The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/netmap.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  *
    8  *   1. Redistributions of source code must retain the above copyright
    9  *      notice, this list of conditions and the following disclaimer.
   10  *   2. Redistributions in binary form must reproduce the above copyright
   11  *      notice, this list of conditions and the following disclaimer in the
   12  *      documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``S IS''AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * $FreeBSD$
   29  *
   30  * Definitions of constants and the structures used by the netmap
   31  * framework, for the part visible to both kernel and userspace.
   32  * Detailed info on netmap is available with "man netmap" or at
   33  *
   34  *      http://info.iet.unipi.it/~luigi/netmap/
   35  *
   36  * This API is also used to communicate with the VALE software switch
   37  */
   38 
   39 #ifndef _NET_NETMAP_H_
   40 #define _NET_NETMAP_H_
   41 
   42 #define NETMAP_API      13              /* current API version */
   43 
   44 #define NETMAP_MIN_API  13              /* min and max versions accepted */
   45 #define NETMAP_MAX_API  15
   46 /*
   47  * Some fields should be cache-aligned to reduce contention.
   48  * The alignment is architecture and OS dependent, but rather than
   49  * digging into OS headers to find the exact value we use an estimate
   50  * that should cover most architectures.
   51  */
   52 #define NM_CACHE_ALIGN  128
   53 
   54 /*
   55  * --- Netmap data structures ---
   56  *
   57  * The userspace data structures used by netmap are shown below.
   58  * They are allocated by the kernel and mmap()ed by userspace threads.
   59  * Pointers are implemented as memory offsets or indexes,
   60  * so that they can be easily dereferenced in kernel and userspace.
   61 
   62    KERNEL (opaque, obviously)
   63 
   64   ====================================================================
   65                                          |
   66    USERSPACE                             |      struct netmap_ring
   67                                          +---->+---------------+
   68                                              / | head,cur,tail |
   69    struct netmap_if (nifp, 1 per fd)        /  | buf_ofs       |
   70     +---------------+                      /   | other fields  |
   71     | ni_tx_rings   |                     /    +===============+
   72     | ni_rx_rings   |                    /     | buf_idx, len  | slot[0]
   73     |               |                   /      | flags, ptr    |
   74     |               |                  /       +---------------+
   75     +===============+                 /        | buf_idx, len  | slot[1]
   76     | txring_ofs[0] | (rel.to nifp)--'         | flags, ptr    |
   77     | txring_ofs[1] |                          +---------------+
   78      (tx+1 entries)                           (num_slots entries)
   79     | txring_ofs[t] |                          | buf_idx, len  | slot[n-1]
   80     +---------------+                          | flags, ptr    |
   81     | rxring_ofs[0] |                          +---------------+
   82     | rxring_ofs[1] |
   83      (rx+1 entries)
   84     | rxring_ofs[r] |
   85     +---------------+
   86 
   87  * For each "interface" (NIC, host stack, PIPE, VALE switch port) bound to
   88  * a file descriptor, the mmap()ed region contains a (logically readonly)
   89  * struct netmap_if pointing to struct netmap_ring's.
   90  *
   91  * There is one netmap_ring per physical NIC ring, plus one tx/rx ring
   92  * pair attached to the host stack (this pair is unused for non-NIC ports).
   93  *
   94  * All physical/host stack ports share the same memory region,
   95  * so that zero-copy can be implemented between them.
   96  * VALE switch ports instead have separate memory regions.
   97  *
   98  * The netmap_ring is the userspace-visible replica of the NIC ring.
   99  * Each slot has the index of a buffer (MTU-sized and residing in the
  100  * mmapped region), its length and some flags. An extra 64-bit pointer
  101  * is provided for user-supplied buffers in the tx path.
  102  *
  103  * In user space, the buffer address is computed as
  104  *      (char *)ring + buf_ofs + index * NETMAP_BUF_SIZE
  105  *
  106  * Added in NETMAP_API 11:
  107  *
  108  * + NIOCREGIF can request the allocation of extra spare buffers from
  109  *   the same memory pool. The desired number of buffers must be in
  110  *   nr_arg3. The ioctl may return fewer buffers, depending on memory
  111  *   availability. nr_arg3 will return the actual value, and, once
  112  *   mapped, nifp->ni_bufs_head will be the index of the first buffer.
  113  *
  114  *   The buffers are linked to each other using the first uint32_t
  115  *   as the index. On close, ni_bufs_head must point to the list of
  116  *   buffers to be released.
  117  *
  118  * + NIOCREGIF can request space for extra rings (and buffers)
  119  *   allocated in the same memory space. The number of extra rings
  120  *   is in nr_arg1, and is advisory. This is a no-op on NICs where
  121  *   the size of the memory space is fixed.
  122  *
  123  * + NIOCREGIF can attach to PIPE rings sharing the same memory
  124  *   space with a parent device. The ifname indicates the parent device,
  125  *   which must already exist. Flags in nr_flags indicate if we want to
  126  *   bind the master or slave side, the index (from nr_ringid)
  127  *   is just a cookie and does not need to be sequential.
  128  *
  129  * + NIOCREGIF can also attach to 'monitor' rings that replicate
  130  *   the content of specific rings, also from the same memory space.
