The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1988, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)radix.c     8.5 (Berkeley) 5/19/95
   30  * $FreeBSD: releng/10.2/sys/net/radix.c 273185 2014-10-16 20:46:02Z glebius $
   31  */
   32 
   33 /*
   34  * Routines to build and maintain radix trees for routing lookups.
   35  */
   36 #include <sys/param.h>
   37 #ifdef  _KERNEL
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/rwlock.h>
   41 #include <sys/systm.h>
   42 #include <sys/malloc.h>
   43 #include <sys/syslog.h>
   44 #include <net/radix.h>
   45 #include "opt_mpath.h"
   46 #ifdef RADIX_MPATH
   47 #include <net/radix_mpath.h>
   48 #endif
   49 #else /* !_KERNEL */
   50 #include <stdio.h>
   51 #include <strings.h>
   52 #include <stdlib.h>
   53 #define log(x, arg...)  fprintf(stderr, ## arg)
   54 #define panic(x)        fprintf(stderr, "PANIC: %s", x), exit(1)
   55 #define min(a, b) ((a) < (b) ? (a) : (b) )
   56 #include <net/radix.h>
   57 #endif /* !_KERNEL */
   58 
   59 static int      rn_walktree_from(struct radix_node_head *h, void *a, void *m,
   60                     walktree_f_t *f, void *w);
   61 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
   62 static struct radix_node
   63          *rn_insert(void *, struct radix_node_head *, int *,
   64              struct radix_node [2]),
   65          *rn_newpair(void *, int, struct radix_node[2]),
   66          *rn_search(void *, struct radix_node *),
   67          *rn_search_m(void *, struct radix_node *, void *);
   68 
   69 static void rn_detachhead_internal(void **head);
   70 static int rn_inithead_internal(void **head, int off);
   71 
   72 #define RADIX_MAX_KEY_LEN       32
   73 
   74 static char rn_zeros[RADIX_MAX_KEY_LEN];
   75 static char rn_ones[RADIX_MAX_KEY_LEN] = {
   76         -1, -1, -1, -1, -1, -1, -1, -1,
   77         -1, -1, -1, -1, -1, -1, -1, -1,
   78         -1, -1, -1, -1, -1, -1, -1, -1,
   79         -1, -1, -1, -1, -1, -1, -1, -1,
   80 };
   81 
   82 /*
   83  * XXX: Compat stuff for old rn_addmask() users
   84  */
   85 static struct radix_node_head *mask_rnhead_compat;
   86 #ifdef  _KERNEL
   87 static struct mtx mask_mtx;
   88 #endif
   89 
   90 
   91 static int      rn_lexobetter(void *m_arg, void *n_arg);
   92 static struct radix_mask *
   93                 rn_new_radix_mask(struct radix_node *tt,
   94                     struct radix_mask *next);
   95 static int      rn_satisfies_leaf(char *trial, struct radix_node *leaf,
   96                     int skip);
   97 
   98 /*
   99  * The data structure for the keys is a radix tree with one way
  100  * branching removed.  The index rn_bit at an internal node n represents a bit
  101  * position to be tested.  The tree is arranged so that all descendants
  102  * of a node n have keys whose bits all agree up to position rn_bit - 1.
  103  * (We say the index of n is rn_bit.)
  104  *
  105  * There is at least one descendant which has a one bit at position rn_bit,
  106  * and at least one with a zero there.
  107  *
  108  * A route is determined by a pair of key and mask.  We require that the
  109  * bit-wise logical and of the key and mask to be the key.
  110  * We define the index of a route to associated with the mask to be
  111  * the first bit number in the mask where 0 occurs (with bit number 0
  112  * representing the highest order bit).
  113  *
  114  * We say a mask is normal if every bit is 0, past the index of the mask.
  115  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
  116  * and m is a normal mask, then the route applies to every descendant of n.
  117  * If the index(m) < rn_bit, this implies the trailing last few bits of k
  118  * before bit b are all 0, (and hence consequently true of every descendant
  119  * of n), so the route applies to all descendants of the node as well.
  120  *
  121  * Similar logic shows that a non-normal mask m such that
  122  * index(m) <= index(n) could potentially apply to many children of n.
  123  * Thus, for each non-host route, we attach its mask to a list at an internal
  124  * node as high in the tree as we can go.
  125  *
  126  * The present version of the code makes use of normal routes in short-
  127  * circuiting an explict mask and compare operation when testing whether
  128  * a key satisfies a normal route, and also in remembering the unique leaf
  129  * that governs a subtree.
  130  */
  131 
  132 /*
  133  * Most of the functions in this code assume that the key/mask arguments
  134  * are sockaddr-like structures, where the first byte is an u_char
  135  * indicating the size of the entire structure.
  136  *
  137  * To make the assumption more explicit, we use the LEN() macro to access
  138  * this field. It is safe to pass an expression with side effects
  139  * to LEN() as the argument is evaluated only once.
  140  * We cast the result to int as this is the dominant usage.
  141  */
  142 #define LEN(x) ( (int) (*(const u_char *)(x)) )
  143 
  144 /*
  145  * XXX THIS NEEDS TO BE FIXED
  146  * In the code, pointers to keys and masks are passed as either
  147  * 'void *' (because callers use to pass pointers of various kinds), or
  148  * 'caddr_t' (which is fine for pointer arithmetics, but not very
  149  * clean when you dereference it to access data). Furthermore, caddr_t
  150  * is really 'char *', while the natural type to operate on keys and
  151  * masks would be 'u_char'. This mismatch require a lot of casts and
  152  * intermediate variables to adapt types that clutter the code.
