The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1988, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)radix.c     8.4 (Berkeley) 11/2/94
   30  * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
   31  */
   32 
   33 /*
   34  * Routines to build and maintain radix trees for routing lookups.
   35  */
   36 #include <sys/param.h>
   37 #ifdef  _KERNEL
   38 #include <sys/systm.h>
   39 #include <sys/malloc.h>
   40 #include <sys/domain.h>
   41 #include <sys/globaldata.h>
   42 #include <sys/thread.h>
   43 #else
   44 #include <stdlib.h>
   45 #endif
   46 #include <sys/syslog.h>
   47 #include <net/radix.h>
   48 
   49 /*
   50  * The arguments to the radix functions are really counted byte arrays with
   51  * the length in the first byte.  struct sockaddr's fit this type structurally.
   52  */
   53 #define clen(c) (*(u_char *)(c))
   54 
   55 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
   56                             walktree_f_t *f, void *w);
   57 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
   58 
   59 static struct radix_node
   60     *rn_insert(char *, struct radix_node_head *, boolean_t *,
   61                struct radix_node [2]),
   62     *rn_newpair(char *, int, struct radix_node[2]),
   63     *rn_search(const char *, struct radix_node *),
   64     *rn_search_m(const char *, struct radix_node *, const char *);
   65 
   66 static struct radix_mask *rn_mkfreelist[MAXCPU];
   67 static struct radix_node_head *mask_rnheads[MAXCPU];
   68 
   69 static char rn_zeros[RN_MAXKEYLEN];
   70 static char rn_ones[RN_MAXKEYLEN] = RN_MAXKEYONES;
   71 
   72 static int rn_lexobetter(char *m, char *n);
   73 static struct radix_mask *
   74     rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
   75 static boolean_t
   76     rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
   77 
   78 static __inline struct radix_mask *
   79 MKGet(struct radix_mask **l)
   80 {
   81         struct radix_mask *m;
   82 
   83         if (*l != NULL) {
   84                 m = *l;
   85                 *l = m->rm_next;
   86         } else {
   87                 R_Malloc(m, struct radix_mask *, sizeof *m);
   88         }
   89         return m;
   90 }
   91 
   92 static __inline void
   93 MKFree(struct radix_mask **l, struct radix_mask *m)
   94 {
   95         m->rm_next = *l;
   96         *l = m;
   97 }
   98 
   99 /*
  100  * The data structure for the keys is a radix tree with one way
  101  * branching removed.  The index rn_bit at an internal node n represents a bit
  102  * position to be tested.  The tree is arranged so that all descendants
  103  * of a node n have keys whose bits all agree up to position rn_bit - 1.
  104  * (We say the index of n is rn_bit.)
  105  *
  106  * There is at least one descendant which has a one bit at position rn_bit,
  107  * and at least one with a zero there.
  108  *
  109  * A route is determined by a pair of key and mask.  We require that the
  110  * bit-wise logical and of the key and mask to be the key.
  111  * We define the index of a route to associated with the mask to be
  112  * the first bit number in the mask where 0 occurs (with bit number 0
  113  * representing the highest order bit).
  114  *
  115  * We say a mask is normal if every bit is 0, past the index of the mask.
  116  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
  117  * and m is a normal mask, then the route applies to every descendant of n.
  118  * If the index(m) < rn_bit, this implies the trailing last few bits of k
  119  * before bit b are all 0, (and hence consequently true of every descendant
  120  * of n), so the route applies to all descendants of the node as well.
  121  *
  122  * Similar logic shows that a non-normal mask m such that
  123  * index(m) <= index(n) could potentially apply to many children of n.
  124  * Thus, for each non-host route, we attach its mask to a list at an internal
  125  * node as high in the tree as we can go.
  126  *
  127  * The present version of the code makes use of normal routes in short-
  128  * circuiting an explict mask and compare operation when testing whether
  129  * a key satisfies a normal route, and also in remembering the unique leaf
  130  * that governs a subtree.
