The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_vlan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  * 
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
   32  * Might be extended some day to also handle IEEE 802.1p priority
   33  * tagging.  This is sort of sneaky in the implementation, since
   34  * we need to pretend to be enough of an Ethernet implementation
   35  * to make arp work.  The way we do this is by telling everyone
   36  * that we are an Ethernet, and then catch the packets that
   37  * ether_output() sends to us via if_transmit(), rewrite them for
   38  * use by the real outgoing interface, and ask it to send them.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/9.1/sys/net/if_vlan.c 229708 2012-01-06 16:56:09Z jhb $");
   43 
   44 #include "opt_vlan.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/kernel.h>
   48 #include <sys/lock.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/module.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/queue.h>
   54 #include <sys/socket.h>
   55 #include <sys/sockio.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/systm.h>
   58 #include <sys/sx.h>
   59 
   60 #include <net/bpf.h>
   61 #include <net/ethernet.h>
   62 #include <net/if.h>
   63 #include <net/if_clone.h>
   64 #include <net/if_dl.h>
   65 #include <net/if_types.h>
   66 #include <net/if_vlan_var.h>
   67 #include <net/vnet.h>
   68 
   69 #define VLANNAME        "vlan"
   70 #define VLAN_DEF_HWIDTH 4
   71 #define VLAN_IFFLAGS    (IFF_BROADCAST | IFF_MULTICAST)
   72 
   73 #define UP_AND_RUNNING(ifp) \
   74     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
   75 
   76 LIST_HEAD(ifvlanhead, ifvlan);
   77 
   78 struct ifvlantrunk {
   79         struct  ifnet   *parent;        /* parent interface of this trunk */
   80         struct  rwlock  rw;
   81 #ifdef VLAN_ARRAY
   82 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1)
   83         struct  ifvlan  *vlans[VLAN_ARRAY_SIZE]; /* static table */
   84 #else
   85         struct  ifvlanhead *hash;       /* dynamic hash-list table */
   86         uint16_t        hmask;
   87         uint16_t        hwidth;
   88 #endif
   89         int             refcnt;
   90 };
   91 
   92 struct vlan_mc_entry {
   93         struct sockaddr_dl              mc_addr;
   94         SLIST_ENTRY(vlan_mc_entry)      mc_entries;
   95 };
   96 
   97 struct  ifvlan {
   98         struct  ifvlantrunk *ifv_trunk;
   99         struct  ifnet *ifv_ifp;
  100         void    *ifv_cookie;
  101 #define TRUNK(ifv)      ((ifv)->ifv_trunk)
  102 #define PARENT(ifv)     ((ifv)->ifv_trunk->parent)
  103         int     ifv_pflags;     /* special flags we have set on parent */
  104         struct  ifv_linkmib {
  105                 int     ifvm_encaplen;  /* encapsulation length */
  106                 int     ifvm_mtufudge;  /* MTU fudged by this much */
  107                 int     ifvm_mintu;     /* min transmission unit */
  108                 uint16_t ifvm_proto;    /* encapsulation ethertype */
  109                 uint16_t ifvm_tag;      /* tag to apply on packets leaving if */
  110         }       ifv_mib;
  111         SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
  112 #ifndef VLAN_ARRAY
  113         LIST_ENTRY(ifvlan) ifv_list;
  114 #endif
  115 };
  116 #define ifv_proto       ifv_mib.ifvm_proto
  117 #define ifv_tag         ifv_mib.ifvm_tag
  118 #define ifv_encaplen    ifv_mib.ifvm_encaplen
  119 #define ifv_mtufudge    ifv_mib.ifvm_mtufudge
  120 #define ifv_mintu       ifv_mib.ifvm_mintu
  121 
  122 /* Special flags we should propagate to parent. */
  123 static struct {
  124         int flag;
  125         int (*func)(struct ifnet *, int);
  126 } vlan_pflags[] = {
  127         {IFF_PROMISC, ifpromisc},
  128         {IFF_ALLMULTI, if_allmulti},
  129         {0, NULL}
  130 };
  131 
  132 SYSCTL_DECL(_net_link);
  133 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
  134 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
  135 
  136 static int soft_pad = 0;
  137 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
  138            "pad short frames before tagging");
  139 
  140 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
  141 
  142 static eventhandler_tag ifdetach_tag;
  143 static eventhandler_tag iflladdr_tag;
  144 
  145 /*
  146  * We have a global mutex, that is used to serialize configuration
  147  * changes and isn't used in normal packet delivery.
  148  *
  149  * We also have a per-trunk rwlock, that is locked shared on packet
  150  * processing and exclusive when configuration is changed.
  151  *
  152  * The VLAN_ARRAY substitutes the dynamic hash with a static array
  153  * with 4096 entries. In theory this can give a boost in processing,
  154  * however on practice it does not. Probably this is because array
  155  * is too big to fit into CPU cache.
  156  */
  157 static struct sx ifv_lock;
  158 #define VLAN_LOCK_INIT()        sx_init(&ifv_lock, "vlan_global")
  159 #define VLAN_LOCK_DESTROY()     sx_destroy(&ifv_lock)
  160 #define VLAN_LOCK_ASSERT()      sx_assert(&ifv_lock, SA_LOCKED)
  161 #define VLAN_LOCK()             sx_xlock(&ifv_lock)
  162 #define VLAN_UNLOCK()           sx_xunlock(&ifv_lock)
  163 #define TRUNK_LOCK_INIT(trunk)  rw_init(&(trunk)->rw, VLANNAME)
  164 #define TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
  165 #define TRUNK_LOCK(trunk)       rw_wlock(&(trunk)->rw)
  166 #define TRUNK_UNLOCK(trunk)     rw_wunlock(&(trunk)->rw)
  167 #define TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
  168 #define TRUNK_RLOCK(trunk)      rw_rlock(&(trunk)->rw)
  169 #define TRUNK_RUNLOCK(trunk)    rw_runlock(&(trunk)->rw)
  170 #define TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
  171 
  172 #ifndef VLAN_ARRAY
  173 static  void vlan_inithash(struct ifvlantrunk *trunk);
  174 static  void vlan_freehash(struct ifvlantrunk *trunk);
  175 static  int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
  176 static  int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
  177 static  void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
  178 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
  179         uint16_t tag);
  180 #endif
  181 static  void trunk_destroy(struct ifvlantrunk *trunk);
  182 
  183 static  void vlan_init(void *foo);
  184 static  void vlan_input(struct ifnet *ifp, struct mbuf *m);
  185 static  int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
  186 static  void vlan_qflush(struct ifnet *ifp);
  187 static  int vlan_setflag(struct ifnet *ifp, int flag, int status,
  188     int (*func)(struct ifnet *, int));
  189 static  int vlan_setflags(struct ifnet *ifp, int status);
  190 static  int vlan_setmulti(struct ifnet *ifp);
  191 static  int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
  192 static  void vlan_unconfig(struct ifnet *ifp);
  193 static  void vlan_unconfig_locked(struct ifnet *ifp);
  194 static  int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
  195 static  void vlan_link_state(struct ifnet *ifp);
  196 static  void vlan_capabilities(struct ifvlan *ifv);
  197 static  void vlan_trunk_capabilities(struct ifnet *ifp);
  198 
  199 static  struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
  200     const char *, int *);
  201 static  int vlan_clone_match(struct if_clone *, const char *);
  202 static  int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
  203 static  int vlan_clone_destroy(struct if_clone *, struct ifnet *);
  204 
  205 static  void vlan_ifdetach(void *arg, struct ifnet *ifp);
  206 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
  207 
  208 static  struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
  209     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
  210 
  211 #ifdef VIMAGE
  212 static VNET_DEFINE(struct if_clone, vlan_cloner);
  213 #define V_vlan_cloner   VNET(vlan_cloner)
  214 #endif
  215 
  216 #ifndef VLAN_ARRAY
  217 #define HASH(n, m)      ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
  218 
  219 static void
  220 vlan_inithash(struct ifvlantrunk *trunk)
  221 {
  222         int i, n;
  223         
  224         /*
  225          * The trunk must not be locked here since we call malloc(M_WAITOK).
