The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1988, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)radix.c     8.5 (Berkeley) 5/19/95
   30  * $FreeBSD: releng/11.2/sys/net/radix.c 331722 2018-03-29 02:50:57Z eadler $
   31  */
   32 
   33 /*
   34  * Routines to build and maintain radix trees for routing lookups.
   35  */
   36 #include <sys/param.h>
   37 #ifdef  _KERNEL
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/rwlock.h>
   41 #include <sys/systm.h>
   42 #include <sys/malloc.h>
   43 #include <sys/syslog.h>
   44 #include <net/radix.h>
   45 #include "opt_mpath.h"
   46 #ifdef RADIX_MPATH
   47 #include <net/radix_mpath.h>
   48 #endif
   49 #else /* !_KERNEL */
   50 #include <stdio.h>
   51 #include <strings.h>
   52 #include <stdlib.h>
   53 #define log(x, arg...)  fprintf(stderr, ## arg)
   54 #define panic(x)        fprintf(stderr, "PANIC: %s", x), exit(1)
   55 #define min(a, b) ((a) < (b) ? (a) : (b) )
   56 #include <net/radix.h>
   57 #endif /* !_KERNEL */
   58 
   59 static struct radix_node
   60          *rn_insert(void *, struct radix_head *, int *,
   61              struct radix_node [2]),
   62          *rn_newpair(void *, int, struct radix_node[2]),
   63          *rn_search(void *, struct radix_node *),
   64          *rn_search_m(void *, struct radix_node *, void *);
   65 static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int);
   66 
   67 static void rn_detachhead_internal(struct radix_head *);
   68 
   69 #define RADIX_MAX_KEY_LEN       32
   70 
   71 static char rn_zeros[RADIX_MAX_KEY_LEN];
   72 static char rn_ones[RADIX_MAX_KEY_LEN] = {
   73         -1, -1, -1, -1, -1, -1, -1, -1,
   74         -1, -1, -1, -1, -1, -1, -1, -1,
   75         -1, -1, -1, -1, -1, -1, -1, -1,
   76         -1, -1, -1, -1, -1, -1, -1, -1,
   77 };
   78 
   79 
   80 static int      rn_lexobetter(void *m_arg, void *n_arg);
   81 static struct radix_mask *
   82                 rn_new_radix_mask(struct radix_node *tt,
   83                     struct radix_mask *next);
   84 static int      rn_satisfies_leaf(char *trial, struct radix_node *leaf,
   85                     int skip);
   86 
   87 /*
   88  * The data structure for the keys is a radix tree with one way
   89  * branching removed.  The index rn_bit at an internal node n represents a bit
   90  * position to be tested.  The tree is arranged so that all descendants
   91  * of a node n have keys whose bits all agree up to position rn_bit - 1.
   92  * (We say the index of n is rn_bit.)
   93  *
   94  * There is at least one descendant which has a one bit at position rn_bit,
   95  * and at least one with a zero there.
   96  *
   97  * A route is determined by a pair of key and mask.  We require that the
   98  * bit-wise logical and of the key and mask to be the key.
   99  * We define the index of a route to associated with the mask to be
  100  * the first bit number in the mask where 0 occurs (with bit number 0
  101  * representing the highest order bit).
  102  *
  103  * We say a mask is normal if every bit is 0, past the index of the mask.
  104  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
  105  * and m is a normal mask, then the route applies to every descendant of n.
  106  * If the index(m) < rn_bit, this implies the trailing last few bits of k
  107  * before bit b are all 0, (and hence consequently true of every descendant
  108  * of n), so the route applies to all descendants of the node as well.
  109  *
  110  * Similar logic shows that a non-normal mask m such that
  111  * index(m) <= index(n) could potentially apply to many children of n.
  112  * Thus, for each non-host route, we attach its mask to a list at an internal
  113  * node as high in the tree as we can go.
  114  *
  115  * The present version of the code makes use of normal routes in short-
  116  * circuiting an explict mask and compare operation when testing whether
  117  * a key satisfies a normal route, and also in remembering the unique leaf
  118  * that governs a subtree.
  119  */
  120 
  121 /*
  122  * Most of the functions in this code assume that the key/mask arguments
  123  * are sockaddr-like structures, where the first byte is an u_char
  124  * indicating the size of the entire structure.
  125  *
  126  * To make the assumption more explicit, we use the LEN() macro to access
  127  * this field. It is safe to pass an expression with side effects
  128  * to LEN() as the argument is evaluated only once.
  129  * We cast the result to int as this is the dominant usage.