  131  */
  132 
  133 static struct radix_node *
  134 rn_search(const char *v, struct radix_node *head)
  135 {
  136         struct radix_node *x;
  137 
  138         x = head;
  139         while (x->rn_bit >= 0) {
  140                 if (x->rn_bmask & v[x->rn_offset])
  141                         x = x->rn_right;
  142                 else
  143                         x = x->rn_left;
  144         }
  145         return (x);
  146 }
  147 
  148 static struct radix_node *
  149 rn_search_m(const char *v, struct radix_node *head, const char *m)
  150 {
  151         struct radix_node *x;
  152 
  153         for (x = head; x->rn_bit >= 0;) {
  154                 if ((x->rn_bmask & m[x->rn_offset]) &&
  155                     (x->rn_bmask & v[x->rn_offset]))
  156                         x = x->rn_right;
  157                 else
  158                         x = x->rn_left;
  159         }
  160         return x;
  161 }
  162 
  163 boolean_t
  164 rn_refines(char *m, char *n)
  165 {
  166         char *lim, *lim2;
  167         int longer = clen(n++) - clen(m++);
  168         boolean_t masks_are_equal = TRUE;
  169 
  170         lim2 = lim = n + clen(n);
  171         if (longer > 0)
  172                 lim -= longer;
  173         while (n < lim) {
  174                 if (*n & ~(*m))
  175                         return FALSE;
  176                 if (*n++ != *m++)
  177                         masks_are_equal = FALSE;
  178         }
  179         while (n < lim2)
  180                 if (*n++)
  181                         return FALSE;
  182         if (masks_are_equal && (longer < 0))
  183                 for (lim2 = m - longer; m < lim2; )
  184                         if (*m++)
  185                                 return TRUE;
  186         return (!masks_are_equal);
  187 }
  188 
  189 struct radix_node *
  190 rn_lookup(char *key, char *mask, struct radix_node_head *head)
  191 {
  192         struct radix_node *x;
  193         char *netmask = NULL;
  194 
  195         if (mask != NULL) {
  196                 x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset,
  197                                head->rnh_maskhead);
  198                 if (x == NULL)
  199                         return (NULL);
  200                 netmask = x->rn_key;
  201         }
  202         x = rn_match(key, head);
  203         if (x != NULL && netmask != NULL) {
  204                 while (x != NULL && x->rn_mask != netmask)
  205                         x = x->rn_dupedkey;
  206         }
  207         return x;
  208 }
  209 
  210 static boolean_t
  211 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
  212 {
  213         char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  214         char *cplim;
  215         int length = min(clen(cp), clen(cp2));
  216 
  217         if (cp3 == NULL)
  218                 cp3 = rn_ones;
  219         else
  220                 length = min(length, clen(cp3));
  221         cplim = cp + length;
  222         cp3 += skip;
  223         cp2 += skip;
  224         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  225                 if ((*cp ^ *cp2) & *cp3)
  226                         return FALSE;
  227         return TRUE;
  228 }
  229 
  230 struct radix_node *
  231 rn_match(char *key, struct radix_node_head *head)
  232 {
  233         struct radix_node *t, *x;
  234         char *cp = key, *cp2;
  235         char *cplim;
  236         struct radix_node *saved_t, *top = head->rnh_treetop;
  237         int off = top->rn_offset, klen, matched_off;
  238         int test, b, rn_bit;
  239 
  240         t = rn_search(key, top);
  241         /*
  242          * See if we match exactly as a host destination
  243          * or at least learn how many bits match, for normal mask finesse.
  244          *
  245          * It doesn't hurt us to limit how many bytes to check
  246          * to the length of the mask, since if it matches we had a genuine
  247          * match and the leaf we have is the most specific one anyway;
  248          * if it didn't match with a shorter length it would fail
  249          * with a long one.  This wins big for class B&C netmasks which
  250          * are probably the most common case...
  251          */
  252         if (t->rn_mask != NULL)
  253                 klen = clen(t->rn_mask);
  254         else
  255                 klen = clen(key);
  256         cp += off; cp2 = t->rn_key + off; cplim = key + klen;
  257         for (; cp < cplim; cp++, cp2++)
  258                 if (*cp != *cp2)
  259                         goto on1;
  260         /*
  261          * This extra grot is in case we are explicitly asked
  262          * to look up the default.  Ugh!
  263          *
  264          * Never return the root node itself, it seems to cause a
  265          * lot of confusion.
  266          */
  267         if (t->rn_flags & RNF_ROOT)
  268                 t = t->rn_dupedkey;
  269         return t;
  270 on1:
  271         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  272         for (b = 7; (test >>= 1) > 0;)
  273                 b--;
  274         matched_off = cp - key;
  275         b += matched_off << 3;
  276         rn_bit = -1 - b;
  277         /*
  278          * If there is a host route in a duped-key chain, it will be first.
  279          */
  280         if ((saved_t = t)->rn_mask == NULL)
  281                 t = t->rn_dupedkey;
  282         for (; t; t = t->rn_dupedkey) {
  283                 /*
  284                  * Even if we don't match exactly as a host,
  285                  * we may match if the leaf we wound up at is
  286                  * a route to a net.
