The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1988, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)radix.c     8.5 (Berkeley) 5/19/95
   32  * $FreeBSD$
   33  */
   34 
   35 /*
   36  * Routines to build and maintain radix trees for routing lookups.
   37  */
   38 #include <sys/param.h>
   39 #ifdef  _KERNEL
   40 #include <sys/lock.h>
   41 #include <sys/mutex.h>
   42 #include <sys/rmlock.h>
   43 #include <sys/systm.h>
   44 #include <sys/malloc.h>
   45 #include <sys/syslog.h>
   46 #include <net/radix.h>
   47 #else /* !_KERNEL */
   48 #include <stdio.h>
   49 #include <strings.h>
   50 #include <stdlib.h>
   51 #define log(x, arg...)  fprintf(stderr, ## arg)
   52 #define panic(x)        fprintf(stderr, "PANIC: %s", x), exit(1)
   53 #define min(a, b) ((a) < (b) ? (a) : (b) )
   54 #include <net/radix.h>
   55 #endif /* !_KERNEL */
   56 
   57 static struct radix_node
   58          *rn_insert(void *, struct radix_head *, int *,
   59              struct radix_node [2]),
   60          *rn_newpair(void *, int, struct radix_node[2]),
   61          *rn_search(const void *, struct radix_node *),
   62          *rn_search_m(const void *, struct radix_node *, void *);
   63 static struct radix_node *rn_addmask(const void *, struct radix_mask_head *, int,int);
   64 
   65 static void rn_detachhead_internal(struct radix_head *);
   66 
   67 #define RADIX_MAX_KEY_LEN       32
   68 
   69 static char rn_zeros[RADIX_MAX_KEY_LEN];
   70 static char rn_ones[RADIX_MAX_KEY_LEN] = {
   71         -1, -1, -1, -1, -1, -1, -1, -1,
   72         -1, -1, -1, -1, -1, -1, -1, -1,
   73         -1, -1, -1, -1, -1, -1, -1, -1,
   74         -1, -1, -1, -1, -1, -1, -1, -1,
   75 };
   76 
   77 static int      rn_lexobetter(const void *m_arg, const void *n_arg);
   78 static struct radix_mask *
   79                 rn_new_radix_mask(struct radix_node *tt,
   80                     struct radix_mask *next);
   81 static int      rn_satisfies_leaf(const char *trial, struct radix_node *leaf,
   82                     int skip);
   83 
   84 /*
   85  * The data structure for the keys is a radix tree with one way
   86  * branching removed.  The index rn_bit at an internal node n represents a bit
   87  * position to be tested.  The tree is arranged so that all descendants
   88  * of a node n have keys whose bits all agree up to position rn_bit - 1.
   89  * (We say the index of n is rn_bit.)
   90  *
   91  * There is at least one descendant which has a one bit at position rn_bit,
   92  * and at least one with a zero there.
   93  *
   94  * A route is determined by a pair of key and mask.  We require that the
   95  * bit-wise logical and of the key and mask to be the key.
   96  * We define the index of a route to associated with the mask to be
   97  * the first bit number in the mask where 0 occurs (with bit number 0
   98  * representing the highest order bit).
   99  *
  100  * We say a mask is normal if every bit is 0, past the index of the mask.
  101  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
  102  * and m is a normal mask, then the route applies to every descendant of n.
  103  * If the index(m) < rn_bit, this implies the trailing last few bits of k
  104  * before bit b are all 0, (and hence consequently true of every descendant
  105  * of n), so the route applies to all descendants of the node as well.
  106  *
  107  * Similar logic shows that a non-normal mask m such that
  108  * index(m) <= index(n) could potentially apply to many children of n.
  109  * Thus, for each non-host route, we attach its mask to a list at an internal
  110  * node as high in the tree as we can go.
  111  *
  112  * The present version of the code makes use of normal routes in short-
  113  * circuiting an explict mask and compare operation when testing whether
  114  * a key satisfies a normal route, and also in remembering the unique leaf
  115  * that governs a subtree.
  116  */
  117 
  118 /*
  119  * Most of the functions in this code assume that the key/mask arguments
  120  * are sockaddr-like structures, where the first byte is an u_char
  121  * indicating the size of the entire structure.
  122  *
  123  * To make the assumption more explicit, we use the LEN() macro to access
  124  * this field. It is safe to pass an expression with side effects
  125  * to LEN() as the argument is evaluated only once.
  126  * We cast the result to int as this is the dominant usage.
  127  */
  128 #define LEN(x) ( (int) (*(const u_char *)(x)) )
  129 
  130 /*
  131  * XXX THIS NEEDS TO BE FIXED
  132  * In the code, pointers to keys and masks are passed as either
  133  * 'void *' (because callers use to pass pointers of various kinds), or
  134  * 'caddr_t' (which is fine for pointer arithmetics, but not very
  135  * clean when you dereference it to access data). Furthermore, caddr_t
  136  * is really 'char *', while the natural type to operate on keys and
  137  * masks would be 'u_char'. This mismatch require a lot of casts and
  138  * intermediate variables to adapt types that clutter the code.
  139  */
  140 
  141 /*
  142  * Search a node in the tree matching the key.