  130  */
  131 #define LEN(x) ( (int) (*(const u_char *)(x)) )
  132 
  133 /*
  134  * XXX THIS NEEDS TO BE FIXED
  135  * In the code, pointers to keys and masks are passed as either
  136  * 'void *' (because callers use to pass pointers of various kinds), or
  137  * 'caddr_t' (which is fine for pointer arithmetics, but not very
  138  * clean when you dereference it to access data). Furthermore, caddr_t
  139  * is really 'char *', while the natural type to operate on keys and
  140  * masks would be 'u_char'. This mismatch require a lot of casts and
  141  * intermediate variables to adapt types that clutter the code.
  142  */
  143 
  144 /*
  145  * Search a node in the tree matching the key.
  146  */
  147 static struct radix_node *
  148 rn_search(void *v_arg, struct radix_node *head)
  149 {
  150         struct radix_node *x;
  151         caddr_t v;
  152 
  153         for (x = head, v = v_arg; x->rn_bit >= 0;) {
  154                 if (x->rn_bmask & v[x->rn_offset])
  155                         x = x->rn_right;
  156                 else
  157                         x = x->rn_left;
  158         }
  159         return (x);
  160 }
  161 
  162 /*
  163  * Same as above, but with an additional mask.
  164  * XXX note this function is used only once.
  165  */
  166 static struct radix_node *
  167 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
  168 {
  169         struct radix_node *x;
  170         caddr_t v = v_arg, m = m_arg;
  171 
  172         for (x = head; x->rn_bit >= 0;) {
  173                 if ((x->rn_bmask & m[x->rn_offset]) &&
  174                     (x->rn_bmask & v[x->rn_offset]))
  175                         x = x->rn_right;
  176                 else
  177                         x = x->rn_left;
  178         }
  179         return (x);
  180 }
  181 
  182 int
  183 rn_refines(void *m_arg, void *n_arg)
  184 {
  185         caddr_t m = m_arg, n = n_arg;
  186         caddr_t lim, lim2 = lim = n + LEN(n);
  187         int longer = LEN(n++) - LEN(m++);
  188         int masks_are_equal = 1;
  189 
  190         if (longer > 0)
  191                 lim -= longer;
  192         while (n < lim) {
  193                 if (*n & ~(*m))
  194                         return (0);
  195                 if (*n++ != *m++)
  196                         masks_are_equal = 0;
  197         }
  198         while (n < lim2)
  199                 if (*n++)
  200                         return (0);
  201         if (masks_are_equal && (longer < 0))
  202                 for (lim2 = m - longer; m < lim2; )
  203                         if (*m++)
  204                                 return (1);
  205         return (!masks_are_equal);
  206 }
  207 
  208 /*
  209  * Search for exact match in given @head.
  210  * Assume host bits are cleared in @v_arg if @m_arg is not NULL
  211  * Note that prefixes with /32 or /128 masks are treated differently
  212  * from host routes.
  213  */
  214 struct radix_node *
  215 rn_lookup(void *v_arg, void *m_arg, struct radix_head *head)
  216 {
  217         struct radix_node *x;
  218         caddr_t netmask;
  219 
  220         if (m_arg != NULL) {
  221                 /*
  222                  * Most common case: search exact prefix/mask
  223                  */
  224                 x = rn_addmask(m_arg, head->rnh_masks, 1,
  225                     head->rnh_treetop->rn_offset);
  226                 if (x == NULL)
  227                         return (NULL);
  228                 netmask = x->rn_key;
  229 
  230                 x = rn_match(v_arg, head);
  231 
  232                 while (x != NULL && x->rn_mask != netmask)
  233                         x = x->rn_dupedkey;
  234 
  235                 return (x);
  236         }
  237 
  238         /*
  239          * Search for host address.
  240          */
  241         if ((x = rn_match(v_arg, head)) == NULL)
  242                 return (NULL);
  243 
  244         /* Check if found key is the same */
  245         if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
  246                 return (NULL);
  247 
  248         /* Check if this is not host route */
  249         if (x->rn_mask != NULL)
  250                 return (NULL);
  251 
  252         return (x);
  253 }
  254 
  255 static int
  256 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
  257 {
  258         char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  259         char *cplim;
  260         int length = min(LEN(cp), LEN(cp2));
  261 
  262         if (cp3 == NULL)
  263                 cp3 = rn_ones;
  264         else
  265                 length = min(length, LEN(cp3));
  266         cplim = cp + length; cp3 += skip; cp2 += skip;
  267         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  268                 if ((*cp ^ *cp2) & *cp3)
  269                         return (0);
  270         return (1);
  271 }
  272 
  273 /*
  274  * Search for longest-prefix match in given @head
  275  */
  276 struct radix_node *
  277 rn_match(void *v_arg, struct radix_head *head)
  278 {
  279         caddr_t v = v_arg;
  280         struct radix_node *t = head->rnh_treetop, *x;
  281         caddr_t cp = v, cp2;
  282         caddr_t cplim;
  283         struct radix_node *saved_t, *top = t;
  284         int off = t->rn_offset, vlen = LEN(cp), matched_off;
  285         int test, b, rn_bit;
  286 
  287         /*
  288          * Open code rn_search(v, top) to avoid overhead of extra
  289          * subroutine call.