  287                  */
  288                 if (t->rn_flags & RNF_NORMAL) {
  289                         if (rn_bit <= t->rn_bit)
  290                                 return t;
  291                 } else if (rn_satisfies_leaf(key, t, matched_off))
  292                                 return t;
  293         }
  294         t = saved_t;
  295         /* start searching up the tree */
  296         do {
  297                 struct radix_mask *m;
  298 
  299                 t = t->rn_parent;
  300                 /*
  301                  * If non-contiguous masks ever become important
  302                  * we can restore the masking and open coding of
  303                  * the search and satisfaction test and put the
  304                  * calculation of "off" back before the "do".
  305                  */
  306                 m = t->rn_mklist;
  307                 while (m != NULL) {
  308                         if (m->rm_flags & RNF_NORMAL) {
  309                                 if (rn_bit <= m->rm_bit)
  310                                         return (m->rm_leaf);
  311                         } else {
  312                                 off = min(t->rn_offset, matched_off);
  313                                 x = rn_search_m(key, t, m->rm_mask);
  314                                 while (x != NULL && x->rn_mask != m->rm_mask)
  315                                         x = x->rn_dupedkey;
  316                                 if (x && rn_satisfies_leaf(key, x, off))
  317                                         return x;
  318                         }
  319                         m = m->rm_next;
  320                 }
  321         } while (t != top);
  322         return NULL;
  323 }
  324 
  325 #ifdef RN_DEBUG
  326 int rn_nodenum;
  327 struct radix_node *rn_clist;
  328 int rn_saveinfo;
  329 boolean_t rn_debug =  TRUE;
  330 #endif
  331 
  332 static struct radix_node *
  333 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
  334 {
  335         struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
  336 
  337         interior->rn_bit = indexbit;
  338         interior->rn_bmask = 0x80 >> (indexbit & 0x7);
  339         interior->rn_offset = indexbit >> 3;
  340         interior->rn_left = leaf;
  341         interior->rn_mklist = NULL;
  342 
  343         leaf->rn_bit = -1;
  344         leaf->rn_key = key;
  345         leaf->rn_parent = interior;
  346         leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
  347         leaf->rn_mklist = NULL;
  348 
  349 #ifdef RN_DEBUG
  350         leaf->rn_info = rn_nodenum++;
  351         interior->rn_info = rn_nodenum++;
  352         leaf->rn_twin = interior;
  353         leaf->rn_ybro = rn_clist;
  354         rn_clist = leaf;
  355 #endif
  356         return interior;
  357 }
  358 
  359 static struct radix_node *
  360 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
  361           struct radix_node nodes[2])
  362 {
  363         struct radix_node *top = head->rnh_treetop;
  364         int head_off = top->rn_offset, klen = clen(key);
  365         struct radix_node *t = rn_search(key, top);
  366         char *cp = key + head_off;
  367         int b;
  368         struct radix_node *tt;
  369 
  370         /*
  371          * Find first bit at which the key and t->rn_key differ
  372          */
  373     {
  374         char *cp2 = t->rn_key + head_off;
  375         int cmp_res;
  376         char *cplim = key + klen;
  377 
  378         while (cp < cplim)
  379                 if (*cp2++ != *cp++)
  380                         goto on1;
  381         *dupentry = TRUE;
  382         return t;
  383 on1:
  384         *dupentry = FALSE;
  385         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  386         for (b = (cp - key) << 3; cmp_res; b--)
  387                 cmp_res >>= 1;
  388     }
  389     {
  390         struct radix_node *p, *x = top;
  391 
  392         cp = key;
  393         do {
  394                 p = x;
  395                 if (cp[x->rn_offset] & x->rn_bmask)
  396                         x = x->rn_right;
  397                 else
  398                         x = x->rn_left;
  399         } while (b > (unsigned) x->rn_bit);
  400                                 /* x->rn_bit < b && x->rn_bit >= 0 */
  401 #ifdef RN_DEBUG
  402         if (rn_debug)
  403                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  404 #endif
  405         t = rn_newpair(key, b, nodes);
  406         tt = t->rn_left;
  407         if ((cp[p->rn_offset] & p->rn_bmask) == 0)
  408                 p->rn_left = t;
  409         else
  410                 p->rn_right = t;
  411         x->rn_parent = t;
  412         t->rn_parent = p; /* frees x, p as temp vars below */
  413         if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
  414                 t->rn_right = x;
  415         } else {
  416                 t->rn_right = tt;
  417                 t->rn_left = x;
  418         }
  419 #ifdef RN_DEBUG
  420         if (rn_debug)
  421                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  422 #endif
  423     }
  424         return (tt);
  425 }
  426 
  427 struct radix_node *
  428 rn_addmask(char *netmask, boolean_t search, int skip,
  429            struct radix_node_head *mask_rnh)
  430 {
  431         struct radix_node *x, *saved_x;
  432         char *cp, *cplim;
  433         int b = 0, mlen, m0, j;
  434         boolean_t maskduplicated, isnormal;
  435         char *addmask_key;
  436 
  437         if ((mlen = clen(netmask)) > RN_MAXKEYLEN)
  438                 mlen = RN_MAXKEYLEN;
  439         if (skip == 0)
  440                 skip = 1;
  441         if (mlen <= skip)
  442                 return (mask_rnh->rnh_nodes);
  443         R_Malloc(addmask_key, char *, RN_MAXKEYLEN);
  444         if (addmask_key == NULL)
  445                 return NULL;
  446         if (skip > 1)
  447                 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  448         if ((m0 = mlen) > skip)
  449                 bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  450         /*
  451          * Trim trailing zeroes.