  143  */
  144 static struct radix_node *
  145 rn_search(const void *v_arg, struct radix_node *head)
  146 {
  147         struct radix_node *x;
  148         c_caddr_t v;
  149 
  150         for (x = head, v = v_arg; x->rn_bit >= 0;) {
  151                 if (x->rn_bmask & v[x->rn_offset])
  152                         x = x->rn_right;
  153                 else
  154                         x = x->rn_left;
  155         }
  156         return (x);
  157 }
  158 
  159 /*
  160  * Same as above, but with an additional mask.
  161  * XXX note this function is used only once.
  162  */
  163 static struct radix_node *
  164 rn_search_m(const void *v_arg, struct radix_node *head, void *m_arg)
  165 {
  166         struct radix_node *x;
  167         c_caddr_t v = v_arg, m = m_arg;
  168 
  169         for (x = head; x->rn_bit >= 0;) {
  170                 if ((x->rn_bmask & m[x->rn_offset]) &&
  171                     (x->rn_bmask & v[x->rn_offset]))
  172                         x = x->rn_right;
  173                 else
  174                         x = x->rn_left;
  175         }
  176         return (x);
  177 }
  178 
  179 int
  180 rn_refines(const void *m_arg, const void *n_arg)
  181 {
  182         c_caddr_t m = m_arg, n = n_arg;
  183         c_caddr_t lim, lim2 = lim = n + LEN(n);
  184         int longer = LEN(n++) - LEN(m++);
  185         int masks_are_equal = 1;
  186 
  187         if (longer > 0)
  188                 lim -= longer;
  189         while (n < lim) {
  190                 if (*n & ~(*m))
  191                         return (0);
  192                 if (*n++ != *m++)
  193                         masks_are_equal = 0;
  194         }
  195         while (n < lim2)
  196                 if (*n++)
  197                         return (0);
  198         if (masks_are_equal && (longer < 0))
  199                 for (lim2 = m - longer; m < lim2; )
  200                         if (*m++)
  201                                 return (1);
  202         return (!masks_are_equal);
  203 }
  204 
  205 /*
  206  * Search for exact match in given @head.
  207  * Assume host bits are cleared in @v_arg if @m_arg is not NULL
  208  * Note that prefixes with /32 or /128 masks are treated differently
  209  * from host routes.
  210  */
  211 struct radix_node *
  212 rn_lookup(const void *v_arg, const void *m_arg, struct radix_head *head)
  213 {
  214         struct radix_node *x;
  215         caddr_t netmask;
  216 
  217         if (m_arg != NULL) {
  218                 /*
  219                  * Most common case: search exact prefix/mask
  220                  */
  221                 x = rn_addmask(m_arg, head->rnh_masks, 1,
  222                     head->rnh_treetop->rn_offset);
  223                 if (x == NULL)
  224                         return (NULL);
  225                 netmask = x->rn_key;
  226 
  227                 x = rn_match(v_arg, head);
  228 
  229                 while (x != NULL && x->rn_mask != netmask)
  230                         x = x->rn_dupedkey;
  231 
  232                 return (x);
  233         }
  234 
  235         /*
  236          * Search for host address.
  237          */
  238         if ((x = rn_match(v_arg, head)) == NULL)
  239                 return (NULL);
  240 
  241         /* Check if found key is the same */
  242         if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
  243                 return (NULL);
  244 
  245         /* Check if this is not host route */
  246         if (x->rn_mask != NULL)
  247                 return (NULL);
  248 
  249         return (x);
  250 }
  251 
  252 static int
  253 rn_satisfies_leaf(const char *trial, struct radix_node *leaf, int skip)
  254 {
  255         const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  256         const char *cplim;
  257         int length = min(LEN(cp), LEN(cp2));
  258 
  259         if (cp3 == NULL)
  260                 cp3 = rn_ones;
  261         else
  262                 length = min(length, LEN(cp3));
  263         cplim = cp + length; cp3 += skip; cp2 += skip;
  264         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  265                 if ((*cp ^ *cp2) & *cp3)
  266                         return (0);
  267         return (1);
  268 }
  269 
  270 /*
  271  * Search for longest-prefix match in given @head
  272  */
  273 struct radix_node *
  274 rn_match(const void *v_arg, struct radix_head *head)
  275 {
  276         c_caddr_t v = v_arg;
  277         struct radix_node *t = head->rnh_treetop, *x;
  278         c_caddr_t cp = v, cp2;
  279         c_caddr_t cplim;
  280         struct radix_node *saved_t, *top = t;
  281         int off = t->rn_offset, vlen = LEN(cp), matched_off;
  282         int test, b, rn_bit;
  283 
  284         /*
  285          * Open code rn_search(v, top) to avoid overhead of extra
  286          * subroutine call.
  287          */
  288         for (; t->rn_bit >= 0; ) {
  289                 if (t->rn_bmask & cp[t->rn_offset])
  290                         t = t->rn_right;
  291                 else
  292                         t = t->rn_left;
  293         }
  294         /*
  295          * See if we match exactly as a host destination
  296          * or at least learn how many bits match, for normal mask finesse.
  297          *
  298          * It doesn't hurt us to limit how many bytes to check
  299          * to the length of the mask, since if it matches we had a genuine
  300          * match and the leaf we have is the most specific one anyway;
  301          * if it didn't match with a shorter length it would fail
  302          * with a long one.  This wins big for class B&C netmasks which
  303          * are probably the most common case...