  153  */
  154 
  155 /*
  156  * Search a node in the tree matching the key.
  157  */
  158 static struct radix_node *
  159 rn_search(void *v_arg, struct radix_node *head)
  160 {
  161         struct radix_node *x;
  162         caddr_t v;
  163 
  164         for (x = head, v = v_arg; x->rn_bit >= 0;) {
  165                 if (x->rn_bmask & v[x->rn_offset])
  166                         x = x->rn_right;
  167                 else
  168                         x = x->rn_left;
  169         }
  170         return (x);
  171 }
  172 
  173 /*
  174  * Same as above, but with an additional mask.
  175  * XXX note this function is used only once.
  176  */
  177 static struct radix_node *
  178 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
  179 {
  180         struct radix_node *x;
  181         caddr_t v = v_arg, m = m_arg;
  182 
  183         for (x = head; x->rn_bit >= 0;) {
  184                 if ((x->rn_bmask & m[x->rn_offset]) &&
  185                     (x->rn_bmask & v[x->rn_offset]))
  186                         x = x->rn_right;
  187                 else
  188                         x = x->rn_left;
  189         }
  190         return (x);
  191 }
  192 
  193 int
  194 rn_refines(void *m_arg, void *n_arg)
  195 {
  196         caddr_t m = m_arg, n = n_arg;
  197         caddr_t lim, lim2 = lim = n + LEN(n);
  198         int longer = LEN(n++) - LEN(m++);
  199         int masks_are_equal = 1;
  200 
  201         if (longer > 0)
  202                 lim -= longer;
  203         while (n < lim) {
  204                 if (*n & ~(*m))
  205                         return (0);
  206                 if (*n++ != *m++)
  207                         masks_are_equal = 0;
  208         }
  209         while (n < lim2)
  210                 if (*n++)
  211                         return (0);
  212         if (masks_are_equal && (longer < 0))
  213                 for (lim2 = m - longer; m < lim2; )
  214                         if (*m++)
  215                                 return (1);
  216         return (!masks_are_equal);
  217 }
  218 
  219 /*
  220  * Search for exact match in given @head.
  221  * Assume host bits are cleared in @v_arg if @m_arg is not NULL
  222  * Note that prefixes with /32 or /128 masks are treated differently
  223  * from host routes.
  224  */
  225 struct radix_node *
  226 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
  227 {
  228         struct radix_node *x;
  229         caddr_t netmask;
  230 
  231         if (m_arg != NULL) {
  232                 /*
  233                  * Most common case: search exact prefix/mask
  234                  */
  235                 x = rn_addmask_r(m_arg, head->rnh_masks, 1,
  236                     head->rnh_treetop->rn_offset);
  237                 if (x == NULL)
  238                         return (NULL);
  239                 netmask = x->rn_key;
  240 
  241                 x = rn_match(v_arg, head);
  242 
  243                 while (x != NULL && x->rn_mask != netmask)
  244                         x = x->rn_dupedkey;
  245 
  246                 return (x);
  247         }
  248 
  249         /*
  250          * Search for host address.
  251          */
  252         if ((x = rn_match(v_arg, head)) == NULL)
  253                 return (NULL);
  254 
  255         /* Check if found key is the same */
  256         if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
  257                 return (NULL);
  258 
  259         /* Check if this is not host route */
  260         if (x->rn_mask != NULL)
  261                 return (NULL);
  262 
  263         return (x);
  264 }
  265 
  266 static int
  267 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
  268 {
  269         char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  270         char *cplim;
  271         int length = min(LEN(cp), LEN(cp2));
  272 
  273         if (cp3 == NULL)
  274                 cp3 = rn_ones;
  275         else
  276                 length = min(length, LEN(cp3));
  277         cplim = cp + length; cp3 += skip; cp2 += skip;
  278         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  279                 if ((*cp ^ *cp2) & *cp3)
  280                         return (0);
  281         return (1);
  282 }
  283 
  284 /*
  285  * Search for longest-prefix match in given @head
  286  */
  287 struct radix_node *
  288 rn_match(void *v_arg, struct radix_node_head *head)
  289 {
  290         caddr_t v = v_arg;
  291         struct radix_node *t = head->rnh_treetop, *x;
  292         caddr_t cp = v, cp2;
  293         caddr_t cplim;
  294         struct radix_node *saved_t, *top = t;
  295         int off = t->rn_offset, vlen = LEN(cp), matched_off;
  296         int test, b, rn_bit;
  297 
  298         /*
  299          * Open code rn_search(v, top) to avoid overhead of extra
  300          * subroutine call.
  301          */
  302         for (; t->rn_bit >= 0; ) {
  303                 if (t->rn_bmask & cp[t->rn_offset])
  304                         t = t->rn_right;
  305                 else
  306                         t = t->rn_left;
  307         }
  308         /*
  309          * See if we match exactly as a host destination
  310          * or at least learn how many bits match, for normal mask finesse.
  311          *
  312          * It doesn't hurt us to limit how many bytes to check
  313          * to the length of the mask, since if it matches we had a genuine
  314          * match and the leaf we have is the most specific one anyway;
  315          * if it didn't match with a shorter length it would fail
  316          * with a long one.  This wins big for class B&C netmasks which
  317          * are probably the most common case...
  318          */
  319         if (t->rn_mask)
  320                 vlen = *(u_char *)t->rn_mask;
  321         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  322         for (; cp < cplim; cp++, cp2++)
  323                 if (*cp != *cp2)
  324                         goto on1;
  325         /*
  326          * This extra grot is in case we are explicitly asked
  327          * to look up the default.  Ugh!