  452          */
  453         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  454                 cp--;
  455         mlen = cp - addmask_key;
  456         if (mlen <= skip) {
  457                 if (m0 >= mask_rnh->rnh_last_zeroed)
  458                         mask_rnh->rnh_last_zeroed = mlen;
  459                 Free(addmask_key);
  460                 return (mask_rnh->rnh_nodes);
  461         }
  462         if (m0 < mask_rnh->rnh_last_zeroed)
  463                 bzero(addmask_key + m0, mask_rnh->rnh_last_zeroed - m0);
  464         *addmask_key = mask_rnh->rnh_last_zeroed = mlen;
  465         x = rn_search(addmask_key, mask_rnh->rnh_treetop);
  466         if (x->rn_key == NULL) {
  467                 kprintf("WARNING: radix_node->rn_key is NULL rn=%p\n", x);
  468                 print_backtrace(-1);
  469                 x = NULL;
  470         } else if (bcmp(addmask_key, x->rn_key, mlen) != 0) {
  471                 x = NULL;
  472         }
  473         if (x != NULL || search)
  474                 goto out;
  475         R_Malloc(x, struct radix_node *, RN_MAXKEYLEN + 2 * (sizeof *x));
  476         if ((saved_x = x) == NULL)
  477                 goto out;
  478         bzero(x, RN_MAXKEYLEN + 2 * (sizeof *x));
  479         netmask = cp = (char *)(x + 2);
  480         bcopy(addmask_key, cp, mlen);
  481         x = rn_insert(cp, mask_rnh, &maskduplicated, x);
  482         if (maskduplicated) {
  483                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  484                 Free(saved_x);
  485                 goto out;
  486         }
  487         /*
  488          * Calculate index of mask, and check for normalcy.
  489          */
  490         isnormal = TRUE;
  491         cplim = netmask + mlen;
  492         for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
  493                 cp++;
  494         if (cp != cplim) {
  495                 static const char normal_chars[] = {
  496                         0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
  497                 };
  498 
  499                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  500                         b++;
  501                 if (*cp != normal_chars[b] || cp != (cplim - 1))
  502                         isnormal = FALSE;
  503         }
  504         b += (cp - netmask) << 3;
  505         x->rn_bit = -1 - b;
  506         if (isnormal)
  507                 x->rn_flags |= RNF_NORMAL;
  508 out:
  509         Free(addmask_key);
  510         return (x);
  511 }
  512 
  513 /* XXX: arbitrary ordering for non-contiguous masks */
  514 static boolean_t
  515 rn_lexobetter(char *mp, char *np)
  516 {
  517         char *lim;
  518 
  519         if ((unsigned) *mp > (unsigned) *np)
  520                 return TRUE;/* not really, but need to check longer one first */
  521         if (*mp == *np)
  522                 for (lim = mp + clen(mp); mp < lim;)
  523                         if (*mp++ > *np++)
  524                                 return TRUE;
  525         return FALSE;
  526 }
  527 
  528 static struct radix_mask *
  529 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
  530 {
  531         struct radix_mask *m;
  532 
  533         m = MKGet(&rn_mkfreelist[mycpuid]);
  534         if (m == NULL) {
  535                 log(LOG_ERR, "Mask for route not entered\n");
  536                 return (NULL);
  537         }
  538         bzero(m, sizeof *m);
  539         m->rm_bit = tt->rn_bit;
  540         m->rm_flags = tt->rn_flags;
  541         if (tt->rn_flags & RNF_NORMAL)
  542                 m->rm_leaf = tt;
  543         else
  544                 m->rm_mask = tt->rn_mask;
  545         m->rm_next = nextmask;
  546         tt->rn_mklist = m;
  547         return m;
  548 }
  549 
  550 struct radix_node *
  551 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
  552             struct radix_node treenodes[2])
  553 {
  554         struct radix_node *t, *x = NULL, *tt;
  555         struct radix_node *saved_tt, *top = head->rnh_treetop;
  556         short b = 0, b_leaf = 0;
  557         boolean_t keyduplicated;
  558         char *mmask;
  559         struct radix_mask *m, **mp;
  560 
  561         /*
  562          * In dealing with non-contiguous masks, there may be
  563          * many different routes which have the same mask.