  304          */
  305         if (t->rn_mask)
  306                 vlen = *(u_char *)t->rn_mask;
  307         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  308         for (; cp < cplim; cp++, cp2++)
  309                 if (*cp != *cp2)
  310                         goto on1;
  311         /*
  312          * This extra grot is in case we are explicitly asked
  313          * to look up the default.  Ugh!
  314          *
  315          * Never return the root node itself, it seems to cause a
  316          * lot of confusion.
  317          */
  318         if (t->rn_flags & RNF_ROOT)
  319                 t = t->rn_dupedkey;
  320         return (t);
  321 on1:
  322         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  323         for (b = 7; (test >>= 1) > 0;)
  324                 b--;
  325         matched_off = cp - v;
  326         b += matched_off << 3;
  327         rn_bit = -1 - b;
  328         /*
  329          * If there is a host route in a duped-key chain, it will be first.
  330          */
  331         if ((saved_t = t)->rn_mask == 0)
  332                 t = t->rn_dupedkey;
  333         for (; t; t = t->rn_dupedkey)
  334                 /*
  335                  * Even if we don't match exactly as a host,
  336                  * we may match if the leaf we wound up at is
  337                  * a route to a net.
  338                  */
  339                 if (t->rn_flags & RNF_NORMAL) {
  340                         if (rn_bit <= t->rn_bit)
  341                                 return (t);
  342                 } else if (rn_satisfies_leaf(v, t, matched_off))
  343                                 return (t);
  344         t = saved_t;
  345         /* start searching up the tree */
  346         do {
  347                 struct radix_mask *m;
  348                 t = t->rn_parent;
  349                 m = t->rn_mklist;
  350                 /*
  351                  * If non-contiguous masks ever become important
  352                  * we can restore the masking and open coding of
  353                  * the search and satisfaction test and put the
  354                  * calculation of "off" back before the "do".
  355                  */
  356                 while (m) {
  357                         if (m->rm_flags & RNF_NORMAL) {
  358                                 if (rn_bit <= m->rm_bit)
  359                                         return (m->rm_leaf);
  360                         } else {
  361                                 off = min(t->rn_offset, matched_off);
  362                                 x = rn_search_m(v, t, m->rm_mask);
  363                                 while (x && x->rn_mask != m->rm_mask)
  364                                         x = x->rn_dupedkey;
  365                                 if (x && rn_satisfies_leaf(v, x, off))
  366                                         return (x);
  367                         }
  368                         m = m->rm_mklist;
  369                 }
  370         } while (t != top);
  371         return (0);
  372 }
  373 
  374 /*
  375  * Returns the next (wider) prefix for the key defined by @rn
  376  *  if exists.
  377  */
  378 struct radix_node *
  379 rn_nextprefix(struct radix_node *rn)
  380 {
  381         for (rn = rn->rn_dupedkey; rn != NULL; rn = rn->rn_dupedkey) {
  382                 if (!(rn->rn_flags & RNF_ROOT))
  383                         return (rn);
  384         }
  385         return (NULL);
  386 }
  387 
  388 #ifdef RN_DEBUG
  389 int     rn_nodenum;
  390 struct  radix_node *rn_clist;
  391 int     rn_saveinfo;
  392 int     rn_debug =  1;
  393 #endif
  394 
  395 /*
  396  * Whenever we add a new leaf to the tree, we also add a parent node,
  397  * so we allocate them as an array of two elements: the first one must be
  398  * the leaf (see RNTORT() in route.c), the second one is the parent.
  399  * This routine initializes the relevant fields of the nodes, so that
  400  * the leaf is the left child of the parent node, and both nodes have
  401  * (almost) all all fields filled as appropriate.
  402  * (XXX some fields are left unset, see the '#if 0' section).
  403  * The function returns a pointer to the parent node.