  131  *
  132  *   Extra flags in nr_flags support the above functions.
  133  *   Application libraries may use the following naming scheme:
  134  *      netmap:foo                      all NIC ring pairs
  135  *      netmap:foo^                     only host ring pair
  136  *      netmap:foo+                     all NIC ring + host ring pairs
  137  *      netmap:foo-k                    the k-th NIC ring pair
  138  *      netmap:foo{k                    PIPE ring pair k, master side
  139  *      netmap:foo}k                    PIPE ring pair k, slave side
  140  *
  141  * Some notes about host rings:
  142  *
  143  * + The RX host ring is used to store those packets that the host network
  144  *   stack is trying to transmit through a NIC queue, but only if that queue
  145  *   is currently in netmap mode. Netmap will not intercept host stack mbufs
  146  *   designated to NIC queues that are not in netmap mode. As a consequence,
  147  *   registering a netmap port with netmap:foo^ is not enough to intercept
  148  *   mbufs in the RX host ring; the netmap port should be registered with
  149  *   netmap:foo*, or another registration should be done to open at least a
  150  *   NIC TX queue in netmap mode.
  151  *
  152  * + Netmap is not currently able to deal with intercepted trasmit mbufs which
  153  *   require offloadings like TSO, UFO, checksumming offloadings, etc. It is
  154  *   responsibility of the user to disable those offloadings (e.g. using
  155  *   ifconfig on FreeBSD or ethtool -K on Linux) for an interface that is being
  156  *   used in netmap mode. If the offloadings are not disabled, GSO and/or
  157  *   unchecksummed packets may be dropped immediately or end up in the host RX
  158  *   ring, and will be dropped as soon as the packet reaches another netmap
  159  *   adapter.
  160  */
  161 
  162 /*
  163  * struct netmap_slot is a buffer descriptor
  164  */
  165 struct netmap_slot {
  166         uint32_t buf_idx;       /* buffer index */
  167         uint16_t len;           /* length for this slot */
  168         uint16_t flags;         /* buf changed, etc. */
  169         uint64_t ptr;           /* pointer for indirect buffers */
  170 };
  171 
  172 /*
  173  * The following flags control how the slot is used
  174  */
  175 
  176 #define NS_BUF_CHANGED  0x0001  /* buf_idx changed */
  177         /*
  178          * must be set whenever buf_idx is changed (as it might be
  179          * necessary to recompute the physical address and mapping)
  180          *
  181          * It is also set by the kernel whenever the buf_idx is
  182          * changed internally (e.g., by pipes). Applications may
  183          * use this information to know when they can reuse the
  184          * contents of previously prepared buffers.
  185          */
  186 
  187 #define NS_REPORT       0x0002  /* ask the hardware to report results */
  188         /*
  189          * Request notification when slot is used by the hardware.
  190          * Normally transmit completions are handled lazily and
  191          * may be unreported. This flag lets us know when a slot
  192          * has been sent (e.g. to terminate the sender).
  193          */
  194 
  195 #define NS_FORWARD      0x0004  /* pass packet 'forward' */
  196         /*
  197          * (Only for physical ports, rx rings with NR_FORWARD set).
  198          * Slot released to the kernel (i.e. before ring->head) with
  199          * this flag set are passed to the peer ring (host/NIC),
  200          * thus restoring the host-NIC connection for these slots.
  201          * This supports efficient traffic monitoring or firewalling.
  202          */
  203 
  204 #define NS_NO_LEARN     0x0008  /* disable bridge learning */
  205         /*
  206          * On a VALE switch, do not 'learn' the source port for
  207          * this buffer.
  208          */
  209 
  210 #define NS_INDIRECT     0x0010  /* userspace buffer */
  211         /*
  212          * (VALE tx rings only) data is in a userspace buffer,
  213          * whose address is in the 'ptr' field in the slot.
  214          */
  215 
  216 #define NS_MOREFRAG     0x0020  /* packet has more fragments */
  217         /*
  218          * (VALE ports, ptnetmap ports and some NIC ports, e.g.
  219          * ixgbe and i40e on Linux)
  220          * Set on all but the last slot of a multi-segment packet.
  221          * The 'len' field refers to the individual fragment.
  222          */
  223 
  224 #define NS_PORT_SHIFT   8
  225 #define NS_PORT_MASK    (0xff << NS_PORT_SHIFT)
  226         /*
  227          * The high 8 bits of the flag, if not zero, indicate the
  228          * destination port for the VALE switch, overriding
  229          * the lookup table.
  230          */
  231 
  232 #define NS_RFRAGS(_slot)        ( ((_slot)->flags >> 8) & 0xff)
  233         /*
  234          * (VALE rx rings only) the high 8 bits
  235          *  are the number of fragments.
  236          */
  237 
  238 #define NETMAP_MAX_FRAGS        64      /* max number of fragments */
  239 
  240 
  241 /*
  242  * struct netmap_ring
  243  *
  244  * Netmap representation of a TX or RX ring (also known as "queue").
  245  * This is a queue implemented as a fixed-size circular array.
  246  * At the software level the important fields are: head, cur, tail.
  247  *
  248  * In TX rings:
  249  *
  250  *      head    first slot available for transmission.