  226          * It is OK in case this function is called before the trunk struct
  227          * gets hooked up and becomes visible from other threads.
  228          */
  229 
  230         KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
  231             ("%s: hash already initialized", __func__));
  232 
  233         trunk->hwidth = VLAN_DEF_HWIDTH;
  234         n = 1 << trunk->hwidth;
  235         trunk->hmask = n - 1;
  236         trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
  237         for (i = 0; i < n; i++)
  238                 LIST_INIT(&trunk->hash[i]);
  239 }
  240 
  241 static void
  242 vlan_freehash(struct ifvlantrunk *trunk)
  243 {
  244 #ifdef INVARIANTS
  245         int i;
  246 
  247         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  248         for (i = 0; i < (1 << trunk->hwidth); i++)
  249                 KASSERT(LIST_EMPTY(&trunk->hash[i]),
  250                     ("%s: hash table not empty", __func__));
  251 #endif
  252         free(trunk->hash, M_VLAN);
  253         trunk->hash = NULL;
  254         trunk->hwidth = trunk->hmask = 0;
  255 }
  256 
  257 static int
  258 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  259 {
  260         int i, b;
  261         struct ifvlan *ifv2;
  262 
  263         TRUNK_LOCK_ASSERT(trunk);
  264         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  265 
  266         b = 1 << trunk->hwidth;
  267         i = HASH(ifv->ifv_tag, trunk->hmask);
  268         LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
  269                 if (ifv->ifv_tag == ifv2->ifv_tag)
  270                         return (EEXIST);
  271 
  272         /*
  273          * Grow the hash when the number of vlans exceeds half of the number of
  274          * hash buckets squared. This will make the average linked-list length
  275          * buckets/2.
  276          */
  277         if (trunk->refcnt > (b * b) / 2) {
  278                 vlan_growhash(trunk, 1);
  279                 i = HASH(ifv->ifv_tag, trunk->hmask);
  280         }
  281         LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
  282         trunk->refcnt++;
  283 
  284         return (0);
  285 }
  286 
  287 static int
  288 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  289 {
  290         int i, b;
  291         struct ifvlan *ifv2;
  292 
  293         TRUNK_LOCK_ASSERT(trunk);
  294         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  295         
  296         b = 1 << trunk->hwidth;
  297         i = HASH(ifv->ifv_tag, trunk->hmask);
  298         LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
  299                 if (ifv2 == ifv) {
  300                         trunk->refcnt--;
  301                         LIST_REMOVE(ifv2, ifv_list);
  302                         if (trunk->refcnt < (b * b) / 2)
  303                                 vlan_growhash(trunk, -1);
  304                         return (0);
  305                 }
  306 
  307         panic("%s: vlan not found\n", __func__);
  308         return (ENOENT); /*NOTREACHED*/
  309 }
  310 
  311 /*
  312  * Grow the hash larger or smaller if memory permits.
  313  */
  314 static void
  315 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
  316 {
  317         struct ifvlan *ifv;
  318         struct ifvlanhead *hash2;
  319         int hwidth2, i, j, n, n2;
  320 
  321         TRUNK_LOCK_ASSERT(trunk);
  322         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  323 
  324         if (howmuch == 0) {
  325                 /* Harmless yet obvious coding error */
  326                 printf("%s: howmuch is 0\n", __func__);
  327                 return;
  328         }
  329 
  330         hwidth2 = trunk->hwidth + howmuch;
  331         n = 1 << trunk->hwidth;
  332         n2 = 1 << hwidth2;
  333         /* Do not shrink the table below the default */
  334         if (hwidth2 < VLAN_DEF_HWIDTH)
  335                 return;
  336 
  337         /* M_NOWAIT because we're called with trunk mutex held */
  338         hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
  339         if (hash2 == NULL) {
  340                 printf("%s: out of memory -- hash size not changed\n",
  341                     __func__);
  342                 return;         /* We can live with the old hash table */
  343         }
  344         for (j = 0; j < n2; j++)
  345                 LIST_INIT(&hash2[j]);
  346         for (i = 0; i < n; i++)
  347                 while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
  348                         LIST_REMOVE(ifv, ifv_list);
  349                         j = HASH(ifv->ifv_tag, n2 - 1);
  350                         LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
  351                 }
  352         free(trunk->hash, M_VLAN);
  353         trunk->hash = hash2;
  354         trunk->hwidth = hwidth2;
  355         trunk->hmask = n2 - 1;
  356 
  357         if (bootverbose)
  358                 if_printf(trunk->parent,
  359                     "VLAN hash table resized from %d to %d buckets\n", n, n2);
  360 }
  361 
  362 static __inline struct ifvlan *
  363 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
  364 {
  365         struct ifvlan *ifv;
  366 
  367         TRUNK_LOCK_RASSERT(trunk);
  368 
  369         LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
  370                 if (ifv->ifv_tag == tag)
  371                         return (ifv);
  372         return (NULL);
  373 }
  374 
  375 #if 0
  376 /* Debugging code to view the hashtables. */
  377 static void
  378 vlan_dumphash(struct ifvlantrunk *trunk)
  379 {
  380         int i;
  381         struct ifvlan *ifv;
  382 
  383         for (i = 0; i < (1 << trunk->hwidth); i++) {
  384                 printf("%d: ", i);
  385                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
  386                         printf("%s ", ifv->ifv_ifp->if_xname);
  387                 printf("\n");
  388         }
  389 }
  390 #endif /* 0 */
  391 #else
  392 
  393 static __inline struct ifvlan *
  394 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
  395 {
  396 
  397         return trunk->vlans[tag];
  398 }
  399 
  400 static __inline int
  401 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  402 {
  403 
  404         if (trunk->vlans[ifv->ifv_tag] != NULL)
  405                 return EEXIST;
  406         trunk->vlans[ifv->ifv_tag] = ifv;
  407         trunk->refcnt++;
  408 
  409         return (0);
  410 }
  411 
  412 static __inline int
  413 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  414 {
  415 
  416         trunk->vlans[ifv->ifv_tag] = NULL;
  417         trunk->refcnt--;
  418 
  419         return (0);
  420 }
  421 
  422 static __inline void
  423 vlan_freehash(struct ifvlantrunk *trunk)
  424 {
  425 }
  426 
  427 static __inline void
  428 vlan_inithash(struct ifvlantrunk *trunk)
  429 {
  430 }
  431 
  432 #endif /* !VLAN_ARRAY */
  433 
  434 static void
  435 trunk_destroy(struct ifvlantrunk *trunk)
  436 {
  437         VLAN_LOCK_ASSERT();
  438 
  439         TRUNK_LOCK(trunk);
  440         vlan_freehash(trunk);
  441         trunk->parent->if_vlantrunk = NULL;
  442         TRUNK_UNLOCK(trunk);
  443         TRUNK_LOCK_DESTROY(trunk);
  444         free(trunk, M_VLAN);
  445 }
  446 
  447 /*
  448  * Program our multicast filter. What we're actually doing is
  449  * programming the multicast filter of the parent. This has the
  450  * side effect of causing the parent interface to receive multicast
  451  * traffic that it doesn't really want, which ends up being discarded
  452  * later by the upper protocol layers. Unfortunately, there's no way
  453  * to avoid this: there really is only one physical interface.