  328          *
  329          * Never return the root node itself, it seems to cause a
  330          * lot of confusion.
  331          */
  332         if (t->rn_flags & RNF_ROOT)
  333                 t = t->rn_dupedkey;
  334         return (t);
  335 on1:
  336         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  337         for (b = 7; (test >>= 1) > 0;)
  338                 b--;
  339         matched_off = cp - v;
  340         b += matched_off << 3;
  341         rn_bit = -1 - b;
  342         /*
  343          * If there is a host route in a duped-key chain, it will be first.
  344          */
  345         if ((saved_t = t)->rn_mask == 0)
  346                 t = t->rn_dupedkey;
  347         for (; t; t = t->rn_dupedkey)
  348                 /*
  349                  * Even if we don't match exactly as a host,
  350                  * we may match if the leaf we wound up at is
  351                  * a route to a net.
  352                  */
  353                 if (t->rn_flags & RNF_NORMAL) {
  354                         if (rn_bit <= t->rn_bit)
  355                                 return (t);
  356                 } else if (rn_satisfies_leaf(v, t, matched_off))
  357                                 return (t);
  358         t = saved_t;
  359         /* start searching up the tree */
  360         do {
  361                 struct radix_mask *m;
  362                 t = t->rn_parent;
  363                 m = t->rn_mklist;
  364                 /*
  365                  * If non-contiguous masks ever become important
  366                  * we can restore the masking and open coding of
  367                  * the search and satisfaction test and put the
  368                  * calculation of "off" back before the "do".
  369                  */
  370                 while (m) {
  371                         if (m->rm_flags & RNF_NORMAL) {
  372                                 if (rn_bit <= m->rm_bit)
  373                                         return (m->rm_leaf);
  374                         } else {
  375                                 off = min(t->rn_offset, matched_off);
  376                                 x = rn_search_m(v, t, m->rm_mask);
  377                                 while (x && x->rn_mask != m->rm_mask)
  378                                         x = x->rn_dupedkey;
  379                                 if (x && rn_satisfies_leaf(v, x, off))
  380                                         return (x);
  381                         }
  382                         m = m->rm_mklist;
  383                 }
  384         } while (t != top);
  385         return (0);
  386 }
  387 
  388 #ifdef RN_DEBUG
  389 int     rn_nodenum;
  390 struct  radix_node *rn_clist;
  391 int     rn_saveinfo;
  392 int     rn_debug =  1;
  393 #endif
  394 
  395 /*
  396  * Whenever we add a new leaf to the tree, we also add a parent node,
  397  * so we allocate them as an array of two elements: the first one must be
  398  * the leaf (see RNTORT() in route.c), the second one is the parent.
  399  * This routine initializes the relevant fields of the nodes, so that
  400  * the leaf is the left child of the parent node, and both nodes have
  401  * (almost) all all fields filled as appropriate.
  402  * (XXX some fields are left unset, see the '#if 0' section).
  403  * The function returns a pointer to the parent node.
  404  */
  405 
  406 static struct radix_node *
  407 rn_newpair(void *v, int b, struct radix_node nodes[2])
  408 {
  409         struct radix_node *tt = nodes, *t = tt + 1;
  410         t->rn_bit = b;
  411         t->rn_bmask = 0x80 >> (b & 7);
  412         t->rn_left = tt;
  413         t->rn_offset = b >> 3;
  414 
  415 #if 0  /* XXX perhaps we should fill these fields as well. */
  416         t->rn_parent = t->rn_right = NULL;
  417 
  418         tt->rn_mask = NULL;
  419         tt->rn_dupedkey = NULL;
  420         tt->rn_bmask = 0;
  421 #endif
  422         tt->rn_bit = -1;
  423         tt->rn_key = (caddr_t)v;
  424         tt->rn_parent = t;
  425         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  426         tt->rn_mklist = t->rn_mklist = 0;
  427 #ifdef RN_DEBUG
  428         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  429         tt->rn_twin = t;
  430         tt->rn_ybro = rn_clist;
  431         rn_clist = tt;
  432 #endif
  433         return (t);
  434 }
  435 
  436 static struct radix_node *
  437 rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
  438     struct radix_node nodes[2])
  439 {
  440         caddr_t v = v_arg;
  441         struct radix_node *top = head->rnh_treetop;
  442         int head_off = top->rn_offset, vlen = LEN(v);
  443         struct radix_node *t = rn_search(v_arg, top);
  444         caddr_t cp = v + head_off;
  445         int b;
  446         struct radix_node *p, *tt, *x;
  447         /*
  448          * Find first bit at which v and t->rn_key differ
  449          */
  450         caddr_t cp2 = t->rn_key + head_off;
  451         int cmp_res;
  452         caddr_t cplim = v + vlen;
  453 
  454         while (cp < cplim)
  455                 if (*cp2++ != *cp++)
  456                         goto on1;
  457         *dupentry = 1;
  458         return (t);
  459 on1:
  460         *dupentry = 0;
  461         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  462         for (b = (cp - v) << 3; cmp_res; b--)
  463                 cmp_res >>= 1;
  464 
  465         x = top;
  466         cp = v;
  467         do {
  468                 p = x;
  469                 if (cp[x->rn_offset] & x->rn_bmask)
  470                         x = x->rn_right;
  471                 else
  472                         x = x->rn_left;
  473         } while (b > (unsigned) x->rn_bit);
  474                                 /* x->rn_bit < b && x->rn_bit >= 0 */
  475 #ifdef RN_DEBUG
  476         if (rn_debug)
  477                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  478 #endif