  290          */
  291         for (; t->rn_bit >= 0; ) {
  292                 if (t->rn_bmask & cp[t->rn_offset])
  293                         t = t->rn_right;
  294                 else
  295                         t = t->rn_left;
  296         }
  297         /*
  298          * See if we match exactly as a host destination
  299          * or at least learn how many bits match, for normal mask finesse.
  300          *
  301          * It doesn't hurt us to limit how many bytes to check
  302          * to the length of the mask, since if it matches we had a genuine
  303          * match and the leaf we have is the most specific one anyway;
  304          * if it didn't match with a shorter length it would fail
  305          * with a long one.  This wins big for class B&C netmasks which
  306          * are probably the most common case...
  307          */
  308         if (t->rn_mask)
  309                 vlen = *(u_char *)t->rn_mask;
  310         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  311         for (; cp < cplim; cp++, cp2++)
  312                 if (*cp != *cp2)
  313                         goto on1;
  314         /*
  315          * This extra grot is in case we are explicitly asked
  316          * to look up the default.  Ugh!
  317          *
  318          * Never return the root node itself, it seems to cause a
  319          * lot of confusion.
  320          */
  321         if (t->rn_flags & RNF_ROOT)
  322                 t = t->rn_dupedkey;
  323         return (t);
  324 on1:
  325         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  326         for (b = 7; (test >>= 1) > 0;)
  327                 b--;
  328         matched_off = cp - v;
  329         b += matched_off << 3;
  330         rn_bit = -1 - b;
  331         /*
  332          * If there is a host route in a duped-key chain, it will be first.
  333          */
  334         if ((saved_t = t)->rn_mask == 0)
  335                 t = t->rn_dupedkey;
  336         for (; t; t = t->rn_dupedkey)
  337                 /*
  338                  * Even if we don't match exactly as a host,
  339                  * we may match if the leaf we wound up at is
  340                  * a route to a net.
  341                  */
  342                 if (t->rn_flags & RNF_NORMAL) {
  343                         if (rn_bit <= t->rn_bit)
  344                                 return (t);
  345                 } else if (rn_satisfies_leaf(v, t, matched_off))
  346                                 return (t);
  347         t = saved_t;
  348         /* start searching up the tree */
  349         do {
  350                 struct radix_mask *m;
  351                 t = t->rn_parent;
  352                 m = t->rn_mklist;
  353                 /*
  354                  * If non-contiguous masks ever become important
  355                  * we can restore the masking and open coding of
  356                  * the search and satisfaction test and put the
  357                  * calculation of "off" back before the "do".
  358                  */
  359                 while (m) {
  360                         if (m->rm_flags & RNF_NORMAL) {
  361                                 if (rn_bit <= m->rm_bit)
  362                                         return (m->rm_leaf);
  363                         } else {
  364                                 off = min(t->rn_offset, matched_off);
  365                                 x = rn_search_m(v, t, m->rm_mask);
  366                                 while (x && x->rn_mask != m->rm_mask)
  367                                         x = x->rn_dupedkey;
  368                                 if (x && rn_satisfies_leaf(v, x, off))
  369                                         return (x);
  370                         }
  371                         m = m->rm_mklist;
  372                 }
  373         } while (t != top);
  374         return (0);
  375 }
  376 
  377 #ifdef RN_DEBUG
  378 int     rn_nodenum;
  379 struct  radix_node *rn_clist;
  380 int     rn_saveinfo;
  381 int     rn_debug =  1;
  382 #endif
  383 
  384 /*
  385  * Whenever we add a new leaf to the tree, we also add a parent node,
  386  * so we allocate them as an array of two elements: the first one must be
  387  * the leaf (see RNTORT() in route.c), the second one is the parent.
  388  * This routine initializes the relevant fields of the nodes, so that
  389  * the leaf is the left child of the parent node, and both nodes have
  390  * (almost) all all fields filled as appropriate.
  391  * (XXX some fields are left unset, see the '#if 0' section).
  392  * The function returns a pointer to the parent node.