  404  */
  405 
  406 static struct radix_node *
  407 rn_newpair(void *v, int b, struct radix_node nodes[2])
  408 {
  409         struct radix_node *tt = nodes, *t = tt + 1;
  410         t->rn_bit = b;
  411         t->rn_bmask = 0x80 >> (b & 7);
  412         t->rn_left = tt;
  413         t->rn_offset = b >> 3;
  414 
  415 #if 0  /* XXX perhaps we should fill these fields as well. */
  416         t->rn_parent = t->rn_right = NULL;
  417 
  418         tt->rn_mask = NULL;
  419         tt->rn_dupedkey = NULL;
  420         tt->rn_bmask = 0;
  421 #endif
  422         tt->rn_bit = -1;
  423         tt->rn_key = (caddr_t)v;
  424         tt->rn_parent = t;
  425         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  426         tt->rn_mklist = t->rn_mklist = 0;
  427 #ifdef RN_DEBUG
  428         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  429         tt->rn_twin = t;
  430         tt->rn_ybro = rn_clist;
  431         rn_clist = tt;
  432 #endif
  433         return (t);
  434 }
  435 
  436 static struct radix_node *
  437 rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
  438     struct radix_node nodes[2])
  439 {
  440         caddr_t v = v_arg;
  441         struct radix_node *top = head->rnh_treetop;
  442         int head_off = top->rn_offset, vlen = LEN(v);
  443         struct radix_node *t = rn_search(v_arg, top);
  444         caddr_t cp = v + head_off;
  445         unsigned b;
  446         struct radix_node *p, *tt, *x;
  447         /*
  448          * Find first bit at which v and t->rn_key differ
  449          */
  450         caddr_t cp2 = t->rn_key + head_off;
  451         int cmp_res;
  452         caddr_t cplim = v + vlen;
  453 
  454         while (cp < cplim)
  455                 if (*cp2++ != *cp++)
  456                         goto on1;
  457         *dupentry = 1;
  458         return (t);
  459 on1:
  460         *dupentry = 0;
  461         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  462         for (b = (cp - v) << 3; cmp_res; b--)
  463                 cmp_res >>= 1;
  464 
  465         x = top;
  466         cp = v;
  467         do {
  468                 p = x;
  469                 if (cp[x->rn_offset] & x->rn_bmask)
  470                         x = x->rn_right;
  471                 else
  472                         x = x->rn_left;
  473         } while (b > (unsigned) x->rn_bit);
  474                                 /* x->rn_bit < b && x->rn_bit >= 0 */
  475 #ifdef RN_DEBUG
  476         if (rn_debug)
  477                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  478 #endif
  479         t = rn_newpair(v_arg, b, nodes); 
  480         tt = t->rn_left;
  481         if ((cp[p->rn_offset] & p->rn_bmask) == 0)
  482                 p->rn_left = t;
  483         else
  484                 p->rn_right = t;
  485         x->rn_parent = t;
  486         t->rn_parent = p; /* frees x, p as temp vars below */
  487         if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
  488                 t->rn_right = x;
  489         } else {
  490                 t->rn_right = tt;
  491                 t->rn_left = x;
  492         }
  493 #ifdef RN_DEBUG
  494         if (rn_debug)
  495                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  496 #endif
  497         return (tt);
  498 }
  499 
  500 static struct radix_node *
  501 rn_addmask(const void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
  502 {
  503         const unsigned char *netmask = n_arg;
  504         const unsigned char *c, *clim;
  505         unsigned char *cp;
  506         struct radix_node *x;
  507         int b = 0, mlen, j;
  508         int maskduplicated, isnormal;
  509         struct radix_node *saved_x;
  510         unsigned char addmask_key[RADIX_MAX_KEY_LEN];
  511 
  512         if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
  513                 mlen = RADIX_MAX_KEY_LEN;
  514         if (skip == 0)
  515                 skip = 1;
  516         if (mlen <= skip)
  517                 return (maskhead->mask_nodes);
  518 
  519         bzero(addmask_key, RADIX_MAX_KEY_LEN);
  520         if (skip > 1)
  521                 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  522         bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  523         /*
  524          * Trim trailing zeroes.
  525          */
  526         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  527                 cp--;
  528         mlen = cp - addmask_key;
  529         if (mlen <= skip)
  530                 return (maskhead->mask_nodes);
  531         *addmask_key = mlen;
  532         x = rn_search(addmask_key, maskhead->head.rnh_treetop);
  533         if (bcmp(addmask_key, x->rn_key, mlen) != 0)
  534                 x = NULL;
  535         if (x || search)
  536                 return (x);
  537         R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
  538         if ((saved_x = x) == NULL)
  539                 return (0);
  540         netmask = cp = (unsigned char *)(x + 2);
  541         bcopy(addmask_key, cp, mlen);
  542         x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
  543         if (maskduplicated) {
  544                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  545                 R_Free(saved_x);
  546                 return (x);
  547         }
  548         /*
  549          * Calculate index of mask, and check for normalcy.
  550          * First find the first byte with a 0 bit, then if there are
  551          * more bits left (remember we already trimmed the trailing 0's),
  552          * the bits should be contiguous, otherwise we have got
  553          * a non-contiguous mask.
  554          */
  555 #define CONTIG(_c)      (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
  556         clim = netmask + mlen;
  557         isnormal = 1;
  558         for (c = netmask + skip; (c < clim) && *(const u_char *)c == 0xff;)
  559                 c++;
  560         if (c != clim) {
  561                 for (j = 0x80; (j & *c) != 0; j >>= 1)
  562                         b++;
  563                 if (!CONTIG(*c) || c != (clim - 1))
  564                         isnormal = 0;
  565         }
  566         b += (c - netmask) << 3;
  567         x->rn_bit = -1 - b;
  568         if (isnormal)
  569                 x->rn_flags |= RNF_NORMAL;
  570         return (x);
  571 }
  572 
  573 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  574 rn_lexobetter(const void *m_arg, const void *n_arg)
  575 {
  576         const u_char *mp = m_arg, *np = n_arg, *lim;
  577 
  578         if (LEN(mp) > LEN(np))
  579                 return (1);  /* not really, but need to check longer one first */
  580         if (LEN(mp) == LEN(np))
  581                 for (lim = mp + LEN(mp); mp < lim;)
  582                         if (*mp++ > *np++)
  583                                 return (1);
  584         return (0);
  585 }
  586 
  587 static struct radix_mask *
  588 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
  589 {
  590         struct radix_mask *m;
  591 
  592         R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
  593         if (m == NULL) {
  594                 log(LOG_ERR, "Failed to allocate route mask\n");
  595                 return (0);
  596         }
  597         bzero(m, sizeof(*m));
  598         m->rm_bit = tt->rn_bit;
  599         m->rm_flags = tt->rn_flags;
  600         if (tt->rn_flags & RNF_NORMAL)
  601                 m->rm_leaf = tt;
  602         else
  603                 m->rm_mask = tt->rn_mask;
  604         m->rm_mklist = next;
  605         tt->rn_mklist = m;
  606         return (m);
  607 }
  608 
  609 struct radix_node *
  610 rn_addroute(void *v_arg, const void *n_arg, struct radix_head *head,
  611     struct radix_node treenodes[2])
  612 {
  613         caddr_t v = (caddr_t)v_arg, netmask = NULL;
  614         struct radix_node *t, *x = NULL, *tt;
  615         struct radix_node *saved_tt, *top = head->rnh_treetop;
  616         short b = 0, b_leaf = 0;
  617         int keyduplicated;
  618         caddr_t mmask;
  619         struct radix_mask *m, **mp;
  620 
  621         /*
  622          * In dealing with non-contiguous masks, there may be
  623          * many different routes which have the same mask.