  479         t = rn_newpair(v_arg, b, nodes); 
  480         tt = t->rn_left;
  481         if ((cp[p->rn_offset] & p->rn_bmask) == 0)
  482                 p->rn_left = t;
  483         else
  484                 p->rn_right = t;
  485         x->rn_parent = t;
  486         t->rn_parent = p; /* frees x, p as temp vars below */
  487         if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
  488                 t->rn_right = x;
  489         } else {
  490                 t->rn_right = tt;
  491                 t->rn_left = x;
  492         }
  493 #ifdef RN_DEBUG
  494         if (rn_debug)
  495                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  496 #endif
  497         return (tt);
  498 }
  499 
  500 struct radix_node *
  501 rn_addmask_r(void *arg, struct radix_node_head *maskhead, int search, int skip)
  502 {
  503         unsigned char *netmask = arg;
  504         unsigned char *cp, *cplim;
  505         struct radix_node *x;
  506         int b = 0, mlen, j;
  507         int maskduplicated, isnormal;
  508         struct radix_node *saved_x;
  509         unsigned char addmask_key[RADIX_MAX_KEY_LEN];
  510 
  511         if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
  512                 mlen = RADIX_MAX_KEY_LEN;
  513         if (skip == 0)
  514                 skip = 1;
  515         if (mlen <= skip)
  516                 return (maskhead->rnh_nodes);
  517 
  518         bzero(addmask_key, RADIX_MAX_KEY_LEN);
  519         if (skip > 1)
  520                 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  521         bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  522         /*
  523          * Trim trailing zeroes.
  524          */
  525         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  526                 cp--;
  527         mlen = cp - addmask_key;
  528         if (mlen <= skip)
  529                 return (maskhead->rnh_nodes);
  530         *addmask_key = mlen;
  531         x = rn_search(addmask_key, maskhead->rnh_treetop);
  532         if (bcmp(addmask_key, x->rn_key, mlen) != 0)
  533                 x = 0;
  534         if (x || search)
  535                 return (x);
  536         R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
  537         if ((saved_x = x) == 0)
  538                 return (0);
  539         netmask = cp = (caddr_t)(x + 2);
  540         bcopy(addmask_key, cp, mlen);
  541         x = rn_insert(cp, maskhead, &maskduplicated, x);
  542         if (maskduplicated) {
  543                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  544                 Free(saved_x);
  545                 return (x);
  546         }
  547         /*
  548          * Calculate index of mask, and check for normalcy.
  549          * First find the first byte with a 0 bit, then if there are
  550          * more bits left (remember we already trimmed the trailing 0's),
  551          * the bits should be contiguous, otherwise we have got
  552          * a non-contiguous mask.
  553          */
  554 #define CONTIG(_c)      (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
  555         cplim = netmask + mlen;
  556         isnormal = 1;
  557         for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
  558                 cp++;
  559         if (cp != cplim) {
  560                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  561                         b++;
  562                 if (!CONTIG(*cp) || cp != (cplim - 1))
  563                         isnormal = 0;
  564         }
  565         b += (cp - netmask) << 3;
  566         x->rn_bit = -1 - b;
  567         if (isnormal)
  568                 x->rn_flags |= RNF_NORMAL;
  569         return (x);
  570 }
  571 
  572 struct radix_node *
  573 rn_addmask(void *n_arg, int search, int skip)
  574 {
  575         struct radix_node *tt;
  576 
  577 #ifdef _KERNEL
  578         mtx_lock(&mask_mtx);
  579 #endif
  580         tt = rn_addmask_r(&mask_rnhead_compat, n_arg, search, skip);
  581 
  582 #ifdef _KERNEL
  583         mtx_unlock(&mask_mtx);
  584 #endif
  585 
  586         return (tt);
  587 }
  588 
  589 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  590 rn_lexobetter(void *m_arg, void *n_arg)
  591 {
  592         u_char *mp = m_arg, *np = n_arg, *lim;
  593 
  594         if (LEN(mp) > LEN(np))
  595                 return (1);  /* not really, but need to check longer one first */
  596         if (LEN(mp) == LEN(np))
  597                 for (lim = mp + LEN(mp); mp < lim;)
  598                         if (*mp++ > *np++)
  599                                 return (1);
  600         return (0);
  601 }
  602 
  603 static struct radix_mask *
  604 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
  605 {
  606         struct radix_mask *m;
  607 
  608         R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
  609         if (m == NULL) {
  610                 log(LOG_ERR, "Failed to allocate route mask\n");
  611                 return (0);
  612         }
  613         bzero(m, sizeof(*m));
  614         m->rm_bit = tt->rn_bit;
  615         m->rm_flags = tt->rn_flags;
  616         if (tt->rn_flags & RNF_NORMAL)
  617                 m->rm_leaf = tt;
  618         else
  619                 m->rm_mask = tt->rn_mask;
  620         m->rm_mklist = next;
  621         tt->rn_mklist = m;
  622         return (m);
  623 }
  624 
  625 struct radix_node *
  626 rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
  627     struct radix_node treenodes[2])
  628 {
  629         caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
  630         struct radix_node *t, *x = 0, *tt;
  631         struct radix_node *saved_tt, *top = head->rnh_treetop;
  632         short b = 0, b_leaf = 0;
  633         int keyduplicated;
  634         caddr_t mmask;
  635         struct radix_mask *m, **mp;
  636 
  637         /*
  638          * In dealing with non-contiguous masks, there may be
  639          * many different routes which have the same mask.