  454  *
  455  * XXX: There is a possible race here if more than one thread is
  456  *      modifying the multicast state of the vlan interface at the same time.
  457  */
  458 static int
  459 vlan_setmulti(struct ifnet *ifp)
  460 {
  461         struct ifnet            *ifp_p;
  462         struct ifmultiaddr      *ifma, *rifma = NULL;
  463         struct ifvlan           *sc;
  464         struct vlan_mc_entry    *mc;
  465         int                     error;
  466 
  467         /*VLAN_LOCK_ASSERT();*/
  468 
  469         /* Find the parent. */
  470         sc = ifp->if_softc;
  471         ifp_p = PARENT(sc);
  472 
  473         CURVNET_SET_QUIET(ifp_p->if_vnet);
  474 
  475         /* First, remove any existing filter entries. */
  476         while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
  477                 error = if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
  478                 if (error)
  479                         return (error);
  480                 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
  481                 free(mc, M_VLAN);
  482         }
  483 
  484         /* Now program new ones. */
  485         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  486                 if (ifma->ifma_addr->sa_family != AF_LINK)
  487                         continue;
  488                 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
  489                 if (mc == NULL)
  490                         return (ENOMEM);
  491                 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
  492                 mc->mc_addr.sdl_index = ifp_p->if_index;
  493                 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
  494                 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
  495                     &rifma);
  496                 if (error)
  497                         return (error);
  498         }
  499 
  500         CURVNET_RESTORE();
  501         return (0);
  502 }
  503 
  504 /*
  505  * A handler for parent interface link layer address changes.
  506  * If the parent interface link layer address is changed we
  507  * should also change it on all children vlans.
  508  */
  509 static void
  510 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
  511 {
  512         struct ifvlan *ifv;
  513 #ifndef VLAN_ARRAY
  514         struct ifvlan *next;
  515 #endif
  516         int i;
  517 
  518         /*
  519          * Check if it's a trunk interface first of all
  520          * to avoid needless locking.
  521          */
  522         if (ifp->if_vlantrunk == NULL)
  523                 return;
  524 
  525         VLAN_LOCK();
  526         /*
  527          * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
  528          */
  529 #ifdef VLAN_ARRAY
  530         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
  531                 if ((ifv = ifp->if_vlantrunk->vlans[i])) {
  532 #else /* VLAN_ARRAY */
  533         for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
  534                 LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) {
  535 #endif /* VLAN_ARRAY */
  536                         VLAN_UNLOCK();
  537                         if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp),
  538                             ifp->if_addrlen);
  539                         VLAN_LOCK();
  540                 }
  541         VLAN_UNLOCK();
  542 
  543 }
  544 
  545 /*
  546  * A handler for network interface departure events.
  547  * Track departure of trunks here so that we don't access invalid
  548  * pointers or whatever if a trunk is ripped from under us, e.g.,
  549  * by ejecting its hot-plug card.  However, if an ifnet is simply
  550  * being renamed, then there's no need to tear down the state.
  551  */
  552 static void
  553 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
  554 {
  555         struct ifvlan *ifv;
  556         int i;
  557 
  558         /*
  559          * Check if it's a trunk interface first of all
  560          * to avoid needless locking.
  561          */
  562         if (ifp->if_vlantrunk == NULL)
  563                 return;
  564 
  565         /* If the ifnet is just being renamed, don't do anything. */
  566         if (ifp->if_flags & IFF_RENAMING)
  567                 return;
  568 
  569         VLAN_LOCK();
  570         /*
  571          * OK, it's a trunk.  Loop over and detach all vlan's on it.
  572          * Check trunk pointer after each vlan_unconfig() as it will
  573          * free it and set to NULL after the last vlan was detached.
  574          */
  575 #ifdef VLAN_ARRAY
  576         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
  577                 if ((ifv = ifp->if_vlantrunk->vlans[i])) {
  578                         vlan_unconfig_locked(ifv->ifv_ifp);
  579                         if (ifp->if_vlantrunk == NULL)
  580                                 break;
  581                 }
  582 #else /* VLAN_ARRAY */
  583 restart:
  584         for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
  585                 if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
  586                         vlan_unconfig_locked(ifv->ifv_ifp);
  587                         if (ifp->if_vlantrunk)
  588                                 goto restart;   /* trunk->hwidth can change */
  589                         else
  590                                 break;
  591                 }
  592 #endif /* VLAN_ARRAY */
  593         /* Trunk should have been destroyed in vlan_unconfig(). */
  594         KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
  595         VLAN_UNLOCK();
  596 }
  597 
  598 /*
  599  * Return the trunk device for a virtual interface.
  600  */
  601 static struct ifnet  *
  602 vlan_trunkdev(struct ifnet *ifp)
  603 {
  604         struct ifvlan *ifv;
  605 
  606         if (ifp->if_type != IFT_L2VLAN)
  607                 return (NULL);
  608         ifv = ifp->if_softc;
  609         ifp = NULL;
  610         VLAN_LOCK();
  611         if (ifv->ifv_trunk)
  612                 ifp = PARENT(ifv);
  613         VLAN_UNLOCK();
  614         return (ifp);
  615 }
  616 
  617 /*
  618  * Return the 16bit vlan tag for this interface.
  619  */
  620 static int
  621 vlan_tag(struct ifnet *ifp, uint16_t *tagp)
  622 {
  623         struct ifvlan *ifv;
  624 
  625         if (ifp->if_type != IFT_L2VLAN)
  626                 return (EINVAL);
  627         ifv = ifp->if_softc;
  628         *tagp = ifv->ifv_tag;
  629         return (0);
  630 }
  631 
  632 /*
  633  * Return a driver specific cookie for this interface.  Synchronization
  634  * with setcookie must be provided by the driver. 
  635  */
  636 static void *
  637 vlan_cookie(struct ifnet *ifp)
  638 {
  639         struct ifvlan *ifv;
  640 
  641         if (ifp->if_type != IFT_L2VLAN)
  642                 return (NULL);
  643         ifv = ifp->if_softc;
  644         return (ifv->ifv_cookie);
  645 }
  646 
  647 /*
  648  * Store a cookie in our softc that drivers can use to store driver
  649  * private per-instance data in.
  650  */
  651 static int
  652 vlan_setcookie(struct ifnet *ifp, void *cookie)
  653 {
  654         struct ifvlan *ifv;
  655 
  656         if (ifp->if_type != IFT_L2VLAN)
  657                 return (EINVAL);
  658         ifv = ifp->if_softc;
  659         ifv->ifv_cookie = cookie;
  660         return (0);
  661 }
  662 
  663 /*
  664  * Return the vlan device present at the specific tag.