  624          * We will find it useful to have a unique pointer to
  625          * the mask to speed avoiding duplicate references at
  626          * nodes and possibly save time in calculating indices.
  627          */
  628         if (n_arg)  {
  629                 x = rn_addmask(n_arg, head->rnh_masks, 0, top->rn_offset);
  630                 if (x == NULL)
  631                         return (0);
  632                 b_leaf = x->rn_bit;
  633                 b = -1 - x->rn_bit;
  634                 netmask = x->rn_key;
  635         }
  636         /*
  637          * Deal with duplicated keys: attach node to previous instance
  638          */
  639         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  640         if (keyduplicated) {
  641                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  642                         if (tt->rn_mask == netmask)
  643                                 return (0);
  644                         if (netmask == 0 ||
  645                             (tt->rn_mask &&
  646                              ((b_leaf < tt->rn_bit) /* index(netmask) > node */
  647                               || rn_refines(netmask, tt->rn_mask)
  648                               || rn_lexobetter(netmask, tt->rn_mask))))
  649                                 break;
  650                 }
  651                 /*
  652                  * If the mask is not duplicated, we wouldn't
  653                  * find it among possible duplicate key entries
  654                  * anyway, so the above test doesn't hurt.
  655                  *
  656                  * We sort the masks for a duplicated key the same way as
  657                  * in a masklist -- most specific to least specific.
  658                  * This may require the unfortunate nuisance of relocating
  659                  * the head of the list.
  660                  *
  661                  * We also reverse, or doubly link the list through the
  662                  * parent pointer.
  663                  */
  664                 if (tt == saved_tt) {
  665                         struct  radix_node *xx = x;
  666                         /* link in at head of list */
  667                         (tt = treenodes)->rn_dupedkey = t;
  668                         tt->rn_flags = t->rn_flags;
  669                         tt->rn_parent = x = t->rn_parent;
  670                         t->rn_parent = tt;                      /* parent */
  671                         if (x->rn_left == t)
  672                                 x->rn_left = tt;
  673                         else
  674                                 x->rn_right = tt;
  675                         saved_tt = tt; x = xx;
  676                 } else {
  677                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  678                         t->rn_dupedkey = tt;
  679                         tt->rn_parent = t;                      /* parent */
  680                         if (tt->rn_dupedkey)                    /* parent */
  681                                 tt->rn_dupedkey->rn_parent = tt; /* parent */
  682                 }
  683 #ifdef RN_DEBUG
  684                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  685                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  686 #endif
  687                 tt->rn_key = (caddr_t) v;
  688                 tt->rn_bit = -1;
  689                 tt->rn_flags = RNF_ACTIVE;
  690         }
  691         /*
  692          * Put mask in tree.
  693          */
  694         if (netmask) {
  695                 tt->rn_mask = netmask;
  696                 tt->rn_bit = x->rn_bit;
  697                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  698         }
  699         t = saved_tt->rn_parent;
  700         if (keyduplicated)
  701                 goto on2;
  702         b_leaf = -1 - t->rn_bit;
  703         if (t->rn_right == saved_tt)
  704                 x = t->rn_left;
  705         else
  706                 x = t->rn_right;
  707         /* Promote general routes from below */
  708         if (x->rn_bit < 0) {
  709             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  710                 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
  711                         *mp = m = rn_new_radix_mask(x, 0);
  712                         if (m)
  713                                 mp = &m->rm_mklist;
  714                 }
  715         } else if (x->rn_mklist) {
  716                 /*
  717                  * Skip over masks whose index is > that of new node
  718                  */
  719                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  720                         if (m->rm_bit >= b_leaf)
  721                                 break;
  722                 t->rn_mklist = m; *mp = NULL;
  723         }
  724 on2:
  725         /* Add new route to highest possible ancestor's list */
  726         if ((netmask == 0) || (b > t->rn_bit ))
  727                 return (tt); /* can't lift at all */
  728         b_leaf = tt->rn_bit;
  729         do {
  730                 x = t;
  731                 t = t->rn_parent;
  732         } while (b <= t->rn_bit && x != top);
  733         /*
  734          * Search through routes associated with node to
  735          * insert new route according to index.
  736          * Need same criteria as when sorting dupedkeys to avoid
  737          * double loop on deletion.
