                 while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
 1117                         bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
 1118                             ETHER_ADDR_LEN);
 1119                         error = if_delmulti(parent, (struct sockaddr *)&sdl);
 1120                         if (error)
 1121                                 return (error);
 1122                         SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
 1123                         free(mc, M_VLAN);
 1124                 }
 1125 
 1126                 vlan_setflags(ifp, 0); /* clear special flags on parent */
 1127 #ifdef VLAN_ARRAY
 1128                 trunk->vlans[ifv->ifv_tag] = NULL;
 1129                 trunk->refcnt--;
 1130 #else
 1131                 vlan_remhash(trunk, ifv);
 1132 #endif
 1133                 ifv->ifv_trunk = NULL;
 1134 
 1135                 /*
 1136                  * Check if we were the last.
 1137                  */
 1138                 if (trunk->refcnt == 0) {
 1139                         trunk->parent->if_vlantrunk = NULL;
 1140                         /*
 1141                          * XXXGL: If some ithread has already entered
 1142                          * vlan_input() and is now blocked on the trunk
 1143                          * lock, then it should preempt us right after
 1144                          * unlock and finish its work. Then we will acquire
 1145                          * lock again in trunk_destroy().
 1146                          */
 1147                         TRUNK_UNLOCK(trunk);
 1148                         trunk_destroy(trunk);
 1149                 } else
 1150                         TRUNK_UNLOCK(trunk);
 1151         }
 1152 
 1153         /* Disconnect from parent. */
 1154         if (ifv->ifv_pflags)
 1155                 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
 1156         ifp->if_mtu = ETHERMTU;
 1157         ifp->if_link_state = LINK_STATE_UNKNOWN;
 1158         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1159 
 1160         /*
 1161          * Only dispatch an event if vlan was
 1162          * attached, otherwise there is nothing
 1163          * to cleanup anyway.
 1164          */
 1165         if (parent != NULL)
 1166                 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
 1167 
 1168         return (0);
 1169 }
 1170 
 1171 /* Handle a reference counted flag that should be set on the parent as well */
 1172 static int
 1173 vlan_setflag(struct ifnet *ifp, int flag, int status,
 1174              int (*func)(struct ifnet *, int))
 1175 {
 1176         struct ifvlan *ifv;
 1177         int error;
 1178 
 1179         /* XXX VLAN_LOCK_ASSERT(); */
 1180 
 1181         ifv = ifp->if_softc;
 1182         status = status ? (ifp->if_flags & flag) : 0;
 1183         /* Now "status" contains the flag value or 0 */
 1184 
 1185         /*
 1186          * See if recorded parent's status is different from what
 1187          * we want it to be.  If it is, flip it.  We record parent's
 1188          * status in ifv_pflags so that we won't clear parent's flag
 1189          * we haven't set.  In fact, we don't clear or set parent's
 1190          * flags directly, but get or release references to them.
 1191          * That's why we can be sure that recorded flags still are
 1192          * in accord with actual parent's flags.
 1193          */
 1194         if (status != (ifv->ifv_pflags & flag)) {
 1195                 error = (*func)(PARENT(ifv), status);
 1196                 if (error)
 1197                         return (error);
 1198                 ifv->ifv_pflags &= ~flag;
 1199                 ifv->ifv_pflags |= status;
 1200         }
 1201         return (0);
 1202 }
 1203 
 1204 /*
 1205  * Handle IFF_* flags that require certain changes on the parent:
 1206  * if "status" is true, update parent's flags respective to our if_flags;
 1207  * if "status" is false, forcedly clear the flags set on parent.
 1208  */
 1209 static int
 1210 vlan_setflags(struct ifnet *ifp, int status)
 1211 {
 1212         int error, i;
 1213         
 1214         for (i = 0; vlan_pflags[i].flag; i++) {
 1215                 error = vlan_setflag(ifp, vlan_pflags[i].flag,
 1216                                      status, vlan_pflags[i].func);
 1217                 if (error)
 1218                         return (error);
 1219         }
 1220         return (0);
 1221 }
 1222 
 1223 /* Inform all vlans that their parent has changed link state */
 1224 static void
 1225 vlan_link_state(struct ifnet *ifp, int link)
 1226 {
 1227         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1228         struct ifvlan *ifv;
 1229         int i;
 1230 
 1231         TRUNK_LOCK(trunk);
 1232 #ifdef VLAN_ARRAY
 1233         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
 1234                 if (trunk->vlans[i] != NULL) {
 1235                         ifv = trunk->vlans[i];
 1236 #else
 1237         for (i = 0; i < (1 << trunk->hwidth); i++)
 1238                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
 1239 #endif
 1240                         ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
 1241                         if_link_state_change(ifv->ifv_ifp,
 1242                             trunk->parent->if_link_state);
 1243                 }
 1244         TRUNK_UNLOCK(trunk);
 1245 }
 1246 
 1247 static void
 1248 vlan_capabilities(struct ifvlan *ifv)
 1249 {
 1250         struct ifnet *p = PARENT(ifv);
 1251         struct ifnet *ifp = ifv->ifv_ifp;
 1252 
 1253         TRUNK_LOCK_ASSERT(TRUNK(ifv));
 1254 
 1255         /*
 1256          * If the parent interface can do checksum offloading
 1257          * on VLANs, then propagate its hardware-assisted
 1258          * checksumming flags. Also assert that checksum
 1259          * offloading requires hardware VLAN tagging.
