The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1988, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)radix.c     8.5 (Berkeley) 5/19/95
   30  * $FreeBSD: releng/10.0/sys/net/radix.c 257330 2013-10-29 12:53:23Z melifaro $
   31  */
   32 
   33 /*
   34  * Routines to build and maintain radix trees for routing lookups.
   35  */
   36 #include <sys/param.h>
   37 #ifdef  _KERNEL
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/rwlock.h>
   41 #include <sys/systm.h>
   42 #include <sys/malloc.h>
   43 #include <sys/syslog.h>
   44 #include <net/radix.h>
   45 #include "opt_mpath.h"
   46 #ifdef RADIX_MPATH
   47 #include <net/radix_mpath.h>
   48 #endif
   49 #else /* !_KERNEL */
   50 #include <stdio.h>
   51 #include <strings.h>
   52 #include <stdlib.h>
   53 #define log(x, arg...)  fprintf(stderr, ## arg)
   54 #define panic(x)        fprintf(stderr, "PANIC: %s", x), exit(1)
   55 #define min(a, b) ((a) < (b) ? (a) : (b) )
   56 #include <net/radix.h>
   57 #endif /* !_KERNEL */
   58 
   59 static int      rn_walktree_from(struct radix_node_head *h, void *a, void *m,
   60                     walktree_f_t *f, void *w);
   61 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
   62 static struct radix_node
   63          *rn_insert(void *, struct radix_node_head *, int *,
   64              struct radix_node [2]),
   65          *rn_newpair(void *, int, struct radix_node[2]),
   66          *rn_search(void *, struct radix_node *),
   67          *rn_search_m(void *, struct radix_node *, void *);
   68 
   69 static void rn_detachhead_internal(void **head);
   70 static int rn_inithead_internal(void **head, int off);
   71 
   72 #define RADIX_MAX_KEY_LEN       32
   73 
   74 static char rn_zeros[RADIX_MAX_KEY_LEN];
   75 static char rn_ones[RADIX_MAX_KEY_LEN] = {
   76         -1, -1, -1, -1, -1, -1, -1, -1,
   77         -1, -1, -1, -1, -1, -1, -1, -1,
   78         -1, -1, -1, -1, -1, -1, -1, -1,
   79         -1, -1, -1, -1, -1, -1, -1, -1,
   80 };
   81 
   82 /*
   83  * XXX: Compat stuff for old rn_addmask() users
   84  */
   85 static struct radix_node_head *mask_rnhead_compat;
   86 #ifdef  _KERNEL
   87 static struct mtx mask_mtx;
   88 #endif
   89 
   90 
   91 static int      rn_lexobetter(void *m_arg, void *n_arg);
   92 static struct radix_mask *
   93                 rn_new_radix_mask(struct radix_node *tt,
   94                     struct radix_mask *next);
   95 static int      rn_satisfies_leaf(char *trial, struct radix_node *leaf,
   96                     int skip);
   97 
   98 /*
   99  * The data structure for the keys is a radix tree with one way
  100  * branching removed.  The index rn_bit at an internal node n represents a bit
  101  * position to be tested.  The tree is arranged so that all descendants
  102  * of a node n have keys whose bits all agree up to position rn_bit - 1.
  103  * (We say the index of n is rn_bit.)
  104  *
  105  * There is at least one descendant which has a one bit at position rn_bit,
  106  * and at least one with a zero there.
  107  *
  108  * A route is determined by a pair of key and mask.  We require that the
  109  * bit-wise logical and of the key and mask to be the key.
  110  * We define the index of a route to associated with the mask to be
  111  * the first bit number in the mask where 0 occurs (with bit number 0
  112  * representing the highest order bit).
  113  *
  114  * We say a mask is normal if every bit is 0, past the index of the mask.
  115  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
  116  * and m is a normal mask, then the route applies to every descendant of n.
  117  * If the index(m) < rn_bit, this implies the trailing last few bits of k
  118  * before bit b are all 0, (and hence consequently true of every descendant
  119  * of n), so the route applies to all descendants of the node as well.
  120  *
  121  * Similar logic shows that a non-normal mask m such that
  122  * index(m) <= index(n) could potentially apply to many children of n.
  123  * Thus, for each non-host route, we attach its mask to a list at an internal
  124  * node as high in the tree as we can go.
  125  *
  126  * The present version of the code makes use of normal routes in short-
  127  * circuiting an explict mask and compare operation when testing whether
  128  * a key satisfies a normal route, and also in remembering the unique leaf
  129  * that governs a subtree.
  130  */
  131 
  132 /*
  133  * Most of the functions in this code assume that the key/mask arguments
  134  * are sockaddr-like structures, where the first byte is an u_char
  135  * indicating the size of the entire structure.
  136  *
  137  * To make the assumption more explicit, we use the LEN() macro to access
  138  * this field. It is safe to pass an expression with side effects
  139  * to LEN() as the argument is evaluated only once.
  140  * We cast the result to int as this is the dominant usage.
  141  */
  142 #define LEN(x) ( (int) (*(const u_char *)(x)) )
  143 
  144 /*
  145  * XXX THIS NEEDS TO BE FIXED
  146  * In the code, pointers to keys and masks are passed as either
  147  * 'void *' (because callers use to pass pointers of various kinds), or
  148  * 'caddr_t' (which is fine for pointer arithmetics, but not very
  149  * clean when you dereference it to access data). Furthermore, caddr_t
  150  * is really 'char *', while the natural type to operate on keys and
  151  * masks would be 'u_char'. This mismatch require a lot of casts and
  152  * intermediate variables to adapt types that clutter the code.
