The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_vlan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  * 
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD: releng/8.0/sys/net/if_vlan.c 196626 2009-08-28 20:06:02Z rwatson $
   30  */
   31 
   32 /*
   33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
   34  * Might be extended some day to also handle IEEE 802.1p priority
   35  * tagging.  This is sort of sneaky in the implementation, since
   36  * we need to pretend to be enough of an Ethernet implementation
   37  * to make arp work.  The way we do this is by telling everyone
   38  * that we are an Ethernet, and then catch the packets that
   39  * ether_output() left on our output queue when it calls
   40  * if_start(), rewrite them for use by the real outgoing interface,
   41  * and ask it to send them.
   42  */
   43 
   44 #include "opt_vlan.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/kernel.h>
   48 #include <sys/lock.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/module.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/queue.h>
   54 #include <sys/socket.h>
   55 #include <sys/sockio.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/systm.h>
   58 
   59 #include <net/bpf.h>
   60 #include <net/ethernet.h>
   61 #include <net/if.h>
   62 #include <net/if_clone.h>
   63 #include <net/if_dl.h>
   64 #include <net/if_types.h>
   65 #include <net/if_vlan_var.h>
   66 #include <net/vnet.h>
   67 
   68 #define VLANNAME        "vlan"
   69 #define VLAN_DEF_HWIDTH 4
   70 #define VLAN_IFFLAGS    (IFF_BROADCAST | IFF_MULTICAST)
   71 
   72 #define UP_AND_RUNNING(ifp) \
   73     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
   74 
   75 LIST_HEAD(ifvlanhead, ifvlan);
   76 
   77 struct ifvlantrunk {
   78         struct  ifnet   *parent;        /* parent interface of this trunk */
   79         struct  rwlock  rw;
   80 #ifdef VLAN_ARRAY
   81 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1)
   82         struct  ifvlan  *vlans[VLAN_ARRAY_SIZE]; /* static table */
   83 #else
   84         struct  ifvlanhead *hash;       /* dynamic hash-list table */
   85         uint16_t        hmask;
   86         uint16_t        hwidth;
   87 #endif
   88         int             refcnt;
   89 };
   90 
   91 struct vlan_mc_entry {
   92         struct ether_addr               mc_addr;
   93         SLIST_ENTRY(vlan_mc_entry)      mc_entries;
   94 };
   95 
   96 struct  ifvlan {
   97         struct  ifvlantrunk *ifv_trunk;
   98         struct  ifnet *ifv_ifp;
   99 #define TRUNK(ifv)      ((ifv)->ifv_trunk)
  100 #define PARENT(ifv)     ((ifv)->ifv_trunk->parent)
  101         int     ifv_pflags;     /* special flags we have set on parent */
  102         struct  ifv_linkmib {
  103                 int     ifvm_encaplen;  /* encapsulation length */
  104                 int     ifvm_mtufudge;  /* MTU fudged by this much */
  105                 int     ifvm_mintu;     /* min transmission unit */
  106                 uint16_t ifvm_proto;    /* encapsulation ethertype */
  107                 uint16_t ifvm_tag;      /* tag to apply on packets leaving if */
  108         }       ifv_mib;
  109         SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
  110 #ifndef VLAN_ARRAY
  111         LIST_ENTRY(ifvlan) ifv_list;
  112 #endif
  113 };
  114 #define ifv_proto       ifv_mib.ifvm_proto
  115 #define ifv_tag         ifv_mib.ifvm_tag
  116 #define ifv_encaplen    ifv_mib.ifvm_encaplen
  117 #define ifv_mtufudge    ifv_mib.ifvm_mtufudge
  118 #define ifv_mintu       ifv_mib.ifvm_mintu
  119 
  120 /* Special flags we should propagate to parent. */
  121 static struct {
  122         int flag;
  123         int (*func)(struct ifnet *, int);
  124 } vlan_pflags[] = {
  125         {IFF_PROMISC, ifpromisc},
  126         {IFF_ALLMULTI, if_allmulti},
  127         {0, NULL}
  128 };
  129 
  130 SYSCTL_DECL(_net_link);
  131 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
  132 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
  133 
  134 static int soft_pad = 0;
  135 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
  136            "pad short frames before tagging");
  137 
  138 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
  139 
  140 static eventhandler_tag ifdetach_tag;
  141 
  142 /*
  143  * We have a global mutex, that is used to serialize configuration
  144  * changes and isn't used in normal packet delivery.
  145  *
  146  * We also have a per-trunk rwlock, that is locked shared on packet
  147  * processing and exclusive when configuration is changed.
  148  *
  149  * The VLAN_ARRAY substitutes the dynamic hash with a static array
  150  * with 4096 entries. In theory this can give a boost in processing,
  151  * however on practice it does not. Probably this is because array
  152  * is too big to fit into CPU cache.