  665  */
  666 static struct ifnet *
  667 vlan_devat(struct ifnet *ifp, uint16_t tag)
  668 {
  669         struct ifvlantrunk *trunk;
  670         struct ifvlan *ifv;
  671 
  672         trunk = ifp->if_vlantrunk;
  673         if (trunk == NULL)
  674                 return (NULL);
  675         ifp = NULL;
  676         TRUNK_RLOCK(trunk);
  677         ifv = vlan_gethash(trunk, tag);
  678         if (ifv)
  679                 ifp = ifv->ifv_ifp;
  680         TRUNK_RUNLOCK(trunk);
  681         return (ifp);
  682 }
  683 
  684 /*
  685  * VLAN support can be loaded as a module.  The only place in the
  686  * system that's intimately aware of this is ether_input.  We hook
  687  * into this code through vlan_input_p which is defined there and
  688  * set here.  Noone else in the system should be aware of this so
  689  * we use an explicit reference here.
  690  */
  691 extern  void (*vlan_input_p)(struct ifnet *, struct mbuf *);
  692 
  693 /* For if_link_state_change() eyes only... */
  694 extern  void (*vlan_link_state_p)(struct ifnet *);
  695 
  696 static int
  697 vlan_modevent(module_t mod, int type, void *data)
  698 {
  699 
  700         switch (type) {
  701         case MOD_LOAD:
  702                 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
  703                     vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
  704                 if (ifdetach_tag == NULL)
  705                         return (ENOMEM);
  706                 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
  707                     vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
  708                 if (iflladdr_tag == NULL)
  709                         return (ENOMEM);
  710                 VLAN_LOCK_INIT();
  711                 vlan_input_p = vlan_input;
  712                 vlan_link_state_p = vlan_link_state;
  713                 vlan_trunk_cap_p = vlan_trunk_capabilities;
  714                 vlan_trunkdev_p = vlan_trunkdev;
  715                 vlan_cookie_p = vlan_cookie;
  716                 vlan_setcookie_p = vlan_setcookie;
  717                 vlan_tag_p = vlan_tag;
  718                 vlan_devat_p = vlan_devat;
  719 #ifndef VIMAGE
  720                 if_clone_attach(&vlan_cloner);
  721 #endif
  722                 if (bootverbose)
  723                         printf("vlan: initialized, using "
  724 #ifdef VLAN_ARRAY
  725                                "full-size arrays"
  726 #else
  727                                "hash tables with chaining"
  728 #endif
  729                         
  730                                "\n");
  731                 break;
  732         case MOD_UNLOAD:
  733 #ifndef VIMAGE
  734                 if_clone_detach(&vlan_cloner);
  735 #endif
  736                 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
  737                 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
  738                 vlan_input_p = NULL;
  739                 vlan_link_state_p = NULL;
  740                 vlan_trunk_cap_p = NULL;
  741                 vlan_trunkdev_p = NULL;
  742                 vlan_tag_p = NULL;
  743                 vlan_cookie_p = vlan_cookie;
  744                 vlan_setcookie_p = vlan_setcookie;
  745                 vlan_devat_p = NULL;
  746                 VLAN_LOCK_DESTROY();
  747                 if (bootverbose)
  748                         printf("vlan: unloaded\n");
  749                 break;
  750         default:
  751                 return (EOPNOTSUPP);
  752         }
  753         return (0);
  754 }
  755 
  756 static moduledata_t vlan_mod = {
  757         "if_vlan",
  758         vlan_modevent,
  759         0
  760 };
  761 
  762 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
  763 MODULE_VERSION(if_vlan, 3);
  764 
  765 #ifdef VIMAGE
  766 static void
  767 vnet_vlan_init(const void *unused __unused)
  768 {
  769 
  770         V_vlan_cloner = vlan_cloner;
  771         if_clone_attach(&V_vlan_cloner);
  772 }
  773 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
  774     vnet_vlan_init, NULL);
  775 
  776 static void
  777 vnet_vlan_uninit(const void *unused __unused)
  778 {
  779 
  780         if_clone_detach(&V_vlan_cloner);
  781 }
  782 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
  783     vnet_vlan_uninit, NULL);
  784 #endif
  785 
  786 static struct ifnet *
  787 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
  788 {
  789         const char *cp;
  790         struct ifnet *ifp;
  791         int t;
  792 
  793         /* Check for <etherif>.<vlan> style interface names. */
  794         IFNET_RLOCK_NOSLEEP();
  795         TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
  796                 /*
  797                  * We can handle non-ethernet hardware types as long as
  798                  * they handle the tagging and headers themselves.
  799                  */
  800                 if (ifp->if_type != IFT_ETHER &&
  801                     (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
  802                         continue;
  803                 if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
  804                         continue;
  805                 cp = name + strlen(ifp->if_xname);
  806                 if (*cp++ != '.')
  807                         continue;
  808                 if (*cp == '\0')
  809                         continue;
  810                 t = 0;
  811                 for(; *cp >= '' && *cp <= '9'; cp++)
  812                         t = (t * 10) + (*cp - '');
  813                 if (*cp != '\0')
  814                         continue;
  815                 if (tag != NULL)
  816                         *tag = t;
  817                 break;
  818         }
  819         IFNET_RUNLOCK_NOSLEEP();
  820 
  821         return (ifp);
  822 }
  823 
  824 static int
  825 vlan_clone_match(struct if_clone *ifc, const char *name)
  826 {
  827         const char *cp;
  828 
  829         if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
  830                 return (1);
  831 
  832         if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
  833                 return (0);
  834         for (cp = name + 4; *cp != '\0'; cp++) {
  835                 if (*cp < '' || *cp > '9')
  836                         return (0);
  837         }
  838 
  839         return (1);
  840 }
  841 
  842 static int
  843 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
  844 {
  845         char *dp;
  846         int wildcard;
  847         int unit;
  848         int error;
  849         int tag;
  850         int ethertag;
  851         struct ifvlan *ifv;
  852         struct ifnet *ifp;
  853         struct ifnet *p;
  854         struct ifaddr *ifa;
  855         struct sockaddr_dl *sdl;
  856         struct vlanreq vlr;
  857         static const u_char eaddr[ETHER_ADDR_LEN];      /* 00:00:00:00:00:00 */
  858 
  859         /*
  860          * There are 3 (ugh) ways to specify the cloned device:
  861          * o pass a parameter block with the clone request.
  862          * o specify parameters in the text of the clone device name
  863          * o specify no parameters and get an unattached device that
  864          *   must be configured separately.
  865          * The first technique is preferred; the latter two are
  866          * supported for backwards compatibilty.
  867          */
  868         if (params) {
  869                 error = copyin(params, &vlr, sizeof(vlr));
  870                 if (error)
  871                         return error;
  872                 p = ifunit(vlr.vlr_parent);
  873                 if (p == NULL)
  874                         return ENXIO;
  875                 /*
  876                  * Don't let the caller set up a VLAN tag with
  877                  * anything except VLID bits.