  153  */
  154 
  155 /*
  156  * Search a node in the tree matching the key.
  157  */
  158 static struct radix_node *
  159 rn_search(v_arg, head)
  160         void *v_arg;
  161         struct radix_node *head;
  162 {
  163         register struct radix_node *x;
  164         register caddr_t v;
  165 
  166         for (x = head, v = v_arg; x->rn_bit >= 0;) {
  167                 if (x->rn_bmask & v[x->rn_offset])
  168                         x = x->rn_right;
  169                 else
  170                         x = x->rn_left;
  171         }
  172         return (x);
  173 }
  174 
  175 /*
  176  * Same as above, but with an additional mask.
  177  * XXX note this function is used only once.
  178  */
  179 static struct radix_node *
  180 rn_search_m(v_arg, head, m_arg)
  181         struct radix_node *head;
  182         void *v_arg, *m_arg;
  183 {
  184         register struct radix_node *x;
  185         register caddr_t v = v_arg, m = m_arg;
  186 
  187         for (x = head; x->rn_bit >= 0;) {
  188                 if ((x->rn_bmask & m[x->rn_offset]) &&
  189                     (x->rn_bmask & v[x->rn_offset]))
  190                         x = x->rn_right;
  191                 else
  192                         x = x->rn_left;
  193         }
  194         return x;
  195 }
  196 
  197 int
  198 rn_refines(m_arg, n_arg)
  199         void *m_arg, *n_arg;
  200 {
  201         register caddr_t m = m_arg, n = n_arg;
  202         register caddr_t lim, lim2 = lim = n + LEN(n);
  203         int longer = LEN(n++) - LEN(m++);
  204         int masks_are_equal = 1;
  205 
  206         if (longer > 0)
  207                 lim -= longer;
  208         while (n < lim) {
  209                 if (*n & ~(*m))
  210                         return 0;
  211                 if (*n++ != *m++)
  212                         masks_are_equal = 0;
  213         }
  214         while (n < lim2)
  215                 if (*n++)
  216                         return 0;
  217         if (masks_are_equal && (longer < 0))
  218                 for (lim2 = m - longer; m < lim2; )
  219                         if (*m++)
  220                                 return 1;
  221         return (!masks_are_equal);
  222 }
  223 
  224 struct radix_node *
  225 rn_lookup(v_arg, m_arg, head)
  226         void *v_arg, *m_arg;
  227         struct radix_node_head *head;
  228 {
  229         register struct radix_node *x;
  230         caddr_t netmask = 0;
  231 
  232         if (m_arg) {
  233                 x = rn_addmask_r(m_arg, head->rnh_masks, 1,
  234                     head->rnh_treetop->rn_offset);
  235                 if (x == 0)
  236                         return (0);
  237                 netmask = x->rn_key;
  238         }
  239         x = rn_match(v_arg, head);
  240         if (x && netmask) {
  241                 while (x && x->rn_mask != netmask)
  242                         x = x->rn_dupedkey;
  243         }
  244         return x;
  245 }
  246 
  247 static int
  248 rn_satisfies_leaf(trial, leaf, skip)
  249         char *trial;
  250         register struct radix_node *leaf;
  251         int skip;
  252 {
  253         register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  254         char *cplim;
  255         int length = min(LEN(cp), LEN(cp2));
  256 
  257         if (cp3 == NULL)
  258                 cp3 = rn_ones;
  259         else
  260                 length = min(length, LEN(cp3));
  261         cplim = cp + length; cp3 += skip; cp2 += skip;
  262         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  263                 if ((*cp ^ *cp2) & *cp3)
  264                         return 0;
  265         return 1;
  266 }
  267 
  268 struct radix_node *
  269 rn_match(v_arg, head)
  270         void *v_arg;
  271         struct radix_node_head *head;
  272 {
  273         caddr_t v = v_arg;
  274         register struct radix_node *t = head->rnh_treetop, *x;
  275         register caddr_t cp = v, cp2;
  276         caddr_t cplim;
  277         struct radix_node *saved_t, *top = t;
  278         int off = t->rn_offset, vlen = LEN(cp), matched_off;
  279         register int test, b, rn_bit;
  280 
  281         /*
  282          * Open code rn_search(v, top) to avoid overhead of extra
  283          * subroutine call.
  284          */
  285         for (; t->rn_bit >= 0; ) {
  286                 if (t->rn_bmask & cp[t->rn_offset])
  287                         t = t->rn_right;
  288                 else
  289                         t = t->rn_left;
  290         }
  291         /*
  292          * See if we match exactly as a host destination
  293          * or at least learn how many bits match, for normal mask finesse.
  294          *
  295          * It doesn't hurt us to limit how many bytes to check
  296          * to the length of the mask, since if it matches we had a genuine
  297          * match and the leaf we have is the most specific one anyway;
  298          * if it didn't match with a shorter length it would fail
  299          * with a long one.  This wins big for class B&C netmasks which
  300          * are probably the most common case...
  301          */
  302         if (t->rn_mask)
  303                 vlen = *(u_char *)t->rn_mask;
  304         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  305         for (; cp < cplim; cp++, cp2++)
  306                 if (*cp != *cp2)
  307                         goto on1;
  308         /*
  309          * This extra grot is in case we are explicitly asked
  310          * to look up the default.  Ugh!
  311          *
  312          * Never return the root node itself, it seems to cause a
  313          * lot of confusion.
