The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/if_vlan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  * 
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
   32  * Might be extended some day to also handle IEEE 802.1p priority
   33  * tagging.  This is sort of sneaky in the implementation, since
   34  * we need to pretend to be enough of an Ethernet implementation
   35  * to make arp work.  The way we do this is by telling everyone
   36  * that we are an Ethernet, and then catch the packets that
   37  * ether_output() sends to us via if_transmit(), rewrite them for
   38  * use by the real outgoing interface, and ask it to send them.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/9.2/sys/net/if_vlan.c 252828 2013-07-05 19:36:34Z andre $");
   43 
   44 #include "opt_inet.h"
   45 #include "opt_vlan.h"
   46 
   47 #include <sys/param.h>
   48 #include <sys/kernel.h>
   49 #include <sys/lock.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mbuf.h>
   52 #include <sys/module.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/queue.h>
   55 #include <sys/socket.h>
   56 #include <sys/sockio.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/systm.h>
   59 #include <sys/sx.h>
   60 
   61 #include <net/bpf.h>
   62 #include <net/ethernet.h>
   63 #include <net/if.h>
   64 #include <net/if_clone.h>
   65 #include <net/if_dl.h>
   66 #include <net/if_types.h>
   67 #include <net/if_vlan_var.h>
   68 #include <net/vnet.h>
   69 
   70 #ifdef INET
   71 #include <netinet/in.h>
   72 #include <netinet/if_ether.h>
   73 #endif
   74 
   75 #define VLANNAME        "vlan"
   76 #define VLAN_DEF_HWIDTH 4
   77 #define VLAN_IFFLAGS    (IFF_BROADCAST | IFF_MULTICAST)
   78 
   79 #define UP_AND_RUNNING(ifp) \
   80     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
   81 
   82 LIST_HEAD(ifvlanhead, ifvlan);
   83 
   84 struct ifvlantrunk {
   85         struct  ifnet   *parent;        /* parent interface of this trunk */
   86         struct  rwlock  rw;
   87 #ifdef VLAN_ARRAY
   88 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1)
   89         struct  ifvlan  *vlans[VLAN_ARRAY_SIZE]; /* static table */
   90 #else
   91         struct  ifvlanhead *hash;       /* dynamic hash-list table */
   92         uint16_t        hmask;
   93         uint16_t        hwidth;
   94 #endif
   95         int             refcnt;
   96 };
   97 
   98 struct vlan_mc_entry {
   99         struct sockaddr_dl              mc_addr;
  100         SLIST_ENTRY(vlan_mc_entry)      mc_entries;
  101 };
  102 
  103 struct  ifvlan {
  104         struct  ifvlantrunk *ifv_trunk;
  105         struct  ifnet *ifv_ifp;
  106         void    *ifv_cookie;
  107 #define TRUNK(ifv)      ((ifv)->ifv_trunk)
  108 #define PARENT(ifv)     ((ifv)->ifv_trunk->parent)
  109         int     ifv_pflags;     /* special flags we have set on parent */
  110         struct  ifv_linkmib {
  111                 int     ifvm_encaplen;  /* encapsulation length */
  112                 int     ifvm_mtufudge;  /* MTU fudged by this much */
  113                 int     ifvm_mintu;     /* min transmission unit */
  114                 uint16_t ifvm_proto;    /* encapsulation ethertype */
  115                 uint16_t ifvm_tag;      /* tag to apply on packets leaving if */
  116         }       ifv_mib;
  117         SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
  118 #ifndef VLAN_ARRAY
  119         LIST_ENTRY(ifvlan) ifv_list;
  120 #endif
  121 };
  122 #define ifv_proto       ifv_mib.ifvm_proto
  123 #define ifv_tag         ifv_mib.ifvm_tag
  124 #define ifv_encaplen    ifv_mib.ifvm_encaplen
  125 #define ifv_mtufudge    ifv_mib.ifvm_mtufudge
  126 #define ifv_mintu       ifv_mib.ifvm_mintu
  127 
  128 /* Special flags we should propagate to parent. */
  129 static struct {
  130         int flag;
  131         int (*func)(struct ifnet *, int);
  132 } vlan_pflags[] = {
  133         {IFF_PROMISC, ifpromisc},
  134         {IFF_ALLMULTI, if_allmulti},
  135         {0, NULL}
  136 };
  137 
  138 SYSCTL_DECL(_net_link);
  139 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0,
  140     "IEEE 802.1Q VLAN");
  141 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0,
  142     "for consistency");
  143 
  144 static int soft_pad = 0;
  145 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
  146            "pad short frames before tagging");
  147 
  148 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
  149 
  150 static eventhandler_tag ifdetach_tag;
  151 static eventhandler_tag iflladdr_tag;
  152 
  153 /*
  154  * We have a global mutex, that is used to serialize configuration
  155  * changes and isn't used in normal packet delivery.
  156  *
  157  * We also have a per-trunk rwlock, that is locked shared on packet
  158  * processing and exclusive when configuration is changed.
  159  *
  160  * The VLAN_ARRAY substitutes the dynamic hash with a static array
  161  * with 4096 entries. In theory this can give a boost in processing,
  162  * however on practice it does not. Probably this is because array
  163  * is too big to fit into CPU cache.
  164  */
  165 static struct sx ifv_lock;
  166 #define VLAN_LOCK_INIT()        sx_init(&ifv_lock, "vlan_global")
  167 #define VLAN_LOCK_DESTROY()     sx_destroy(&ifv_lock)
  168 #define VLAN_LOCK_ASSERT()      sx_assert(&ifv_lock, SA_LOCKED)
  169 #define VLAN_LOCK()             sx_xlock(&ifv_lock)
  170 #define VLAN_UNLOCK()           sx_xunlock(&ifv_lock)
  171 #define TRUNK_LOCK_INIT(trunk)  rw_init(&(trunk)->rw, VLANNAME)
  172 #define TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
  173 #define TRUNK_LOCK(trunk)       rw_wlock(&(trunk)->rw)
  174 #define TRUNK_UNLOCK(trunk)     rw_wunlock(&(trunk)->rw)
  175 #define TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
  176 #define TRUNK_RLOCK(trunk)      rw_rlock(&(trunk)->rw)
  177 #define TRUNK_RUNLOCK(trunk)    rw_runlock(&(trunk)->rw)
  178 #define TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
  179 
  180 #ifndef VLAN_ARRAY
  181 static  void vlan_inithash(struct ifvlantrunk *trunk);
  182 static  void vlan_freehash(struct ifvlantrunk *trunk);
  183 static  int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
  184 static  int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
  185 static  void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
  186 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
  187         uint16_t tag);
  188 #endif
  189 static  void trunk_destroy(struct ifvlantrunk *trunk);
  190 
  191 static  void vlan_init(void *foo);
  192 static  void vlan_input(struct ifnet *ifp, struct mbuf *m);
  193 static  int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
  194 static  void vlan_qflush(struct ifnet *ifp);
  195 static  int vlan_setflag(struct ifnet *ifp, int flag, int status,
  196     int (*func)(struct ifnet *, int));
  197 static  int vlan_setflags(struct ifnet *ifp, int status);
  198 static  int vlan_setmulti(struct ifnet *ifp);
  199 static  int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
  200 static  void vlan_unconfig(struct ifnet *ifp);
  201 static  void vlan_unconfig_locked(struct ifnet *ifp, int departing);
  202 static  int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
  203 static  void vlan_link_state(struct ifnet *ifp);
  204 static  void vlan_capabilities(struct ifvlan *ifv);
  205 static  void vlan_trunk_capabilities(struct ifnet *ifp);
  206 
  207 static  struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
  208     const char *, int *);
  209 static  int vlan_clone_match(struct if_clone *, const char *);
  210 static  int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
  211 static  int vlan_clone_destroy(struct if_clone *, struct ifnet *);
  212 
  213 static  void vlan_ifdetach(void *arg, struct ifnet *ifp);
  214 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
  215 
  216 static  struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
  217     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
  218 
  219 #ifdef VIMAGE
  220 static VNET_DEFINE(struct if_clone, vlan_cloner);
  221 #define V_vlan_cloner   VNET(vlan_cloner)
  222 #endif
  223 
  224 #ifndef VLAN_ARRAY
  225 #define HASH(n, m)      ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
  226 
  227 static void
  228 vlan_inithash(struct ifvlantrunk *trunk)
  229 {
  230         int i, n;
  231         
  232         /*
  233          * The trunk must not be locked here since we call malloc(M_WAITOK).