  738          */
  739         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  740                 if (m->rm_bit < b_leaf)
  741                         continue;
  742                 if (m->rm_bit > b_leaf)
  743                         break;
  744                 if (m->rm_flags & RNF_NORMAL) {
  745                         mmask = m->rm_leaf->rn_mask;
  746                         if (tt->rn_flags & RNF_NORMAL) {
  747                             log(LOG_ERR,
  748                                 "Non-unique normal route, mask not entered\n");
  749                                 return (tt);
  750                         }
  751                 } else
  752                         mmask = m->rm_mask;
  753                 if (mmask == netmask) {
  754                         m->rm_refs++;
  755                         tt->rn_mklist = m;
  756                         return (tt);
  757                 }
  758                 if (rn_refines(netmask, mmask)
  759                     || rn_lexobetter(netmask, mmask))
  760                         break;
  761         }
  762         *mp = rn_new_radix_mask(tt, *mp);
  763         return (tt);
  764 }
  765 
  766 struct radix_node *
  767 rn_delete(const void *v_arg, const void *netmask_arg, struct radix_head *head)
  768 {
  769         struct radix_node *t, *p, *x, *tt;
  770         struct radix_mask *m, *saved_m, **mp;
  771         struct radix_node *dupedkey, *saved_tt, *top;
  772         c_caddr_t v;
  773         c_caddr_t netmask;
  774         int b, head_off, vlen;
  775 
  776         v = v_arg;
  777         netmask = netmask_arg;
  778         x = head->rnh_treetop;
  779         tt = rn_search(v, x);
  780         head_off = x->rn_offset;
  781         vlen =  LEN(v);
  782         saved_tt = tt;
  783         top = x;
  784         if (tt == NULL ||
  785             bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  786                 return (0);
  787         /*
  788          * Delete our route from mask lists.
  789          */
  790         if (netmask) {
  791                 x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
  792                 if (x == NULL)
  793                         return (0);
  794                 netmask = x->rn_key;
  795                 while (tt->rn_mask != netmask)
  796                         if ((tt = tt->rn_dupedkey) == NULL)
  797                                 return (0);
  798         }
  799         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
  800                 goto on1;
  801         if (tt->rn_flags & RNF_NORMAL) {
  802                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  803                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  804                         return (0);  /* dangling ref could cause disaster */
  805                 }
  806         } else {
  807                 if (m->rm_mask != tt->rn_mask) {
  808                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  809                         goto on1;
  810                 }
  811                 if (--m->rm_refs >= 0)
  812                         goto on1;
  813         }
  814         b = -1 - tt->rn_bit;
  815         t = saved_tt->rn_parent;
  816         if (b > t->rn_bit)
  817                 goto on1; /* Wasn't lifted at all */
  818         do {
  819                 x = t;
  820                 t = t->rn_parent;
  821         } while (b <= t->rn_bit && x != top);
  822         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  823                 if (m == saved_m) {
  824                         *mp = m->rm_mklist;
  825                         R_Free(m);
  826                         break;
  827                 }
  828         if (m == NULL) {
  829                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  830                 if (tt->rn_flags & RNF_NORMAL)
  831                         return (0); /* Dangling ref to us */
  832         }
  833 on1:
  834         /*
  835          * Eliminate us from tree
  836          */
  837         if (tt->rn_flags & RNF_ROOT)
  838                 return (0);
  839 #ifdef RN_DEBUG
  840         /* Get us out of the creation list */
  841         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  842         if (t) t->rn_ybro = tt->rn_ybro;
  843 #endif
  844         t = tt->rn_parent;
  845         dupedkey = saved_tt->rn_dupedkey;
  846         if (dupedkey) {
  847                 /*
  848                  * Here, tt is the deletion target and
  849                  * saved_tt is the head of the dupekey chain.
  850                  */
  851                 if (tt == saved_tt) {
  852                         /* remove from head of chain */
  853                         x = dupedkey; x->rn_parent = t;
  854                         if (t->rn_left == tt)
  855                                 t->rn_left = x;
  856                         else
  857                                 t->rn_right = x;
  858                 } else {
  859                         /* find node in front of tt on the chain */
  860                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  861                                 p = p->rn_dupedkey;
  862                         if (p) {
  863                                 p->rn_dupedkey = tt->rn_dupedkey;
  864                                 if (tt->rn_dupedkey)            /* parent */
  865                                         tt->rn_dupedkey->rn_parent = p;
  866                                                                 /* parent */
  867                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  868                 }
  869                 t = tt + 1;
  870                 if  (t->rn_flags & RNF_ACTIVE) {
  871 #ifndef RN_DEBUG
  872                         *++x = *t;
  873                         p = t->rn_parent;
  874 #else
  875                         b = t->rn_info;
  876                         *++x = *t;
  877                         t->rn_info = b;
  878                         p = t->rn_parent;
  879 #endif
  880                         if (p->rn_left == t)
  881                                 p->rn_left = x;
  882                         else
  883                                 p->rn_right = x;
  884                         x->rn_left->rn_parent = x;
  885                         x->rn_right->rn_parent = x;
  886                 }
  887                 goto out;
  888         }
  889         if (t->rn_left == tt)
  890                 x = t->rn_right;
  891         else
  892                 x = t->rn_left;
  893         p = t->rn_parent;
  894         if (p->rn_right == t)
  895                 p->rn_right = x;
  896         else
  897                 p->rn_left = x;
  898         x->rn_parent = p;
  899         /*
  900          * Demote routes attached to us.