  640          * We will find it useful to have a unique pointer to
  641          * the mask to speed avoiding duplicate references at
  642          * nodes and possibly save time in calculating indices.
  643          */
  644         if (netmask)  {
  645                 x = rn_addmask_r(netmask, head->rnh_masks, 0, top->rn_offset);
  646                 if (x == NULL)
  647                         return (0);
  648                 b_leaf = x->rn_bit;
  649                 b = -1 - x->rn_bit;
  650                 netmask = x->rn_key;
  651         }
  652         /*
  653          * Deal with duplicated keys: attach node to previous instance
  654          */
  655         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  656         if (keyduplicated) {
  657                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  658 #ifdef RADIX_MPATH
  659                         /* permit multipath, if enabled for the family */
  660                         if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
  661                                 /*
  662                                  * go down to the end of multipaths, so that
  663                                  * new entry goes into the end of rn_dupedkey
  664                                  * chain.
  665                                  */
  666                                 do {
  667                                         t = tt;
  668                                         tt = tt->rn_dupedkey;
  669                                 } while (tt && t->rn_mask == tt->rn_mask);
  670                                 break;
  671                         }
  672 #endif
  673                         if (tt->rn_mask == netmask)
  674                                 return (0);
  675                         if (netmask == 0 ||
  676                             (tt->rn_mask &&
  677                              ((b_leaf < tt->rn_bit) /* index(netmask) > node */
  678                               || rn_refines(netmask, tt->rn_mask)
  679                               || rn_lexobetter(netmask, tt->rn_mask))))
  680                                 break;
  681                 }
  682                 /*
  683                  * If the mask is not duplicated, we wouldn't
  684                  * find it among possible duplicate key entries
  685                  * anyway, so the above test doesn't hurt.
  686                  *
  687                  * We sort the masks for a duplicated key the same way as
  688                  * in a masklist -- most specific to least specific.
  689                  * This may require the unfortunate nuisance of relocating
  690                  * the head of the list.
  691                  *
  692                  * We also reverse, or doubly link the list through the
  693                  * parent pointer.
  694                  */
  695                 if (tt == saved_tt) {
  696                         struct  radix_node *xx = x;
  697                         /* link in at head of list */
  698                         (tt = treenodes)->rn_dupedkey = t;
  699                         tt->rn_flags = t->rn_flags;
  700                         tt->rn_parent = x = t->rn_parent;
  701                         t->rn_parent = tt;                      /* parent */
  702                         if (x->rn_left == t)
  703                                 x->rn_left = tt;
  704                         else
  705                                 x->rn_right = tt;
  706                         saved_tt = tt; x = xx;
  707                 } else {
  708                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  709                         t->rn_dupedkey = tt;
  710                         tt->rn_parent = t;                      /* parent */
  711                         if (tt->rn_dupedkey)                    /* parent */
  712                                 tt->rn_dupedkey->rn_parent = tt; /* parent */
  713                 }
  714 #ifdef RN_DEBUG
  715                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  716                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  717 #endif
  718                 tt->rn_key = (caddr_t) v;
  719                 tt->rn_bit = -1;
  720                 tt->rn_flags = RNF_ACTIVE;
  721         }
  722         /*
  723          * Put mask in tree.
  724          */
  725         if (netmask) {
  726                 tt->rn_mask = netmask;
  727                 tt->rn_bit = x->rn_bit;
  728                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  729         }
  730         t = saved_tt->rn_parent;
  731         if (keyduplicated)
  732                 goto on2;
  733         b_leaf = -1 - t->rn_bit;
  734         if (t->rn_right == saved_tt)
  735                 x = t->rn_left;
  736         else
  737                 x = t->rn_right;
  738         /* Promote general routes from below */
  739         if (x->rn_bit < 0) {
  740             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  741                 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
  742                         *mp = m = rn_new_radix_mask(x, 0);
  743                         if (m)
  744                                 mp = &m->rm_mklist;
  745                 }
  746         } else if (x->rn_mklist) {
  747                 /*
  748                  * Skip over masks whose index is > that of new node
  749                  */
  750                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  751                         if (m->rm_bit >= b_leaf)
  752                                 break;
  753                 t->rn_mklist = m; *mp = 0;
  754         }
  755 on2:
  756         /* Add new route to highest possible ancestor's list */
  757         if ((netmask == 0) || (b > t->rn_bit ))
  758                 return (tt); /* can't lift at all */
  759         b_leaf = tt->rn_bit;
  760         do {
  761                 x = t;
  762                 t = t->rn_parent;
  763         } while (b <= t->rn_bit && x != top);
  764         /*
  765          * Search through routes associated with node to
  766          * insert new route according to index.
  767          * Need same criteria as when sorting dupedkeys to avoid
  768          * double loop on deletion.