  251  *      cur     wakeup point. select() and poll() will unblock
  252  *              when 'tail' moves past 'cur'
  253  *      tail    (readonly) first slot reserved to the kernel
  254  *
  255  *      [head .. tail-1] can be used for new packets to send;
  256  *      'head' and 'cur' must be incremented as slots are filled
  257  *          with new packets to be sent;
  258  *      'cur' can be moved further ahead if we need more space
  259  *      for new transmissions. XXX todo (2014-03-12)
  260  *
  261  * In RX rings:
  262  *
  263  *      head    first valid received packet
  264  *      cur     wakeup point. select() and poll() will unblock
  265  *              when 'tail' moves past 'cur'
  266  *      tail    (readonly) first slot reserved to the kernel
  267  *
  268  *      [head .. tail-1] contain received packets;
  269  *      'head' and 'cur' must be incremented as slots are consumed
  270  *              and can be returned to the kernel;
  271  *      'cur' can be moved further ahead if we want to wait for
  272  *              new packets without returning the previous ones.
  273  *
  274  * DATA OWNERSHIP/LOCKING:
  275  *      The netmap_ring, and all slots and buffers in the range
  276  *      [head .. tail-1] are owned by the user program;
  277  *      the kernel only accesses them during a netmap system call
  278  *      and in the user thread context.
  279  *
  280  *      Other slots and buffers are reserved for use by the kernel
  281  */
  282 struct netmap_ring {
  283         /*
  284          * buf_ofs is meant to be used through macros.
  285          * It contains the offset of the buffer region from this
  286          * descriptor.
  287          */
  288         const int64_t   buf_ofs;
  289         const uint32_t  num_slots;      /* number of slots in the ring. */
  290         const uint32_t  nr_buf_size;
  291         const uint16_t  ringid;
  292         const uint16_t  dir;            /* 0: tx, 1: rx */
  293 
  294         uint32_t        head;           /* (u) first user slot */
  295         uint32_t        cur;            /* (u) wakeup point */
  296         uint32_t        tail;           /* (k) first kernel slot */
  297 
  298         uint32_t        flags;
  299 
  300         struct timeval  ts;             /* (k) time of last *sync() */
  301 
  302         /* opaque room for a mutex or similar object */
  303 #if !defined(_WIN32) || defined(__CYGWIN__)
  304         uint8_t __attribute__((__aligned__(NM_CACHE_ALIGN))) sem[128];
  305 #else
  306         uint8_t __declspec(align(NM_CACHE_ALIGN)) sem[128];
  307 #endif
  308 
  309         /* the slots follow. This struct has variable size */
  310         struct netmap_slot slot[0];     /* array of slots. */
  311 };
  312 
  313 
  314 /*
  315  * RING FLAGS
  316  */
  317 #define NR_TIMESTAMP    0x0002          /* set timestamp on *sync() */
  318         /*
  319          * updates the 'ts' field on each netmap syscall. This saves
  320          * saves a separate gettimeofday(), and is not much worse than
  321          * software timestamps generated in the interrupt handler.
  322          */
  323 
  324 #define NR_FORWARD      0x0004          /* enable NS_FORWARD for ring */
  325         /*
  326          * Enables the NS_FORWARD slot flag for the ring.
  327          */
  328 
  329 /*
  330  * Helper functions for kernel and userspace
  331  */
  332 
  333 /*
  334  * Check if space is available in the ring. We use ring->head, which
  335  * points to the next netmap slot to be published to netmap. It is
  336  * possible that the applications moves ring->cur ahead of ring->tail
  337  * (e.g., by setting ring->cur <== ring->tail), if it wants more slots
  338  * than the ones currently available, and it wants to be notified when
  339  * more arrive. See netmap(4) for more details and examples.
  340  */
  341 static inline int
  342 nm_ring_empty(struct netmap_ring *ring)
  343 {
  344         return (ring->head == ring->tail);
  345 }
  346 
  347 /*
  348  * Netmap representation of an interface and its queue(s).
  349  * This is initialized by the kernel when binding a file
  350  * descriptor to a port, and should be considered as readonly
  351  * by user programs. The kernel never uses it.
  352  *
  353  * There is one netmap_if for each file descriptor on which we want
  354  * to select/poll.
  355  * select/poll operates on one or all pairs depending on the value of
  356  * nmr_queueid passed on the ioctl.
  357  */
  358 struct netmap_if {
  359         char            ni_name[IFNAMSIZ]; /* name of the interface. */
  360         const uint32_t  ni_version;     /* API version, currently unused */
  361         const uint32_t  ni_flags;       /* properties */
  362 #define NI_PRIV_MEM     0x1             /* private memory region */
  363 
  364         /*
  365          * The number of packet rings available in netmap mode.
  366          * Physical NICs can have different numbers of tx and rx rings.
  367          * Physical NICs also have a 'host' ring pair.
  368          * Additionally, clients can request additional ring pairs to
  369          * be used for internal communication.
  370          */
  371         const uint32_t  ni_tx_rings;    /* number of HW tx rings */
  372         const uint32_t  ni_rx_rings;    /* number of HW rx rings */
  373 
  374         uint32_t        ni_bufs_head;   /* head index for extra bufs */
  375         uint32_t        ni_spare1[5];
  376         /*
  377          * The following array contains the offset of each netmap ring
  378          * from this structure, in the following order:
  379          * NIC tx rings (ni_tx_rings); host tx ring (1); extra tx rings;
  380          * NIC rx rings (ni_rx_rings); host tx ring (1); extra rx rings.