  153  */
  154 static struct mtx ifv_mtx;
  155 #define VLAN_LOCK_INIT()        mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
  156 #define VLAN_LOCK_DESTROY()     mtx_destroy(&ifv_mtx)
  157 #define VLAN_LOCK_ASSERT()      mtx_assert(&ifv_mtx, MA_OWNED)
  158 #define VLAN_LOCK()             mtx_lock(&ifv_mtx)
  159 #define VLAN_UNLOCK()           mtx_unlock(&ifv_mtx)
  160 #define TRUNK_LOCK_INIT(trunk)  rw_init(&(trunk)->rw, VLANNAME)
  161 #define TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
  162 #define TRUNK_LOCK(trunk)       rw_wlock(&(trunk)->rw)
  163 #define TRUNK_UNLOCK(trunk)     rw_wunlock(&(trunk)->rw)
  164 #define TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
  165 #define TRUNK_RLOCK(trunk)      rw_rlock(&(trunk)->rw)
  166 #define TRUNK_RUNLOCK(trunk)    rw_runlock(&(trunk)->rw)
  167 #define TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
  168 
  169 #ifndef VLAN_ARRAY
  170 static  void vlan_inithash(struct ifvlantrunk *trunk);
  171 static  void vlan_freehash(struct ifvlantrunk *trunk);
  172 static  int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
  173 static  int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
  174 static  void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
  175 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
  176         uint16_t tag);
  177 #endif
  178 static  void trunk_destroy(struct ifvlantrunk *trunk);
  179 
  180 static  void vlan_start(struct ifnet *ifp);
  181 static  void vlan_init(void *foo);
  182 static  void vlan_input(struct ifnet *ifp, struct mbuf *m);
  183 static  int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
  184 static  int vlan_setflag(struct ifnet *ifp, int flag, int status,
  185     int (*func)(struct ifnet *, int));
  186 static  int vlan_setflags(struct ifnet *ifp, int status);
  187 static  int vlan_setmulti(struct ifnet *ifp);
  188 static  int vlan_unconfig(struct ifnet *ifp);
  189 static  int vlan_unconfig_locked(struct ifnet *ifp);
  190 static  int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
  191 static  void vlan_link_state(struct ifnet *ifp, int link);
  192 static  void vlan_capabilities(struct ifvlan *ifv);
  193 static  void vlan_trunk_capabilities(struct ifnet *ifp);
  194 
  195 static  struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
  196     const char *, int *);
  197 static  int vlan_clone_match(struct if_clone *, const char *);
  198 static  int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
  199 static  int vlan_clone_destroy(struct if_clone *, struct ifnet *);
  200 
  201 static  void vlan_ifdetach(void *arg, struct ifnet *ifp);
  202 
  203 static  struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
  204     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
  205 
  206 #ifndef VLAN_ARRAY
  207 #define HASH(n, m)      ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
  208 
  209 static void
  210 vlan_inithash(struct ifvlantrunk *trunk)
  211 {
  212         int i, n;
  213         
  214         /*
  215          * The trunk must not be locked here since we call malloc(M_WAITOK).
  216          * It is OK in case this function is called before the trunk struct
  217          * gets hooked up and becomes visible from other threads.
  218          */
  219 
  220         KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
  221             ("%s: hash already initialized", __func__));
  222 
  223         trunk->hwidth = VLAN_DEF_HWIDTH;
  224         n = 1 << trunk->hwidth;
  225         trunk->hmask = n - 1;
  226         trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
  227         for (i = 0; i < n; i++)
  228                 LIST_INIT(&trunk->hash[i]);
  229 }
  230 
  231 static void
  232 vlan_freehash(struct ifvlantrunk *trunk)
  233 {
  234 #ifdef INVARIANTS
  235         int i;
  236 
  237         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  238         for (i = 0; i < (1 << trunk->hwidth); i++)
  239                 KASSERT(LIST_EMPTY(&trunk->hash[i]),
  240                     ("%s: hash table not empty", __func__));
  241 #endif
  242         free(trunk->hash, M_VLAN);
  243         trunk->hash = NULL;
  244         trunk->hwidth = trunk->hmask = 0;
  245 }
  246 
  247 static int
  248 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  249 {
  250         int i, b;
  251         struct ifvlan *ifv2;
  252 
  253         TRUNK_LOCK_ASSERT(trunk);
  254         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  255 
  256         b = 1 << trunk->hwidth;
  257         i = HASH(ifv->ifv_tag, trunk->hmask);
  258         LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
  259                 if (ifv->ifv_tag == ifv2->ifv_tag)
  260                         return (EEXIST);
  261 
  262         /*
  263          * Grow the hash when the number of vlans exceeds half of the number of
  264          * hash buckets squared. This will make the average linked-list length
  265          * buckets/2.
  266          */
  267         if (trunk->refcnt > (b * b) / 2) {
  268                 vlan_growhash(trunk, 1);
  269                 i = HASH(ifv->ifv_tag, trunk->hmask);
  270         }
  271         LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
  272         trunk->refcnt++;
  273 
  274         return (0);
  275 }
  276 
  277 static int
  278 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  279 {
  280         int i, b;
  281         struct ifvlan *ifv2;
  282 
  283         TRUNK_LOCK_ASSERT(trunk);
  284         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  285         
  286         b = 1 << trunk->hwidth;
  287         i = HASH(ifv->ifv_tag, trunk->hmask);
  288         LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
  289                 if (ifv2 == ifv) {
  290                         trunk->refcnt--;
  291                         LIST_REMOVE(ifv2, ifv_list);
  292                         if (trunk->refcnt < (b * b) / 2)
  293                                 vlan_growhash(trunk, -1);
  294                         return (0);
  295                 }
  296 
  297         panic("%s: vlan not found\n", __func__);
  298         return (ENOENT); /*NOTREACHED*/
  299 }
  300 
  301 /*
  302  * Grow the hash larger or smaller if memory permits.