  234          * It is OK in case this function is called before the trunk struct
  235          * gets hooked up and becomes visible from other threads.
  236          */
  237 
  238         KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
  239             ("%s: hash already initialized", __func__));
  240 
  241         trunk->hwidth = VLAN_DEF_HWIDTH;
  242         n = 1 << trunk->hwidth;
  243         trunk->hmask = n - 1;
  244         trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
  245         for (i = 0; i < n; i++)
  246                 LIST_INIT(&trunk->hash[i]);
  247 }
  248 
  249 static void
  250 vlan_freehash(struct ifvlantrunk *trunk)
  251 {
  252 #ifdef INVARIANTS
  253         int i;
  254 
  255         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  256         for (i = 0; i < (1 << trunk->hwidth); i++)
  257                 KASSERT(LIST_EMPTY(&trunk->hash[i]),
  258                     ("%s: hash table not empty", __func__));
  259 #endif
  260         free(trunk->hash, M_VLAN);
  261         trunk->hash = NULL;
  262         trunk->hwidth = trunk->hmask = 0;
  263 }
  264 
  265 static int
  266 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  267 {
  268         int i, b;
  269         struct ifvlan *ifv2;
  270 
  271         TRUNK_LOCK_ASSERT(trunk);
  272         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  273 
  274         b = 1 << trunk->hwidth;
  275         i = HASH(ifv->ifv_tag, trunk->hmask);
  276         LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
  277                 if (ifv->ifv_tag == ifv2->ifv_tag)
  278                         return (EEXIST);
  279 
  280         /*
  281          * Grow the hash when the number of vlans exceeds half of the number of
  282          * hash buckets squared. This will make the average linked-list length
  283          * buckets/2.
  284          */
  285         if (trunk->refcnt > (b * b) / 2) {
  286                 vlan_growhash(trunk, 1);
  287                 i = HASH(ifv->ifv_tag, trunk->hmask);
  288         }
  289         LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
  290         trunk->refcnt++;
  291 
  292         return (0);
  293 }
  294 
  295 static int
  296 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  297 {
  298         int i, b;
  299         struct ifvlan *ifv2;
  300 
  301         TRUNK_LOCK_ASSERT(trunk);
  302         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  303         
  304         b = 1 << trunk->hwidth;
  305         i = HASH(ifv->ifv_tag, trunk->hmask);
  306         LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
  307                 if (ifv2 == ifv) {
  308                         trunk->refcnt--;
  309                         LIST_REMOVE(ifv2, ifv_list);
  310                         if (trunk->refcnt < (b * b) / 2)
  311                                 vlan_growhash(trunk, -1);
  312                         return (0);
  313                 }
  314 
  315         panic("%s: vlan not found\n", __func__);
  316         return (ENOENT); /*NOTREACHED*/
  317 }
  318 
  319 /*
  320  * Grow the hash larger or smaller if memory permits.
  321  */
  322 static void
  323 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
  324 {
  325         struct ifvlan *ifv;
  326         struct ifvlanhead *hash2;
  327         int hwidth2, i, j, n, n2;
  328 
  329         TRUNK_LOCK_ASSERT(trunk);
  330         KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
  331 
  332         if (howmuch == 0) {
  333                 /* Harmless yet obvious coding error */
  334                 printf("%s: howmuch is 0\n", __func__);
  335                 return;
  336         }
  337 
  338         hwidth2 = trunk->hwidth + howmuch;
  339         n = 1 << trunk->hwidth;
  340         n2 = 1 << hwidth2;
  341         /* Do not shrink the table below the default */
  342         if (hwidth2 < VLAN_DEF_HWIDTH)
  343                 return;
  344 
  345         /* M_NOWAIT because we're called with trunk mutex held */
  346         hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
  347         if (hash2 == NULL) {
  348                 printf("%s: out of memory -- hash size not changed\n",
  349                     __func__);
  350                 return;         /* We can live with the old hash table */
  351         }
  352         for (j = 0; j < n2; j++)
  353                 LIST_INIT(&hash2[j]);
  354         for (i = 0; i < n; i++)
  355                 while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
  356                         LIST_REMOVE(ifv, ifv_list);
  357                         j = HASH(ifv->ifv_tag, n2 - 1);
  358                         LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
  359                 }
  360         free(trunk->hash, M_VLAN);
  361         trunk->hash = hash2;
  362         trunk->hwidth = hwidth2;
  363         trunk->hmask = n2 - 1;
  364 
  365         if (bootverbose)
  366                 if_printf(trunk->parent,
  367                     "VLAN hash table resized from %d to %d buckets\n", n, n2);
  368 }
  369 
  370 static __inline struct ifvlan *
  371 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
  372 {
  373         struct ifvlan *ifv;
  374 
  375         TRUNK_LOCK_RASSERT(trunk);
  376 
  377         LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
  378                 if (ifv->ifv_tag == tag)
  379                         return (ifv);
  380         return (NULL);
  381 }
  382 
  383 #if 0
  384 /* Debugging code to view the hashtables. */
  385 static void
  386 vlan_dumphash(struct ifvlantrunk *trunk)
  387 {
  388         int i;
  389         struct ifvlan *ifv;
  390 
  391         for (i = 0; i < (1 << trunk->hwidth); i++) {
  392                 printf("%d: ", i);
  393                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
  394                         printf("%s ", ifv->ifv_ifp->if_xname);
  395                 printf("\n");
  396         }
  397 }
  398 #endif /* 0 */
  399 #else
  400 
  401 static __inline struct ifvlan *
  402 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
  403 {
  404 
  405         return trunk->vlans[tag];
  406 }
  407 
  408 static __inline int
  409 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  410 {
  411 
  412         if (trunk->vlans[ifv->ifv_tag] != NULL)
  413                 return EEXIST;
  414         trunk->vlans[ifv->ifv_tag] = ifv;
  415         trunk->refcnt++;
  416 
  417         return (0);
  418 }
  419 
  420 static __inline int
  421 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
  422 {
  423 
  424         trunk->vlans[ifv->ifv_tag] = NULL;
  425         trunk->refcnt--;
  426 
  427         return (0);
  428 }
  429 
  430 static __inline void
  431 vlan_freehash(struct ifvlantrunk *trunk)
  432 {
  433 }
  434 
  435 static __inline void
  436 vlan_inithash(struct ifvlantrunk *trunk)
  437 {
  438 }
  439 
  440 #endif /* !VLAN_ARRAY */
  441 
  442 static void
  443 trunk_destroy(struct ifvlantrunk *trunk)
  444 {
  445         VLAN_LOCK_ASSERT();
  446 
  447         TRUNK_LOCK(trunk);
  448         vlan_freehash(trunk);
  449         trunk->parent->if_vlantrunk = NULL;
  450         TRUNK_UNLOCK(trunk);
  451         TRUNK_LOCK_DESTROY(trunk);
  452         free(trunk, M_VLAN);
  453 }
  454 
  455 /*
  456  * Program our multicast filter. What we're actually doing is
  457  * programming the multicast filter of the parent. This has the
  458  * side effect of causing the parent interface to receive multicast
  459  * traffic that it doesn't really want, which ends up being discarded
  460  * later by the upper protocol layers. Unfortunately, there's no way
  461  * to avoid this: there really is only one physical interface.