  901          */
  902         if (t->rn_mklist) {
  903                 if (x->rn_bit >= 0) {
  904                         for (mp = &x->rn_mklist; (m = *mp);)
  905                                 mp = &m->rm_mklist;
  906                         *mp = t->rn_mklist;
  907                 } else {
  908                         /* If there are any key,mask pairs in a sibling
  909                            duped-key chain, some subset will appear sorted
  910                            in the same order attached to our mklist */
  911                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  912                                 if (m == x->rn_mklist) {
  913                                         struct radix_mask *mm = m->rm_mklist;
  914                                         x->rn_mklist = 0;
  915                                         if (--(m->rm_refs) < 0)
  916                                                 R_Free(m);
  917                                         m = mm;
  918                                 }
  919                         if (m)
  920                                 log(LOG_ERR,
  921                                     "rn_delete: Orphaned Mask %p at %p\n",
  922                                     m, x);
  923                 }
  924         }
  925         /*
  926          * We may be holding an active internal node in the tree.
  927          */
  928         x = tt + 1;
  929         if (t != x) {
  930 #ifndef RN_DEBUG
  931                 *t = *x;
  932 #else
  933                 b = t->rn_info;
  934                 *t = *x;
  935                 t->rn_info = b;
  936 #endif
  937                 t->rn_left->rn_parent = t;
  938                 t->rn_right->rn_parent = t;
  939                 p = x->rn_parent;
  940                 if (p->rn_left == x)
  941                         p->rn_left = t;
  942                 else
  943                         p->rn_right = t;
  944         }
  945 out:
  946         tt->rn_flags &= ~RNF_ACTIVE;
  947         tt[1].rn_flags &= ~RNF_ACTIVE;
  948         return (tt);
  949 }
  950 
  951 /*
  952  * This is the same as rn_walktree() except for the parameters and the
  953  * exit.
  954  */
  955 int
  956 rn_walktree_from(struct radix_head *h, void *a, void *m,
  957     walktree_f_t *f, void *w)
  958 {
  959         int error;
  960         struct radix_node *base, *next;
  961         u_char *xa = (u_char *)a;
  962         u_char *xm = (u_char *)m;
  963         struct radix_node *rn, *last = NULL; /* shut up gcc */
  964         int stopping = 0;
  965         int lastb;
  966 
  967         KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
  968 
  969         /*
  970          * rn_search_m is sort-of-open-coded here. We cannot use the
  971          * function because we need to keep track of the last node seen.
  972          */
  973         /* printf("about to search\n"); */
  974         for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
  975                 last = rn;
  976                 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
  977                        rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
  978                 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
  979                         break;
  980                 }
  981                 if (rn->rn_bmask & xa[rn->rn_offset]) {
  982                         rn = rn->rn_right;
  983                 } else {
  984                         rn = rn->rn_left;
  985                 }
  986         }
  987         /* printf("done searching\n"); */
  988 
  989         /*
  990          * Two cases: either we stepped off the end of our mask,
  991          * in which case last == rn, or we reached a leaf, in which
  992          * case we want to start from the leaf.
  993          */
  994         if (rn->rn_bit >= 0)
  995                 rn = last;
  996         lastb = last->rn_bit;
  997 
  998         /* printf("rn %p, lastb %d\n", rn, lastb);*/
  999 
 1000         /*
 1001          * This gets complicated because we may delete the node
 1002          * while applying the function f to it, so we need to calculate
 1003          * the successor node in advance.
 1004          */
 1005         while (rn->rn_bit >= 0)
 1006                 rn = rn->rn_left;
 1007 
 1008         while (!stopping) {
 1009                 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
 1010                 base = rn;
 1011                 /* If at right child go back up, otherwise, go right */
 1012                 while (rn->rn_parent->rn_right == rn
 1013                        && !(rn->rn_flags & RNF_ROOT)) {
 1014                         rn = rn->rn_parent;
 1015 
 1016                         /* if went up beyond last, stop */
 1017                         if (rn->rn_bit <= lastb) {
 1018                                 stopping = 1;
 1019                                 /* printf("up too far\n"); */
 1020                                 /*
 1021                                  * XXX we should jump to the 'Process leaves'
 1022                                  * part, because the values of 'rn' and 'next'
 1023                                  * we compute will not be used. Not a big deal
 1024                                  * because this loop will terminate, but it is
 1025                                  * inefficient and hard to understand!
 1026                                  */
 1027                         }
 1028                 }
 1029                 
 1030                 /* 
 1031                  * At the top of the tree, no need to traverse the right
 1032                  * half, prevent the traversal of the entire tree in the
 1033                  * case of default route.
 1034                  */
 1035                 if (rn->rn_parent->rn_flags & RNF_ROOT)
 1036                         stopping = 1;
 1037 
 1038                 /* Find the next *leaf* since next node might vanish, too */
 1039                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1040                         rn = rn->rn_left;
 1041                 next = rn;
 1042                 /* Process leaves */
 1043                 while ((rn = base) != NULL) {
 1044                         base = rn->rn_dupedkey;
 1045                         /* printf("leaf %p\n", rn); */
 1046                         if (!(rn->rn_flags & RNF_ROOT)
 1047                             && (error = (*f)(rn, w)))
 1048                                 return (error);
 1049                 }
 1050                 rn = next;
 1051 
 1052                 if (rn->rn_flags & RNF_ROOT) {
 1053                         /* printf("root, stopping"); */
 1054                         stopping = 1;
 1055                 }
 1056         }
 1057         return (0);
 1058 }
 1059 
 1060 int
 1061 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
 1062 {
 1063         int error;
 1064         struct radix_node *base, *next;
 1065         struct radix_node *rn = h->rnh_treetop;
 1066         /*
 1067          * This gets complicated because we may delete the node
 1068          * while applying the function f to it, so we need to calculate
 1069          * the successor node in advance.