  769          */
  770         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  771                 if (m->rm_bit < b_leaf)
  772                         continue;
  773                 if (m->rm_bit > b_leaf)
  774                         break;
  775                 if (m->rm_flags & RNF_NORMAL) {
  776                         mmask = m->rm_leaf->rn_mask;
  777                         if (tt->rn_flags & RNF_NORMAL) {
  778 #if !defined(RADIX_MPATH)
  779                             log(LOG_ERR,
  780                                 "Non-unique normal route, mask not entered\n");
  781 #endif
  782                                 return (tt);
  783                         }
  784                 } else
  785                         mmask = m->rm_mask;
  786                 if (mmask == netmask) {
  787                         m->rm_refs++;
  788                         tt->rn_mklist = m;
  789                         return (tt);
  790                 }
  791                 if (rn_refines(netmask, mmask)
  792                     || rn_lexobetter(netmask, mmask))
  793                         break;
  794         }
  795         *mp = rn_new_radix_mask(tt, *mp);
  796         return (tt);
  797 }
  798 
  799 struct radix_node *
  800 rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
  801 {
  802         struct radix_node *t, *p, *x, *tt;
  803         struct radix_mask *m, *saved_m, **mp;
  804         struct radix_node *dupedkey, *saved_tt, *top;
  805         caddr_t v, netmask;
  806         int b, head_off, vlen;
  807 
  808         v = v_arg;
  809         netmask = netmask_arg;
  810         x = head->rnh_treetop;
  811         tt = rn_search(v, x);
  812         head_off = x->rn_offset;
  813         vlen =  LEN(v);
  814         saved_tt = tt;
  815         top = x;
  816         if (tt == 0 ||
  817             bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  818                 return (0);
  819         /*
  820          * Delete our route from mask lists.
  821          */
  822         if (netmask) {
  823                 x = rn_addmask_r(netmask, head->rnh_masks, 1, head_off);
  824                 if (x == NULL)
  825                         return (0);
  826                 netmask = x->rn_key;
  827                 while (tt->rn_mask != netmask)
  828                         if ((tt = tt->rn_dupedkey) == 0)
  829                                 return (0);
  830         }
  831         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
  832                 goto on1;
  833         if (tt->rn_flags & RNF_NORMAL) {
  834                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  835                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  836                         return (0);  /* dangling ref could cause disaster */
  837                 }
  838         } else {
  839                 if (m->rm_mask != tt->rn_mask) {
  840                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  841                         goto on1;
  842                 }
  843                 if (--m->rm_refs >= 0)
  844                         goto on1;
  845         }
  846         b = -1 - tt->rn_bit;
  847         t = saved_tt->rn_parent;
  848         if (b > t->rn_bit)
  849                 goto on1; /* Wasn't lifted at all */
  850         do {
  851                 x = t;
  852                 t = t->rn_parent;
  853         } while (b <= t->rn_bit && x != top);
  854         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  855                 if (m == saved_m) {
  856                         *mp = m->rm_mklist;
  857                         Free(m);
  858                         break;
  859                 }
  860         if (m == 0) {
  861                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  862                 if (tt->rn_flags & RNF_NORMAL)
  863                         return (0); /* Dangling ref to us */
  864         }
  865 on1:
  866         /*
  867          * Eliminate us from tree
  868          */
  869         if (tt->rn_flags & RNF_ROOT)
  870                 return (0);
  871 #ifdef RN_DEBUG
  872         /* Get us out of the creation list */
  873         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  874         if (t) t->rn_ybro = tt->rn_ybro;
  875 #endif
  876         t = tt->rn_parent;
  877         dupedkey = saved_tt->rn_dupedkey;
  878         if (dupedkey) {
  879                 /*
  880                  * Here, tt is the deletion target and
  881                  * saved_tt is the head of the dupekey chain.
  882                  */
  883                 if (tt == saved_tt) {
  884                         /* remove from head of chain */
  885                         x = dupedkey; x->rn_parent = t;
  886                         if (t->rn_left == tt)
  887                                 t->rn_left = x;
  888                         else
  889                                 t->rn_right = x;
  890                 } else {
  891                         /* find node in front of tt on the chain */
  892                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  893                                 p = p->rn_dupedkey;
  894                         if (p) {
  895                                 p->rn_dupedkey = tt->rn_dupedkey;
  896                                 if (tt->rn_dupedkey)            /* parent */
  897                                         tt->rn_dupedkey->rn_parent = p;
  898                                                                 /* parent */
  899                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  900                 }
  901                 t = tt + 1;
  902                 if  (t->rn_flags & RNF_ACTIVE) {
  903 #ifndef RN_DEBUG
  904                         *++x = *t;
  905                         p = t->rn_parent;
  906 #else
  907                         b = t->rn_info;
  908                         *++x = *t;
  909                         t->rn_info = b;
  910                         p = t->rn_parent;
  911 #endif
  912                         if (p->rn_left == t)
  913                                 p->rn_left = x;
  914                         else
  915                                 p->rn_right = x;
  916                         x->rn_left->rn_parent = x;
  917                         x->rn_right->rn_parent = x;
  918                 }
  919                 goto out;
  920         }
  921         if (t->rn_left == tt)
  922                 x = t->rn_right;
  923         else
  924                 x = t->rn_left;
  925         p = t->rn_parent;
  926         if (p->rn_right == t)
  927                 p->rn_right = x;
  928         else
  929                 p->rn_left = x;
  930         x->rn_parent = p;
  931         /*
  932          * Demote routes attached to us.
  933          */
  934         if (t->rn_mklist) {
  935                 if (x->rn_bit >= 0) {
  936                         for (mp = &x->rn_mklist; (m = *mp);)
  937                                 mp = &m->rm_mklist;
  938                         *mp = t->rn_mklist;
  939                 } else {
  940                         /* If there are any key,mask pairs in a sibling
  941                            duped-key chain, some subset will appear sorted
  942                            in the same order attached to our mklist */
  943                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  944                                 if (m == x->rn_mklist) {
  945                                         struct radix_mask *mm = m->rm_mklist;
  946                                         x->rn_mklist = 0;
  947                                         if (--(m->rm_refs) < 0)
  948                                                 Free(m);
  949                                         m = mm;
  950                                 }
  951                         if (m)
  952                                 log(LOG_ERR,
  953                                     "rn_delete: Orphaned Mask %p at %p\n",
  954                                     m, x);
  955                 }
  956         }
  957         /*
  958          * We may be holding an active internal node in the tree.