  462  *
  463  * XXX: There is a possible race here if more than one thread is
  464  *      modifying the multicast state of the vlan interface at the same time.
  465  */
  466 static int
  467 vlan_setmulti(struct ifnet *ifp)
  468 {
  469         struct ifnet            *ifp_p;
  470         struct ifmultiaddr      *ifma, *rifma = NULL;
  471         struct ifvlan           *sc;
  472         struct vlan_mc_entry    *mc;
  473         int                     error;
  474 
  475         /*VLAN_LOCK_ASSERT();*/
  476 
  477         /* Find the parent. */
  478         sc = ifp->if_softc;
  479         ifp_p = PARENT(sc);
  480 
  481         CURVNET_SET_QUIET(ifp_p->if_vnet);
  482 
  483         /* First, remove any existing filter entries. */
  484         while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
  485                 error = if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
  486                 if (error)
  487                         return (error);
  488                 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
  489                 free(mc, M_VLAN);
  490         }
  491 
  492         /* Now program new ones. */
  493         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  494                 if (ifma->ifma_addr->sa_family != AF_LINK)
  495                         continue;
  496                 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
  497                 if (mc == NULL)
  498                         return (ENOMEM);
  499                 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
  500                 mc->mc_addr.sdl_index = ifp_p->if_index;
  501                 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
  502                 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
  503                     &rifma);
  504                 if (error)
  505                         return (error);
  506         }
  507 
  508         CURVNET_RESTORE();
  509         return (0);
  510 }
  511 
  512 /*
  513  * A handler for parent interface link layer address changes.
  514  * If the parent interface link layer address is changed we
  515  * should also change it on all children vlans.
  516  */
  517 static void
  518 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
  519 {
  520         struct ifvlan *ifv;
  521 #ifndef VLAN_ARRAY
  522         struct ifvlan *next;
  523 #endif
  524         int i;
  525 
  526         /*
  527          * Check if it's a trunk interface first of all
  528          * to avoid needless locking.
  529          */
  530         if (ifp->if_vlantrunk == NULL)
  531                 return;
  532 
  533         VLAN_LOCK();
  534         /*
  535          * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
  536          */
  537 #ifdef VLAN_ARRAY
  538         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
  539                 if ((ifv = ifp->if_vlantrunk->vlans[i])) {
  540 #else /* VLAN_ARRAY */
  541         for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
  542                 LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) {
  543 #endif /* VLAN_ARRAY */
  544                         VLAN_UNLOCK();
  545                         if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp),
  546                             ifp->if_addrlen);
  547                         VLAN_LOCK();
  548                 }
  549         VLAN_UNLOCK();
  550 
  551 }
  552 
  553 /*
  554  * A handler for network interface departure events.
  555  * Track departure of trunks here so that we don't access invalid
  556  * pointers or whatever if a trunk is ripped from under us, e.g.,
  557  * by ejecting its hot-plug card.  However, if an ifnet is simply
  558  * being renamed, then there's no need to tear down the state.
  559  */
  560 static void
  561 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
  562 {
  563         struct ifvlan *ifv;
  564         int i;
  565 
  566         /*
  567          * Check if it's a trunk interface first of all
  568          * to avoid needless locking.
  569          */
  570         if (ifp->if_vlantrunk == NULL)
  571                 return;
  572 
  573         /* If the ifnet is just being renamed, don't do anything. */
  574         if (ifp->if_flags & IFF_RENAMING)
  575                 return;
  576 
  577         VLAN_LOCK();
  578         /*
  579          * OK, it's a trunk.  Loop over and detach all vlan's on it.
  580          * Check trunk pointer after each vlan_unconfig() as it will
  581          * free it and set to NULL after the last vlan was detached.
  582          */
  583 #ifdef VLAN_ARRAY
  584         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
  585                 if ((ifv = ifp->if_vlantrunk->vlans[i])) {
  586                         vlan_unconfig_locked(ifv->ifv_ifp, 1);
  587                         if (ifp->if_vlantrunk == NULL)
  588                                 break;
  589                 }
  590 #else /* VLAN_ARRAY */
  591 restart:
  592         for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
  593                 if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
  594                         vlan_unconfig_locked(ifv->ifv_ifp, 1);
  595                         if (ifp->if_vlantrunk)
  596                                 goto restart;   /* trunk->hwidth can change */
  597                         else
  598                                 break;
  599                 }
  600 #endif /* VLAN_ARRAY */
  601         /* Trunk should have been destroyed in vlan_unconfig(). */
  602         KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
  603         VLAN_UNLOCK();
  604 }
  605 
  606 /*
  607  * Return the trunk device for a virtual interface.
  608  */
  609 static struct ifnet  *
  610 vlan_trunkdev(struct ifnet *ifp)
  611 {
  612         struct ifvlan *ifv;
  613 
  614         if (ifp->if_type != IFT_L2VLAN)
  615                 return (NULL);
  616         ifv = ifp->if_softc;
  617         ifp = NULL;
  618         VLAN_LOCK();
  619         if (ifv->ifv_trunk)
  620                 ifp = PARENT(ifv);
  621         VLAN_UNLOCK();
  622         return (ifp);
  623 }
  624 
  625 /*
  626  * Return the 16bit vlan tag for this interface.
  627  */
  628 static int
  629 vlan_tag(struct ifnet *ifp, uint16_t *tagp)
  630 {
  631         struct ifvlan *ifv;
  632 
  633         if (ifp->if_type != IFT_L2VLAN)
  634                 return (EINVAL);
  635         ifv = ifp->if_softc;
  636         *tagp = ifv->ifv_tag;
  637         return (0);
  638 }
  639 
  640 /*
  641  * Return a driver specific cookie for this interface.  Synchronization
  642  * with setcookie must be provided by the driver. 
  643  */
  644 static void *
  645 vlan_cookie(struct ifnet *ifp)
  646 {
  647         struct ifvlan *ifv;
  648 
  649         if (ifp->if_type != IFT_L2VLAN)
  650                 return (NULL);
  651         ifv = ifp->if_softc;
  652         return (ifv->ifv_cookie);
  653 }
  654 
  655 /*
  656  * Store a cookie in our softc that drivers can use to store driver
  657  * private per-instance data in.
  658  */
  659 static int
  660 vlan_setcookie(struct ifnet *ifp, void *cookie)
  661 {
  662         struct ifvlan *ifv;
  663 
  664         if (ifp->if_type != IFT_L2VLAN)
  665                 return (EINVAL);
  666         ifv = ifp->if_softc;
  667         ifv->ifv_cookie = cookie;
  668         return (0);
  669 }
  670 
  671 /*
  672  * Return the vlan device present at the specific tag.