  303  */
  304 static void
  305 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
  306 {
  307         struct ifvlan *ifv;
  308         struct ifvlanhead *hash2;
  309         int hwidth2, i, j, n, n2;
  310 
  311         TRUNK_LOCK_ASSERT(trunk);
  312         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  313 
  314         if (howmuch == 0) {
  315                 /* Harmless yet obvious coding error */
  316                 printf("%s: howmuch is 0\n", __func__);
  317                 return;
  318         }
  319 
  320         hwidth2 = trunk->hwidth + howmuch;
  321         n = 1 << trunk->hwidth;
  322         n2 = 1 << hwidth2;
  323         /* Do not shrink the table below the default */
  324         if (hwidth2 < VLAN_DEF_HWIDTH)
  325                 return;
  326 
  327         /* M_NOWAIT because we're called with trunk mutex held */
  328         hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
  329         if (hash2 == NULL) {
  330                 printf("%s: out of memory -- hash size not changed\n",
  331                     __func__);
  332                 return;         /* We can live with the old hash table */
  333         }
  334         for (j = 0; j < n2; j++)
  335                 LIST_INIT(&hash2[j]);
  336         for (i = 0; i < n; i++)
  337                 while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
  338                         LIST_REMOVE(ifv, ifv_list);
  339                         j = HASH(ifv->ifv_tag, n2 - 1);
  340                         LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
  341                 }
  342         free(trunk->hash, M_VLAN);
  343         trunk->hash = hash2;
  344         trunk->hwidth = hwidth2;
  345         trunk->hmask = n2 - 1;
  346 
  347         if (bootverbose)
  348                 if_printf(trunk->parent,
  349                     "VLAN hash table resized from %d to %d buckets\n", n, n2);
  350 }
  351 
  352 static __inline struct ifvlan *
  353 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
  354 {
  355         struct ifvlan *ifv;
  356 
  357         TRUNK_LOCK_RASSERT(trunk);
  358 
  359         LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
  360                 if (ifv->ifv_tag == tag)
  361                         return (ifv);
  362         return (NULL);
  363 }
  364 
  365 #if 0
  366 /* Debugging code to view the hashtables. */
  367 static void
  368 vlan_dumphash(struct ifvlantrunk *trunk)
  369 {
  370         int i;
  371         struct ifvlan *ifv;
  372 
  373         for (i = 0; i < (1 << trunk->hwidth); i++) {
  374                 printf("%d: ", i);
  375                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
  376                         printf("%s ", ifv->ifv_ifp->if_xname);
  377                 printf("\n");
  378         }
  379 }
  380 #endif /* 0 */
  381 #endif /* !VLAN_ARRAY */
  382 
  383 static void
  384 trunk_destroy(struct ifvlantrunk *trunk)
  385 {
  386         VLAN_LOCK_ASSERT();
  387 
  388         TRUNK_LOCK(trunk);
  389 #ifndef VLAN_ARRAY
  390         vlan_freehash(trunk);
  391 #endif
  392         trunk->parent->if_vlantrunk = NULL;
  393         TRUNK_UNLOCK(trunk);
  394         TRUNK_LOCK_DESTROY(trunk);
  395         free(trunk, M_VLAN);
  396 }
  397 
  398 /*
  399  * Program our multicast filter. What we're actually doing is
  400  * programming the multicast filter of the parent. This has the
  401  * side effect of causing the parent interface to receive multicast
  402  * traffic that it doesn't really want, which ends up being discarded
  403  * later by the upper protocol layers. Unfortunately, there's no way
  404  * to avoid this: there really is only one physical interface.
  405  *
  406  * XXX: There is a possible race here if more than one thread is
  407  *      modifying the multicast state of the vlan interface at the same time.
  408  */
  409 static int
  410 vlan_setmulti(struct ifnet *ifp)
  411 {
  412         struct ifnet            *ifp_p;
  413         struct ifmultiaddr      *ifma, *rifma = NULL;
  414         struct ifvlan           *sc;
  415         struct vlan_mc_entry    *mc;
  416         struct sockaddr_dl      sdl;
  417         int                     error;
  418 
  419         /*VLAN_LOCK_ASSERT();*/
  420 
  421         /* Find the parent. */
  422         sc = ifp->if_softc;
  423         ifp_p = PARENT(sc);
  424 
  425         CURVNET_SET_QUIET(ifp_p->if_vnet);
  426 
  427         bzero((char *)&sdl, sizeof(sdl));
  428         sdl.sdl_len = sizeof(sdl);
  429         sdl.sdl_family = AF_LINK;
  430         sdl.sdl_index = ifp_p->if_index;
  431         sdl.sdl_type = IFT_ETHER;
  432         sdl.sdl_alen = ETHER_ADDR_LEN;
  433 
  434         /* First, remove any existing filter entries. */
  435         while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
  436                 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
  437                 error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
  438                 if (error)
  439                         return (error);
  440                 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
  441                 free(mc, M_VLAN);
  442         }
  443 
  444         /* Now program new ones. */
  445         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  446                 if (ifma->ifma_addr->sa_family != AF_LINK)
  447                         continue;
  448                 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
  449                 if (mc == NULL)
  450                         return (ENOMEM);
  451                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
  452                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
  453                 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
  454                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
  455                     LLADDR(&sdl), ETHER_ADDR_LEN);
  456                 error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
  457                 if (error)
  458                         return (error);
  459         }
  460 
  461         CURVNET_RESTORE();
  462         return (0);
  463 }
  464 
  465 /*
  466  * A handler for network interface departure events.
  467  * Track departure of trunks here so that we don't access invalid
  468  * pointers or whatever if a trunk is ripped from under us, e.g.,
  469  * by ejecting its hot-plug card.
  470  */
  471 static void
  472 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
  473 {
  474         struct ifvlan *ifv;
  475         int i;
  476 
  477         /*
  478          * Check if it's a trunk interface first of all
  479          * to avoid needless locking.
  480          */
  481         if (ifp->if_vlantrunk == NULL)
  482                 return;
  483 
  484         VLAN_LOCK();
  485         /*
  486          * OK, it's a trunk.  Loop over and detach all vlan's on it.
  487          * Check trunk pointer after each vlan_unconfig() as it will
  488          * free it and set to NULL after the last vlan was detached.
  489          */
  490 #ifdef VLAN_ARRAY
  491         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
  492                 if ((ifv = ifp->if_vlantrunk->vlans[i])) {
  493                         vlan_unconfig_locked(ifv->ifv_ifp);
  494                         if (ifp->if_vlantrunk == NULL)
  495                                 break;
  496                 }
  497 #else /* VLAN_ARRAY */
  498 restart:
  499         for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
  500                 if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
  501                         vlan_unconfig_locked(ifv->ifv_ifp);
  502                         if (ifp->if_vlantrunk)
  503                                 goto restart;   /* trunk->hwidth can change */
  504                         else
  505                                 break;
  506                 }
  507 #endif /* VLAN_ARRAY */
  508         /* Trunk should have been destroyed in vlan_unconfig(). */
  509         KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
  510         VLAN_UNLOCK();
  511 }
  512 
  513 /*
  514  * VLAN support can be loaded as a module.  The only place in the
  515  * system that's intimately aware of this is ether_input.  We hook
  516  * into this code through vlan_input_p which is defined there and
  517  * set here.  Noone else in the system should be aware of this so
  518  * we use an explicit reference here.