  393  */
  394 
  395 static struct radix_node *
  396 rn_newpair(void *v, int b, struct radix_node nodes[2])
  397 {
  398         struct radix_node *tt = nodes, *t = tt + 1;
  399         t->rn_bit = b;
  400         t->rn_bmask = 0x80 >> (b & 7);
  401         t->rn_left = tt;
  402         t->rn_offset = b >> 3;
  403 
  404 #if 0  /* XXX perhaps we should fill these fields as well. */
  405         t->rn_parent = t->rn_right = NULL;
  406 
  407         tt->rn_mask = NULL;
  408         tt->rn_dupedkey = NULL;
  409         tt->rn_bmask = 0;
  410 #endif
  411         tt->rn_bit = -1;
  412         tt->rn_key = (caddr_t)v;
  413         tt->rn_parent = t;
  414         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  415         tt->rn_mklist = t->rn_mklist = 0;
  416 #ifdef RN_DEBUG
  417         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  418         tt->rn_twin = t;
  419         tt->rn_ybro = rn_clist;
  420         rn_clist = tt;
  421 #endif
  422         return (t);
  423 }
  424 
  425 static struct radix_node *
  426 rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
  427     struct radix_node nodes[2])
  428 {
  429         caddr_t v = v_arg;
  430         struct radix_node *top = head->rnh_treetop;
  431         int head_off = top->rn_offset, vlen = LEN(v);
  432         struct radix_node *t = rn_search(v_arg, top);
  433         caddr_t cp = v + head_off;
  434         int b;
  435         struct radix_node *p, *tt, *x;
  436         /*
  437          * Find first bit at which v and t->rn_key differ
  438          */
  439         caddr_t cp2 = t->rn_key + head_off;
  440         int cmp_res;
  441         caddr_t cplim = v + vlen;
  442 
  443         while (cp < cplim)
  444                 if (*cp2++ != *cp++)
  445                         goto on1;
  446         *dupentry = 1;
  447         return (t);
  448 on1:
  449         *dupentry = 0;
  450         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  451         for (b = (cp - v) << 3; cmp_res; b--)
  452                 cmp_res >>= 1;
  453 
  454         x = top;
  455         cp = v;
  456         do {
  457                 p = x;
  458                 if (cp[x->rn_offset] & x->rn_bmask)
  459                         x = x->rn_right;
  460                 else
  461                         x = x->rn_left;
  462         } while (b > (unsigned) x->rn_bit);
  463                                 /* x->rn_bit < b && x->rn_bit >= 0 */
  464 #ifdef RN_DEBUG
  465         if (rn_debug)
  466                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  467 #endif
  468         t = rn_newpair(v_arg, b, nodes); 
  469         tt = t->rn_left;
  470         if ((cp[p->rn_offset] & p->rn_bmask) == 0)
  471                 p->rn_left = t;
  472         else
  473                 p->rn_right = t;
  474         x->rn_parent = t;
  475         t->rn_parent = p; /* frees x, p as temp vars below */
  476         if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
  477                 t->rn_right = x;
  478         } else {
  479                 t->rn_right = tt;
  480                 t->rn_left = x;
  481         }
  482 #ifdef RN_DEBUG
  483         if (rn_debug)
  484                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  485 #endif
  486         return (tt);
  487 }
  488 
  489 struct radix_node *
  490 rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
  491 {
  492         unsigned char *netmask = n_arg;
  493         unsigned char *cp, *cplim;
  494         struct radix_node *x;
  495         int b = 0, mlen, j;
  496         int maskduplicated, isnormal;
  497         struct radix_node *saved_x;
  498         unsigned char addmask_key[RADIX_MAX_KEY_LEN];
  499 
  500         if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
  501                 mlen = RADIX_MAX_KEY_LEN;
  502         if (skip == 0)
  503                 skip = 1;
  504         if (mlen <= skip)
  505                 return (maskhead->mask_nodes);
  506 
  507         bzero(addmask_key, RADIX_MAX_KEY_LEN);
  508         if (skip > 1)
  509                 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  510         bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  511         /*
  512          * Trim trailing zeroes.
  513          */
  514         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  515                 cp--;
  516         mlen = cp - addmask_key;
  517         if (mlen <= skip)
  518                 return (maskhead->mask_nodes);
  519         *addmask_key = mlen;
  520         x = rn_search(addmask_key, maskhead->head.rnh_treetop);
  521         if (bcmp(addmask_key, x->rn_key, mlen) != 0)
  522                 x = NULL;
  523         if (x || search)
  524                 return (x);
  525         R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
  526         if ((saved_x = x) == NULL)
  527                 return (0);
  528         netmask = cp = (unsigned char *)(x + 2);
  529         bcopy(addmask_key, cp, mlen);
  530         x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
  531         if (maskduplicated) {
  532                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  533                 R_Free(saved_x);
  534                 return (x);
  535         }
  536         /*
  537          * Calculate index of mask, and check for normalcy.