  673  */
  674 static struct ifnet *
  675 vlan_devat(struct ifnet *ifp, uint16_t tag)
  676 {
  677         struct ifvlantrunk *trunk;
  678         struct ifvlan *ifv;
  679 
  680         trunk = ifp->if_vlantrunk;
  681         if (trunk == NULL)
  682                 return (NULL);
  683         ifp = NULL;
  684         TRUNK_RLOCK(trunk);
  685         ifv = vlan_gethash(trunk, tag);
  686         if (ifv)
  687                 ifp = ifv->ifv_ifp;
  688         TRUNK_RUNLOCK(trunk);
  689         return (ifp);
  690 }
  691 
  692 /*
  693  * VLAN support can be loaded as a module.  The only place in the
  694  * system that's intimately aware of this is ether_input.  We hook
  695  * into this code through vlan_input_p which is defined there and
  696  * set here.  Noone else in the system should be aware of this so
  697  * we use an explicit reference here.
  698  */
  699 extern  void (*vlan_input_p)(struct ifnet *, struct mbuf *);
  700 
  701 /* For if_link_state_change() eyes only... */
  702 extern  void (*vlan_link_state_p)(struct ifnet *);
  703 
  704 static int
  705 vlan_modevent(module_t mod, int type, void *data)
  706 {
  707 
  708         switch (type) {
  709         case MOD_LOAD:
  710                 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
  711                     vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
  712                 if (ifdetach_tag == NULL)
  713                         return (ENOMEM);
  714                 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
  715                     vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
  716                 if (iflladdr_tag == NULL)
  717                         return (ENOMEM);
  718                 VLAN_LOCK_INIT();
  719                 vlan_input_p = vlan_input;
  720                 vlan_link_state_p = vlan_link_state;
  721                 vlan_trunk_cap_p = vlan_trunk_capabilities;
  722                 vlan_trunkdev_p = vlan_trunkdev;
  723                 vlan_cookie_p = vlan_cookie;
  724                 vlan_setcookie_p = vlan_setcookie;
  725                 vlan_tag_p = vlan_tag;
  726                 vlan_devat_p = vlan_devat;
  727 #ifndef VIMAGE
  728                 if_clone_attach(&vlan_cloner);
  729 #endif
  730                 if (bootverbose)
  731                         printf("vlan: initialized, using "
  732 #ifdef VLAN_ARRAY
  733                                "full-size arrays"
  734 #else
  735                                "hash tables with chaining"
  736 #endif
  737                         
  738                                "\n");
  739                 break;
  740         case MOD_UNLOAD:
  741 #ifndef VIMAGE
  742                 if_clone_detach(&vlan_cloner);
  743 #endif
  744                 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
  745                 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
  746                 vlan_input_p = NULL;
  747                 vlan_link_state_p = NULL;
  748                 vlan_trunk_cap_p = NULL;
  749                 vlan_trunkdev_p = NULL;
  750                 vlan_tag_p = NULL;
  751                 vlan_cookie_p = NULL;
  752                 vlan_setcookie_p = NULL;
  753                 vlan_devat_p = NULL;
  754                 VLAN_LOCK_DESTROY();
  755                 if (bootverbose)
  756                         printf("vlan: unloaded\n");
  757                 break;
  758         default:
  759                 return (EOPNOTSUPP);
  760         }
  761         return (0);
  762 }
  763 
  764 static moduledata_t vlan_mod = {
  765         "if_vlan",
  766         vlan_modevent,
  767         0
  768 };
  769 
  770 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
  771 MODULE_VERSION(if_vlan, 3);
  772 
  773 #ifdef VIMAGE
  774 static void
  775 vnet_vlan_init(const void *unused __unused)
  776 {
  777 
  778         V_vlan_cloner = vlan_cloner;
  779         if_clone_attach(&V_vlan_cloner);
  780 }
  781 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
  782     vnet_vlan_init, NULL);
  783 
  784 static void
  785 vnet_vlan_uninit(const void *unused __unused)
  786 {
  787 
  788         if_clone_detach(&V_vlan_cloner);
  789 }
  790 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
  791     vnet_vlan_uninit, NULL);
  792 #endif
  793 
  794 static struct ifnet *
  795 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
  796 {
  797         const char *cp;
  798         struct ifnet *ifp;
  799         int t;
  800 
  801         /* Check for <etherif>.<vlan> style interface names. */
  802         IFNET_RLOCK_NOSLEEP();
  803         TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
  804                 /*
  805                  * We can handle non-ethernet hardware types as long as
  806                  * they handle the tagging and headers themselves.
  807                  */
  808                 if (ifp->if_type != IFT_ETHER &&
  809                     (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
  810                         continue;
  811                 if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
  812                         continue;
  813                 cp = name + strlen(ifp->if_xname);
  814                 if (*cp++ != '.')
  815                         continue;
  816                 if (*cp == '\0')
  817                         continue;
  818                 t = 0;
  819                 for(; *cp >= '' && *cp <= '9'; cp++)
  820                         t = (t * 10) + (*cp - '');
  821                 if (*cp != '\0')
  822                         continue;
  823                 if (tag != NULL)
  824                         *tag = t;
  825                 break;
  826         }
  827         IFNET_RUNLOCK_NOSLEEP();
  828 
  829         return (ifp);
  830 }
  831 
  832 static int
  833 vlan_clone_match(struct if_clone *ifc, const char *name)
  834 {
  835         const char *cp;
  836 
  837         if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
  838                 return (1);
  839 
  840         if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
  841                 return (0);
  842         for (cp = name + 4; *cp != '\0'; cp++) {
  843                 if (*cp < '' || *cp > '9')
  844                         return (0);
  845         }
  846 
  847         return (1);
  848 }
  849 
  850 static int
  851 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
  852 {
  853         char *dp;
  854         int wildcard;
  855         int unit;
  856         int error;
  857         int tag;
  858         int ethertag;
  859         struct ifvlan *ifv;
  860         struct ifnet *ifp;
  861         struct ifnet *p;
  862         struct ifaddr *ifa;
  863         struct sockaddr_dl *sdl;
  864         struct vlanreq vlr;
  865         static const u_char eaddr[ETHER_ADDR_LEN];      /* 00:00:00:00:00:00 */
  866 
  867         /*
  868          * There are 3 (ugh) ways to specify the cloned device:
  869          * o pass a parameter block with the clone request.
  870          * o specify parameters in the text of the clone device name
  871          * o specify no parameters and get an unattached device that
  872          *   must be configured separately.
  873          * The first technique is preferred; the latter two are
  874          * supported for backwards compatibilty.
  875          */
  876         if (params) {
  877                 error = copyin(params, &vlr, sizeof(vlr));
  878                 if (error)
  879                         return error;
  880                 p = ifunit(vlr.vlr_parent);
  881                 if (p == NULL)
  882                         return ENXIO;
  883                 /*
  884                  * Don't let the caller set up a VLAN tag with
  885                  * anything except VLID bits.
  886                  */
  887                 if (vlr.vlr_tag & ~EVL_VLID_MASK)
  888                         return (EINVAL);
  889                 error = ifc_name2unit(name, &unit);
  890                 if (error != 0)
  891                         return (error);
  892 
  893                 ethertag = 1;
  894                 tag = vlr.vlr_tag;
  895                 wildcard = (unit < 0);
  896         } else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
  897                 ethertag = 1;
  898                 unit = -1;
  899                 wildcard = 0;
  900 
  901                 /*
  902                  * Don't let the caller set up a VLAN tag with
  903                  * anything except VLID bits.