  381          *
  382          * The area is filled up by the kernel on NIOCREGIF,
  383          * and then only read by userspace code.
  384          */
  385         const ssize_t   ring_ofs[0];
  386 };
  387 
  388 /* Legacy interface to interact with a netmap control device.
  389  * Included for backward compatibility. The user should not include this
  390  * file directly. */
  391 #include "netmap_legacy.h"
  392 
  393 /*
  394  * New API to control netmap control devices. New applications should only use
  395  * nmreq_xyz structs with the NIOCCTRL ioctl() command.
  396  *
  397  * NIOCCTRL takes a nmreq_header struct, which contains the required
  398  * API version, the name of a netmap port, a command type, and pointers
  399  * to request body and options.
  400  *
  401  *      nr_name (in)
  402  *              The name of the port (em0, valeXXX:YYY, eth0{pn1 etc.)
  403  *
  404  *      nr_version (in/out)
  405  *              Must match NETMAP_API as used in the kernel, error otherwise.
  406  *              Always returns the desired value on output.
  407  *
  408  *      nr_reqtype (in)
  409  *              One of the NETMAP_REQ_* command types below
  410  *
  411  *      nr_body (in)
  412  *              Pointer to a command-specific struct, described by one
  413  *              of the struct nmreq_xyz below.
  414  *
  415  *      nr_options (in)
  416  *              Command specific options, if any.
  417  *
  418  * A NETMAP_REQ_REGISTER command activates netmap mode on the netmap
  419  * port (e.g. physical interface) specified by nmreq_header.nr_name.
  420  * The request body (struct nmreq_register) has several arguments to
  421  * specify how the port is to be registered.
  422  *
  423  *      nr_tx_slots, nr_tx_slots, nr_tx_rings, nr_rx_rings (in/out)
  424  *              On input, non-zero values may be used to reconfigure the port
  425  *              according to the requested values, but this is not guaranteed.
  426  *              On output the actual values in use are reported.
  427  *
  428  *      nr_mode (in)
  429  *              Indicate what set of rings must be bound to the netmap
  430  *              device (e.g. all NIC rings, host rings only, NIC and
  431  *              host rings, ...). Values are in NR_REG_*.
  432  *
  433  *      nr_ringid (in)
  434  *              If nr_mode == NR_REG_ONE_NIC (only a single couple of TX/RX
  435  *              rings), indicate which NIC TX and/or RX ring is to be bound
  436  *              (0..nr_*x_rings-1).
  437  *
  438  *      nr_flags (in)
  439  *              Indicate special options for how to open the port.
  440  *
  441  *              NR_NO_TX_POLL can be OR-ed to make select()/poll() push
  442  *                      packets on tx rings only if POLLOUT is set.
  443  *                      The default is to push any pending packet.
  444  *
  445  *              NR_DO_RX_POLL can be OR-ed to make select()/poll() release
  446  *                      packets on rx rings also when POLLIN is NOT set.
  447  *                      The default is to touch the rx ring only with POLLIN.
  448  *                      Note that this is the opposite of TX because it
  449  *                      reflects the common usage.
  450  *
  451  *              Other options are NR_MONITOR_TX, NR_MONITOR_RX, NR_ZCOPY_MON,
  452  *              NR_EXCLUSIVE, NR_RX_RINGS_ONLY, NR_TX_RINGS_ONLY and
  453  *              NR_ACCEPT_VNET_HDR.
  454  *
  455  *      nr_mem_id (in/out)
  456  *              The identity of the memory region used.
  457  *              On input, 0 means the system decides autonomously,
  458  *              other values may try to select a specific region.
  459  *              On return the actual value is reported.
  460  *              Region '1' is the global allocator, normally shared
  461  *              by all interfaces. Other values are private regions.
  462  *              If two ports the same region zero-copy is possible.
  463  *
  464  *      nr_extra_bufs (in/out)
  465  *              Number of extra buffers to be allocated.
  466  *
  467  * The other NETMAP_REQ_* commands are described below.