  314          */
  315         if (t->rn_flags & RNF_ROOT)
  316                 t = t->rn_dupedkey;
  317         return t;
  318 on1:
  319         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  320         for (b = 7; (test >>= 1) > 0;)
  321                 b--;
  322         matched_off = cp - v;
  323         b += matched_off << 3;
  324         rn_bit = -1 - b;
  325         /*
  326          * If there is a host route in a duped-key chain, it will be first.
  327          */
  328         if ((saved_t = t)->rn_mask == 0)
  329                 t = t->rn_dupedkey;
  330         for (; t; t = t->rn_dupedkey)
  331                 /*
  332                  * Even if we don't match exactly as a host,
  333                  * we may match if the leaf we wound up at is
  334                  * a route to a net.
  335                  */
  336                 if (t->rn_flags & RNF_NORMAL) {
  337                         if (rn_bit <= t->rn_bit)
  338                                 return t;
  339                 } else if (rn_satisfies_leaf(v, t, matched_off))
  340                                 return t;
  341         t = saved_t;
  342         /* start searching up the tree */
  343         do {
  344                 register struct radix_mask *m;
  345                 t = t->rn_parent;
  346                 m = t->rn_mklist;
  347                 /*
  348                  * If non-contiguous masks ever become important
  349                  * we can restore the masking and open coding of
  350                  * the search and satisfaction test and put the
  351                  * calculation of "off" back before the "do".
  352                  */
  353                 while (m) {
  354                         if (m->rm_flags & RNF_NORMAL) {
  355                                 if (rn_bit <= m->rm_bit)
  356                                         return (m->rm_leaf);
  357                         } else {
  358                                 off = min(t->rn_offset, matched_off);
  359                                 x = rn_search_m(v, t, m->rm_mask);
  360                                 while (x && x->rn_mask != m->rm_mask)
  361                                         x = x->rn_dupedkey;
  362                                 if (x && rn_satisfies_leaf(v, x, off))
  363                                         return x;
  364                         }
  365                         m = m->rm_mklist;
  366                 }
  367         } while (t != top);
  368         return 0;
  369 }
  370 
  371 #ifdef RN_DEBUG
  372 int     rn_nodenum;
  373 struct  radix_node *rn_clist;
  374 int     rn_saveinfo;
  375 int     rn_debug =  1;
  376 #endif
  377 
  378 /*
  379  * Whenever we add a new leaf to the tree, we also add a parent node,
  380  * so we allocate them as an array of two elements: the first one must be
  381  * the leaf (see RNTORT() in route.c), the second one is the parent.
  382  * This routine initializes the relevant fields of the nodes, so that
  383  * the leaf is the left child of the parent node, and both nodes have
  384  * (almost) all all fields filled as appropriate.
  385  * (XXX some fields are left unset, see the '#if 0' section).
  386  * The function returns a pointer to the parent node.
  387  */
  388 
  389 static struct radix_node *
  390 rn_newpair(v, b, nodes)
  391         void *v;
  392         int b;
  393         struct radix_node nodes[2];
  394 {
  395         register struct radix_node *tt = nodes, *t = tt + 1;
  396         t->rn_bit = b;
  397         t->rn_bmask = 0x80 >> (b & 7);
  398         t->rn_left = tt;
  399         t->rn_offset = b >> 3;
  400 
  401 #if 0  /* XXX perhaps we should fill these fields as well. */
  402         t->rn_parent = t->rn_right = NULL;
  403 
  404         tt->rn_mask = NULL;
  405         tt->rn_dupedkey = NULL;
  406         tt->rn_bmask = 0;
  407 #endif
  408         tt->rn_bit = -1;
  409         tt->rn_key = (caddr_t)v;
  410         tt->rn_parent = t;
  411         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  412         tt->rn_mklist = t->rn_mklist = 0;
  413 #ifdef RN_DEBUG
  414         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  415         tt->rn_twin = t;
  416         tt->rn_ybro = rn_clist;
  417         rn_clist = tt;
  418 #endif
  419         return t;
  420 }
  421 
  422 static struct radix_node *
  423 rn_insert(v_arg, head, dupentry, nodes)
  424         void *v_arg;
  425         struct radix_node_head *head;
  426         int *dupentry;
  427         struct radix_node nodes[2];
  428 {
  429         caddr_t v = v_arg;
  430         struct radix_node *top = head->rnh_treetop;
  431         int head_off = top->rn_offset, vlen = LEN(v);
  432         register struct radix_node *t = rn_search(v_arg, top);
  433         register caddr_t cp = v + head_off;
  434         register int b;
  435         struct radix_node *tt;
  436         /*
  437          * Find first bit at which v and t->rn_key differ
  438          */
  439     {
  440         register caddr_t cp2 = t->rn_key + head_off;
  441         register int cmp_res;
  442         caddr_t cplim = v + vlen;
  443 
  444         while (cp < cplim)
  445                 if (*cp2++ != *cp++)
  446                         goto on1;
  447         *dupentry = 1;
  448         return t;
  449 on1:
  450         *dupentry = 0;
  451         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  452         for (b = (cp - v) << 3; cmp_res; b--)
  453                 cmp_res >>= 1;
  454     }
  455     {
  456         register struct radix_node *p, *x = top;
  457         cp = v;
  458         do {
  459                 p = x;
  460                 if (cp[x->rn_offset] & x->rn_bmask)
  461                         x = x->rn_right;
  462                 else
  463                         x = x->rn_left;
  464         } while (b > (unsigned) x->rn_bit);
  465                                 /* x->rn_bit < b && x->rn_bit >= 0 */
  466 #ifdef RN_DEBUG
  467         if (rn_debug)
  468                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  469 #endif
  470         t = rn_newpair(v_arg, b, nodes); 
  471         tt = t->rn_left;
  472         if ((cp[p->rn_offset] & p->rn_bmask) == 0)
  473                 p->rn_left = t;
  474         else
  475                 p->rn_right = t;
  476         x->rn_parent = t;
  477         t->rn_parent = p; /* frees x, p as temp vars below */
  478         if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
  479                 t->rn_right = x;
  480         } else {
  481                 t->rn_right = tt;
  482                 t->rn_left = x;
  483         }
  484 #ifdef RN_DEBUG
  485         if (rn_debug)
  486                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  487 #endif
  488     }
  489         return (tt);
  490 }
  491 
  492 struct radix_node *
  493 rn_addmask_r(void *arg, struct radix_node_head *maskhead, int search, int skip)
  494 {
  495         caddr_t netmask = (caddr_t)arg;
  496         register struct radix_node *x;
  497         register caddr_t cp, cplim;
  498         register int b = 0, mlen, j;
  499         int maskduplicated, isnormal;
  500         struct radix_node *saved_x;
  501         char addmask_key[RADIX_MAX_KEY_LEN];
  502 
  503         if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
  504                 mlen = RADIX_MAX_KEY_LEN;
  505         if (skip == 0)
  506                 skip = 1;
  507         if (mlen <= skip)
  508                 return (maskhead->rnh_nodes);
  509 
  510         bzero(addmask_key, RADIX_MAX_KEY_LEN);
  511         if (skip > 1)
  512                 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  513         bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  514         /*
  515          * Trim trailing zeroes.