  538          * First find the first byte with a 0 bit, then if there are
  539          * more bits left (remember we already trimmed the trailing 0's),
  540          * the bits should be contiguous, otherwise we have got
  541          * a non-contiguous mask.
  542          */
  543 #define CONTIG(_c)      (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
  544         cplim = netmask + mlen;
  545         isnormal = 1;
  546         for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
  547                 cp++;
  548         if (cp != cplim) {
  549                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  550                         b++;
  551                 if (!CONTIG(*cp) || cp != (cplim - 1))
  552                         isnormal = 0;
  553         }
  554         b += (cp - netmask) << 3;
  555         x->rn_bit = -1 - b;
  556         if (isnormal)
  557                 x->rn_flags |= RNF_NORMAL;
  558         return (x);
  559 }
  560 
  561 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  562 rn_lexobetter(void *m_arg, void *n_arg)
  563 {
  564         u_char *mp = m_arg, *np = n_arg, *lim;
  565 
  566         if (LEN(mp) > LEN(np))
  567                 return (1);  /* not really, but need to check longer one first */
  568         if (LEN(mp) == LEN(np))
  569                 for (lim = mp + LEN(mp); mp < lim;)
  570                         if (*mp++ > *np++)
  571                                 return (1);
  572         return (0);
  573 }
  574 
  575 static struct radix_mask *
  576 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
  577 {
  578         struct radix_mask *m;
  579 
  580         R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
  581         if (m == NULL) {
  582                 log(LOG_ERR, "Failed to allocate route mask\n");
  583                 return (0);
  584         }
  585         bzero(m, sizeof(*m));
  586         m->rm_bit = tt->rn_bit;
  587         m->rm_flags = tt->rn_flags;
  588         if (tt->rn_flags & RNF_NORMAL)
  589                 m->rm_leaf = tt;
  590         else
  591                 m->rm_mask = tt->rn_mask;
  592         m->rm_mklist = next;
  593         tt->rn_mklist = m;
  594         return (m);
  595 }
  596 
  597 struct radix_node *
  598 rn_addroute(void *v_arg, void *n_arg, struct radix_head *head,
  599     struct radix_node treenodes[2])
  600 {
  601         caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
  602         struct radix_node *t, *x = NULL, *tt;
  603         struct radix_node *saved_tt, *top = head->rnh_treetop;
  604         short b = 0, b_leaf = 0;
  605         int keyduplicated;
  606         caddr_t mmask;
  607         struct radix_mask *m, **mp;
  608 
  609         /*
  610          * In dealing with non-contiguous masks, there may be
  611          * many different routes which have the same mask.
  612          * We will find it useful to have a unique pointer to
  613          * the mask to speed avoiding duplicate references at
  614          * nodes and possibly save time in calculating indices.
  615          */
  616         if (netmask)  {
  617                 x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset);
  618                 if (x == NULL)
  619                         return (0);
  620                 b_leaf = x->rn_bit;
  621                 b = -1 - x->rn_bit;
  622                 netmask = x->rn_key;
  623         }
  624         /*
  625          * Deal with duplicated keys: attach node to previous instance
  626          */
  627         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  628         if (keyduplicated) {
  629                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  630 #ifdef RADIX_MPATH
  631                         /* permit multipath, if enabled for the family */
  632                         if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
  633                                 /*
  634                                  * go down to the end of multipaths, so that
  635                                  * new entry goes into the end of rn_dupedkey
  636                                  * chain.
  637                                  */
  638                                 do {
  639                                         t = tt;
  640                                         tt = tt->rn_dupedkey;
  641                                 } while (tt && t->rn_mask == tt->rn_mask);
  642                                 break;
  643                         }
  644 #endif
  645                         if (tt->rn_mask == netmask)
  646                                 return (0);
  647                         if (netmask == 0 ||
  648                             (tt->rn_mask &&
  649                              ((b_leaf < tt->rn_bit) /* index(netmask) > node */
  650                               || rn_refines(netmask, tt->rn_mask)
  651                               || rn_lexobetter(netmask, tt->rn_mask))))
  652                                 break;
  653                 }
  654                 /*
  655                  * If the mask is not duplicated, we wouldn't
  656                  * find it among possible duplicate key entries
  657                  * anyway, so the above test doesn't hurt.