  959          */
  960         x = tt + 1;
  961         if (t != x) {
  962 #ifndef RN_DEBUG
  963                 *t = *x;
  964 #else
  965                 b = t->rn_info;
  966                 *t = *x;
  967                 t->rn_info = b;
  968 #endif
  969                 t->rn_left->rn_parent = t;
  970                 t->rn_right->rn_parent = t;
  971                 p = x->rn_parent;
  972                 if (p->rn_left == x)
  973                         p->rn_left = t;
  974                 else
  975                         p->rn_right = t;
  976         }
  977 out:
  978         tt->rn_flags &= ~RNF_ACTIVE;
  979         tt[1].rn_flags &= ~RNF_ACTIVE;
  980         return (tt);
  981 }
  982 
  983 /*
  984  * This is the same as rn_walktree() except for the parameters and the
  985  * exit.
  986  */
  987 static int
  988 rn_walktree_from(struct radix_node_head *h, void *a, void *m,
  989     walktree_f_t *f, void *w)
  990 {
  991         int error;
  992         struct radix_node *base, *next;
  993         u_char *xa = (u_char *)a;
  994         u_char *xm = (u_char *)m;
  995         struct radix_node *rn, *last = NULL; /* shut up gcc */
  996         int stopping = 0;
  997         int lastb;
  998 
  999         /*
 1000          * rn_search_m is sort-of-open-coded here. We cannot use the
 1001          * function because we need to keep track of the last node seen.
 1002          */
 1003         /* printf("about to search\n"); */
 1004         for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
 1005                 last = rn;
 1006                 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
 1007                        rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
 1008                 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
 1009                         break;
 1010                 }
 1011                 if (rn->rn_bmask & xa[rn->rn_offset]) {
 1012                         rn = rn->rn_right;
 1013                 } else {
 1014                         rn = rn->rn_left;
 1015                 }
 1016         }
 1017         /* printf("done searching\n"); */
 1018 
 1019         /*
 1020          * Two cases: either we stepped off the end of our mask,
 1021          * in which case last == rn, or we reached a leaf, in which
 1022          * case we want to start from the last node we looked at.
 1023          * Either way, last is the node we want to start from.
 1024          */
 1025         rn = last;
 1026         lastb = rn->rn_bit;
 1027 
 1028         /* printf("rn %p, lastb %d\n", rn, lastb);*/
 1029 
 1030         /*
 1031          * This gets complicated because we may delete the node
 1032          * while applying the function f to it, so we need to calculate
 1033          * the successor node in advance.
 1034          */
 1035         while (rn->rn_bit >= 0)
 1036                 rn = rn->rn_left;
 1037 
 1038         while (!stopping) {
 1039                 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
 1040                 base = rn;
 1041                 /* If at right child go back up, otherwise, go right */
 1042                 while (rn->rn_parent->rn_right == rn
 1043                        && !(rn->rn_flags & RNF_ROOT)) {
 1044                         rn = rn->rn_parent;
 1045 
 1046                         /* if went up beyond last, stop */
 1047                         if (rn->rn_bit <= lastb) {
 1048                                 stopping = 1;
 1049                                 /* printf("up too far\n"); */
 1050                                 /*
 1051                                  * XXX we should jump to the 'Process leaves'
 1052                                  * part, because the values of 'rn' and 'next'
 1053                                  * we compute will not be used. Not a big deal
 1054                                  * because this loop will terminate, but it is
 1055                                  * inefficient and hard to understand!
 1056                                  */
 1057                         }
 1058                 }
 1059                 
 1060                 /* 
 1061                  * At the top of the tree, no need to traverse the right
 1062                  * half, prevent the traversal of the entire tree in the
 1063                  * case of default route.
 1064                  */
 1065                 if (rn->rn_parent->rn_flags & RNF_ROOT)
 1066                         stopping = 1;
 1067 
 1068                 /* Find the next *leaf* since next node might vanish, too */
 1069                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1070                         rn = rn->rn_left;
 1071                 next = rn;
 1072                 /* Process leaves */
 1073                 while ((rn = base) != 0) {
 1074                         base = rn->rn_dupedkey;
 1075                         /* printf("leaf %p\n", rn); */
 1076                         if (!(rn->rn_flags & RNF_ROOT)
 1077                             && (error = (*f)(rn, w)))
 1078                                 return (error);
 1079                 }
 1080                 rn = next;
 1081 
 1082                 if (rn->rn_flags & RNF_ROOT) {
 1083                         /* printf("root, stopping"); */
 1084                         stopping = 1;
 1085                 }
 1086 
 1087         }
 1088         return (0);
 1089 }
 1090 
 1091 static int
 1092 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
 1093 {
 1094         int error;
 1095         struct radix_node *base, *next;
 1096         struct radix_node *rn = h->rnh_treetop;
 1097         /*
 1098          * This gets complicated because we may delete the node
 1099          * while applying the function f to it, so we need to calculate
 1100          * the successor node in advance.