  564          * We will find it useful to have a unique pointer to
  565          * the mask to speed avoiding duplicate references at
  566          * nodes and possibly save time in calculating indices.
  567          */
  568         if (netmask != NULL)  {
  569                 if ((x = rn_addmask(netmask, FALSE, top->rn_offset,
  570                                     head->rnh_maskhead)) == NULL)
  571                         return (NULL);
  572                 b_leaf = x->rn_bit;
  573                 b = -1 - x->rn_bit;
  574                 netmask = x->rn_key;
  575         }
  576         /*
  577          * Deal with duplicated keys: attach node to previous instance
  578          */
  579         saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
  580         if (keyduplicated) {
  581                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  582                         if (tt->rn_mask == netmask)
  583                                 return (NULL);
  584                         if (netmask == NULL ||
  585                             (tt->rn_mask &&
  586                              ((b_leaf < tt->rn_bit) /* index(netmask) > node */
  587                               || rn_refines(netmask, tt->rn_mask)
  588                               || rn_lexobetter(netmask, tt->rn_mask))))
  589                                 break;
  590                 }
  591                 /*
  592                  * If the mask is not duplicated, we wouldn't
  593                  * find it among possible duplicate key entries
  594                  * anyway, so the above test doesn't hurt.
  595                  *
  596                  * We sort the masks for a duplicated key the same way as
  597                  * in a masklist -- most specific to least specific.
  598                  * This may require the unfortunate nuisance of relocating
  599                  * the head of the list.
  600                  */
  601                 if (tt == saved_tt) {
  602                         struct  radix_node *xx = x;
  603                         /* link in at head of list */
  604                         (tt = treenodes)->rn_dupedkey = t;
  605                         tt->rn_flags = t->rn_flags;
  606                         tt->rn_parent = x = t->rn_parent;
  607                         t->rn_parent = tt;                      /* parent */
  608                         if (x->rn_left == t)
  609                                 x->rn_left = tt;
  610                         else
  611                                 x->rn_right = tt;
  612                         saved_tt = tt; x = xx;
  613                 } else {
  614                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  615                         t->rn_dupedkey = tt;
  616                         tt->rn_parent = t;                      /* parent */
  617                         if (tt->rn_dupedkey != NULL)            /* parent */
  618                                 tt->rn_dupedkey->rn_parent = tt; /* parent */
  619                 }
  620 #ifdef RN_DEBUG
  621                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  622                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  623 #endif
  624                 tt->rn_key = key;
  625                 tt->rn_bit = -1;
  626                 tt->rn_flags = RNF_ACTIVE;
  627         }
  628         /*
  629          * Put mask in tree.
  630          */
  631         if (netmask != NULL) {
  632                 tt->rn_mask = netmask;
  633                 tt->rn_bit = x->rn_bit;
  634                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  635         }
  636         t = saved_tt->rn_parent;
  637         if (keyduplicated)
  638                 goto on2;
  639         b_leaf = -1 - t->rn_bit;
  640         if (t->rn_right == saved_tt)
  641                 x = t->rn_left;
  642         else
  643                 x = t->rn_right;
  644         /* Promote general routes from below */
  645         if (x->rn_bit < 0) {
  646                 mp = &t->rn_mklist;
  647                 while (x != NULL) {
  648                         if (x->rn_mask != NULL &&
  649                             x->rn_bit >= b_leaf &&
  650                             x->rn_mklist == NULL) {
  651                                 *mp = m = rn_new_radix_mask(x, NULL);
  652                                 if (m != NULL)
  653                                         mp = &m->rm_next;
  654                         }
  655                         x = x->rn_dupedkey;
  656                 }
  657         } else if (x->rn_mklist != NULL) {
  658                 /*
  659                  * Skip over masks whose index is > that of new node
  660                  */
  661                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
  662                         if (m->rm_bit >= b_leaf)
  663                                 break;
  664                 t->rn_mklist = m;
  665                 *mp = NULL;
  666         }
  667 on2:
  668         /* Add new route to highest possible ancestor's list */
  669         if ((netmask == NULL) || (b > t->rn_bit ))
  670                 return tt; /* can't lift at all */
  671         b_leaf = tt->rn_bit;
  672         do {
  673                 x = t;
  674                 t = t->rn_parent;
  675         } while (b <= t->rn_bit && x != top);
  676         /*
  677          * Search through routes associated with node to
  678          * insert new route according to index.