 1260          */
 1261         if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
 1262                 ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
 1263 
 1264         if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
 1265             p->if_capenable & IFCAP_VLAN_HWTAGGING) {
 1266                 ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
 1267                 ifp->if_hwassist = p->if_hwassist;
 1268         } else {
 1269                 ifp->if_capenable = 0;
 1270                 ifp->if_hwassist = 0;
 1271         }
 1272 }
 1273 
 1274 static void
 1275 vlan_trunk_capabilities(struct ifnet *ifp)
 1276 {
 1277         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1278         struct ifvlan *ifv;
 1279         int i;
 1280 
 1281         TRUNK_LOCK(trunk);
 1282 #ifdef VLAN_ARRAY
 1283         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
 1284                 if (trunk->vlans[i] != NULL) {
 1285                         ifv = trunk->vlans[i];
 1286 #else
 1287         for (i = 0; i < (1 << trunk->hwidth); i++) {
 1288                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
 1289 #endif
 1290                         vlan_capabilities(ifv);
 1291         }
 1292         TRUNK_UNLOCK(trunk);
 1293 }
 1294 
 1295 static int
 1296 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1297 {
 1298         struct ifaddr *ifa;
 1299         struct ifnet *p;
 1300         struct ifreq *ifr;
 1301         struct ifvlan *ifv;
 1302         struct vlanreq vlr;
 1303         int error = 0;
 1304 
 1305         ifr = (struct ifreq *)data;
 1306         ifa = (struct ifaddr *)data;
 1307         ifv = ifp->if_softc;
 1308 
 1309         switch (cmd) {
 1310         case SIOCGIFMEDIA:
 1311                 VLAN_LOCK();
 1312                 if (TRUNK(ifv) != NULL) {
 1313                         error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
 1314                                         SIOCGIFMEDIA, data);
 1315                         VLAN_UNLOCK();
 1316                         /* Limit the result to the parent's current config. */
 1317                         if (error == 0) {
 1318                                 struct ifmediareq *ifmr;
 1319 
 1320                                 ifmr = (struct ifmediareq *)data;
 1321                                 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
 1322                                         ifmr->ifm_count = 1;
 1323                                         error = copyout(&ifmr->ifm_current,
 1324                                                 ifmr->ifm_ulist,
 1325                                                 sizeof(int));
 1326                                 }
 1327                         }
 1328                 } else {
 1329                         VLAN_UNLOCK();
 1330                         error = EINVAL;
 1331                 }
 1332                 break;
 1333 
 1334         case SIOCSIFMEDIA:
 1335                 error = EINVAL;
 1336                 break;
 1337 
 1338         case SIOCSIFMTU:
 1339                 /*
 1340                  * Set the interface MTU.
 1341                  */
 1342                 VLAN_LOCK();
 1343                 if (TRUNK(ifv) != NULL) {
 1344                         if (ifr->ifr_mtu >
 1345                              (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
 1346                             ifr->ifr_mtu <
 1347                              (ifv->ifv_mintu - ifv->ifv_mtufudge))
 1348                                 error = EINVAL;
 1349                         else
 1350                                 ifp->if_mtu = ifr->ifr_mtu;
 1351                 } else
 1352                         error = EINVAL;
 1353                 VLAN_UNLOCK();
 1354                 break;
 1355 
 1356         case SIOCSETVLAN:
 1357                 error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
 1358                 if (error)
 1359                         break;
 1360                 if (vlr.vlr_parent[0] == '\0') {
 1361                         vlan_unconfig(ifp);
 1362                         break;
 1363                 }
 1364                 p = ifunit(vlr.vlr_parent);
 1365                 if (p == 0) {
 1366                         error = ENOENT;
 1367                         break;
 1368                 }
 1369                 /*
 1370                  * Don't let the caller set up a VLAN tag with
 1371                  * anything except VLID bits.
 1372                  */
 1373                 if (vlr.vlr_tag & ~EVL_VLID_MASK) {
 1374                         error = EINVAL;
 1375                         break;
 1376                 }
 1377                 error = vlan_config(ifv, p, vlr.vlr_tag);
 1378                 if (error)
 1379                         break;
 1380 
 1381                 /* Update flags on the parent, if necessary. */
 1382                 vlan_setflags(ifp, 1);
 1383                 break;
 1384 
 1385         case SIOCGETVLAN:
 1386                 bzero(&vlr, sizeof(vlr));
 1387                 VLAN_LOCK();
 1388                 if (TRUNK(ifv) != NULL) {
 1389                         strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
 1390                             sizeof(vlr.vlr_parent));
 1391                         vlr.vlr_tag = ifv->ifv_tag;
 1392                 }
 1393                 VLAN_UNLOCK();
 1394                 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
 1395                 break;
 1396                 
 1397         case SIOCSIFFLAGS:
 1398                 /*
 1399                  * We should propagate selected flags to the parent,
 1400                  * e.g., promiscuous mode.
 1401                  */
 1402                 if (TRUNK(ifv) != NULL)
 1403                         error = vlan_setflags(ifp, 1);
 1404                 break;
 1405 
 1406         case SIOCADDMULTI:
 1407         case SIOCDELMULTI:
 1408                 /*
 1409                  * If we don't have a parent, just remember the membership for
 1410                  * when we do.
 1411                  */
 1412                 if (TRUNK(ifv) != NULL)
 1413                         error = vlan_setmulti(ifp);
 1414                 break;
 1415 
 1416         default:
 1417                 error = ether_ioctl(ifp, cmd, data);
 1418         }
 1419 
 1420         return (error);
 1421 }

Cache object: 643710f45b9fb6e131673bc9c5fe8bd6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.