  516          */
  517         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  518                 cp--;
  519         mlen = cp - addmask_key;
  520         if (mlen <= skip)
  521                 return (maskhead->rnh_nodes);
  522         *addmask_key = mlen;
  523         x = rn_search(addmask_key, maskhead->rnh_treetop);
  524         if (bcmp(addmask_key, x->rn_key, mlen) != 0)
  525                 x = 0;
  526         if (x || search)
  527                 return (x);
  528         R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
  529         if ((saved_x = x) == 0)
  530                 return (0);
  531         netmask = cp = (caddr_t)(x + 2);
  532         bcopy(addmask_key, cp, mlen);
  533         x = rn_insert(cp, maskhead, &maskduplicated, x);
  534         if (maskduplicated) {
  535                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  536                 Free(saved_x);
  537                 return (x);
  538         }
  539         /*
  540          * Calculate index of mask, and check for normalcy.
  541          * First find the first byte with a 0 bit, then if there are
  542          * more bits left (remember we already trimmed the trailing 0's),
  543          * the pattern must be one of those in normal_chars[], or we have
  544          * a non-contiguous mask.
  545          */
  546         cplim = netmask + mlen;
  547         isnormal = 1;
  548         for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
  549                 cp++;
  550         if (cp != cplim) {
  551                 static char normal_chars[] = {
  552                         0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
  553 
  554                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  555                         b++;
  556                 if (*cp != normal_chars[b] || cp != (cplim - 1))
  557                         isnormal = 0;
  558         }
  559         b += (cp - netmask) << 3;
  560         x->rn_bit = -1 - b;
  561         if (isnormal)
  562                 x->rn_flags |= RNF_NORMAL;
  563         return (x);
  564 }
  565 
  566 struct radix_node *
  567 rn_addmask(void *n_arg, int search, int skip)
  568 {
  569         struct radix_node *tt;
  570 
  571 #ifdef _KERNEL
  572         mtx_lock(&mask_mtx);
  573 #endif
  574         tt = rn_addmask_r(&mask_rnhead_compat, n_arg, search, skip);
  575 
  576 #ifdef _KERNEL
  577         mtx_unlock(&mask_mtx);
  578 #endif
  579 
  580         return (tt);
  581 }
  582 
  583 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  584 rn_lexobetter(m_arg, n_arg)
  585         void *m_arg, *n_arg;
  586 {
  587         register u_char *mp = m_arg, *np = n_arg, *lim;
  588 
  589         if (LEN(mp) > LEN(np))
  590                 return 1;  /* not really, but need to check longer one first */
  591         if (LEN(mp) == LEN(np))
  592                 for (lim = mp + LEN(mp); mp < lim;)
  593                         if (*mp++ > *np++)
  594                                 return 1;
  595         return 0;
  596 }
  597 
  598 static struct radix_mask *
  599 rn_new_radix_mask(tt, next)
  600         register struct radix_node *tt;
  601         register struct radix_mask *next;
  602 {
  603         register struct radix_mask *m;
  604 
  605         R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
  606         if (m == 0) {
  607                 log(LOG_ERR, "Failed to allocate route mask\n");
  608                 return (0);
  609         }
  610         bzero(m, sizeof(*m));
  611         m->rm_bit = tt->rn_bit;
  612         m->rm_flags = tt->rn_flags;
  613         if (tt->rn_flags & RNF_NORMAL)
  614                 m->rm_leaf = tt;
  615         else
  616                 m->rm_mask = tt->rn_mask;
  617         m->rm_mklist = next;
  618         tt->rn_mklist = m;
  619         return m;
  620 }
  621 
  622 struct radix_node *
  623 rn_addroute(v_arg, n_arg, head, treenodes)
  624         void *v_arg, *n_arg;
  625         struct radix_node_head *head;
  626         struct radix_node treenodes[2];
  627 {
  628         caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
  629         register struct radix_node *t, *x = 0, *tt;
  630         struct radix_node *saved_tt, *top = head->rnh_treetop;
  631         short b = 0, b_leaf = 0;
  632         int keyduplicated;
  633         caddr_t mmask;
  634         struct radix_mask *m, **mp;
  635 
  636         /*
  637          * In dealing with non-contiguous masks, there may be
  638          * many different routes which have the same mask.