  468  *
  469  */
  470 
  471 /* maximum size of a request, including all options */
  472 #define NETMAP_REQ_MAXSIZE      4096
  473 
  474 /* Header common to all request options. */
  475 struct nmreq_option {
  476         /* Pointer ot the next option. */
  477         uint64_t                nro_next;
  478         /* Option type. */
  479         uint32_t                nro_reqtype;
  480         /* (out) status of the option:
  481          * 0: recognized and processed
  482          * !=0: errno value
  483          */
  484         uint32_t                nro_status;
  485         /* Option size, used only for options that can have variable size
  486          * (e.g. because they contain arrays). For fixed-size options this
  487          * field should be set to zero. */
  488         uint64_t                nro_size;
  489 };
  490 
  491 /* Header common to all requests. Do not reorder these fields, as we need
  492  * the second one (nr_reqtype) to know how much to copy from/to userspace. */
  493 struct nmreq_header {
  494         uint16_t                nr_version;     /* API version */
  495         uint16_t                nr_reqtype;     /* nmreq type (NETMAP_REQ_*) */
  496         uint32_t                nr_reserved;    /* must be zero */
  497 #define NETMAP_REQ_IFNAMSIZ     64
  498         char                    nr_name[NETMAP_REQ_IFNAMSIZ]; /* port name */
  499         uint64_t                nr_options;     /* command-specific options */
  500         uint64_t                nr_body;        /* ptr to nmreq_xyz struct */
  501 };
  502 
  503 enum {
  504         /* Register a netmap port with the device. */
  505         NETMAP_REQ_REGISTER = 1,
  506         /* Get information from a netmap port. */
  507         NETMAP_REQ_PORT_INFO_GET,
  508         /* Attach a netmap port to a VALE switch. */
  509         NETMAP_REQ_VALE_ATTACH,
  510         /* Detach a netmap port from a VALE switch. */
  511         NETMAP_REQ_VALE_DETACH,
  512         /* List the ports attached to a VALE switch. */
  513         NETMAP_REQ_VALE_LIST,
  514         /* Set the port header length (was virtio-net header length). */
  515         NETMAP_REQ_PORT_HDR_SET,
  516         /* Get the port header length (was virtio-net header length). */
  517         NETMAP_REQ_PORT_HDR_GET,
  518         /* Create a new persistent VALE port. */
  519         NETMAP_REQ_VALE_NEWIF,
  520         /* Delete a persistent VALE port. */
  521         NETMAP_REQ_VALE_DELIF,
  522         /* Enable polling kernel thread(s) on an attached VALE port. */
  523         NETMAP_REQ_VALE_POLLING_ENABLE,
  524         /* Disable polling kernel thread(s) on an attached VALE port. */
  525         NETMAP_REQ_VALE_POLLING_DISABLE,
  526         /* Get info about the pools of a memory allocator. */
  527         NETMAP_REQ_POOLS_INFO_GET,
  528         /* Start an in-kernel loop that syncs the rings periodically or
  529          * on notifications. The loop runs in the context of the ioctl
  530          * syscall, and only stops on NETMAP_REQ_SYNC_KLOOP_STOP. */
  531         NETMAP_REQ_SYNC_KLOOP_START,
  532         /* Stops the thread executing the in-kernel loop. The thread
  533          * returns from the ioctl syscall. */
  534         NETMAP_REQ_SYNC_KLOOP_STOP,
  535         /* Enable CSB mode on a registered netmap control device. */
  536         NETMAP_REQ_CSB_ENABLE,
  537 };
  538 
  539 enum {
  540         /* On NETMAP_REQ_REGISTER, ask netmap to use memory allocated
  541          * from user-space allocated memory pools (e.g. hugepages).
  542          */
  543         NETMAP_REQ_OPT_EXTMEM = 1,
  544 
  545         /* ON NETMAP_REQ_SYNC_KLOOP_START, ask netmap to use eventfd-based
  546          * notifications to synchronize the kernel loop with the application.
  547          */
  548         NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS,
  549 
  550         /* On NETMAP_REQ_REGISTER, ask netmap to work in CSB mode, where
  551          * head, cur and tail pointers are not exchanged through the
  552          * struct netmap_ring header, but rather using an user-provided
  553          * memory area (see struct nm_csb_atok and struct nm_csb_ktoa).
  554          */
  555         NETMAP_REQ_OPT_CSB,
  556 
  557         /* An extension to NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS, which specifies
  558          * if the TX and/or RX rings are synced in the context of the VM exit.
  559          * This requires the 'ioeventfd' fields to be valid (cannot be < 0).
  560          */
  561         NETMAP_REQ_OPT_SYNC_KLOOP_MODE,
  562 };
  563 
  564 /*
  565  * nr_reqtype: NETMAP_REQ_REGISTER
  566  * Bind (register) a netmap port to this control device.
  567  */
  568 struct nmreq_register {
  569         uint64_t        nr_offset;      /* nifp offset in the shared region */
  570         uint64_t        nr_memsize;     /* size of the shared region */
  571         uint32_t        nr_tx_slots;    /* slots in tx rings */
  572         uint32_t        nr_rx_slots;    /* slots in rx rings */
  573         uint16_t        nr_tx_rings;    /* number of tx rings */
  574         uint16_t        nr_rx_rings;    /* number of rx rings */
  575 
  576         uint16_t        nr_mem_id;      /* id of the memory allocator */
  577         uint16_t        nr_ringid;      /* ring(s) we care about */
  578         uint32_t        nr_mode;        /* specify NR_REG_* modes */
  579         uint32_t        nr_extra_bufs;  /* number of requested extra buffers */
  580 
  581         uint64_t        nr_flags;       /* additional flags (see below) */
  582 /* monitors use nr_ringid and nr_mode to select the rings to monitor */
  583 #define NR_MONITOR_TX   0x100
  584 #define NR_MONITOR_RX   0x200
  585 #define NR_ZCOPY_MON    0x400
  586 /* request exclusive access to the selected rings */
  587 #define NR_EXCLUSIVE    0x800
  588 /* 0x1000 unused */
  589 #define NR_RX_RINGS_ONLY        0x2000
  590 #define NR_TX_RINGS_ONLY        0x4000
  591 /* Applications set this flag if they are able to deal with virtio-net headers,
  592  * that is send/receive frames that start with a virtio-net header.