  519  */
  520 extern  void (*vlan_input_p)(struct ifnet *, struct mbuf *);
  521 
  522 /* For if_link_state_change() eyes only... */
  523 extern  void (*vlan_link_state_p)(struct ifnet *, int);
  524 
  525 static int
  526 vlan_modevent(module_t mod, int type, void *data)
  527 {
  528 
  529         switch (type) {
  530         case MOD_LOAD:
  531                 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
  532                     vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
  533                 if (ifdetach_tag == NULL)
  534                         return (ENOMEM);
  535                 VLAN_LOCK_INIT();
  536                 vlan_input_p = vlan_input;
  537                 vlan_link_state_p = vlan_link_state;
  538                 vlan_trunk_cap_p = vlan_trunk_capabilities;
  539                 if_clone_attach(&vlan_cloner);
  540                 if (bootverbose)
  541                         printf("vlan: initialized, using "
  542 #ifdef VLAN_ARRAY
  543                                "full-size arrays"
  544 #else
  545                                "hash tables with chaining"
  546 #endif
  547                         
  548                                "\n");
  549                 break;
  550         case MOD_UNLOAD:
  551                 if_clone_detach(&vlan_cloner);
  552                 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
  553                 vlan_input_p = NULL;
  554                 vlan_link_state_p = NULL;
  555                 vlan_trunk_cap_p = NULL;
  556                 VLAN_LOCK_DESTROY();
  557                 if (bootverbose)
  558                         printf("vlan: unloaded\n");
  559                 break;
  560         default:
  561                 return (EOPNOTSUPP);
  562         }
  563         return (0);
  564 }
  565 
  566 static moduledata_t vlan_mod = {
  567         "if_vlan",
  568         vlan_modevent,
  569         0
  570 };
  571 
  572 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
  573 MODULE_VERSION(if_vlan, 3);
  574 
  575 static struct ifnet *
  576 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
  577 {
  578         const char *cp;
  579         struct ifnet *ifp;
  580         int t = 0;
  581 
  582         /* Check for <etherif>.<vlan> style interface names. */
  583         IFNET_RLOCK_NOSLEEP();
  584         TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
  585                 if (ifp->if_type != IFT_ETHER)
  586                         continue;
  587                 if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
  588                         continue;
  589                 cp = name + strlen(ifp->if_xname);
  590                 if (*cp != '.')
  591                         continue;
  592                 for(; *cp != '\0'; cp++) {
  593                         if (*cp < '' || *cp > '9')
  594                                 continue;
  595                         t = (t * 10) + (*cp - '');
  596                 }
  597                 if (tag != NULL)
  598                         *tag = t;
  599                 break;
  600         }
  601         IFNET_RUNLOCK_NOSLEEP();
  602 
  603         return (ifp);
  604 }
  605 
  606 static int
  607 vlan_clone_match(struct if_clone *ifc, const char *name)
  608 {
  609         const char *cp;
  610 
  611         if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
  612                 return (1);
  613 
  614         if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
  615                 return (0);
  616         for (cp = name + 4; *cp != '\0'; cp++) {
  617                 if (*cp < '' || *cp > '9')
  618                         return (0);
  619         }
  620 
  621         return (1);
  622 }
  623 
  624 static int
  625 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
  626 {
  627         char *dp;
  628         int wildcard;
  629         int unit;
  630         int error;
  631         int tag;
  632         int ethertag;
  633         struct ifvlan *ifv;
  634         struct ifnet *ifp;
  635         struct ifnet *p;
  636         struct vlanreq vlr;
  637         static const u_char eaddr[ETHER_ADDR_LEN];      /* 00:00:00:00:00:00 */
  638 
  639         /*
  640          * There are 3 (ugh) ways to specify the cloned device:
  641          * o pass a parameter block with the clone request.
  642          * o specify parameters in the text of the clone device name
  643          * o specify no parameters and get an unattached device that
  644          *   must be configured separately.
  645          * The first technique is preferred; the latter two are
  646          * supported for backwards compatibilty.
  647          */
  648         if (params) {
  649                 error = copyin(params, &vlr, sizeof(vlr));
  650                 if (error)
  651                         return error;
  652                 p = ifunit(vlr.vlr_parent);
  653                 if (p == NULL)
  654                         return ENXIO;
  655                 /*
  656                  * Don't let the caller set up a VLAN tag with
  657                  * anything except VLID bits.
  658                  */
  659                 if (vlr.vlr_tag & ~EVL_VLID_MASK)
  660                         return (EINVAL);
  661                 error = ifc_name2unit(name, &unit);
  662                 if (error != 0)
  663                         return (error);
  664 
  665                 ethertag = 1;
  666                 tag = vlr.vlr_tag;
  667                 wildcard = (unit < 0);
  668         } else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
  669                 ethertag = 1;
  670                 unit = -1;
  671                 wildcard = 0;
  672 
  673                 /*
  674                  * Don't let the caller set up a VLAN tag with
  675                  * anything except VLID bits.
  676                  */
  677                 if (tag & ~EVL_VLID_MASK)
  678                         return (EINVAL);
  679         } else {
  680                 ethertag = 0;
  681 
  682                 error = ifc_name2unit(name, &unit);
  683                 if (error != 0)
  684                         return (error);
  685 
  686                 wildcard = (unit < 0);
  687         }
  688 
  689         error = ifc_alloc_unit(ifc, &unit);
  690         if (error != 0)
  691                 return (error);
  692 
  693         /* In the wildcard case, we need to update the name. */
  694         if (wildcard) {
  695                 for (dp = name; *dp != '\0'; dp++);
  696                 if (snprintf(dp, len - (dp-name), "%d", unit) >
  697                     len - (dp-name) - 1) {
  698                         panic("%s: interface name too long", __func__);
  699                 }
  700         }
  701 
  702         ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
  703         ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
  704         if (ifp == NULL) {
  705                 ifc_free_unit(ifc, unit);
  706                 free(ifv, M_VLAN);
  707                 return (ENOSPC);
  708         }
  709         SLIST_INIT(&ifv->vlan_mc_listhead);
  710 
  711         ifp->if_softc = ifv;
  712         /*
  713          * Set the name manually rather than using if_initname because
  714          * we don't conform to the default naming convention for interfaces.