  658                  *
  659                  * We sort the masks for a duplicated key the same way as
  660                  * in a masklist -- most specific to least specific.
  661                  * This may require the unfortunate nuisance of relocating
  662                  * the head of the list.
  663                  *
  664                  * We also reverse, or doubly link the list through the
  665                  * parent pointer.
  666                  */
  667                 if (tt == saved_tt) {
  668                         struct  radix_node *xx = x;
  669                         /* link in at head of list */
  670                         (tt = treenodes)->rn_dupedkey = t;
  671                         tt->rn_flags = t->rn_flags;
  672                         tt->rn_parent = x = t->rn_parent;
  673                         t->rn_parent = tt;                      /* parent */
  674                         if (x->rn_left == t)
  675                                 x->rn_left = tt;
  676                         else
  677                                 x->rn_right = tt;
  678                         saved_tt = tt; x = xx;
  679                 } else {
  680                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  681                         t->rn_dupedkey = tt;
  682                         tt->rn_parent = t;                      /* parent */
  683                         if (tt->rn_dupedkey)                    /* parent */
  684                                 tt->rn_dupedkey->rn_parent = tt; /* parent */
  685                 }
  686 #ifdef RN_DEBUG
  687                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  688                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  689 #endif
  690                 tt->rn_key = (caddr_t) v;
  691                 tt->rn_bit = -1;
  692                 tt->rn_flags = RNF_ACTIVE;
  693         }
  694         /*
  695          * Put mask in tree.
  696          */
  697         if (netmask) {
  698                 tt->rn_mask = netmask;
  699                 tt->rn_bit = x->rn_bit;
  700                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  701         }
  702         t = saved_tt->rn_parent;
  703         if (keyduplicated)
  704                 goto on2;
  705         b_leaf = -1 - t->rn_bit;
  706         if (t->rn_right == saved_tt)
  707                 x = t->rn_left;
  708         else
  709                 x = t->rn_right;
  710         /* Promote general routes from below */
  711         if (x->rn_bit < 0) {
  712             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  713                 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
  714                         *mp = m = rn_new_radix_mask(x, 0);
  715                         if (m)
  716                                 mp = &m->rm_mklist;
  717                 }
  718         } else if (x->rn_mklist) {
  719                 /*
  720                  * Skip over masks whose index is > that of new node
  721                  */
  722                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  723                         if (m->rm_bit >= b_leaf)
  724                                 break;
  725                 t->rn_mklist = m; *mp = NULL;
  726         }
  727 on2:
  728         /* Add new route to highest possible ancestor's list */
  729         if ((netmask == 0) || (b > t->rn_bit ))
  730                 return (tt); /* can't lift at all */
  731         b_leaf = tt->rn_bit;
  732         do {
  733                 x = t;
  734                 t = t->rn_parent;
  735         } while (b <= t->rn_bit && x != top);
  736         /*
  737          * Search through routes associated with node to
  738          * insert new route according to index.
  739          * Need same criteria as when sorting dupedkeys to avoid
  740          * double loop on deletion.
  741          */
  742         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  743                 if (m->rm_bit < b_leaf)
  744                         continue;
  745                 if (m->rm_bit > b_leaf)
  746                         break;
  747                 if (m->rm_flags & RNF_NORMAL) {
  748                         mmask = m->rm_leaf->rn_mask;
  749                         if (tt->rn_flags & RNF_NORMAL) {
  750 #if !defined(RADIX_MPATH)
  751                             log(LOG_ERR,
  752                                 "Non-unique normal route, mask not entered\n");
  753 #endif
  754                                 return (tt);
  755                         }
  756                 } else
  757                         mmask = m->rm_mask;
  758                 if (mmask == netmask) {
  759                         m->rm_refs++;
  760                         tt->rn_mklist = m;
  761                         return (tt);
  762                 }
  763                 if (rn_refines(netmask, mmask)
  764                     || rn_lexobetter(netmask, mmask))
  765                         break;
  766         }
  767         *mp = rn_new_radix_mask(tt, *mp);
  768         return (tt);
  769 }
  770 
  771 struct radix_node *
  772 rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head)
  773 {
  774         struct radix_node *t, *p, *x, *tt;
  775         struct radix_mask *m, *saved_m, **mp;
  776         struct radix_node *dupedkey, *saved_tt, *top;
  777         caddr_t v, netmask;
  778         int b, head_off, vlen;
  779 
  780         v = v_arg;
  781         netmask = netmask_arg;
  782         x = head->rnh_treetop;
  783         tt = rn_search(v, x);
  784         head_off = x->rn_offset;
  785         vlen =  LEN(v);
  786         saved_tt = tt;
  787         top = x;
  788         if (tt == NULL ||
  789             bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  790                 return (0);
  791         /*
  792          * Delete our route from mask lists.