  593  * If not set, NIOCREGIF will fail with netmap ports that require applications
  594  * to use those headers. If the flag is set, the application can use the
  595  * NETMAP_VNET_HDR_GET command to figure out the header length. */
  596 #define NR_ACCEPT_VNET_HDR      0x8000
  597 /* The following two have the same meaning of NETMAP_NO_TX_POLL and
  598  * NETMAP_DO_RX_POLL. */
  599 #define NR_DO_RX_POLL           0x10000
  600 #define NR_NO_TX_POLL           0x20000
  601 };
  602 
  603 /* Valid values for nmreq_register.nr_mode (see above). */
  604 enum {  NR_REG_DEFAULT  = 0,    /* backward compat, should not be used. */
  605         NR_REG_ALL_NIC  = 1,
  606         NR_REG_SW       = 2,
  607         NR_REG_NIC_SW   = 3,
  608         NR_REG_ONE_NIC  = 4,
  609         NR_REG_PIPE_MASTER = 5, /* deprecated, use "x{y" port name syntax */
  610         NR_REG_PIPE_SLAVE = 6,  /* deprecated, use "x}y" port name syntax */
  611         NR_REG_NULL     = 7,
  612 };
  613 
  614 /* A single ioctl number is shared by all the new API command.
  615  * Demultiplexing is done using the hdr.nr_reqtype field.
  616  * FreeBSD uses the size value embedded in the _IOWR to determine
  617  * how much to copy in/out, so we define the ioctl() command
  618  * specifying only nmreq_header, and copyin/copyout the rest. */
  619 #define NIOCCTRL        _IOWR('i', 151, struct nmreq_header)
  620 
  621 /* The ioctl commands to sync TX/RX netmap rings.
  622  * NIOCTXSYNC, NIOCRXSYNC synchronize tx or rx queues,
  623  *      whose identity is set in NIOCREGIF through nr_ringid.
  624  *      These are non blocking and take no argument. */
  625 #define NIOCTXSYNC      _IO('i', 148) /* sync tx queues */
  626 #define NIOCRXSYNC      _IO('i', 149) /* sync rx queues */
  627 
  628 /*
  629  * nr_reqtype: NETMAP_REQ_PORT_INFO_GET
  630  * Get information about a netmap port, including number of rings.
  631  * slots per ring, id of the memory allocator, etc. The netmap
  632  * control device used for this operation does not need to be bound
  633  * to a netmap port.
  634  */
  635 struct nmreq_port_info_get {
  636         uint64_t        nr_memsize;     /* size of the shared region */
  637         uint32_t        nr_tx_slots;    /* slots in tx rings */
  638         uint32_t        nr_rx_slots;    /* slots in rx rings */
  639         uint16_t        nr_tx_rings;    /* number of tx rings */
  640         uint16_t        nr_rx_rings;    /* number of rx rings */
  641         uint16_t        nr_mem_id;      /* memory allocator id (in/out) */
  642         uint16_t        pad1;
  643 };
  644 
  645 #define NM_BDG_NAME             "vale"  /* prefix for bridge port name */
  646 
  647 /*
  648  * nr_reqtype: NETMAP_REQ_VALE_ATTACH
  649  * Attach a netmap port to a VALE switch. Both the name of the netmap
  650  * port and the VALE switch are specified through the nr_name argument.
  651  * The attach operation could need to register a port, so at least
  652  * the same arguments are available.
  653  * port_index will contain the index where the port has been attached.
  654  */
  655 struct nmreq_vale_attach {
  656         struct nmreq_register reg;
  657         uint32_t port_index;
  658         uint32_t pad1;
  659 };
  660 
  661 /*
  662  * nr_reqtype: NETMAP_REQ_VALE_DETACH
  663  * Detach a netmap port from a VALE switch. Both the name of the netmap
  664  * port and the VALE switch are specified through the nr_name argument.
  665  * port_index will contain the index where the port was attached.
  666  */
  667 struct nmreq_vale_detach {
  668         uint32_t port_index;
  669         uint32_t pad1;
  670 };
  671 
  672 /*
  673  * nr_reqtype: NETMAP_REQ_VALE_LIST
  674  * List the ports of a VALE switch.
  675  */
  676 struct nmreq_vale_list {
  677         /* Name of the VALE port (valeXXX:YYY) or empty. */
  678         uint16_t        nr_bridge_idx;
  679         uint16_t        pad1;
  680         uint32_t        nr_port_idx;
  681 };
  682 
  683 /*
  684  * nr_reqtype: NETMAP_REQ_PORT_HDR_SET or NETMAP_REQ_PORT_HDR_GET
  685  * Set or get the port header length of the port identified by hdr.nr_name.
  686  * The control device does not need to be bound to a netmap port.
  687  */
  688 struct nmreq_port_hdr {
  689         uint32_t        nr_hdr_len;
  690         uint32_t        pad1;
  691 };
  692 
  693 /*
  694  * nr_reqtype: NETMAP_REQ_VALE_NEWIF
  695  * Create a new persistent VALE port.