  639          * We will find it useful to have a unique pointer to
  640          * the mask to speed avoiding duplicate references at
  641          * nodes and possibly save time in calculating indices.
  642          */
  643         if (netmask)  {
  644                 x = rn_addmask_r(netmask, head->rnh_masks, 0, top->rn_offset);
  645                 if (x == NULL)
  646                         return (0);
  647                 b_leaf = x->rn_bit;
  648                 b = -1 - x->rn_bit;
  649                 netmask = x->rn_key;
  650         }
  651         /*
  652          * Deal with duplicated keys: attach node to previous instance
  653          */
  654         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  655         if (keyduplicated) {
  656                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  657 #ifdef RADIX_MPATH
  658                         /* permit multipath, if enabled for the family */
  659                         if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
  660                                 /*
  661                                  * go down to the end of multipaths, so that
  662                                  * new entry goes into the end of rn_dupedkey
  663                                  * chain.
  664                                  */
  665                                 do {
  666                                         t = tt;
  667                                         tt = tt->rn_dupedkey;
  668                                 } while (tt && t->rn_mask == tt->rn_mask);
  669                                 break;
  670                         }
  671 #endif
  672                         if (tt->rn_mask == netmask)
  673                                 return (0);
  674                         if (netmask == 0 ||
  675                             (tt->rn_mask &&
  676                              ((b_leaf < tt->rn_bit) /* index(netmask) > node */
  677                               || rn_refines(netmask, tt->rn_mask)
  678                               || rn_lexobetter(netmask, tt->rn_mask))))
  679                                 break;
  680                 }
  681                 /*
  682                  * If the mask is not duplicated, we wouldn't
  683                  * find it among possible duplicate key entries
  684                  * anyway, so the above test doesn't hurt.
  685                  *
  686                  * We sort the masks for a duplicated key the same way as
  687                  * in a masklist -- most specific to least specific.
  688                  * This may require the unfortunate nuisance of relocating
  689                  * the head of the list.
  690                  *
  691                  * We also reverse, or doubly link the list through the
  692                  * parent pointer.
  693                  */
  694                 if (tt == saved_tt) {
  695                         struct  radix_node *xx = x;
  696                         /* link in at head of list */
  697                         (tt = treenodes)->rn_dupedkey = t;
  698                         tt->rn_flags = t->rn_flags;
  699                         tt->rn_parent = x = t->rn_parent;
  700                         t->rn_parent = tt;                      /* parent */
  701                         if (x->rn_left == t)
  702                                 x->rn_left = tt;
  703                         else
  704                                 x->rn_right = tt;
  705                         saved_tt = tt; x = xx;
  706                 } else {
  707                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  708                         t->rn_dupedkey = tt;
  709                         tt->rn_parent = t;                      /* parent */
  710                         if (tt->rn_dupedkey)                    /* parent */
  711                                 tt->rn_dupedkey->rn_parent = tt; /* parent */
  712                 }
  713 #ifdef RN_DEBUG
  714                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  715                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  716 #endif
  717                 tt->rn_key = (caddr_t) v;
  718                 tt->rn_bit = -1;
  719                 tt->rn_flags = RNF_ACTIVE;
  720         }
  721         /*
  722          * Put mask in tree.
  723          */
  724         if (netmask) {
  725                 tt->rn_mask = netmask;
  726                 tt->rn_bit = x->rn_bit;
  727                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  728         }
  729         t = saved_tt->rn_parent;
  730         if (keyduplicated)
  731                 goto on2;
  732         b_leaf = -1 - t->rn_bit;
  733         if (t->rn_right == saved_tt)
  734                 x = t->rn_left;
  735         else
  736                 x = t->rn_right;
  737         /* Promote general routes from below */
  738         if (x->rn_bit < 0) {
  739             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  740                 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
  741                         *mp = m = rn_new_radix_mask(x, 0);
  742                         if (m)
  743                                 mp = &m->rm_mklist;
  744                 }
  745         } else if (x->rn_mklist) {
  746                 /*
  747                  * Skip over masks whose index is > that of new node
  748                  */
  749                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  750                         if (m->rm_bit >= b_leaf)
  751                                 break;
  752                 t->rn_mklist = m; *mp = 0;
  753         }
  754 on2:
  755         /* Add new route to highest possible ancestor's list */
  756         if ((netmask == 0) || (b > t->rn_bit ))
  757                 return tt; /* can't lift at all */
  758         b_leaf = tt->rn_bit;
  759         do {
  760                 x = t;
  761                 t = t->rn_parent;
  762         } while (b <= t->rn_bit && x != top);
  763         /*
  764          * Search through routes associated with node to
  765          * insert new route according to index.
  766          * Need same criteria as when sorting dupedkeys to avoid
  767          * double loop on deletion.