  904                  */
  905                 if (tag & ~EVL_VLID_MASK)
  906                         return (EINVAL);
  907         } else {
  908                 ethertag = 0;
  909 
  910                 error = ifc_name2unit(name, &unit);
  911                 if (error != 0)
  912                         return (error);
  913 
  914                 wildcard = (unit < 0);
  915         }
  916 
  917         error = ifc_alloc_unit(ifc, &unit);
  918         if (error != 0)
  919                 return (error);
  920 
  921         /* In the wildcard case, we need to update the name. */
  922         if (wildcard) {
  923                 for (dp = name; *dp != '\0'; dp++);
  924                 if (snprintf(dp, len - (dp-name), "%d", unit) >
  925                     len - (dp-name) - 1) {
  926                         panic("%s: interface name too long", __func__);
  927                 }
  928         }
  929 
  930         ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
  931         ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
  932         if (ifp == NULL) {
  933                 ifc_free_unit(ifc, unit);
  934                 free(ifv, M_VLAN);
  935                 return (ENOSPC);
  936         }
  937         SLIST_INIT(&ifv->vlan_mc_listhead);
  938 
  939         ifp->if_softc = ifv;
  940         /*
  941          * Set the name manually rather than using if_initname because
  942          * we don't conform to the default naming convention for interfaces.
  943          */
  944         strlcpy(ifp->if_xname, name, IFNAMSIZ);
  945         ifp->if_dname = ifc->ifc_name;
  946         ifp->if_dunit = unit;
  947         /* NB: flags are not set here */
  948         ifp->if_linkmib = &ifv->ifv_mib;
  949         ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
  950         /* NB: mtu is not set here */
  951 
  952         ifp->if_init = vlan_init;
  953         ifp->if_transmit = vlan_transmit;
  954         ifp->if_qflush = vlan_qflush;
  955         ifp->if_ioctl = vlan_ioctl;
  956         ifp->if_flags = VLAN_IFFLAGS;
  957         ether_ifattach(ifp, eaddr);
  958         /* Now undo some of the damage... */
  959         ifp->if_baudrate = 0;
  960         ifp->if_type = IFT_L2VLAN;
  961         ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
  962         ifa = ifp->if_addr;
  963         sdl = (struct sockaddr_dl *)ifa->ifa_addr;
  964         sdl->sdl_type = IFT_L2VLAN;
  965 
  966         if (ethertag) {
  967                 error = vlan_config(ifv, p, tag);
  968                 if (error != 0) {
  969                         /*
  970                          * Since we've partially failed, we need to back
  971                          * out all the way, otherwise userland could get
  972                          * confused.  Thus, we destroy the interface.
  973                          */
  974                         ether_ifdetach(ifp);
  975                         vlan_unconfig(ifp);
  976                         if_free_type(ifp, IFT_ETHER);
  977                         ifc_free_unit(ifc, unit);
  978                         free(ifv, M_VLAN);
  979 
  980                         return (error);
  981                 }
  982 
  983                 /* Update flags on the parent, if necessary. */
  984                 vlan_setflags(ifp, 1);
  985         }
  986 
  987         return (0);
  988 }
  989 
  990 static int
  991 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
  992 {
  993         struct ifvlan *ifv = ifp->if_softc;
  994         int unit = ifp->if_dunit;
  995 
  996         ether_ifdetach(ifp);    /* first, remove it from system-wide lists */
  997         vlan_unconfig(ifp);     /* now it can be unconfigured and freed */
  998         if_free_type(ifp, IFT_ETHER);
  999         free(ifv, M_VLAN);
 1000         ifc_free_unit(ifc, unit);
 1001 
 1002         return (0);
 1003 }
 1004 
 1005 /*
 1006  * The ifp->if_init entry point for vlan(4) is a no-op.
 1007  */
 1008 static void
 1009 vlan_init(void *foo __unused)
 1010 {
 1011 }
 1012 
 1013 /*
 1014  * The if_transmit method for vlan(4) interface.
 1015  */
 1016 static int
 1017 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
 1018 {
 1019         struct ifvlan *ifv;
 1020         struct ifnet *p;
 1021         int error, len, mcast;
 1022 
 1023         ifv = ifp->if_softc;
 1024         p = PARENT(ifv);
 1025         len = m->m_pkthdr.len;
 1026         mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
 1027 
 1028         BPF_MTAP(ifp, m);
 1029 
 1030         /*
 1031          * Do not run parent's if_transmit() if the parent is not up,
 1032          * or parent's driver will cause a system crash.
 1033          */
 1034         if (!UP_AND_RUNNING(p)) {
 1035                 m_freem(m);
 1036                 ifp->if_oerrors++;
 1037                 return (ENETDOWN);
 1038         }
 1039 
 1040         /*
 1041          * Pad the frame to the minimum size allowed if told to.
 1042          * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
 1043          * paragraph C.4.4.3.b.  It can help to work around buggy
 1044          * bridges that violate paragraph C.4.4.3.a from the same
 1045          * document, i.e., fail to pad short frames after untagging.
 1046          * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
 1047          * untagging it will produce a 62-byte frame, which is a runt
 1048          * and requires padding.  There are VLAN-enabled network
 1049          * devices that just discard such runts instead or mishandle
 1050          * them somehow.
 1051          */
 1052         if (soft_pad && p->if_type == IFT_ETHER) {
 1053                 static char pad[8];     /* just zeros */
 1054                 int n;
 1055 
 1056                 for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
 1057                      n > 0; n -= sizeof(pad))
 1058                         if (!m_append(m, min(n, sizeof(pad)), pad))
 1059                                 break;
 1060 
 1061                 if (n > 0) {
 1062                         if_printf(ifp, "cannot pad short frame\n");
 1063                         ifp->if_oerrors++;
 1064                         m_freem(m);
 1065                         return (0);
 1066                 }
 1067         }
 1068 
 1069         /*
 1070          * If underlying interface can do VLAN tag insertion itself,
 1071          * just pass the packet along. However, we need some way to
 1072          * tell the interface where the packet came from so that it
 1073          * knows how to find the VLAN tag to use, so we attach a
 1074          * packet tag that holds it.
 1075          */
 1076         if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
 1077                 m->m_pkthdr.ether_vtag = ifv->ifv_tag;
 1078                 m->m_flags |= M_VLANTAG;
 1079         } else {
 1080                 m = ether_vlanencap(m, ifv->ifv_tag);
 1081                 if (m == NULL) {
 1082                         if_printf(ifp, "unable to prepend VLAN header\n");
 1083                         ifp->if_oerrors++;
 1084                         return (0);
 1085                 }
 1086         }
 1087 
 1088         /*
 1089          * Send it, precisely as ether_output() would have.
 1090          */
 1091         error = (p->if_transmit)(p, m);
 1092         if (!error) {
 1093                 ifp->if_opackets++;
 1094                 ifp->if_omcasts += mcast;
 1095                 ifp->if_obytes += len;
 1096         } else
 1097                 ifp->if_oerrors++;
 1098         return (error);
 1099 }
 1100 
 1101 /*
 1102  * The ifp->if_qflush entry point for vlan(4) is a no-op.
 1103  */
 1104 static void
 1105 vlan_qflush(struct ifnet *ifp __unused)
 1106 {
 1107 }
 1108 
 1109 static void
 1110 vlan_input(struct ifnet *ifp, struct mbuf *m)
 1111 {
 1112         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1113         struct ifvlan *ifv;
 1114         uint16_t tag;
 1115 
 1116         KASSERT(trunk != NULL, ("%s: no trunk", __func__));
 1117 
 1118         if (m->m_flags & M_VLANTAG) {
 1119                 /*
 1120                  * Packet is tagged, but m contains a normal
 1121                  * Ethernet frame; the tag is stored out-of-band.