  696  */
  697 struct nmreq_vale_newif {
  698         uint32_t        nr_tx_slots;    /* slots in tx rings */
  699         uint32_t        nr_rx_slots;    /* slots in rx rings */
  700         uint16_t        nr_tx_rings;    /* number of tx rings */
  701         uint16_t        nr_rx_rings;    /* number of rx rings */
  702         uint16_t        nr_mem_id;      /* id of the memory allocator */
  703         uint16_t        pad1;
  704 };
  705 
  706 /*
  707  * nr_reqtype: NETMAP_REQ_VALE_POLLING_ENABLE or NETMAP_REQ_VALE_POLLING_DISABLE
  708  * Enable or disable polling kthreads on a VALE port.
  709  */
  710 struct nmreq_vale_polling {
  711         uint32_t        nr_mode;
  712 #define NETMAP_POLLING_MODE_SINGLE_CPU 1
  713 #define NETMAP_POLLING_MODE_MULTI_CPU 2
  714         uint32_t        nr_first_cpu_id;
  715         uint32_t        nr_num_polling_cpus;
  716         uint32_t        pad1;
  717 };
  718 
  719 /*
  720  * nr_reqtype: NETMAP_REQ_POOLS_INFO_GET
  721  * Get info about the pools of the memory allocator of the netmap
  722  * port specified by hdr.nr_name and nr_mem_id. The netmap control
  723  * device used for this operation does not need to be bound to a netmap
  724  * port.
  725  */
  726 struct nmreq_pools_info {
  727         uint64_t        nr_memsize;
  728         uint16_t        nr_mem_id; /* in/out argument */
  729         uint16_t        pad1[3];
  730         uint64_t        nr_if_pool_offset;
  731         uint32_t        nr_if_pool_objtotal;
  732         uint32_t        nr_if_pool_objsize;
  733         uint64_t        nr_ring_pool_offset;
  734         uint32_t        nr_ring_pool_objtotal;
  735         uint32_t        nr_ring_pool_objsize;
  736         uint64_t        nr_buf_pool_offset;
  737         uint32_t        nr_buf_pool_objtotal;
  738         uint32_t        nr_buf_pool_objsize;
  739 };
  740 
  741 /*
  742  * nr_reqtype: NETMAP_REQ_SYNC_KLOOP_START
  743  * Start an in-kernel loop that syncs the rings periodically or on
  744  * notifications. The loop runs in the context of the ioctl syscall,
  745  * and only stops on NETMAP_REQ_SYNC_KLOOP_STOP.
  746  * The registered netmap port must be open in CSB mode.
  747  */
  748 struct nmreq_sync_kloop_start {
  749         /* Sleeping is the default synchronization method for the kloop.
  750          * The 'sleep_us' field specifies how many microsconds to sleep for
  751          * when there is no work to do, before doing another kloop iteration.
  752          */
  753         uint32_t        sleep_us;
  754         uint32_t        pad1;
  755 };
  756 
  757 /* A CSB entry for the application --> kernel direction. */
  758 struct nm_csb_atok {
  759         uint32_t head;            /* AW+ KR+ the head of the appl netmap_ring */
  760         uint32_t cur;             /* AW+ KR+ the cur of the appl netmap_ring */
  761         uint32_t appl_need_kick;  /* AW+ KR+ kern --> appl notification enable */
  762         uint32_t sync_flags;      /* AW+ KR+ the flags of the appl [tx|rx]sync() */
  763         uint32_t pad[12];         /* pad to a 64 bytes cacheline */
  764 };
  765 
  766 /* A CSB entry for the application <-- kernel direction. */
  767 struct nm_csb_ktoa {
  768         uint32_t hwcur;           /* AR+ KW+ the hwcur of the kern netmap_kring */
  769         uint32_t hwtail;          /* AR+ KW+ the hwtail of the kern netmap_kring */
  770         uint32_t kern_need_kick;  /* AR+ KW+ appl-->kern notification enable */
  771         uint32_t pad[13];
  772 };
  773 
  774 #ifdef __linux__
  775 
  776 #ifdef __KERNEL__
  777 #define nm_stst_barrier smp_wmb
  778 #define nm_ldld_barrier smp_rmb
  779 #define nm_stld_barrier smp_mb
  780 #else  /* !__KERNEL__ */
  781 static inline void nm_stst_barrier(void)
  782 {
  783         /* A memory barrier with release semantic has the combined
  784          * effect of a store-store barrier and a load-store barrier,
  785          * which is fine for us. */
  786         __atomic_thread_fence(__ATOMIC_RELEASE);
  787 }
  788 static inline void nm_ldld_barrier(void)
  789 {
  790         /* A memory barrier with acquire semantic has the combined
  791          * effect of a load-load barrier and a store-load barrier,
  792          * which is fine for us. */
  793         __atomic_thread_fence(__ATOMIC_ACQUIRE);
  794 }
  795 #endif /* !__KERNEL__ */
  796 
  797 #elif defined(__FreeBSD__)
  798 
  799 #ifdef _KERNEL
  800 #define nm_stst_barrier atomic_thread_fence_rel
  801 #define nm_ldld_barrier atomic_thread_fence_acq
  802 #define nm_stld_barrier atomic_thread_fence_seq_cst
  803 #else  /* !_KERNEL */
  804 #include <stdatomic.h>
  805 static inline void nm_stst_barrier(void)
  806 {
  807         atomic_thread_fence(memory_order_release);
  808 }
  809 static inline void nm_ldld_barrier(void)
  810 {
  811         atomic_thread_fence(memory_order_acquire);
  812 }
  813 #endif /* !_KERNEL */
  814 
  815 #else  /* !__linux__ && !__FreeBSD__ */
  816 #error "OS not supported"
  817 #endif /* !__linux__ && !__FreeBSD__ */
  818 
  819 /* Application side of sync-kloop: Write ring pointers (cur, head) to the CSB.