  768          */
  769         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  770                 if (m->rm_bit < b_leaf)
  771                         continue;
  772                 if (m->rm_bit > b_leaf)
  773                         break;
  774                 if (m->rm_flags & RNF_NORMAL) {
  775                         mmask = m->rm_leaf->rn_mask;
  776                         if (tt->rn_flags & RNF_NORMAL) {
  777 #if !defined(RADIX_MPATH)
  778                             log(LOG_ERR,
  779                                 "Non-unique normal route, mask not entered\n");
  780 #endif
  781                                 return tt;
  782                         }
  783                 } else
  784                         mmask = m->rm_mask;
  785                 if (mmask == netmask) {
  786                         m->rm_refs++;
  787                         tt->rn_mklist = m;
  788                         return tt;
  789                 }
  790                 if (rn_refines(netmask, mmask)
  791                     || rn_lexobetter(netmask, mmask))
  792                         break;
  793         }
  794         *mp = rn_new_radix_mask(tt, *mp);
  795         return tt;
  796 }
  797 
  798 struct radix_node *
  799 rn_delete(v_arg, netmask_arg, head)
  800         void *v_arg, *netmask_arg;
  801         struct radix_node_head *head;
  802 {
  803         register struct radix_node *t, *p, *x, *tt;
  804         struct radix_mask *m, *saved_m, **mp;
  805         struct radix_node *dupedkey, *saved_tt, *top;
  806         caddr_t v, netmask;
  807         int b, head_off, vlen;
  808 
  809         v = v_arg;
  810         netmask = netmask_arg;
  811         x = head->rnh_treetop;
  812         tt = rn_search(v, x);
  813         head_off = x->rn_offset;
  814         vlen =  LEN(v);
  815         saved_tt = tt;
  816         top = x;
  817         if (tt == 0 ||
  818             bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  819                 return (0);
  820         /*
  821          * Delete our route from mask lists.
  822          */
  823         if (netmask) {
  824                 x = rn_addmask_r(netmask, head->rnh_masks, 1, head_off);
  825                 if (x == NULL)
  826                         return (0);
  827                 netmask = x->rn_key;
  828                 while (tt->rn_mask != netmask)
  829                         if ((tt = tt->rn_dupedkey) == 0)
  830                                 return (0);
  831         }
  832         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
  833                 goto on1;
  834         if (tt->rn_flags & RNF_NORMAL) {
  835                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  836                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  837                         return 0;  /* dangling ref could cause disaster */
  838                 }
  839         } else {
  840                 if (m->rm_mask != tt->rn_mask) {
  841                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  842                         goto on1;
  843                 }
  844                 if (--m->rm_refs >= 0)
  845                         goto on1;
  846         }
  847         b = -1 - tt->rn_bit;
  848         t = saved_tt->rn_parent;
  849         if (b > t->rn_bit)
  850                 goto on1; /* Wasn't lifted at all */
  851         do {
  852                 x = t;
  853                 t = t->rn_parent;
  854         } while (b <= t->rn_bit && x != top);
  855         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  856                 if (m == saved_m) {
  857                         *mp = m->rm_mklist;
  858                         Free(m);
  859                         break;
  860                 }
  861         if (m == 0) {
  862                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  863                 if (tt->rn_flags & RNF_NORMAL)
  864                         return (0); /* Dangling ref to us */
  865         }
  866 on1:
  867         /*
  868          * Eliminate us from tree
  869          */
  870         if (tt->rn_flags & RNF_ROOT)
  871                 return (0);
  872 #ifdef RN_DEBUG
  873         /* Get us out of the creation list */
  874         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  875         if (t) t->rn_ybro = tt->rn_ybro;
  876 #endif
  877         t = tt->rn_parent;
  878         dupedkey = saved_tt->rn_dupedkey;
  879         if (dupedkey) {
  880                 /*
  881                  * Here, tt is the deletion target and
  882                  * saved_tt is the head of the dupekey chain.
  883                  */
  884                 if (tt == saved_tt) {
  885                         /* remove from head of chain */
  886                         x = dupedkey; x->rn_parent = t;
  887                         if (t->rn_left == tt)
  888                                 t->rn_left = x;
  889                         else
  890                                 t->rn_right = x;
  891                 } else {
  892                         /* find node in front of tt on the chain */
  893                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  894                                 p = p->rn_dupedkey;
  895                         if (p) {
  896                                 p->rn_dupedkey = tt->rn_dupedkey;
  897                                 if (tt->rn_dupedkey)            /* parent */
  898                                         tt->rn_dupedkey->rn_parent = p;
  899                                                                 /* parent */
  900                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  901                 }
  902                 t = tt + 1;
  903                 if  (t->rn_flags & RNF_ACTIVE) {
  904 #ifndef RN_DEBUG
  905                         *++x = *t;
  906                         p = t->rn_parent;
  907 #else
  908                         b = t->rn_info;
  909                         *++x = *t;
  910                         t->rn_info = b;
  911                         p = t->rn_parent;
  912 #endif
  913                         if (p->rn_left == t)
  914                                 p->rn_left = x;
  915                         else
  916                                 p->rn_right = x;
  917                         x->rn_left->rn_parent = x;
  918                         x->rn_right->rn_parent = x;
  919                 }
  920                 goto out;
  921         }
  922         if (t->rn_left == tt)
  923                 x = t->rn_right;
  924         else
  925                 x = t->rn_left;
  926         p = t->rn_parent;
  927         if (p->rn_right == t)
  928                 p->rn_right = x;
  929         else
  930                 p->rn_left = x;
  931         x->rn_parent = p;
  932         /*
  933          * Demote routes attached to us.