 1122                  */
 1123                 tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
 1124                 m->m_flags &= ~M_VLANTAG;
 1125         } else {
 1126                 struct ether_vlan_header *evl;
 1127 
 1128                 /*
 1129                  * Packet is tagged in-band as specified by 802.1q.
 1130                  */
 1131                 switch (ifp->if_type) {
 1132                 case IFT_ETHER:
 1133                         if (m->m_len < sizeof(*evl) &&
 1134                             (m = m_pullup(m, sizeof(*evl))) == NULL) {
 1135                                 if_printf(ifp, "cannot pullup VLAN header\n");
 1136                                 return;
 1137                         }
 1138                         evl = mtod(m, struct ether_vlan_header *);
 1139                         tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
 1140 
 1141                         /*
 1142                          * Remove the 802.1q header by copying the Ethernet
 1143                          * addresses over it and adjusting the beginning of
 1144                          * the data in the mbuf.  The encapsulated Ethernet
 1145                          * type field is already in place.
 1146                          */
 1147                         bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
 1148                               ETHER_HDR_LEN - ETHER_TYPE_LEN);
 1149                         m_adj(m, ETHER_VLAN_ENCAP_LEN);
 1150                         break;
 1151 
 1152                 default:
 1153 #ifdef INVARIANTS
 1154                         panic("%s: %s has unsupported if_type %u",
 1155                               __func__, ifp->if_xname, ifp->if_type);
 1156 #endif
 1157                         m_freem(m);
 1158                         ifp->if_noproto++;
 1159                         return;
 1160                 }
 1161         }
 1162 
 1163         TRUNK_RLOCK(trunk);
 1164         ifv = vlan_gethash(trunk, tag);
 1165         if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
 1166                 TRUNK_RUNLOCK(trunk);
 1167                 m_freem(m);
 1168                 ifp->if_noproto++;
 1169                 return;
 1170         }
 1171         TRUNK_RUNLOCK(trunk);
 1172 
 1173         m->m_pkthdr.rcvif = ifv->ifv_ifp;
 1174         ifv->ifv_ifp->if_ipackets++;
 1175 
 1176         /* Pass it back through the parent's input routine. */
 1177         (*ifp->if_input)(ifv->ifv_ifp, m);
 1178 }
 1179 
 1180 static int
 1181 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
 1182 {
 1183         struct ifvlantrunk *trunk;
 1184         struct ifnet *ifp;
 1185         int error = 0;
 1186 
 1187         /* VID numbers 0x0 and 0xFFF are reserved */
 1188         if (tag == 0 || tag == 0xFFF)
 1189                 return (EINVAL);
 1190         if (p->if_type != IFT_ETHER &&
 1191             (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 1192                 return (EPROTONOSUPPORT);
 1193         if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
 1194                 return (EPROTONOSUPPORT);
 1195         if (ifv->ifv_trunk)
 1196                 return (EBUSY);
 1197 
 1198         if (p->if_vlantrunk == NULL) {
 1199                 trunk = malloc(sizeof(struct ifvlantrunk),
 1200                     M_VLAN, M_WAITOK | M_ZERO);
 1201                 vlan_inithash(trunk);
 1202                 VLAN_LOCK();
 1203                 if (p->if_vlantrunk != NULL) {
 1204                         /* A race that that is very unlikely to be hit. */
 1205                         vlan_freehash(trunk);
 1206                         free(trunk, M_VLAN);
 1207                         goto exists;
 1208                 }
 1209                 TRUNK_LOCK_INIT(trunk);
 1210                 TRUNK_LOCK(trunk);
 1211                 p->if_vlantrunk = trunk;
 1212                 trunk->parent = p;
 1213         } else {
 1214                 VLAN_LOCK();
 1215 exists:
 1216                 trunk = p->if_vlantrunk;
 1217                 TRUNK_LOCK(trunk);
 1218         }
 1219 
 1220         ifv->ifv_tag = tag;     /* must set this before vlan_inshash() */
 1221         error = vlan_inshash(trunk, ifv);
 1222         if (error)
 1223                 goto done;
 1224         ifv->ifv_proto = ETHERTYPE_VLAN;
 1225         ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
 1226         ifv->ifv_mintu = ETHERMIN;
 1227         ifv->ifv_pflags = 0;
 1228 
 1229         /*
 1230          * If the parent supports the VLAN_MTU capability,
 1231          * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
 1232          * use it.
 1233          */
 1234         if (p->if_capenable & IFCAP_VLAN_MTU) {
 1235                 /*
 1236                  * No need to fudge the MTU since the parent can
 1237                  * handle extended frames.
 1238                  */
 1239                 ifv->ifv_mtufudge = 0;
 1240         } else {
 1241                 /*
 1242                  * Fudge the MTU by the encapsulation size.  This
 1243                  * makes us incompatible with strictly compliant
 1244                  * 802.1Q implementations, but allows us to use
 1245                  * the feature with other NetBSD implementations,
 1246                  * which might still be useful.
 1247                  */
 1248                 ifv->ifv_mtufudge = ifv->ifv_encaplen;
 1249         }
 1250 
 1251         ifv->ifv_trunk = trunk;
 1252         ifp = ifv->ifv_ifp;
 1253         /*
 1254          * Initialize fields from our parent.  This duplicates some
 1255          * work with ether_ifattach() but allows for non-ethernet
 1256          * interfaces to also work.
 1257          */
 1258         ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
 1259         ifp->if_baudrate = p->if_baudrate;
 1260         ifp->if_output = p->if_output;
 1261         ifp->if_input = p->if_input;
 1262         ifp->if_resolvemulti = p->if_resolvemulti;
 1263         ifp->if_addrlen = p->if_addrlen;
 1264         ifp->if_broadcastaddr = p->if_broadcastaddr;
 1265 
 1266         /*
 1267          * Copy only a selected subset of flags from the parent.
 1268          * Other flags are none of our business.
 1269          */
 1270 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
 1271         ifp->if_flags &= ~VLAN_COPY_FLAGS;
 1272         ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
 1273 #undef VLAN_COPY_FLAGS
 1274 
 1275         ifp->if_link_state = p->if_link_state;
 1276 
 1277         vlan_capabilities(ifv);
 1278 
 1279         /*
 1280          * Set up our interface address to reflect the underlying
 1281          * physical interface's.
 1282          */
 1283         bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
 1284         ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
 1285             p->if_addrlen;
 1286 
 1287         /*
 1288          * Configure multicast addresses that may already be
 1289          * joined on the vlan device.