  878                  */
  879                 if (vlr.vlr_tag & ~EVL_VLID_MASK)
  880                         return (EINVAL);
  881                 error = ifc_name2unit(name, &unit);
  882                 if (error != 0)
  883                         return (error);
  884 
  885                 ethertag = 1;
  886                 tag = vlr.vlr_tag;
  887                 wildcard = (unit < 0);
  888         } else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
  889                 ethertag = 1;
  890                 unit = -1;
  891                 wildcard = 0;
  892 
  893                 /*
  894                  * Don't let the caller set up a VLAN tag with
  895                  * anything except VLID bits.
  896                  */
  897                 if (tag & ~EVL_VLID_MASK)
  898                         return (EINVAL);
  899         } else {
  900                 ethertag = 0;
  901 
  902                 error = ifc_name2unit(name, &unit);
  903                 if (error != 0)
  904                         return (error);
  905 
  906                 wildcard = (unit < 0);
  907         }
  908 
  909         error = ifc_alloc_unit(ifc, &unit);
  910         if (error != 0)
  911                 return (error);
  912 
  913         /* In the wildcard case, we need to update the name. */
  914         if (wildcard) {
  915                 for (dp = name; *dp != '\0'; dp++);
  916                 if (snprintf(dp, len - (dp-name), "%d", unit) >
  917                     len - (dp-name) - 1) {
  918                         panic("%s: interface name too long", __func__);
  919                 }
  920         }
  921 
  922         ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
  923         ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
  924         if (ifp == NULL) {
  925                 ifc_free_unit(ifc, unit);
  926                 free(ifv, M_VLAN);
  927                 return (ENOSPC);
  928         }
  929         SLIST_INIT(&ifv->vlan_mc_listhead);
  930 
  931         ifp->if_softc = ifv;
  932         /*
  933          * Set the name manually rather than using if_initname because
  934          * we don't conform to the default naming convention for interfaces.
  935          */
  936         strlcpy(ifp->if_xname, name, IFNAMSIZ);
  937         ifp->if_dname = ifc->ifc_name;
  938         ifp->if_dunit = unit;
  939         /* NB: flags are not set here */
  940         ifp->if_linkmib = &ifv->ifv_mib;
  941         ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
  942         /* NB: mtu is not set here */
  943 
  944         ifp->if_init = vlan_init;
  945         ifp->if_transmit = vlan_transmit;
  946         ifp->if_qflush = vlan_qflush;
  947         ifp->if_ioctl = vlan_ioctl;
  948         ifp->if_flags = VLAN_IFFLAGS;
  949         ether_ifattach(ifp, eaddr);
  950         /* Now undo some of the damage... */
  951         ifp->if_baudrate = 0;
  952         ifp->if_type = IFT_L2VLAN;
  953         ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
  954         ifa = ifp->if_addr;
  955         sdl = (struct sockaddr_dl *)ifa->ifa_addr;
  956         sdl->sdl_type = IFT_L2VLAN;
  957 
  958         if (ethertag) {
  959                 error = vlan_config(ifv, p, tag);
  960                 if (error != 0) {
  961                         /*
  962                          * Since we've partialy failed, we need to back
  963                          * out all the way, otherwise userland could get
  964                          * confused.  Thus, we destroy the interface.
  965                          */
  966                         ether_ifdetach(ifp);
  967                         vlan_unconfig(ifp);
  968                         if_free_type(ifp, IFT_ETHER);
  969                         ifc_free_unit(ifc, unit);
  970                         free(ifv, M_VLAN);
  971 
  972                         return (error);
  973                 }
  974 
  975                 /* Update flags on the parent, if necessary. */
  976                 vlan_setflags(ifp, 1);
  977         }
  978 
  979         return (0);
  980 }
  981 
  982 static int
  983 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
  984 {
  985         struct ifvlan *ifv = ifp->if_softc;
  986         int unit = ifp->if_dunit;
  987 
  988         ether_ifdetach(ifp);    /* first, remove it from system-wide lists */
  989         vlan_unconfig(ifp);     /* now it can be unconfigured and freed */
  990         if_free_type(ifp, IFT_ETHER);
  991         free(ifv, M_VLAN);
  992         ifc_free_unit(ifc, unit);
  993 
  994         return (0);
  995 }
  996 
  997 /*
  998  * The ifp->if_init entry point for vlan(4) is a no-op.
  999  */
 1000 static void
 1001 vlan_init(void *foo __unused)
 1002 {
 1003 }
 1004 
 1005 /*
 1006  * The if_transmit method for vlan(4) interface.
 1007  */
 1008 static int
 1009 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
 1010 {
 1011         struct ifvlan *ifv;
 1012         struct ifnet *p;
 1013         int error, len, mcast;
 1014 
 1015         ifv = ifp->if_softc;
 1016         p = PARENT(ifv);
 1017         len = m->m_pkthdr.len;
 1018         mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
 1019 
 1020         BPF_MTAP(ifp, m);
 1021 
 1022         /*
 1023          * Do not run parent's if_transmit() if the parent is not up,
 1024          * or parent's driver will cause a system crash.
 1025          */
 1026         if (!UP_AND_RUNNING(p)) {
 1027                 m_freem(m);
 1028                 ifp->if_oerrors++;
 1029                 return (0);
 1030         }
 1031 
 1032         /*
 1033          * Pad the frame to the minimum size allowed if told to.
 1034          * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
 1035          * paragraph C.4.4.3.b.  It can help to work around buggy
 1036          * bridges that violate paragraph C.4.4.3.a from the same
 1037          * document, i.e., fail to pad short frames after untagging.
 1038          * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
 1039          * untagging it will produce a 62-byte frame, which is a runt
 1040          * and requires padding.  There are VLAN-enabled network
 1041          * devices that just discard such runts instead or mishandle
 1042          * them somehow.
 1043          */
 1044         if (soft_pad && p->if_type == IFT_ETHER) {
 1045                 static char pad[8];     /* just zeros */
 1046                 int n;
 1047 
 1048                 for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
 1049                      n > 0; n -= sizeof(pad))
 1050                         if (!m_append(m, min(n, sizeof(pad)), pad))
 1051                                 break;
 1052 
 1053                 if (n > 0) {
 1054                         if_printf(ifp, "cannot pad short frame\n");
 1055                         ifp->if_oerrors++;
 1056                         m_freem(m);
 1057                         return (0);
 1058                 }
 1059         }
 1060 
 1061         /*
 1062          * If underlying interface can do VLAN tag insertion itself,
 1063          * just pass the packet along. However, we need some way to
 1064          * tell the interface where the packet came from so that it
 1065          * knows how to find the VLAN tag to use, so we attach a
 1066          * packet tag that holds it.
 1067          */
 1068         if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
 1069                 m->m_pkthdr.ether_vtag = ifv->ifv_tag;
 1070                 m->m_flags |= M_VLANTAG;
 1071         } else {
 1072                 m = ether_vlanencap(m, ifv->ifv_tag);
 1073                 if (m == NULL) {
 1074                         if_printf(ifp, "unable to prepend VLAN header\n");
 1075                         ifp->if_oerrors++;
 1076                         return (0);
 1077                 }
 1078         }
 1079 
 1080         /*
 1081          * Send it, precisely as ether_output() would have.