  715          */
  716         strlcpy(ifp->if_xname, name, IFNAMSIZ);
  717         ifp->if_dname = ifc->ifc_name;
  718         ifp->if_dunit = unit;
  719         /* NB: flags are not set here */
  720         ifp->if_linkmib = &ifv->ifv_mib;
  721         ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
  722         /* NB: mtu is not set here */
  723 
  724         ifp->if_init = vlan_init;
  725         ifp->if_start = vlan_start;
  726         ifp->if_ioctl = vlan_ioctl;
  727         ifp->if_snd.ifq_maxlen = ifqmaxlen;
  728         ifp->if_flags = VLAN_IFFLAGS;
  729         ether_ifattach(ifp, eaddr);
  730         /* Now undo some of the damage... */
  731         ifp->if_baudrate = 0;
  732         ifp->if_type = IFT_L2VLAN;
  733         ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
  734 
  735         if (ethertag) {
  736                 error = vlan_config(ifv, p, tag);
  737                 if (error != 0) {
  738                         /*
  739                          * Since we've partialy failed, we need to back
  740                          * out all the way, otherwise userland could get
  741                          * confused.  Thus, we destroy the interface.
  742                          */
  743                         ether_ifdetach(ifp);
  744                         vlan_unconfig(ifp);
  745                         if_free_type(ifp, IFT_ETHER);
  746                         ifc_free_unit(ifc, unit);
  747                         free(ifv, M_VLAN);
  748 
  749                         return (error);
  750                 }
  751 
  752                 /* Update flags on the parent, if necessary. */
  753                 vlan_setflags(ifp, 1);
  754         }
  755 
  756         return (0);
  757 }
  758 
  759 static int
  760 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
  761 {
  762         struct ifvlan *ifv = ifp->if_softc;
  763         int unit = ifp->if_dunit;
  764 
  765         ether_ifdetach(ifp);    /* first, remove it from system-wide lists */
  766         vlan_unconfig(ifp);     /* now it can be unconfigured and freed */
  767         if_free_type(ifp, IFT_ETHER);
  768         free(ifv, M_VLAN);
  769         ifc_free_unit(ifc, unit);
  770 
  771         return (0);
  772 }
  773 
  774 /*
  775  * The ifp->if_init entry point for vlan(4) is a no-op.
  776  */
  777 static void
  778 vlan_init(void *foo __unused)
  779 {
  780 }
  781 
  782 /*
  783  * The if_start method for vlan(4) interface. It doesn't
  784  * raises the IFF_DRV_OACTIVE flag, since it is called
  785  * only from IFQ_HANDOFF() macro in ether_output_frame().
  786  * If the interface queue is full, and vlan_start() is
  787  * not called, the queue would never get emptied and
  788  * interface would stall forever.
  789  */
  790 static void
  791 vlan_start(struct ifnet *ifp)
  792 {
  793         struct ifvlan *ifv;
  794         struct ifnet *p;
  795         struct mbuf *m;
  796         int error;
  797 
  798         ifv = ifp->if_softc;
  799         p = PARENT(ifv);
  800 
  801         for (;;) {
  802                 IF_DEQUEUE(&ifp->if_snd, m);
  803                 if (m == NULL)
  804                         break;
  805                 BPF_MTAP(ifp, m);
  806 
  807                 /*
  808                  * Do not run parent's if_start() if the parent is not up,
  809                  * or parent's driver will cause a system crash.
  810                  */
  811                 if (!UP_AND_RUNNING(p)) {
  812                         m_freem(m);
  813                         ifp->if_collisions++;
  814                         continue;
  815                 }
  816 
  817                 /*
  818                  * Pad the frame to the minimum size allowed if told to.
  819                  * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
  820                  * paragraph C.4.4.3.b.  It can help to work around buggy
  821                  * bridges that violate paragraph C.4.4.3.a from the same
  822                  * document, i.e., fail to pad short frames after untagging.
  823                  * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
  824                  * untagging it will produce a 62-byte frame, which is a runt
  825                  * and requires padding.  There are VLAN-enabled network
  826                  * devices that just discard such runts instead or mishandle
  827                  * them somehow.
  828                  */
  829                 if (soft_pad) {
  830                         static char pad[8];     /* just zeros */
  831                         int n;
  832 
  833                         for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
  834                              n > 0; n -= sizeof(pad))
  835                                 if (!m_append(m, min(n, sizeof(pad)), pad))
  836                                         break;
  837 
  838                         if (n > 0) {
  839                                 if_printf(ifp, "cannot pad short frame\n");
  840                                 ifp->if_oerrors++;
  841                                 m_freem(m);
  842                                 continue;
  843                         }
  844                 }
  845 
  846                 /*
  847                  * If underlying interface can do VLAN tag insertion itself,
  848                  * just pass the packet along. However, we need some way to
  849                  * tell the interface where the packet came from so that it
  850                  * knows how to find the VLAN tag to use, so we attach a
  851                  * packet tag that holds it.
  852                  */
  853                 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
  854                         m->m_pkthdr.ether_vtag = ifv->ifv_tag;
  855                         m->m_flags |= M_VLANTAG;
  856                 } else {
  857                         m = ether_vlanencap(m, ifv->ifv_tag);
  858                         if (m == NULL) {
  859                                 if_printf(ifp,
  860                                     "unable to prepend VLAN header\n");
  861                                 ifp->if_oerrors++;
  862                                 continue;
  863                         }
  864                 }
  865 
  866                 /*
  867                  * Send it, precisely as ether_output() would have.
  868                  * We are already running at splimp.
  869                  */
  870                 error = (p->if_transmit)(p, m);
  871                 if (!error)
  872                         ifp->if_opackets++;
  873                 else
  874                         ifp->if_oerrors++;
  875         }
  876 }
  877 
  878 static void
  879 vlan_input(struct ifnet *ifp, struct mbuf *m)
  880 {
  881         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
  882         struct ifvlan *ifv;
  883         uint16_t tag;
  884 
  885         KASSERT(trunk != NULL, ("%s: no trunk", __func__));
  886 
  887         if (m->m_flags & M_VLANTAG) {
  888                 /*
  889                  * Packet is tagged, but m contains a normal
  890                  * Ethernet frame; the tag is stored out-of-band.
  891                  */
  892                 tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
  893                 m->m_flags &= ~M_VLANTAG;
  894         } else {
  895                 struct ether_vlan_header *evl;
  896 
  897                 /*
  898                  * Packet is tagged in-band as specified by 802.1q.