 1290          */
 1291         (void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
 1292 
 1293         /* We are ready for operation now. */
 1294         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1295 done:
 1296         TRUNK_UNLOCK(trunk);
 1297         if (error == 0)
 1298                 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
 1299         VLAN_UNLOCK();
 1300 
 1301         return (error);
 1302 }
 1303 
 1304 static void
 1305 vlan_unconfig(struct ifnet *ifp)
 1306 {
 1307 
 1308         VLAN_LOCK();
 1309         vlan_unconfig_locked(ifp, 0);
 1310         VLAN_UNLOCK();
 1311 }
 1312 
 1313 static void
 1314 vlan_unconfig_locked(struct ifnet *ifp, int departing)
 1315 {
 1316         struct ifvlantrunk *trunk;
 1317         struct vlan_mc_entry *mc;
 1318         struct ifvlan *ifv;
 1319         struct ifnet  *parent;
 1320         int error;
 1321 
 1322         VLAN_LOCK_ASSERT();
 1323 
 1324         ifv = ifp->if_softc;
 1325         trunk = ifv->ifv_trunk;
 1326         parent = NULL;
 1327 
 1328         if (trunk != NULL) {
 1329 
 1330                 TRUNK_LOCK(trunk);
 1331                 parent = trunk->parent;
 1332 
 1333                 /*
 1334                  * Since the interface is being unconfigured, we need to
 1335                  * empty the list of multicast groups that we may have joined
 1336                  * while we were alive from the parent's list.
 1337                  */
 1338                 while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
 1339                         /*
 1340                          * If the parent interface is being detached,
 1341                          * all its multicast addresses have already
 1342                          * been removed.  Warn about errors if
 1343                          * if_delmulti() does fail, but don't abort as
 1344                          * all callers expect vlan destruction to
 1345                          * succeed.
 1346                          */
 1347                         if (!departing) {
 1348                                 error = if_delmulti(parent,
 1349                                     (struct sockaddr *)&mc->mc_addr);
 1350                                 if (error)
 1351                                         if_printf(ifp,
 1352                     "Failed to delete multicast address from parent: %d\n",
 1353                                             error);
 1354                         }
 1355                         SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
 1356                         free(mc, M_VLAN);
 1357                 }
 1358 
 1359                 vlan_setflags(ifp, 0); /* clear special flags on parent */
 1360                 vlan_remhash(trunk, ifv);
 1361                 ifv->ifv_trunk = NULL;
 1362 
 1363                 /*
 1364                  * Check if we were the last.
 1365                  */
 1366                 if (trunk->refcnt == 0) {
 1367                         trunk->parent->if_vlantrunk = NULL;
 1368                         /*
 1369                          * XXXGL: If some ithread has already entered
 1370                          * vlan_input() and is now blocked on the trunk
 1371                          * lock, then it should preempt us right after
 1372                          * unlock and finish its work. Then we will acquire
 1373                          * lock again in trunk_destroy().
 1374                          */
 1375                         TRUNK_UNLOCK(trunk);
 1376                         trunk_destroy(trunk);
 1377                 } else
 1378                         TRUNK_UNLOCK(trunk);
 1379         }
 1380 
 1381         /* Disconnect from parent. */
 1382         if (ifv->ifv_pflags)
 1383                 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
 1384         ifp->if_mtu = ETHERMTU;
 1385         ifp->if_link_state = LINK_STATE_UNKNOWN;
 1386         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1387 
 1388         /*
 1389          * Only dispatch an event if vlan was
 1390          * attached, otherwise there is nothing
 1391          * to cleanup anyway.
 1392          */
 1393         if (parent != NULL)
 1394                 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
 1395 }
 1396 
 1397 /* Handle a reference counted flag that should be set on the parent as well */
 1398 static int
 1399 vlan_setflag(struct ifnet *ifp, int flag, int status,
 1400              int (*func)(struct ifnet *, int))
 1401 {
 1402         struct ifvlan *ifv;
 1403         int error;
 1404 
 1405         /* XXX VLAN_LOCK_ASSERT(); */
 1406 
 1407         ifv = ifp->if_softc;
 1408         status = status ? (ifp->if_flags & flag) : 0;
 1409         /* Now "status" contains the flag value or 0 */
 1410 
 1411         /*
 1412          * See if recorded parent's status is different from what
 1413          * we want it to be.  If it is, flip it.  We record parent's
 1414          * status in ifv_pflags so that we won't clear parent's flag
 1415          * we haven't set.  In fact, we don't clear or set parent's
 1416          * flags directly, but get or release references to them.
 1417          * That's why we can be sure that recorded flags still are
 1418          * in accord with actual parent's flags.
 1419          */
 1420         if (status != (ifv->ifv_pflags & flag)) {
 1421                 error = (*func)(PARENT(ifv), status);
 1422                 if (error)
 1423                         return (error);
 1424                 ifv->ifv_pflags &= ~flag;
 1425                 ifv->ifv_pflags |= status;
 1426         }
 1427         return (0);
 1428 }
 1429 
 1430 /*
 1431  * Handle IFF_* flags that require certain changes on the parent:
 1432  * if "status" is true, update parent's flags respective to our if_flags;
 1433  * if "status" is false, forcedly clear the flags set on parent.
 1434  */
 1435 static int
 1436 vlan_setflags(struct ifnet *ifp, int status)
 1437 {
 1438         int error, i;
 1439         
 1440         for (i = 0; vlan_pflags[i].flag; i++) {
 1441                 error = vlan_setflag(ifp, vlan_pflags[i].flag,
 1442                                      status, vlan_pflags[i].func);
 1443                 if (error)
 1444                         return (error);
 1445         }
 1446         return (0);
 1447 }
 1448 
 1449 /* Inform all vlans that their parent has changed link state */
 1450 static void
 1451 vlan_link_state(struct ifnet *ifp)
 1452 {
 1453         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1454         struct ifvlan *ifv;
 1455         int i;
 1456 
 1457         TRUNK_LOCK(trunk);
 1458 #ifdef VLAN_ARRAY
 1459         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
 1460                 if (trunk->vlans[i] != NULL) {
 1461                         ifv = trunk->vlans[i];
 1462 #else
 1463         for (i = 0; i < (1 << trunk->hwidth); i++)
 1464                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
 1465 #endif
 1466                         ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
 1467                         if_link_state_change(ifv->ifv_ifp,
 1468                             trunk->parent->if_link_state);
 1469                 }
 1470         TRUNK_UNLOCK(trunk);
 1471 }
 1472 
 1473 static void
 1474 vlan_capabilities(struct ifvlan *ifv)
 1475 {
 1476         struct ifnet *p = PARENT(ifv);
 1477         struct ifnet *ifp = ifv->ifv_ifp;
 1478 
 1479         TRUNK_LOCK_ASSERT(TRUNK(ifv));
 1480 
 1481         /*
 1482          * If the parent interface can do checksum offloading
 1483          * on VLANs, then propagate its hardware-assisted
 1484          * checksumming flags. Also assert that checksum
 1485          * offloading requires hardware VLAN tagging.
 1486          */
 1487         if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
 1488                 ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
 1489 
 1490         if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
 1491             p->if_capenable & IFCAP_VLAN_HWTAGGING) {
 1492                 ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
 1493                 ifp->if_hwassist = p->if_hwassist & (CSUM_IP | CSUM_TCP |
 1494                     CSUM_UDP | CSUM_SCTP | CSUM_FRAGMENT);
 1495         } else {
 1496                 ifp->if_capenable = 0;
 1497                 ifp->if_hwassist = 0;
 1498         }
 1499         /*
 1500          * If the parent interface can do TSO on VLANs then
 1501          * propagate the hardware-assisted flag. TSO on VLANs
 1502          * does not necessarily require hardware VLAN tagging.
 1503          */
 1504         if (p->if_capabilities & IFCAP_VLAN_HWTSO)
 1505                 ifp->if_capabilities |= p->if_capabilities & IFCAP_TSO;
 1506         if (p->if_capenable & IFCAP_VLAN_HWTSO) {
 1507                 ifp->if_capenable |= p->if_capenable & IFCAP_TSO;
 1508                 ifp->if_hwassist |= p->if_hwassist & CSUM_TSO;
 1509         } else {
 1510                 ifp->if_capenable &= ~(p->if_capenable & IFCAP_TSO);
 1511                 ifp->if_hwassist &= ~(p->if_hwassist & CSUM_TSO);
 1512         }
 1513 
 1514         /*
 1515          * If the parent interface can offload TCP connections over VLANs then
 1516          * propagate its TOE capability to the VLAN interface.