 1070          */
 1071 
 1072         /* First time through node, go left */
 1073         while (rn->rn_bit >= 0)
 1074                 rn = rn->rn_left;
 1075         for (;;) {
 1076                 base = rn;
 1077                 /* If at right child go back up, otherwise, go right */
 1078                 while (rn->rn_parent->rn_right == rn
 1079                        && (rn->rn_flags & RNF_ROOT) == 0)
 1080                         rn = rn->rn_parent;
 1081                 /* Find the next *leaf* since next node might vanish, too */
 1082                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1083                         rn = rn->rn_left;
 1084                 next = rn;
 1085                 /* Process leaves */
 1086                 while ((rn = base)) {
 1087                         base = rn->rn_dupedkey;
 1088                         if (!(rn->rn_flags & RNF_ROOT)
 1089                             && (error = (*f)(rn, w)))
 1090                                 return (error);
 1091                 }
 1092                 rn = next;
 1093                 if (rn->rn_flags & RNF_ROOT)
 1094                         return (0);
 1095         }
 1096         /* NOTREACHED */
 1097 }
 1098 
 1099 /*
 1100  * Initialize an empty tree. This has 3 nodes, which are passed
 1101  * via base_nodes (in the order <left,root,right>) and are
 1102  * marked RNF_ROOT so they cannot be freed.
 1103  * The leaves have all-zero and all-one keys, with significant
 1104  * bits starting at 'off'.
 1105  */
 1106 void
 1107 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
 1108 {
 1109         struct radix_node *t, *tt, *ttt;
 1110 
 1111         t = rn_newpair(rn_zeros, off, base_nodes);
 1112         ttt = base_nodes + 2;
 1113         t->rn_right = ttt;
 1114         t->rn_parent = t;
 1115         tt = t->rn_left;        /* ... which in turn is base_nodes */
 1116         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1117         tt->rn_bit = -1 - off;
 1118         *ttt = *tt;
 1119         ttt->rn_key = rn_ones;
 1120 
 1121         rh->rnh_treetop = t;
 1122 }
 1123 
 1124 static void
 1125 rn_detachhead_internal(struct radix_head *head)
 1126 {
 1127 
 1128         KASSERT((head != NULL),
 1129             ("%s: head already freed", __func__));
 1130 
 1131         /* Free <left,root,right> nodes. */
 1132         R_Free(head);
 1133 }
 1134 
 1135 /* Functions used by 'struct radix_node_head' users */
 1136 
 1137 int
 1138 rn_inithead(void **head, int off)
 1139 {
 1140         struct radix_node_head *rnh;
 1141         struct radix_mask_head *rmh;
 1142 
 1143         rnh = *head;
 1144         rmh = NULL;
 1145 
 1146         if (*head != NULL)
 1147                 return (1);
 1148 
 1149         R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
 1150         R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
 1151         if (rnh == NULL || rmh == NULL) {
 1152                 if (rnh != NULL)
 1153                         R_Free(rnh);
 1154                 if (rmh != NULL)
 1155                         R_Free(rmh);
 1156                 return (0);
 1157         }
 1158 
 1159         /* Init trees */
 1160         rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
 1161         rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
 1162         *head = rnh;
 1163         rnh->rh.rnh_masks = rmh;
 1164 
 1165         /* Finally, set base callbacks */
 1166         rnh->rnh_addaddr = rn_addroute;
 1167         rnh->rnh_deladdr = rn_delete;
 1168         rnh->rnh_matchaddr = rn_match;
 1169         rnh->rnh_lookup = rn_lookup;
 1170         rnh->rnh_walktree = rn_walktree;
 1171         rnh->rnh_walktree_from = rn_walktree_from;
 1172 
 1173         return (1);
 1174 }
 1175 
 1176 static int
 1177 rn_freeentry(struct radix_node *rn, void *arg)
 1178 {
 1179         struct radix_head * const rnh = arg;
 1180         struct radix_node *x;
 1181 
 1182         x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
 1183         if (x != NULL)
 1184                 R_Free(x);
 1185         return (0);
 1186 }
 1187 
 1188 int
 1189 rn_detachhead(void **head)
 1190 {
 1191         struct radix_node_head *rnh;
 1192 
 1193         KASSERT((head != NULL && *head != NULL),
 1194             ("%s: head already freed", __func__));
 1195 
 1196         rnh = (struct radix_node_head *)(*head);
 1197 
 1198         rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
 1199         rn_detachhead_internal(&rnh->rh.rnh_masks->head);
 1200         rn_detachhead_internal(&rnh->rh);
 1201 
 1202         *head = NULL;
 1203 
 1204         return (1);
 1205 }

Cache object: e3677de6ad350c77c09096087b3b5554


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.