  934          */
  935         if (t->rn_mklist) {
  936                 if (x->rn_bit >= 0) {
  937                         for (mp = &x->rn_mklist; (m = *mp);)
  938                                 mp = &m->rm_mklist;
  939                         *mp = t->rn_mklist;
  940                 } else {
  941                         /* If there are any key,mask pairs in a sibling
  942                            duped-key chain, some subset will appear sorted
  943                            in the same order attached to our mklist */
  944                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  945                                 if (m == x->rn_mklist) {
  946                                         struct radix_mask *mm = m->rm_mklist;
  947                                         x->rn_mklist = 0;
  948                                         if (--(m->rm_refs) < 0)
  949                                                 Free(m);
  950                                         m = mm;
  951                                 }
  952                         if (m)
  953                                 log(LOG_ERR,
  954                                     "rn_delete: Orphaned Mask %p at %p\n",
  955                                     m, x);
  956                 }
  957         }
  958         /*
  959          * We may be holding an active internal node in the tree.
  960          */
  961         x = tt + 1;
  962         if (t != x) {
  963 #ifndef RN_DEBUG
  964                 *t = *x;
  965 #else
  966                 b = t->rn_info;
  967                 *t = *x;
  968                 t->rn_info = b;
  969 #endif
  970                 t->rn_left->rn_parent = t;
  971                 t->rn_right->rn_parent = t;
  972                 p = x->rn_parent;
  973                 if (p->rn_left == x)
  974                         p->rn_left = t;
  975                 else
  976                         p->rn_right = t;
  977         }
  978 out:
  979         tt->rn_flags &= ~RNF_ACTIVE;
  980         tt[1].rn_flags &= ~RNF_ACTIVE;
  981         return (tt);
  982 }
  983 
  984 /*
  985  * This is the same as rn_walktree() except for the parameters and the
  986  * exit.
  987  */
  988 static int
  989 rn_walktree_from(h, a, m, f, w)
  990         struct radix_node_head *h;
  991         void *a, *m;
  992         walktree_f_t *f;
  993         void *w;
  994 {
  995         int error;
  996         struct radix_node *base, *next;
  997         u_char *xa = (u_char *)a;
  998         u_char *xm = (u_char *)m;
  999         register struct radix_node *rn, *last = 0 /* shut up gcc */;
 1000         int stopping = 0;
 1001         int lastb;
 1002 
 1003         /*
 1004          * rn_search_m is sort-of-open-coded here. We cannot use the
 1005          * function because we need to keep track of the last node seen.
 1006          */
 1007         /* printf("about to search\n"); */
 1008         for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
 1009                 last = rn;
 1010                 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
 1011                        rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
 1012                 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
 1013                         break;
 1014                 }
 1015                 if (rn->rn_bmask & xa[rn->rn_offset]) {
 1016                         rn = rn->rn_right;
 1017                 } else {
 1018                         rn = rn->rn_left;
 1019                 }
 1020         }
 1021         /* printf("done searching\n"); */
 1022 
 1023         /*
 1024          * Two cases: either we stepped off the end of our mask,
 1025          * in which case last == rn, or we reached a leaf, in which
 1026          * case we want to start from the last node we looked at.
 1027          * Either way, last is the node we want to start from.
 1028          */
 1029         rn = last;
 1030         lastb = rn->rn_bit;
 1031 
 1032         /* printf("rn %p, lastb %d\n", rn, lastb);*/
 1033 
 1034         /*
 1035          * This gets complicated because we may delete the node
 1036          * while applying the function f to it, so we need to calculate
 1037          * the successor node in advance.
 1038          */
 1039         while (rn->rn_bit >= 0)
 1040                 rn = rn->rn_left;
 1041 
 1042         while (!stopping) {
 1043                 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
 1044                 base = rn;
 1045                 /* If at right child go back up, otherwise, go right */
 1046                 while (rn->rn_parent->rn_right == rn
 1047                        && !(rn->rn_flags & RNF_ROOT)) {
 1048                         rn = rn->rn_parent;
 1049 
 1050                         /* if went up beyond last, stop */
 1051                         if (rn->rn_bit <= lastb) {
 1052                                 stopping = 1;
 1053                                 /* printf("up too far\n"); */
 1054                                 /*
 1055                                  * XXX we should jump to the 'Process leaves'
 1056                                  * part, because the values of 'rn' and 'next'
 1057                                  * we compute will not be used. Not a big deal
 1058                                  * because this loop will terminate, but it is
 1059                                  * inefficient and hard to understand!
 1060                                  */
 1061                         }
 1062                 }
 1063                 
 1064                 /* 
 1065                  * At the top of the tree, no need to traverse the right
 1066                  * half, prevent the traversal of the entire tree in the
 1067                  * case of default route.
 1068                  */
 1069                 if (rn->rn_parent->rn_flags & RNF_ROOT)
 1070                         stopping = 1;
 1071 
 1072                 /* Find the next *leaf* since next node might vanish, too */
 1073                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1074                         rn = rn->rn_left;
 1075                 next = rn;
 1076                 /* Process leaves */
 1077                 while ((rn = base) != 0) {
 1078                         base = rn->rn_dupedkey;
 1079                         /* printf("leaf %p\n", rn); */
 1080                         if (!(rn->rn_flags & RNF_ROOT)
 1081                             && (error = (*f)(rn, w)))
 1082                                 return (error);
 1083                 }
 1084                 rn = next;
 1085 
 1086                 if (rn->rn_flags & RNF_ROOT) {
 1087                         /* printf("root, stopping"); */
 1088                         stopping = 1;
 1089                 }
 1090 
 1091         }
 1092         return 0;
 1093 }
 1094 
 1095 static int
 1096 rn_walktree(h, f, w)
 1097         struct radix_node_head *h;
 1098         walktree_f_t *f;
 1099         void *w;
 1100 {
 1101         int error;
 1102         struct radix_node *base, *next;
 1103         register struct radix_node *rn = h->rnh_treetop;
 1104         /*
 1105          * This gets complicated because we may delete the node
 1106          * while applying the function f to it, so we need to calculate
 1107          * the successor node in advance.