  793          */
  794         if (netmask) {
  795                 x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
  796                 if (x == NULL)
  797                         return (0);
  798                 netmask = x->rn_key;
  799                 while (tt->rn_mask != netmask)
  800                         if ((tt = tt->rn_dupedkey) == NULL)
  801                                 return (0);
  802         }
  803         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
  804                 goto on1;
  805         if (tt->rn_flags & RNF_NORMAL) {
  806                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  807                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  808                         return (0);  /* dangling ref could cause disaster */
  809                 }
  810         } else {
  811                 if (m->rm_mask != tt->rn_mask) {
  812                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  813                         goto on1;
  814                 }
  815                 if (--m->rm_refs >= 0)
  816                         goto on1;
  817         }
  818         b = -1 - tt->rn_bit;
  819         t = saved_tt->rn_parent;
  820         if (b > t->rn_bit)
  821                 goto on1; /* Wasn't lifted at all */
  822         do {
  823                 x = t;
  824                 t = t->rn_parent;
  825         } while (b <= t->rn_bit && x != top);
  826         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  827                 if (m == saved_m) {
  828                         *mp = m->rm_mklist;
  829                         R_Free(m);
  830                         break;
  831                 }
  832         if (m == NULL) {
  833                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  834                 if (tt->rn_flags & RNF_NORMAL)
  835                         return (0); /* Dangling ref to us */
  836         }
  837 on1:
  838         /*
  839          * Eliminate us from tree
  840          */
  841         if (tt->rn_flags & RNF_ROOT)
  842                 return (0);
  843 #ifdef RN_DEBUG
  844         /* Get us out of the creation list */
  845         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  846         if (t) t->rn_ybro = tt->rn_ybro;
  847 #endif
  848         t = tt->rn_parent;
  849         dupedkey = saved_tt->rn_dupedkey;
  850         if (dupedkey) {
  851                 /*
  852                  * Here, tt is the deletion target and
  853                  * saved_tt is the head of the dupekey chain.
  854                  */
  855                 if (tt == saved_tt) {
  856                         /* remove from head of chain */
  857                         x = dupedkey; x->rn_parent = t;
  858                         if (t->rn_left == tt)
  859                                 t->rn_left = x;
  860                         else
  861                                 t->rn_right = x;
  862                 } else {
  863                         /* find node in front of tt on the chain */
  864                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  865                                 p = p->rn_dupedkey;
  866                         if (p) {
  867                                 p->rn_dupedkey = tt->rn_dupedkey;
  868                                 if (tt->rn_dupedkey)            /* parent */
  869                                         tt->rn_dupedkey->rn_parent = p;
  870                                                                 /* parent */
  871                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  872                 }
  873                 t = tt + 1;
  874                 if  (t->rn_flags & RNF_ACTIVE) {
  875 #ifndef RN_DEBUG
  876                         *++x = *t;
  877                         p = t->rn_parent;
  878 #else
  879                         b = t->rn_info;
  880                         *++x = *t;
  881                         t->rn_info = b;
  882                         p = t->rn_parent;
  883 #endif
  884                         if (p->rn_left == t)
  885                                 p->rn_left = x;
  886                         else
  887                                 p->rn_right = x;
  888                         x->rn_left->rn_parent = x;
  889                         x->rn_right->rn_parent = x;
  890                 }
  891                 goto out;
  892         }
  893         if (t->rn_left == tt)
  894                 x = t->rn_right;
  895         else
  896                 x = t->rn_left;
  897         p = t->rn_parent;
  898         if (p->rn_right == t)
  899                 p->rn_right = x;
  900         else
  901                 p->rn_left = x;
  902         x->rn_parent = p;
  903         /*
  904          * Demote routes attached to us.
  905          */
  906         if (t->rn_mklist) {
  907                 if (x->rn_bit >= 0) {
  908                         for (mp = &x->rn_mklist; (m = *mp);)
  909                                 mp = &m->rm_mklist;
  910                         *mp = t->rn_mklist;
  911                 } else {
  912                         /* If there are any key,mask pairs in a sibling
  913                            duped-key chain, some subset will appear sorted
  914                            in the same order attached to our mklist */
  915                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  916                                 if (m == x->rn_mklist) {
  917                                         struct radix_mask *mm = m->rm_mklist;
  918                                         x->rn_mklist = 0;
  919                                         if (--(m->rm_refs) < 0)
  920                                                 R_Free(m);
  921                                         m = mm;
  922                                 }
  923                         if (m)
  924                                 log(LOG_ERR,
  925                                     "rn_delete: Orphaned Mask %p at %p\n",
  926                                     m, x);
  927                 }
  928         }
  929         /*
  930          * We may be holding an active internal node in the tree.