 1082          */
 1083         error = (p->if_transmit)(p, m);
 1084         if (!error) {
 1085                 ifp->if_opackets++;
 1086                 ifp->if_omcasts += mcast;
 1087                 ifp->if_obytes += len;
 1088         } else
 1089                 ifp->if_oerrors++;
 1090         return (error);
 1091 }
 1092 
 1093 /*
 1094  * The ifp->if_qflush entry point for vlan(4) is a no-op.
 1095  */
 1096 static void
 1097 vlan_qflush(struct ifnet *ifp __unused)
 1098 {
 1099 }
 1100 
 1101 static void
 1102 vlan_input(struct ifnet *ifp, struct mbuf *m)
 1103 {
 1104         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1105         struct ifvlan *ifv;
 1106         uint16_t tag;
 1107 
 1108         KASSERT(trunk != NULL, ("%s: no trunk", __func__));
 1109 
 1110         if (m->m_flags & M_VLANTAG) {
 1111                 /*
 1112                  * Packet is tagged, but m contains a normal
 1113                  * Ethernet frame; the tag is stored out-of-band.
 1114                  */
 1115                 tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
 1116                 m->m_flags &= ~M_VLANTAG;
 1117         } else {
 1118                 struct ether_vlan_header *evl;
 1119 
 1120                 /*
 1121                  * Packet is tagged in-band as specified by 802.1q.
 1122                  */
 1123                 switch (ifp->if_type) {
 1124                 case IFT_ETHER:
 1125                         if (m->m_len < sizeof(*evl) &&
 1126                             (m = m_pullup(m, sizeof(*evl))) == NULL) {
 1127                                 if_printf(ifp, "cannot pullup VLAN header\n");
 1128                                 return;
 1129                         }
 1130                         evl = mtod(m, struct ether_vlan_header *);
 1131                         tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
 1132 
 1133                         /*
 1134                          * Remove the 802.1q header by copying the Ethernet
 1135                          * addresses over it and adjusting the beginning of
 1136                          * the data in the mbuf.  The encapsulated Ethernet
 1137                          * type field is already in place.
 1138                          */
 1139                         bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
 1140                               ETHER_HDR_LEN - ETHER_TYPE_LEN);
 1141                         m_adj(m, ETHER_VLAN_ENCAP_LEN);
 1142                         break;
 1143 
 1144                 default:
 1145 #ifdef INVARIANTS
 1146                         panic("%s: %s has unsupported if_type %u",
 1147                               __func__, ifp->if_xname, ifp->if_type);
 1148 #endif
 1149                         m_freem(m);
 1150                         ifp->if_noproto++;
 1151                         return;
 1152                 }
 1153         }
 1154 
 1155         TRUNK_RLOCK(trunk);
 1156         ifv = vlan_gethash(trunk, tag);
 1157         if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
 1158                 TRUNK_RUNLOCK(trunk);
 1159                 m_freem(m);
 1160                 ifp->if_noproto++;
 1161                 return;
 1162         }
 1163         TRUNK_RUNLOCK(trunk);
 1164 
 1165         m->m_pkthdr.rcvif = ifv->ifv_ifp;
 1166         ifv->ifv_ifp->if_ipackets++;
 1167 
 1168         /* Pass it back through the parent's input routine. */
 1169         (*ifp->if_input)(ifv->ifv_ifp, m);
 1170 }
 1171 
 1172 static int
 1173 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
 1174 {
 1175         struct ifvlantrunk *trunk;
 1176         struct ifnet *ifp;
 1177         int error = 0;
 1178 
 1179         /* VID numbers 0x0 and 0xFFF are reserved */
 1180         if (tag == 0 || tag == 0xFFF)
 1181                 return (EINVAL);
 1182         if (p->if_type != IFT_ETHER &&
 1183             (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 1184                 return (EPROTONOSUPPORT);
 1185         if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
 1186                 return (EPROTONOSUPPORT);
 1187         if (ifv->ifv_trunk)
 1188                 return (EBUSY);
 1189 
 1190         if (p->if_vlantrunk == NULL) {
 1191                 trunk = malloc(sizeof(struct ifvlantrunk),
 1192                     M_VLAN, M_WAITOK | M_ZERO);
 1193                 vlan_inithash(trunk);
 1194                 VLAN_LOCK();
 1195                 if (p->if_vlantrunk != NULL) {
 1196                         /* A race that that is very unlikely to be hit. */
 1197                         vlan_freehash(trunk);
 1198                         free(trunk, M_VLAN);
 1199                         goto exists;
 1200                 }
 1201                 TRUNK_LOCK_INIT(trunk);
 1202                 TRUNK_LOCK(trunk);
 1203                 p->if_vlantrunk = trunk;
 1204                 trunk->parent = p;
 1205         } else {
 1206                 VLAN_LOCK();
 1207 exists:
 1208                 trunk = p->if_vlantrunk;
 1209                 TRUNK_LOCK(trunk);
 1210         }
 1211 
 1212         ifv->ifv_tag = tag;     /* must set this before vlan_inshash() */
 1213         error = vlan_inshash(trunk, ifv);
 1214         if (error)
 1215                 goto done;
 1216         ifv->ifv_proto = ETHERTYPE_VLAN;
 1217         ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
 1218         ifv->ifv_mintu = ETHERMIN;
 1219         ifv->ifv_pflags = 0;
 1220 
 1221         /*
 1222          * If the parent supports the VLAN_MTU capability,
 1223          * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
 1224          * use it.
 1225          */
 1226         if (p->if_capenable & IFCAP_VLAN_MTU) {
 1227                 /*
 1228                  * No need to fudge the MTU since the parent can
 1229                  * handle extended frames.
 1230                  */
 1231                 ifv->ifv_mtufudge = 0;
 1232         } else {
 1233                 /*
 1234                  * Fudge the MTU by the encapsulation size.  This
 1235                  * makes us incompatible with strictly compliant
 1236                  * 802.1Q implementations, but allows us to use
 1237                  * the feature with other NetBSD implementations,
 1238                  * which might still be useful.
 1239                  */
 1240                 ifv->ifv_mtufudge = ifv->ifv_encaplen;
 1241         }
 1242 
 1243         ifv->ifv_trunk = trunk;
 1244         ifp = ifv->ifv_ifp;
 1245         /*
 1246          * Initialize fields from our parent.  This duplicates some
 1247          * work with ether_ifattach() but allows for non-ethernet
 1248          * interfaces to also work.
 1249          */
 1250         ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
 1251         ifp->if_baudrate = p->if_baudrate;
 1252         ifp->if_output = p->if_output;
 1253         ifp->if_input = p->if_input;
 1254         ifp->if_resolvemulti = p->if_resolvemulti;
 1255         ifp->if_addrlen = p->if_addrlen;
 1256         ifp->if_broadcastaddr = p->if_broadcastaddr;
 1257 
 1258         /*
 1259          * Copy only a selected subset of flags from the parent.
 1260          * Other flags are none of our business.
 1261          */
 1262 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
 1263         ifp->if_flags &= ~VLAN_COPY_FLAGS;
 1264         ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
 1265 #undef VLAN_COPY_FLAGS
 1266 
 1267         ifp->if_link_state = p->if_link_state;
 1268 
 1269         vlan_capabilities(ifv);
 1270 
 1271         /*
 1272          * Set up our interface address to reflect the underlying
 1273          * physical interface's.