 1108          */
 1109 
 1110         /* First time through node, go left */
 1111         while (rn->rn_bit >= 0)
 1112                 rn = rn->rn_left;
 1113         for (;;) {
 1114                 base = rn;
 1115                 /* If at right child go back up, otherwise, go right */
 1116                 while (rn->rn_parent->rn_right == rn
 1117                        && (rn->rn_flags & RNF_ROOT) == 0)
 1118                         rn = rn->rn_parent;
 1119                 /* Find the next *leaf* since next node might vanish, too */
 1120                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1121                         rn = rn->rn_left;
 1122                 next = rn;
 1123                 /* Process leaves */
 1124                 while ((rn = base)) {
 1125                         base = rn->rn_dupedkey;
 1126                         if (!(rn->rn_flags & RNF_ROOT)
 1127                             && (error = (*f)(rn, w)))
 1128                                 return (error);
 1129                 }
 1130                 rn = next;
 1131                 if (rn->rn_flags & RNF_ROOT)
 1132                         return (0);
 1133         }
 1134         /* NOTREACHED */
 1135 }
 1136 
 1137 /*
 1138  * Allocate and initialize an empty tree. This has 3 nodes, which are
 1139  * part of the radix_node_head (in the order <left,root,right>) and are
 1140  * marked RNF_ROOT so they cannot be freed.
 1141  * The leaves have all-zero and all-one keys, with significant
 1142  * bits starting at 'off'.
 1143  * Return 1 on success, 0 on error.
 1144  */
 1145 static int
 1146 rn_inithead_internal(void **head, int off)
 1147 {
 1148         register struct radix_node_head *rnh;
 1149         register struct radix_node *t, *tt, *ttt;
 1150         if (*head)
 1151                 return (1);
 1152         R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
 1153         if (rnh == 0)
 1154                 return (0);
 1155 #ifdef _KERNEL
 1156         RADIX_NODE_HEAD_LOCK_INIT(rnh);
 1157 #endif
 1158         *head = rnh;
 1159         t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
 1160         ttt = rnh->rnh_nodes + 2;
 1161         t->rn_right = ttt;
 1162         t->rn_parent = t;
 1163         tt = t->rn_left;        /* ... which in turn is rnh->rnh_nodes */
 1164         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1165         tt->rn_bit = -1 - off;
 1166         *ttt = *tt;
 1167         ttt->rn_key = rn_ones;
 1168         rnh->rnh_addaddr = rn_addroute;
 1169         rnh->rnh_deladdr = rn_delete;
 1170         rnh->rnh_matchaddr = rn_match;
 1171         rnh->rnh_lookup = rn_lookup;
 1172         rnh->rnh_walktree = rn_walktree;
 1173         rnh->rnh_walktree_from = rn_walktree_from;
 1174         rnh->rnh_treetop = t;
 1175         return (1);
 1176 }
 1177 
 1178 static void
 1179 rn_detachhead_internal(void **head)
 1180 {
 1181         struct radix_node_head *rnh;
 1182 
 1183         KASSERT((head != NULL && *head != NULL),
 1184             ("%s: head already freed", __func__));
 1185         rnh = *head;
 1186         
 1187         /* Free <left,root,right> nodes. */
 1188         Free(rnh);
 1189 
 1190         *head = NULL;
 1191 }
 1192 
 1193 int
 1194 rn_inithead(void **head, int off)
 1195 {
 1196         struct radix_node_head *rnh;
 1197 
 1198         if (*head != NULL)
 1199                 return (1);
 1200 
 1201         if (rn_inithead_internal(head, off) == 0)
 1202                 return (0);
 1203 
 1204         rnh = (struct radix_node_head *)(*head);
 1205 
 1206         if (rn_inithead_internal((void **)&rnh->rnh_masks, 0) == 0) {
 1207                 rn_detachhead_internal(head);
 1208                 return (0);
 1209         }
 1210 
 1211         return (1);
 1212 }
 1213 
 1214 int
 1215 rn_detachhead(void **head)
 1216 {
 1217         struct radix_node_head *rnh;
 1218 
 1219         KASSERT((head != NULL && *head != NULL),
 1220             ("%s: head already freed", __func__));
 1221 
 1222         rnh = *head;
 1223 
 1224         rn_detachhead_internal((void **)&rnh->rnh_masks);
 1225         rn_detachhead_internal(head);
 1226         return (1);
 1227 }
 1228 
 1229 void
 1230 rn_init(int maxk)
 1231 {
 1232         if ((maxk <= 0) || (maxk > RADIX_MAX_KEY_LEN)) {
 1233                 log(LOG_ERR,
 1234                     "rn_init: max_keylen must be within 1..%d\n",
 1235                     RADIX_MAX_KEY_LEN);
 1236                 return;
 1237         }
 1238 
 1239         /*
 1240          * XXX: Compat for old rn_addmask() users
 1241          */
 1242         if (rn_inithead((void **)(void *)&mask_rnhead_compat, 0) == 0)
 1243                 panic("rn_init 2");
 1244 #ifdef _KERNEL
 1245         mtx_init(&mask_mtx, "radix_mask", NULL, MTX_DEF);
 1246 #endif
 1247 }

Cache object: b002cb2a1312de1e0e23ef10e46466dc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.