  679          * Need same criteria as when sorting dupedkeys to avoid
  680          * double loop on deletion.
  681          */
  682         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
  683                 if (m->rm_bit < b_leaf)
  684                         continue;
  685                 if (m->rm_bit > b_leaf)
  686                         break;
  687                 if (m->rm_flags & RNF_NORMAL) {
  688                         mmask = m->rm_leaf->rn_mask;
  689                         if (tt->rn_flags & RNF_NORMAL) {
  690                             log(LOG_ERR,
  691                                 "Non-unique normal route, mask not entered\n");
  692                                 return tt;
  693                         }
  694                 } else
  695                         mmask = m->rm_mask;
  696                 if (mmask == netmask) {
  697                         m->rm_refs++;
  698                         tt->rn_mklist = m;
  699                         return tt;
  700                 }
  701                 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
  702                         break;
  703         }
  704         *mp = rn_new_radix_mask(tt, *mp);
  705         return tt;
  706 }
  707 
  708 struct radix_node *
  709 rn_delete(char *key, char *netmask, struct radix_node_head *head)
  710 {
  711         struct radix_node *t, *p, *x, *tt;
  712         struct radix_mask *m, *saved_m, **mp;
  713         struct radix_node *dupedkey, *saved_tt, *top;
  714         int b, head_off, klen;
  715         int cpu = mycpuid;
  716 
  717         x = head->rnh_treetop;
  718         tt = rn_search(key, x);
  719         head_off = x->rn_offset;
  720         klen =  clen(key);
  721         saved_tt = tt;
  722         top = x;
  723         if (tt == NULL ||
  724             bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
  725                 return (NULL);
  726         /*
  727          * Delete our route from mask lists.
  728          */
  729         if (netmask != NULL) {
  730                 if ((x = rn_addmask(netmask, TRUE, head_off,
  731                                     head->rnh_maskhead)) == NULL)
  732                         return (NULL);
  733                 netmask = x->rn_key;
  734                 while (tt->rn_mask != netmask)
  735                         if ((tt = tt->rn_dupedkey) == NULL)
  736                                 return (NULL);
  737         }
  738         if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
  739                 goto on1;
  740         if (tt->rn_flags & RNF_NORMAL) {
  741                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  742                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  743                         return (NULL);  /* dangling ref could cause disaster */
  744                 }
  745         } else {
  746                 if (m->rm_mask != tt->rn_mask) {
  747                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  748                         goto on1;
  749                 }
  750                 if (--m->rm_refs >= 0)
  751                         goto on1;
  752         }
  753         b = -1 - tt->rn_bit;
  754         t = saved_tt->rn_parent;
  755         if (b > t->rn_bit)
  756                 goto on1; /* Wasn't lifted at all */
  757         do {
  758                 x = t;
  759                 t = t->rn_parent;
  760         } while (b <= t->rn_bit && x != top);
  761         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
  762                 if (m == saved_m) {
  763                         *mp = m->rm_next;
  764                         MKFree(&rn_mkfreelist[cpu], m);
  765                         break;
  766                 }
  767         if (m == NULL) {
  768                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  769                 if (tt->rn_flags & RNF_NORMAL)
  770                         return (NULL); /* Dangling ref to us */
  771         }
  772 on1:
  773         /*
  774          * Eliminate us from tree
  775          */
  776         if (tt->rn_flags & RNF_ROOT)
  777                 return (NULL);
  778 #ifdef RN_DEBUG
  779         /* Get us out of the creation list */
  780         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  781         if (t) t->rn_ybro = tt->rn_ybro;
  782 #endif
  783         t = tt->rn_parent;
  784         dupedkey = saved_tt->rn_dupedkey;
  785         if (dupedkey != NULL) {
  786                 /*
  787                  * at this point, tt is the deletion target and saved_tt
  788                  * is the head of the dupekey chain
  789                  */
  790                 if (tt == saved_tt) {
  791                         /* remove from head of chain */
  792                         x = dupedkey; x->rn_parent = t;
  793                         if (t->rn_left == tt)
  794                                 t->rn_left = x;
  795                         else
  796                                 t->rn_right = x;
  797                 } else {
  798                         /* find node in front of tt on the chain */
  799                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  800                                 p = p->rn_dupedkey;
  801                         if (p) {
  802                                 p->rn_dupedkey = tt->rn_dupedkey;
  803                                 if (tt->rn_dupedkey)            /* parent */
  804                                         tt->rn_dupedkey->rn_parent = p;
  805                                                                 /* parent */
  806                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  807                 }
  808                 t = tt + 1;
  809                 if  (t->rn_flags & RNF_ACTIVE) {
  810 #ifndef RN_DEBUG
  811                         *++x = *t;
  812                         p = t->rn_parent;
  813 #else
  814                         b = t->rn_info;
  815                         *++x = *t;
  816                         t->rn_info = b;
  817                         p = t->rn_parent;
  818 #endif
  819                         if (p->rn_left == t)
  820                                 p->rn_left = x;
  821                         else
  822                                 p->rn_right = x;
  823                         x->rn_left->rn_parent = x;
  824                         x->rn_right->rn_parent = x;
  825                 }
  826                 goto out;
  827         }
  828         if (t->rn_left == tt)
  829                 x = t->rn_right;
  830         else
  831                 x = t->rn_left;
  832         p = t->rn_parent;
  833         if (p->rn_right == t)
  834                 p->rn_right = x;
  835         else
  836                 p->rn_left = x;
  837         x->rn_parent = p;
  838         /*
  839          * Demote routes attached to us.