 1101          */
 1102 
 1103         /* First time through node, go left */
 1104         while (rn->rn_bit >= 0)
 1105                 rn = rn->rn_left;
 1106         for (;;) {
 1107                 base = rn;
 1108                 /* If at right child go back up, otherwise, go right */
 1109                 while (rn->rn_parent->rn_right == rn
 1110                        && (rn->rn_flags & RNF_ROOT) == 0)
 1111                         rn = rn->rn_parent;
 1112                 /* Find the next *leaf* since next node might vanish, too */
 1113                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1114                         rn = rn->rn_left;
 1115                 next = rn;
 1116                 /* Process leaves */
 1117                 while ((rn = base)) {
 1118                         base = rn->rn_dupedkey;
 1119                         if (!(rn->rn_flags & RNF_ROOT)
 1120                             && (error = (*f)(rn, w)))
 1121                                 return (error);
 1122                 }
 1123                 rn = next;
 1124                 if (rn->rn_flags & RNF_ROOT)
 1125                         return (0);
 1126         }
 1127         /* NOTREACHED */
 1128 }
 1129 
 1130 /*
 1131  * Allocate and initialize an empty tree. This has 3 nodes, which are
 1132  * part of the radix_node_head (in the order <left,root,right>) and are
 1133  * marked RNF_ROOT so they cannot be freed.
 1134  * The leaves have all-zero and all-one keys, with significant
 1135  * bits starting at 'off'.
 1136  * Return 1 on success, 0 on error.
 1137  */
 1138 static int
 1139 rn_inithead_internal(void **head, int off)
 1140 {
 1141         struct radix_node_head *rnh;
 1142         struct radix_node *t, *tt, *ttt;
 1143         if (*head)
 1144                 return (1);
 1145         R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
 1146         if (rnh == 0)
 1147                 return (0);
 1148 #ifdef _KERNEL
 1149         RADIX_NODE_HEAD_LOCK_INIT(rnh);
 1150 #endif
 1151         *head = rnh;
 1152         t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
 1153         ttt = rnh->rnh_nodes + 2;
 1154         t->rn_right = ttt;
 1155         t->rn_parent = t;
 1156         tt = t->rn_left;        /* ... which in turn is rnh->rnh_nodes */
 1157         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1158         tt->rn_bit = -1 - off;
 1159         *ttt = *tt;
 1160         ttt->rn_key = rn_ones;
 1161         rnh->rnh_addaddr = rn_addroute;
 1162         rnh->rnh_deladdr = rn_delete;
 1163         rnh->rnh_matchaddr = rn_match;
 1164         rnh->rnh_lookup = rn_lookup;
 1165         rnh->rnh_walktree = rn_walktree;
 1166         rnh->rnh_walktree_from = rn_walktree_from;
 1167         rnh->rnh_treetop = t;
 1168         return (1);
 1169 }
 1170 
 1171 static void
 1172 rn_detachhead_internal(void **head)
 1173 {
 1174         struct radix_node_head *rnh;
 1175 
 1176         KASSERT((head != NULL && *head != NULL),
 1177             ("%s: head already freed", __func__));
 1178         rnh = *head;
 1179         
 1180         /* Free <left,root,right> nodes. */
 1181         Free(rnh);
 1182 
 1183         *head = NULL;
 1184 }
 1185 
 1186 int
 1187 rn_inithead(void **head, int off)
 1188 {
 1189         struct radix_node_head *rnh;
 1190 
 1191         if (*head != NULL)
 1192                 return (1);
 1193 
 1194         if (rn_inithead_internal(head, off) == 0)
 1195                 return (0);
 1196 
 1197         rnh = (struct radix_node_head *)(*head);
 1198 
 1199         if (rn_inithead_internal((void **)&rnh->rnh_masks, 0) == 0) {
 1200                 rn_detachhead_internal(head);
 1201                 return (0);
 1202         }
 1203 
 1204         return (1);
 1205 }
 1206 
 1207 static int
 1208 rn_freeentry(struct radix_node *rn, void *arg)
 1209 {
 1210         struct radix_node_head * const rnh = arg;
 1211         struct radix_node *x;
 1212 
 1213         x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
 1214         if (x != NULL)
 1215                 Free(x);
 1216         return (0);
 1217 }
 1218 
 1219 int
 1220 rn_detachhead(void **head)
 1221 {
 1222         struct radix_node_head *rnh;
 1223 
 1224         KASSERT((head != NULL && *head != NULL),
 1225             ("%s: head already freed", __func__));
 1226 
 1227         rnh = *head;
 1228 
 1229         rn_walktree(rnh->rnh_masks, rn_freeentry, rnh->rnh_masks);
 1230         rn_detachhead_internal((void **)&rnh->rnh_masks);
 1231         rn_detachhead_internal(head);
 1232         return (1);
 1233 }
 1234 
 1235 void
 1236 rn_init(int maxk)
 1237 {
 1238         if ((maxk <= 0) || (maxk > RADIX_MAX_KEY_LEN)) {
 1239                 log(LOG_ERR,
 1240                     "rn_init: max_keylen must be within 1..%d\n",
 1241                     RADIX_MAX_KEY_LEN);
 1242                 return;
 1243         }
 1244 
 1245         /*
 1246          * XXX: Compat for old rn_addmask() users
 1247          */
 1248         if (rn_inithead((void **)(void *)&mask_rnhead_compat, 0) == 0)
 1249                 panic("rn_init 2");
 1250 #ifdef _KERNEL
 1251         mtx_init(&mask_mtx, "radix_mask", NULL, MTX_DEF);
 1252 #endif
 1253 }

Cache object: be3e8575c17c9c1c8ebc794642bab0bc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.