  899                  */
  900                 switch (ifp->if_type) {
  901                 case IFT_ETHER:
  902                         if (m->m_len < sizeof(*evl) &&
  903                             (m = m_pullup(m, sizeof(*evl))) == NULL) {
  904                                 if_printf(ifp, "cannot pullup VLAN header\n");
  905                                 return;
  906                         }
  907                         evl = mtod(m, struct ether_vlan_header *);
  908                         tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
  909 
  910                         /*
  911                          * Remove the 802.1q header by copying the Ethernet
  912                          * addresses over it and adjusting the beginning of
  913                          * the data in the mbuf.  The encapsulated Ethernet
  914                          * type field is already in place.
  915                          */
  916                         bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
  917                               ETHER_HDR_LEN - ETHER_TYPE_LEN);
  918                         m_adj(m, ETHER_VLAN_ENCAP_LEN);
  919                         break;
  920 
  921                 default:
  922 #ifdef INVARIANTS
  923                         panic("%s: %s has unsupported if_type %u",
  924                               __func__, ifp->if_xname, ifp->if_type);
  925 #endif
  926                         m_freem(m);
  927                         ifp->if_noproto++;
  928                         return;
  929                 }
  930         }
  931 
  932         TRUNK_RLOCK(trunk);
  933 #ifdef VLAN_ARRAY
  934         ifv = trunk->vlans[tag];
  935 #else
  936         ifv = vlan_gethash(trunk, tag);
  937 #endif
  938         if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
  939                 TRUNK_RUNLOCK(trunk);
  940                 m_freem(m);
  941                 ifp->if_noproto++;
  942                 return;
  943         }
  944         TRUNK_RUNLOCK(trunk);
  945 
  946         m->m_pkthdr.rcvif = ifv->ifv_ifp;
  947         ifv->ifv_ifp->if_ipackets++;
  948 
  949         /* Pass it back through the parent's input routine. */
  950         (*ifp->if_input)(ifv->ifv_ifp, m);
  951 }
  952 
  953 static int
  954 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
  955 {
  956         struct ifvlantrunk *trunk;
  957         struct ifnet *ifp;
  958         int error = 0;
  959 
  960         /* VID numbers 0x0 and 0xFFF are reserved */
  961         if (tag == 0 || tag == 0xFFF)
  962                 return (EINVAL);
  963         if (p->if_type != IFT_ETHER)
  964                 return (EPROTONOSUPPORT);
  965         if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
  966                 return (EPROTONOSUPPORT);
  967         if (ifv->ifv_trunk)
  968                 return (EBUSY);
  969 
  970         if (p->if_vlantrunk == NULL) {
  971                 trunk = malloc(sizeof(struct ifvlantrunk),
  972                     M_VLAN, M_WAITOK | M_ZERO);
  973 #ifndef VLAN_ARRAY
  974                 vlan_inithash(trunk);
  975 #endif
  976                 VLAN_LOCK();
  977                 if (p->if_vlantrunk != NULL) {
  978                         /* A race that that is very unlikely to be hit. */
  979 #ifndef VLAN_ARRAY
  980                         vlan_freehash(trunk);
  981 #endif
  982                         free(trunk, M_VLAN);
  983                         goto exists;
  984                 }
  985                 TRUNK_LOCK_INIT(trunk);
  986                 TRUNK_LOCK(trunk);
  987                 p->if_vlantrunk = trunk;
  988                 trunk->parent = p;
  989         } else {
  990                 VLAN_LOCK();
  991 exists:
  992                 trunk = p->if_vlantrunk;
  993                 TRUNK_LOCK(trunk);
  994         }
  995 
  996         ifv->ifv_tag = tag;     /* must set this before vlan_inshash() */
  997 #ifdef VLAN_ARRAY
  998         if (trunk->vlans[tag] != NULL) {
  999                 error = EEXIST;
 1000                 goto done;
 1001         }
 1002         trunk->vlans[tag] = ifv;
 1003         trunk->refcnt++;
 1004 #else
 1005         error = vlan_inshash(trunk, ifv);
 1006         if (error)
 1007                 goto done;
 1008 #endif
 1009         ifv->ifv_proto = ETHERTYPE_VLAN;
 1010         ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
 1011         ifv->ifv_mintu = ETHERMIN;
 1012         ifv->ifv_pflags = 0;
 1013 
 1014         /*
 1015          * If the parent supports the VLAN_MTU capability,
 1016          * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
 1017          * use it.
 1018          */
 1019         if (p->if_capenable & IFCAP_VLAN_MTU) {
 1020                 /*
 1021                  * No need to fudge the MTU since the parent can
 1022                  * handle extended frames.
 1023                  */
 1024                 ifv->ifv_mtufudge = 0;
 1025         } else {
 1026                 /*
 1027                  * Fudge the MTU by the encapsulation size.  This
 1028                  * makes us incompatible with strictly compliant
 1029                  * 802.1Q implementations, but allows us to use
 1030                  * the feature with other NetBSD implementations,
 1031                  * which might still be useful.
 1032                  */
 1033                 ifv->ifv_mtufudge = ifv->ifv_encaplen;
 1034         }
 1035 
 1036         ifv->ifv_trunk = trunk;
 1037         ifp = ifv->ifv_ifp;
 1038         ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
 1039         ifp->if_baudrate = p->if_baudrate;
 1040         /*
 1041          * Copy only a selected subset of flags from the parent.
 1042          * Other flags are none of our business.
 1043          */
 1044 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
 1045         ifp->if_flags &= ~VLAN_COPY_FLAGS;
 1046         ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
 1047 #undef VLAN_COPY_FLAGS
 1048 
 1049         ifp->if_link_state = p->if_link_state;
 1050 
 1051         vlan_capabilities(ifv);
 1052 
 1053         /*
 1054          * Set up our ``Ethernet address'' to reflect the underlying
 1055          * physical interface's.
 1056          */
 1057         bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
 1058 
 1059         /*
 1060          * Configure multicast addresses that may already be
 1061          * joined on the vlan device.