  820  * This routine is coupled with sync_kloop_kernel_read(). */
  821 static inline void
  822 nm_sync_kloop_appl_write(struct nm_csb_atok *atok, uint32_t cur,
  823                          uint32_t head)
  824 {
  825         /* Issue a first store-store barrier to make sure writes to the
  826          * netmap ring do not overcome updates on atok->cur and atok->head. */
  827         nm_stst_barrier();
  828 
  829         /*
  830          * We need to write cur and head to the CSB but we cannot do it atomically.
  831          * There is no way we can prevent the host from reading the updated value
  832          * of one of the two and the old value of the other. However, if we make
  833          * sure that the host never reads a value of head more recent than the
  834          * value of cur we are safe. We can allow the host to read a value of cur
  835          * more recent than the value of head, since in the netmap ring cur can be
  836          * ahead of head and cur cannot wrap around head because it must be behind
  837          * tail. Inverting the order of writes below could instead result into the
  838          * host to think head went ahead of cur, which would cause the sync
  839          * prologue to fail.
  840          *
  841          * The following memory barrier scheme is used to make this happen:
  842          *
  843          *          Guest                Host
  844          *
  845          *          STORE(cur)           LOAD(head)
  846          *          wmb() <----------->  rmb()
  847          *          STORE(head)          LOAD(cur)
  848          *
  849          */
  850         atok->cur = cur;
  851         nm_stst_barrier();
  852         atok->head = head;
  853 }
  854 
  855 /* Application side of sync-kloop: Read kring pointers (hwcur, hwtail) from
  856  * the CSB. This routine is coupled with sync_kloop_kernel_write(). */
  857 static inline void
  858 nm_sync_kloop_appl_read(struct nm_csb_ktoa *ktoa, uint32_t *hwtail,
  859                         uint32_t *hwcur)
  860 {
  861         /*
  862          * We place a memory barrier to make sure that the update of hwtail never
  863          * overtakes the update of hwcur.
  864          * (see explanation in sync_kloop_kernel_write).
  865          */
  866         *hwtail = ktoa->hwtail;
  867         nm_ldld_barrier();
  868         *hwcur = ktoa->hwcur;
  869 
  870         /* Make sure that loads from ktoa->hwtail and ktoa->hwcur are not delayed
  871          * after the loads from the netmap ring. */
  872         nm_ldld_barrier();
  873 }
  874 
  875 /*
  876  * data for NETMAP_REQ_OPT_* options
  877  */
  878 
  879 struct nmreq_opt_sync_kloop_eventfds {
  880         struct nmreq_option     nro_opt;        /* common header */
  881         /* An array of N entries for bidirectional notifications between
  882          * the kernel loop and the application. The number of entries and
  883          * their order must agree with the CSB arrays passed in the
  884          * NETMAP_REQ_OPT_CSB option. Each entry contains a file descriptor
  885          * backed by an eventfd.
  886          *
  887          * If any of the 'ioeventfd' entries is < 0, the event loop uses
  888          * the sleeping synchronization strategy (according to sleep_us),
  889          * and keeps kern_need_kick always disabled.
  890          * Each 'irqfd' can be < 0, and in that case the corresponding queue
  891          * is never notified.
  892          */
  893         struct {
  894                 /* Notifier for the application --> kernel loop direction. */
  895                 int32_t ioeventfd;
  896                 /* Notifier for the kernel loop --> application direction. */
  897                 int32_t irqfd;
  898         } eventfds[0];
  899 };
  900 
  901 struct nmreq_opt_sync_kloop_mode {
  902         struct nmreq_option     nro_opt;        /* common header */
  903 #define NM_OPT_SYNC_KLOOP_DIRECT_TX (1 << 0)
  904 #define NM_OPT_SYNC_KLOOP_DIRECT_RX (1 << 1)
  905         uint32_t mode;
  906 };
  907 
  908 struct nmreq_opt_extmem {
  909         struct nmreq_option     nro_opt;        /* common header */
  910         uint64_t                nro_usrptr;     /* (in) ptr to usr memory */
  911         struct nmreq_pools_info nro_info;       /* (in/out) */
  912 };
  913 
  914 struct nmreq_opt_csb {
  915         struct nmreq_option     nro_opt;
  916 
  917         /* Array of CSB entries for application --> kernel communication
  918          * (N entries). */
  919         uint64_t                csb_atok;
  920 
  921         /* Array of CSB entries for kernel --> application communication
  922          * (N entries). */
  923         uint64_t                csb_ktoa;
  924 };
  925 
  926 #endif /* _NET_NETMAP_H_ */

Cache object: bc1607c9ff6395efcd70d7b5e0f510a4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.