 1274          */
 1275         bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
 1276         ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
 1277             p->if_addrlen;
 1278 
 1279         /*
 1280          * Configure multicast addresses that may already be
 1281          * joined on the vlan device.
 1282          */
 1283         (void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
 1284 
 1285         /* We are ready for operation now. */
 1286         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1287 done:
 1288         TRUNK_UNLOCK(trunk);
 1289         if (error == 0)
 1290                 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
 1291         VLAN_UNLOCK();
 1292 
 1293         return (error);
 1294 }
 1295 
 1296 static void
 1297 vlan_unconfig(struct ifnet *ifp)
 1298 {
 1299 
 1300         VLAN_LOCK();
 1301         vlan_unconfig_locked(ifp);
 1302         VLAN_UNLOCK();
 1303 }
 1304 
 1305 static void
 1306 vlan_unconfig_locked(struct ifnet *ifp)
 1307 {
 1308         struct ifvlantrunk *trunk;
 1309         struct vlan_mc_entry *mc;
 1310         struct ifvlan *ifv;
 1311         struct ifnet  *parent;
 1312 
 1313         VLAN_LOCK_ASSERT();
 1314 
 1315         ifv = ifp->if_softc;
 1316         trunk = ifv->ifv_trunk;
 1317         parent = NULL;
 1318 
 1319         if (trunk != NULL) {
 1320 
 1321                 TRUNK_LOCK(trunk);
 1322                 parent = trunk->parent;
 1323 
 1324                 /*
 1325                  * Since the interface is being unconfigured, we need to
 1326                  * empty the list of multicast groups that we may have joined
 1327                  * while we were alive from the parent's list.
 1328                  */
 1329                 while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
 1330                         /*
 1331                          * This may fail if the parent interface is
 1332                          * being detached.  Regardless, we should do a
 1333                          * best effort to free this interface as much
 1334                          * as possible as all callers expect vlan
 1335                          * destruction to succeed.
 1336                          */
 1337                         (void)if_delmulti(parent,
 1338                             (struct sockaddr *)&mc->mc_addr);
 1339                         SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
 1340                         free(mc, M_VLAN);
 1341                 }
 1342 
 1343                 vlan_setflags(ifp, 0); /* clear special flags on parent */
 1344                 vlan_remhash(trunk, ifv);
 1345                 ifv->ifv_trunk = NULL;
 1346 
 1347                 /*
 1348                  * Check if we were the last.
 1349                  */
 1350                 if (trunk->refcnt == 0) {
 1351                         trunk->parent->if_vlantrunk = NULL;
 1352                         /*
 1353                          * XXXGL: If some ithread has already entered
 1354                          * vlan_input() and is now blocked on the trunk
 1355                          * lock, then it should preempt us right after
 1356                          * unlock and finish its work. Then we will acquire
 1357                          * lock again in trunk_destroy().
 1358                          */
 1359                         TRUNK_UNLOCK(trunk);
 1360                         trunk_destroy(trunk);
 1361                 } else
 1362                         TRUNK_UNLOCK(trunk);
 1363         }
 1364 
 1365         /* Disconnect from parent. */
 1366         if (ifv->ifv_pflags)
 1367                 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
 1368         ifp->if_mtu = ETHERMTU;
 1369         ifp->if_link_state = LINK_STATE_UNKNOWN;
 1370         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1371 
 1372         /*
 1373          * Only dispatch an event if vlan was
 1374          * attached, otherwise there is nothing
 1375          * to cleanup anyway.
 1376          */
 1377         if (parent != NULL)
 1378                 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
 1379 }
 1380 
 1381 /* Handle a reference counted flag that should be set on the parent as well */
 1382 static int
 1383 vlan_setflag(struct ifnet *ifp, int flag, int status,
 1384              int (*func)(struct ifnet *, int))
 1385 {
 1386         struct ifvlan *ifv;
 1387         int error;
 1388 
 1389         /* XXX VLAN_LOCK_ASSERT(); */
 1390 
 1391         ifv = ifp->if_softc;
 1392         status = status ? (ifp->if_flags & flag) : 0;
 1393         /* Now "status" contains the flag value or 0 */
 1394 
 1395         /*
 1396          * See if recorded parent's status is different from what
 1397          * we want it to be.  If it is, flip it.  We record parent's
 1398          * status in ifv_pflags so that we won't clear parent's flag
 1399          * we haven't set.  In fact, we don't clear or set parent's
 1400          * flags directly, but get or release references to them.
 1401          * That's why we can be sure that recorded flags still are
 1402          * in accord with actual parent's flags.
 1403          */
 1404         if (status != (ifv->ifv_pflags & flag)) {
 1405                 error = (*func)(PARENT(ifv), status);
 1406                 if (error)
 1407                         return (error);
 1408                 ifv->ifv_pflags &= ~flag;
 1409                 ifv->ifv_pflags |= status;
 1410         }
 1411         return (0);
 1412 }
 1413 
 1414 /*
 1415  * Handle IFF_* flags that require certain changes on the parent:
 1416  * if "status" is true, update parent's flags respective to our if_flags;
 1417  * if "status" is false, forcedly clear the flags set on parent.
 1418  */
 1419 static int
 1420 vlan_setflags(struct ifnet *ifp, int status)
 1421 {
 1422         int error, i;
 1423         
 1424         for (i = 0; vlan_pflags[i].flag; i++) {
 1425                 error = vlan_setflag(ifp, vlan_pflags[i].flag,
 1426                                      status, vlan_pflags[i].func);
 1427                 if (error)
 1428                         return (error);
 1429         }
 1430         return (0);
 1431 }
 1432 
 1433 /* Inform all vlans that their parent has changed link state */
 1434 static void
 1435 vlan_link_state(struct ifnet *ifp)
 1436 {
 1437         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1438         struct ifvlan *ifv;
 1439         int i;
 1440 
 1441         TRUNK_LOCK(trunk);
 1442 #ifdef VLAN_ARRAY
 1443         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
 1444                 if (trunk->vlans[i] != NULL) {
 1445                         ifv = trunk->vlans[i];
 1446 #else
 1447         for (i = 0; i < (1 << trunk->hwidth); i++)
 1448                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
 1449 #endif
 1450                         ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
 1451                         if_link_state_change(ifv->ifv_ifp,
 1452                             trunk->parent->if_link_state);
 1453                 }
 1454         TRUNK_UNLOCK(trunk);
 1455 }
 1456 
 1457 static void
 1458 vlan_capabilities(struct ifvlan *ifv)
 1459 {
 1460         struct ifnet *p = PARENT(ifv);
 1461         struct ifnet *ifp = ifv->ifv_ifp;
 1462 
 1463         TRUNK_LOCK_ASSERT(TRUNK(ifv));
 1464 
 1465         /*
 1466          * If the parent interface can do checksum offloading
 1467          * on VLANs, then propagate its hardware-assisted
 1468          * checksumming flags. Also assert that checksum
 1469          * offloading requires hardware VLAN tagging.
 1470          */
 1471         if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
 1472                 ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
 1473 
 1474         if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
 1475             p->if_capenable & IFCAP_VLAN_HWTAGGING) {
 1476                 ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
 1477                 ifp->if_hwassist = p->if_hwassist & (CSUM_IP | CSUM_TCP |
 1478                     CSUM_UDP | CSUM_SCTP | CSUM_IP_FRAGS | CSUM_FRAGMENT);
 1479         } else {
 1480                 ifp->if_capenable = 0;
 1481                 ifp->if_hwassist = 0;
 1482         }
 1483         /*
 1484          * If the parent interface can do TSO on VLANs then
 1485          * propagate the hardware-assisted flag. TSO on VLANs
 1486          * does not necessarily require hardware VLAN tagging.