  840          */
  841         if (t->rn_mklist != NULL) {
  842                 if (x->rn_bit >= 0) {
  843                         for (mp = &x->rn_mklist; (m = *mp);)
  844                                 mp = &m->rm_next;
  845                         *mp = t->rn_mklist;
  846                 } else {
  847                         /*
  848                          * If there are any (key, mask) pairs in a sibling
  849                          * duped-key chain, some subset will appear sorted
  850                          * in the same order attached to our mklist.
  851                          */
  852                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  853                                 if (m == x->rn_mklist) {
  854                                         struct radix_mask *mm = m->rm_next;
  855 
  856                                         x->rn_mklist = NULL;
  857                                         if (--(m->rm_refs) < 0)
  858                                                 MKFree(&rn_mkfreelist[cpu], m);
  859                                         m = mm;
  860                                 }
  861                         if (m)
  862                                 log(LOG_ERR,
  863                                     "rn_delete: Orphaned Mask %p at %p\n",
  864                                     (void *)m, (void *)x);
  865                 }
  866         }
  867         /*
  868          * We may be holding an active internal node in the tree.
  869          */
  870         x = tt + 1;
  871         if (t != x) {
  872 #ifndef RN_DEBUG
  873                 *t = *x;
  874 #else
  875                 b = t->rn_info;
  876                 *t = *x;
  877                 t->rn_info = b;
  878 #endif
  879                 t->rn_left->rn_parent = t;
  880                 t->rn_right->rn_parent = t;
  881                 p = x->rn_parent;
  882                 if (p->rn_left == x)
  883                         p->rn_left = t;
  884                 else
  885                         p->rn_right = t;
  886         }
  887 out:
  888         tt->rn_flags &= ~RNF_ACTIVE;
  889         tt[1].rn_flags &= ~RNF_ACTIVE;
  890         return (tt);
  891 }
  892 
  893 /*
  894  * This is the same as rn_walktree() except for the parameters and the
  895  * exit.
  896  */
  897 static int
  898 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
  899                  walktree_f_t *f, void *w)
  900 {
  901         struct radix_node *base, *next;
  902         struct radix_node *rn, *last = NULL /* shut up gcc */;
  903         boolean_t stopping = FALSE;
  904         int lastb, error;
  905 
  906         /*
  907          * rn_search_m is sort-of-open-coded here.
  908          */
  909         /* kprintf("about to search\n"); */
  910         for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
  911                 last = rn;
  912                 /* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
  913                        rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
  914                 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
  915                         break;
  916                 }
  917                 if (rn->rn_bmask & xa[rn->rn_offset]) {
  918                         rn = rn->rn_right;
  919                 } else {
  920                         rn = rn->rn_left;
  921                 }
  922         }
  923         /* kprintf("done searching\n"); */
  924 
  925         /*
  926          * Two cases: either we stepped off the end of our mask,
  927          * in which case last == rn, or we reached a leaf, in which
  928          * case we want to start from the last node we looked at.
  929          * Either way, last is the node we want to start from.
  930          */
  931         rn = last;
  932         lastb = rn->rn_bit;
  933 
  934         /* kprintf("rn %p, lastb %d\n", rn, lastb);*/
  935 
  936         /*
  937          * This gets complicated because we may delete the node
  938          * while applying the function f to it, so we need to calculate
  939          * the successor node in advance.