 1517          *
 1518          * All TOE drivers in the tree today can deal with VLANs.  If this
 1519          * changes then IFCAP_VLAN_TOE should be promoted to a full capability
 1520          * with its own bit.
 1521          */
 1522 #define IFCAP_VLAN_TOE IFCAP_TOE
 1523         if (p->if_capabilities & IFCAP_VLAN_TOE)
 1524                 ifp->if_capabilities |= p->if_capabilities & IFCAP_TOE;
 1525         if (p->if_capenable & IFCAP_VLAN_TOE) {
 1526                 TOEDEV(ifp) = TOEDEV(p);
 1527                 ifp->if_capenable |= p->if_capenable & IFCAP_TOE;
 1528         }
 1529 }
 1530 
 1531 static void
 1532 vlan_trunk_capabilities(struct ifnet *ifp)
 1533 {
 1534         struct ifvlantrunk *trunk = ifp->if_vlantrunk;
 1535         struct ifvlan *ifv;
 1536         int i;
 1537 
 1538         TRUNK_LOCK(trunk);
 1539 #ifdef VLAN_ARRAY
 1540         for (i = 0; i < VLAN_ARRAY_SIZE; i++)
 1541                 if (trunk->vlans[i] != NULL) {
 1542                         ifv = trunk->vlans[i];
 1543 #else
 1544         for (i = 0; i < (1 << trunk->hwidth); i++) {
 1545                 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
 1546 #endif
 1547                         vlan_capabilities(ifv);
 1548         }
 1549         TRUNK_UNLOCK(trunk);
 1550 }
 1551 
 1552 static int
 1553 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1554 {
 1555         struct ifnet *p;
 1556         struct ifreq *ifr;
 1557         struct ifaddr *ifa;
 1558         struct ifvlan *ifv;
 1559         struct vlanreq vlr;
 1560         int error = 0;
 1561 
 1562         ifr = (struct ifreq *)data;
 1563         ifa = (struct ifaddr *) data;
 1564         ifv = ifp->if_softc;
 1565 
 1566         switch (cmd) {
 1567         case SIOCSIFADDR:
 1568                 ifp->if_flags |= IFF_UP;
 1569 #ifdef INET
 1570                 if (ifa->ifa_addr->sa_family == AF_INET)
 1571                         arp_ifinit(ifp, ifa);
 1572 #endif
 1573                 break;
 1574         case SIOCGIFADDR:
 1575                 {
 1576                         struct sockaddr *sa;
 1577 
 1578                         sa = (struct sockaddr *)&ifr->ifr_data;
 1579                         bcopy(IF_LLADDR(ifp), sa->sa_data, ifp->if_addrlen);
 1580                 }
 1581                 break;
 1582         case SIOCGIFMEDIA:
 1583                 VLAN_LOCK();
 1584                 if (TRUNK(ifv) != NULL) {
 1585                         p = PARENT(ifv);
 1586                         VLAN_UNLOCK();
 1587                         error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
 1588                         /* Limit the result to the parent's current config. */
 1589                         if (error == 0) {
 1590                                 struct ifmediareq *ifmr;
 1591 
 1592                                 ifmr = (struct ifmediareq *)data;
 1593                                 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
 1594                                         ifmr->ifm_count = 1;
 1595                                         error = copyout(&ifmr->ifm_current,
 1596                                                 ifmr->ifm_ulist,
 1597                                                 sizeof(int));
 1598                                 }
 1599                         }
 1600                 } else {
 1601                         VLAN_UNLOCK();
 1602                         error = EINVAL;
 1603                 }
 1604                 break;
 1605 
 1606         case SIOCSIFMEDIA:
 1607                 error = EINVAL;
 1608                 break;
 1609 
 1610         case SIOCSIFMTU:
 1611                 /*
 1612                  * Set the interface MTU.
 1613                  */
 1614                 VLAN_LOCK();
 1615                 if (TRUNK(ifv) != NULL) {
 1616                         if (ifr->ifr_mtu >
 1617                              (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
 1618                             ifr->ifr_mtu <
 1619                              (ifv->ifv_mintu - ifv->ifv_mtufudge))
 1620                                 error = EINVAL;
 1621                         else
 1622                                 ifp->if_mtu = ifr->ifr_mtu;
 1623                 } else
 1624                         error = EINVAL;
 1625                 VLAN_UNLOCK();
 1626                 break;
 1627 
 1628         case SIOCSETVLAN:
 1629 #ifdef VIMAGE
 1630                 if (ifp->if_vnet != ifp->if_home_vnet) {
 1631                         error = EPERM;
 1632                         break;
 1633                 }
 1634 #endif
 1635                 error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
 1636                 if (error)
 1637                         break;
 1638                 if (vlr.vlr_parent[0] == '\0') {
 1639                         vlan_unconfig(ifp);
 1640                         break;
 1641                 }
 1642                 p = ifunit(vlr.vlr_parent);
 1643                 if (p == NULL) {
 1644                         error = ENOENT;
 1645                         break;
 1646                 }
 1647                 /*
 1648                  * Don't let the caller set up a VLAN tag with
 1649                  * anything except VLID bits.
 1650                  */
 1651                 if (vlr.vlr_tag & ~EVL_VLID_MASK) {
 1652                         error = EINVAL;
 1653                         break;
 1654                 }
 1655                 error = vlan_config(ifv, p, vlr.vlr_tag);
 1656                 if (error)
 1657                         break;
 1658 
 1659                 /* Update flags on the parent, if necessary. */
 1660                 vlan_setflags(ifp, 1);
 1661                 break;
 1662 
 1663         case SIOCGETVLAN:
 1664 #ifdef VIMAGE
 1665                 if (ifp->if_vnet != ifp->if_home_vnet) {
 1666                         error = EPERM;
 1667                         break;
 1668                 }
 1669 #endif
 1670                 bzero(&vlr, sizeof(vlr));
 1671                 VLAN_LOCK();
 1672                 if (TRUNK(ifv) != NULL) {
 1673                         strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
 1674                             sizeof(vlr.vlr_parent));
 1675                         vlr.vlr_tag = ifv->ifv_tag;
 1676                 }
 1677                 VLAN_UNLOCK();
 1678                 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
 1679                 break;
 1680                 
 1681         case SIOCSIFFLAGS:
 1682                 /*
 1683                  * We should propagate selected flags to the parent,
 1684                  * e.g., promiscuous mode.
 1685                  */
 1686                 if (TRUNK(ifv) != NULL)
 1687                         error = vlan_setflags(ifp, 1);
 1688                 break;
 1689 
 1690         case SIOCADDMULTI:
 1691         case SIOCDELMULTI:
 1692                 /*
 1693                  * If we don't have a parent, just remember the membership for
 1694                  * when we do.
 1695                  */
 1696                 if (TRUNK(ifv) != NULL)
 1697                         error = vlan_setmulti(ifp);
 1698                 break;
 1699 
 1700         default:
 1701                 error = EINVAL;
 1702                 break;
 1703         }
 1704 
 1705         return (error);
 1706 }

Cache object: 54a97b5788aa3e221cc75a5be616b654


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.