 1487          */
 1488         if (p->if_capabilities & IFCAP_VLAN_HWTSO)
 1489                 ifp->if_capabilities |= p->if_capabilities & IFCAP_TSO;
 1490         if (p->if_capenable & IFCAP_VLAN_HWTSO) {
 1491                 ifp->if_capenable |= p->if_capenable & IFCAP_TSO;
 1492                 ifp->if_hwassist |= p->if_hwassist & CSUM_TSO;
 1493         } else {
 1494                 ifp->if_capenable &= ~(p->if_capenable & IFCAP_TSO);
 1495                 ifp->if_hwassist &= ~(p->if_hwassist & CSUM_TSO);
 1496         }
 1497 }
 1498 
 1499 static void
 1500 vlan_trunk_capabilities(struct ifnet *ifp)
 1501 {
 1502         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1503         struct ifvlan *ifv;
 1504         int i;
 1505 
 1506         TRUNK_LOCK(trunk);
 1507 #ifdef VLAN_ARRAY
 1508         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
 1509                 if (trunk->vlans[i] != NULL) {
 1510                         ifv = trunk->vlans[i];
 1511 #else
 1512         for (i = 0; i < (1 << trunk->hwidth); i++) {
 1513                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
 1514 #endif
 1515                         vlan_capabilities(ifv);
 1516         }
 1517         TRUNK_UNLOCK(trunk);
 1518 }
 1519 
 1520 static int
 1521 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1522 {
 1523         struct ifnet *p;
 1524         struct ifreq *ifr;
 1525         struct ifaddr *ifa;
 1526         struct ifvlan *ifv;
 1527         struct vlanreq vlr;
 1528         int error = 0;
 1529 
 1530         ifr = (struct ifreq *)data;
 1531         ifa = (struct ifaddr *) data;
 1532         ifv = ifp->if_softc;
 1533 
 1534         switch (cmd) {
 1535         case SIOCSIFADDR:
 1536                 ifp->if_flags |= IFF_UP;
 1537 #ifdef INET
 1538                 if (ifa->ifa_addr->sa_family == AF_INET)
 1539                         arp_ifinit(ifp, ifa);
 1540 #endif
 1541                 break;
 1542         case SIOCGIFADDR:
 1543                 {
 1544                         struct sockaddr *sa;
 1545 
 1546                         sa = (struct sockaddr *)&ifr->ifr_data;
 1547                         bcopy(IF_LLADDR(ifp), sa->sa_data, ifp->if_addrlen);
 1548                 }
 1549                 break;
 1550         case SIOCGIFMEDIA:
 1551                 VLAN_LOCK();
 1552                 if (TRUNK(ifv) != NULL) {
 1553                         p = PARENT(ifv);
 1554                         VLAN_UNLOCK();
 1555                         error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
 1556                         /* Limit the result to the parent's current config. */
 1557                         if (error == 0) {
 1558                                 struct ifmediareq *ifmr;
 1559 
 1560                                 ifmr = (struct ifmediareq *)data;
 1561                                 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
 1562                                         ifmr->ifm_count = 1;
 1563                                         error = copyout(&ifmr->ifm_current,
 1564                                                 ifmr->ifm_ulist,
 1565                                                 sizeof(int));
 1566                                 }
 1567                         }
 1568                 } else {
 1569                         VLAN_UNLOCK();
 1570                         error = EINVAL;
 1571                 }
 1572                 break;
 1573 
 1574         case SIOCSIFMEDIA:
 1575                 error = EINVAL;
 1576                 break;
 1577 
 1578         case SIOCSIFMTU:
 1579                 /*
 1580                  * Set the interface MTU.
 1581                  */
 1582                 VLAN_LOCK();
 1583                 if (TRUNK(ifv) != NULL) {
 1584                         if (ifr->ifr_mtu >
 1585                              (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
 1586                             ifr->ifr_mtu <
 1587                              (ifv->ifv_mintu - ifv->ifv_mtufudge))
 1588                                 error = EINVAL;
 1589                         else
 1590                                 ifp->if_mtu = ifr->ifr_mtu;
 1591                 } else
 1592                         error = EINVAL;
 1593                 VLAN_UNLOCK();
 1594                 break;
 1595 
 1596         case SIOCSETVLAN:
 1597 #ifdef VIMAGE
 1598                 if (ifp->if_vnet != ifp->if_home_vnet) {
 1599                         error = EPERM;
 1600                         break;
 1601                 }
 1602 #endif
 1603                 error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
 1604                 if (error)
 1605                         break;
 1606                 if (vlr.vlr_parent[0] == '\0') {
 1607                         vlan_unconfig(ifp);
 1608                         break;
 1609                 }
 1610                 p = ifunit(vlr.vlr_parent);
 1611                 if (p == NULL) {
 1612                         error = ENOENT;
 1613                         break;
 1614                 }
 1615                 /*
 1616                  * Don't let the caller set up a VLAN tag with
 1617                  * anything except VLID bits.
 1618                  */
 1619                 if (vlr.vlr_tag & ~EVL_VLID_MASK) {
 1620                         error = EINVAL;
 1621                         break;
 1622                 }
 1623                 error = vlan_config(ifv, p, vlr.vlr_tag);
 1624                 if (error)
 1625                         break;
 1626 
 1627                 /* Update flags on the parent, if necessary. */
 1628                 vlan_setflags(ifp, 1);
 1629                 break;
 1630 
 1631         case SIOCGETVLAN:
 1632 #ifdef VIMAGE
 1633                 if (ifp->if_vnet != ifp->if_home_vnet) {
 1634                         error = EPERM;
 1635                         break;
 1636                 }
 1637 #endif
 1638                 bzero(&vlr, sizeof(vlr));
 1639                 VLAN_LOCK();
 1640                 if (TRUNK(ifv) != NULL) {
 1641                         strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
 1642                             sizeof(vlr.vlr_parent));
 1643                         vlr.vlr_tag = ifv->ifv_tag;
 1644                 }
 1645                 VLAN_UNLOCK();
 1646                 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
 1647                 break;
 1648                 
 1649         case SIOCSIFFLAGS:
 1650                 /*
 1651                  * We should propagate selected flags to the parent,
 1652                  * e.g., promiscuous mode.
 1653                  */
 1654                 if (TRUNK(ifv) != NULL)
 1655                         error = vlan_setflags(ifp, 1);
 1656                 break;
 1657 
 1658         case SIOCADDMULTI:
 1659         case SIOCDELMULTI:
 1660                 /*
 1661                  * If we don't have a parent, just remember the membership for
 1662                  * when we do.
 1663                  */
 1664                 if (TRUNK(ifv) != NULL)
 1665                         error = vlan_setmulti(ifp);
 1666                 break;
 1667 
 1668         default:
 1669                 error = EINVAL;
 1670                 break;
 1671         }
 1672 
 1673         return (error);
 1674 }

Cache object: 9a16913eb0cabb3583eefd6920e699b5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.