  940          */
  941         while (rn->rn_bit >= 0)
  942                 rn = rn->rn_left;
  943 
  944         while (!stopping) {
  945                 /* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
  946                 base = rn;
  947                 /* If at right child go back up, otherwise, go right */
  948                 while (rn->rn_parent->rn_right == rn &&
  949                     !(rn->rn_flags & RNF_ROOT)) {
  950                         rn = rn->rn_parent;
  951 
  952                         /* if went up beyond last, stop */
  953                         if (rn->rn_bit < lastb) {
  954                                 stopping = TRUE;
  955                                 /* kprintf("up too far\n"); */
  956                         }
  957                 }
  958 
  959                 /* Find the next *leaf* since next node might vanish, too */
  960                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
  961                         rn = rn->rn_left;
  962                 next = rn;
  963                 /* Process leaves */
  964                 while ((rn = base) != NULL) {
  965                         base = rn->rn_dupedkey;
  966                         /* kprintf("leaf %p\n", rn); */
  967                         if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
  968                                 return (error);
  969                 }
  970                 rn = next;
  971 
  972                 if (rn->rn_flags & RNF_ROOT) {
  973                         /* kprintf("root, stopping"); */
  974                         stopping = TRUE;
  975                 }
  976 
  977         }
  978         return 0;
  979 }
  980 
  981 static int
  982 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
  983 {
  984         struct radix_node *base, *next;
  985         struct radix_node *rn = h->rnh_treetop;
  986         int error;
  987 
  988         /*
  989          * This gets complicated because we may delete the node
  990          * while applying the function f to it, so we need to calculate
  991          * the successor node in advance.
  992          */
  993         /* First time through node, go left */
  994         while (rn->rn_bit >= 0)
  995                 rn = rn->rn_left;
  996         for (;;) {
  997                 base = rn;
  998                 /* If at right child go back up, otherwise, go right */
  999                 while (rn->rn_parent->rn_right == rn &&
 1000                     !(rn->rn_flags & RNF_ROOT))
 1001                         rn = rn->rn_parent;
 1002                 /* Find the next *leaf* since next node might vanish, too */
 1003                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1004                         rn = rn->rn_left;
 1005                 next = rn;
 1006                 /* Process leaves */
 1007                 while ((rn = base)) {
 1008                         base = rn->rn_dupedkey;
 1009                         if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
 1010                                 return (error);
 1011                 }
 1012                 rn = next;
 1013                 if (rn->rn_flags & RNF_ROOT)
 1014                         return (0);
 1015         }
 1016         /* NOTREACHED */
 1017 }
 1018 
 1019 int
 1020 rn_inithead(void **head, struct radix_node_head *maskhead, int off)
 1021 {
 1022         struct radix_node_head *rnh;
 1023         struct radix_node *root, *left, *right;
 1024 
 1025         if (*head != NULL)      /* already initialized */
 1026                 return (1);
 1027 
 1028         R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
 1029         if (rnh == NULL)
 1030                 return (0);
 1031         bzero(rnh, sizeof *rnh);
 1032         *head = rnh;
 1033 
 1034         root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
 1035         right = &rnh->rnh_nodes[2];
 1036         root->rn_parent = root;
 1037         root->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1038         root->rn_right = right;
 1039 
 1040         left = root->rn_left;
 1041         left->rn_bit = -1 - off;
 1042         left->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1043 
 1044         *right = *left;
 1045         right->rn_key = rn_ones;
 1046 
 1047         rnh->rnh_treetop = root;
 1048         rnh->rnh_maskhead = maskhead;
 1049 
 1050         rnh->rnh_addaddr = rn_addroute;
 1051         rnh->rnh_deladdr = rn_delete;
 1052         rnh->rnh_matchaddr = rn_match;
 1053         rnh->rnh_lookup = rn_lookup;
 1054         rnh->rnh_walktree = rn_walktree;
 1055         rnh->rnh_walktree_from = rn_walktree_from;
 1056 
 1057         return (1);
 1058 }
 1059 
 1060 void
 1061 rn_init(void)
 1062 {
 1063         int cpu;
 1064 #ifdef _KERNEL
 1065         struct domain *dom;
 1066 
 1067         SLIST_FOREACH(dom, &domains, dom_next) {
 1068                 if (dom->dom_maxrtkey > RN_MAXKEYLEN) {
 1069                         panic("domain %s maxkey too big %d/%d",
 1070                               dom->dom_name, dom->dom_maxrtkey, RN_MAXKEYLEN);
 1071                 }
 1072         }
 1073 #endif
 1074         for (cpu = 0; cpu < ncpus; ++cpu) {
 1075                 if (rn_inithead((void **)&mask_rnheads[cpu], NULL, 0) == 0)
 1076                         panic("rn_init 2");
 1077         }
 1078 }
 1079 
 1080 struct radix_node_head *
 1081 rn_cpumaskhead(int cpu)
 1082 {
 1083         KKASSERT(mask_rnheads[cpu] != NULL);
 1084         return mask_rnheads[cpu];
 1085 }

Cache object: a4f687c4be219dfaf561714e72500d4e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.