 1062          */
 1063         (void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
 1064 
 1065         /* We are ready for operation now. */
 1066         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1067 done:
 1068         TRUNK_UNLOCK(trunk);
 1069         if (error == 0)
 1070                 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
 1071         VLAN_UNLOCK();
 1072 
 1073         return (error);
 1074 }
 1075 
 1076 static int
 1077 vlan_unconfig(struct ifnet *ifp)
 1078 {
 1079         int ret;
 1080 
 1081         VLAN_LOCK();
 1082         ret = vlan_unconfig_locked(ifp);
 1083         VLAN_UNLOCK();
 1084         return (ret);
 1085 }
 1086 
 1087 static int
 1088 vlan_unconfig_locked(struct ifnet *ifp)
 1089 {
 1090         struct ifvlantrunk *trunk;
 1091         struct vlan_mc_entry *mc;
 1092         struct ifvlan *ifv;
 1093         struct ifnet  *parent;
 1094         int error;
 1095 
 1096         VLAN_LOCK_ASSERT();
 1097 
 1098         ifv = ifp->if_softc;
 1099         trunk = ifv->ifv_trunk;
 1100         parent = NULL;
 1101 
 1102         if (trunk != NULL) {
 1103                 struct sockaddr_dl sdl;
 1104 
 1105                 TRUNK_LOCK(trunk);
 1106                 parent = trunk->parent;
 1107 
 1108                 /*
 1109                  * Since the interface is being unconfigured, we need to
 1110                  * empty the list of multicast groups that we may have joined
 1111                  * while we were alive from the parent's list.
 1112                  */
 1113                 bzero((char *)&sdl, sizeof(sdl));
 1114                 sdl.sdl_len = sizeof(sdl);
 1115                 sdl.sdl_family = AF_LINK;
 1116                 sdl.sdl_index = parent->if_index;
 1117                 sdl.sdl_type = IFT_ETHER;
 1118                 sdl.sdl_alen = ETHER_ADDR_LEN;
 1119 
 1120                 while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
 1121                         bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
 1122                             ETHER_ADDR_LEN);
 1123                         error = if_delmulti(parent, (struct sockaddr *)&sdl);
 1124                         if (error)
 1125                                 return (error);
 1126                         SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
 1127                         free(mc, M_VLAN);
 1128                 }
 1129 
 1130                 vlan_setflags(ifp, 0); /* clear special flags on parent */
 1131 #ifdef VLAN_ARRAY
 1132                 trunk->vlans[ifv->ifv_tag] = NULL;
 1133                 trunk->refcnt--;
 1134 #else
 1135                 vlan_remhash(trunk, ifv);
 1136 #endif
 1137                 ifv->ifv_trunk = NULL;
 1138 
 1139                 /*
 1140                  * Check if we were the last.
 1141                  */
 1142                 if (trunk->refcnt == 0) {
 1143                         trunk->parent->if_vlantrunk = NULL;
 1144                         /*
 1145                          * XXXGL: If some ithread has already entered
 1146                          * vlan_input() and is now blocked on the trunk
 1147                          * lock, then it should preempt us right after
 1148                          * unlock and finish its work. Then we will acquire
 1149                          * lock again in trunk_destroy().
 1150                          */
 1151                         TRUNK_UNLOCK(trunk);
 1152                         trunk_destroy(trunk);
 1153                 } else
 1154                         TRUNK_UNLOCK(trunk);
 1155         }
 1156 
 1157         /* Disconnect from parent. */
 1158         if (ifv->ifv_pflags)
 1159                 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
 1160         ifp->if_mtu = ETHERMTU;
 1161         ifp->if_link_state = LINK_STATE_UNKNOWN;
 1162         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1163 
 1164         /*
 1165          * Only dispatch an event if vlan was
 1166          * attached, otherwise there is nothing
 1167          * to cleanup anyway.
 1168          */
 1169         if (parent != NULL)
 1170                 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
 1171 
 1172         return (0);
 1173 }
 1174 
 1175 /* Handle a reference counted flag that should be set on the parent as well */
 1176 static int
 1177 vlan_setflag(struct ifnet *ifp, int flag, int status,
 1178              int (*func)(struct ifnet *, int))
 1179 {
 1180         struct ifvlan *ifv;
 1181         int error;
 1182 
 1183         /* XXX VLAN_LOCK_ASSERT(); */
 1184 
 1185         ifv = ifp->if_softc;
 1186         status = status ? (ifp->if_flags & flag) : 0;
 1187         /* Now "status" contains the flag value or 0 */
 1188 
 1189         /*
 1190          * See if recorded parent's status is different from what
 1191          * we want it to be.  If it is, flip it.  We record parent's
 1192          * status in ifv_pflags so that we won't clear parent's flag
 1193          * we haven't set.  In fact, we don't clear or set parent's
 1194          * flags directly, but get or release references to them.
 1195          * That's why we can be sure that recorded flags still are
 1196          * in accord with actual parent's flags.
 1197          */
 1198         if (status != (ifv->ifv_pflags & flag)) {
 1199                 error = (*func)(PARENT(ifv), status);
 1200                 if (error)
 1201                         return (error);
 1202                 ifv->ifv_pflags &= ~flag;
 1203                 ifv->ifv_pflags |= status;
 1204         }
 1205         return (0);
 1206 }
 1207 
 1208 /*
 1209  * Handle IFF_* flags that require certain changes on the parent:
 1210  * if "status" is true, update parent's flags respective to our if_flags;
 1211  * if "status" is false, forcedly clear the flags set on parent.
 1212  */
 1213 static int
 1214 vlan_setflags(struct ifnet *ifp, int status)
 1215 {
 1216         int error, i;
 1217         
 1218         for (i = 0; vlan_pflags[i].flag; i++) {
 1219                 error = vlan_setflag(ifp, vlan_pflags[i].flag,
 1220                                      status, vlan_pflags[i].func);
 1221                 if (error)
 1222                         return (error);
 1223         }
 1224         return (0);
 1225 }
 1226 
 1227 /* Inform all vlans that their parent has changed link state */
 1228 static void
 1229 vlan_link_state(struct ifnet *ifp, int link)
 1230 {
 1231         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1232         struct ifvlan *ifv;
 1233         int i;
 1234 
 1235         TRUNK_LOCK(trunk);
 1236 #ifdef VLAN_ARRAY
 1237         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
 1238                 if (trunk->vlans[i] != NULL) {
 1239                         ifv = trunk->vlans[i];
 1240 #else
 1241         for (i = 0; i < (1 << trunk->hwidth); i++)
 1242                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
 1243 #endif
 1244                         ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
 1245                         if_link_state_change(ifv->ifv_ifp,
 1246                             trunk->parent->if_link_state);
 1247                 }
 1248         TRUNK_UNLOCK(trunk);
 1249 }
 1250 
 1251 static void
 1252 vlan_capabilities(struct ifvlan *ifv)
 1253 {
 1254         struct ifnet *p = PARENT(ifv);
 1255         struct ifnet *ifp = ifv->ifv_ifp;
 1256 
 1257         TRUNK_LOCK_ASSERT(TRUNK(ifv));
 1258 
 1259         /*
 1260          * If the parent interface can do checksum offloading
 1261          * on VLANs, then propagate its hardware-assisted
 1262          * checksumming flags. Also assert that checksum
 1263          * offloading requires hardware VLAN tagging.
 1264          */
 1265         if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
 1266                 ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
 1267 
 1268         if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
 1269             p->if_capenable & IFCAP_VLAN_HWTAGGING) {
 1270                 ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
 1271                 ifp->if_hwassist = p->if_hwassist;
 1272         } else {
 1273                 ifp->if_capenable = 0;
 1274                 ifp->if_hwassist = 0;
 1275         }
 1276 }
 1277 
 1278 static void
 1279 vlan_trunk_capabilities(struct ifnet *ifp)
 1280 {
 1281         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1282         struct ifvlan *ifv;
 1283         int i;
 1284 
 1285         TRUNK_LOCK(trunk);
 1286 #ifdef VLAN_ARRAY
 1287         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
 1288                 if (trunk->vlans[i] != NULL) {
 1289                         ifv = trunk->vlans[i];
 1290 #else
 1291         for (i = 0; i < (1 << trunk->hwidth); i++) {
 1292                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
 1293 #endif
 1294                         vlan_capabilities(ifv);
 1295         }
 1296         TRUNK_UNLOCK(trunk);
 1297 }
 1298 
 1299 static int
 1300 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1301 {
 1302         struct ifnet *p;
 1303         struct ifreq *ifr;
 1304         struct ifvlan *ifv;
 1305         struct vlanreq vlr;
 1306         int error = 0;
 1307 
 1308         ifr = (struct ifreq *)data;
 1309         ifv = ifp->if_softc;
 1310 
 1311         switch (cmd) {
 1312         case SIOCGIFMEDIA:
 1313                 VLAN_LOCK();
 1314                 if (TRUNK(ifv) != NULL) {
 1315                         error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
 1316                                         SIOCGIFMEDIA, data);
 1317                         VLAN_UNLOCK();
 1318                         /* Limit the result to the parent's current config. */
 1319                         if (error == 0) {
 1320                                 struct ifmediareq *ifmr;
 1321 
 1322                                 ifmr = (struct ifmediareq *)data;
 1323                                 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
 1324                                         ifmr->ifm_count = 1;
 1325                                         error = copyout(&ifmr->ifm_current,
 1326                                                 ifmr->ifm_ulist,
 1327                                                 sizeof(int));
 1328                                 }
 1329                         }
 1330                 } else {
 1331                         VLAN_UNLOCK();
 1332                         error = EINVAL;
 1333                 }
 1334                 break;
 1335 
 1336         case SIOCSIFMEDIA:
 1337                 error = EINVAL;
 1338                 break;
 1339 
 1340         case SIOCSIFMTU:
 1341                 /*
 1342                  * Set the interface MTU.
 1343                  */
 1344                 VLAN_LOCK();
 1345                 if (TRUNK(ifv) != NULL) {
 1346                         if (ifr->ifr_mtu >
 1347                              (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
 1348                             ifr->ifr_mtu <
 1349                              (ifv->ifv_mintu - ifv->ifv_mtufudge))
 1350                                 error = EINVAL;
 1351                         else
 1352                                 ifp->if_mtu = ifr->ifr_mtu;
 1353                 } else
 1354                         error = EINVAL;
 1355                 VLAN_UNLOCK();
 1356                 break;
 1357 
 1358         case SIOCSETVLAN:
 1359                 error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
 1360                 if (error)
 1361                         break;
 1362                 if (vlr.vlr_parent[0] == '\0') {
 1363                         vlan_unconfig(ifp);
 1364                         break;
 1365                 }
 1366                 p = ifunit(vlr.vlr_parent);
 1367                 if (p == 0) {
 1368                         error = ENOENT;
 1369                         break;
 1370                 }
 1371                 /*
 1372                  * Don't let the caller set up a VLAN tag with
 1373                  * anything except VLID bits.
 1374                  */
 1375                 if (vlr.vlr_tag & ~EVL_VLID_MASK) {
 1376                         error = EINVAL;
 1377                         break;
 1378                 }
 1379                 error = vlan_config(ifv, p, vlr.vlr_tag);
 1380                 if (error)
 1381                         break;
 1382 
 1383                 /* Update flags on the parent, if necessary. */
 1384                 vlan_setflags(ifp, 1);
 1385                 break;
 1386 
 1387         case SIOCGETVLAN:
 1388                 bzero(&vlr, sizeof(vlr));
 1389                 VLAN_LOCK();
 1390                 if (TRUNK(ifv) != NULL) {
 1391                         strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
 1392                             sizeof(vlr.vlr_parent));
 1393                         vlr.vlr_tag = ifv->ifv_tag;
 1394                 }
 1395                 VLAN_UNLOCK();
 1396                 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
 1397                 break;
 1398                 
 1399         case SIOCSIFFLAGS:
 1400                 /*
 1401                  * We should propagate selected flags to the parent,
 1402                  * e.g., promiscuous mode.
 1403                  */
 1404                 if (TRUNK(ifv) != NULL)
 1405                         error = vlan_setflags(ifp, 1);
 1406                 break;
 1407 
 1408         case SIOCADDMULTI:
 1409         case SIOCDELMULTI:
 1410                 /*
 1411                  * If we don't have a parent, just remember the membership for
 1412                  * when we do.
 1413                  */
 1414                 if (TRUNK(ifv) != NULL)
 1415                         error = vlan_setmulti(ifp);
 1416                 break;
 1417 
 1418         default:
 1419                 error = ether_ioctl(ifp, cmd, data);
 1420         }
 1421 
 1422         return (error);
 1423 }

Cache object: 7643891790a4981f623829b2f61e8217


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.