  931          */
  932         x = tt + 1;
  933         if (t != x) {
  934 #ifndef RN_DEBUG
  935                 *t = *x;
  936 #else
  937                 b = t->rn_info;
  938                 *t = *x;
  939                 t->rn_info = b;
  940 #endif
  941                 t->rn_left->rn_parent = t;
  942                 t->rn_right->rn_parent = t;
  943                 p = x->rn_parent;
  944                 if (p->rn_left == x)
  945                         p->rn_left = t;
  946                 else
  947                         p->rn_right = t;
  948         }
  949 out:
  950         tt->rn_flags &= ~RNF_ACTIVE;
  951         tt[1].rn_flags &= ~RNF_ACTIVE;
  952         return (tt);
  953 }
  954 
  955 /*
  956  * This is the same as rn_walktree() except for the parameters and the
  957  * exit.
  958  */
  959 int
  960 rn_walktree_from(struct radix_head *h, void *a, void *m,
  961     walktree_f_t *f, void *w)
  962 {
  963         int error;
  964         struct radix_node *base, *next;
  965         u_char *xa = (u_char *)a;
  966         u_char *xm = (u_char *)m;
  967         struct radix_node *rn, *last = NULL; /* shut up gcc */
  968         int stopping = 0;
  969         int lastb;
  970 
  971         KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
  972 
  973         /*
  974          * rn_search_m is sort-of-open-coded here. We cannot use the
  975          * function because we need to keep track of the last node seen.
  976          */
  977         /* printf("about to search\n"); */
  978         for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
  979                 last = rn;
  980                 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
  981                        rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
  982                 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
  983                         break;
  984                 }
  985                 if (rn->rn_bmask & xa[rn->rn_offset]) {
  986                         rn = rn->rn_right;
  987                 } else {
  988                         rn = rn->rn_left;
  989                 }
  990         }
  991         /* printf("done searching\n"); */
  992 
  993         /*
  994          * Two cases: either we stepped off the end of our mask,
  995          * in which case last == rn, or we reached a leaf, in which
  996          * case we want to start from the leaf.
  997          */
  998         if (rn->rn_bit >= 0)
  999                 rn = last;
 1000         lastb = last->rn_bit;
 1001 
 1002         /* printf("rn %p, lastb %d\n", rn, lastb);*/
 1003 
 1004         /*
 1005          * This gets complicated because we may delete the node
 1006          * while applying the function f to it, so we need to calculate
 1007          * the successor node in advance.
 1008          */
 1009         while (rn->rn_bit >= 0)
 1010                 rn = rn->rn_left;
 1011 
 1012         while (!stopping) {
 1013                 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
 1014                 base = rn;
 1015                 /* If at right child go back up, otherwise, go right */
 1016                 while (rn->rn_parent->rn_right == rn
 1017                        && !(rn->rn_flags & RNF_ROOT)) {
 1018                         rn = rn->rn_parent;
 1019 
 1020                         /* if went up beyond last, stop */
 1021                         if (rn->rn_bit <= lastb) {
 1022                                 stopping = 1;
 1023                                 /* printf("up too far\n"); */
 1024                                 /*
 1025                                  * XXX we should jump to the 'Process leaves'
 1026                                  * part, because the values of 'rn' and 'next'
 1027                                  * we compute will not be used. Not a big deal
 1028                                  * because this loop will terminate, but it is
 1029                                  * inefficient and hard to understand!
 1030                                  */
 1031                         }
 1032                 }
 1033                 
 1034                 /* 
 1035                  * At the top of the tree, no need to traverse the right
 1036                  * half, prevent the traversal of the entire tree in the
 1037                  * case of default route.
 1038                  */
 1039                 if (rn->rn_parent->rn_flags & RNF_ROOT)
 1040                         stopping = 1;
 1041 
 1042                 /* Find the next *leaf* since next node might vanish, too */
 1043                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1044                         rn = rn->rn_left;
 1045                 next = rn;
 1046                 /* Process leaves */
 1047                 while ((rn = base) != NULL) {
 1048                         base = rn->rn_dupedkey;
 1049                         /* printf("leaf %p\n", rn); */
 1050                         if (!(rn->rn_flags & RNF_ROOT)
 1051                             && (error = (*f)(rn, w)))
 1052                                 return (error);
 1053                 }
 1054                 rn = next;
 1055 
 1056                 if (rn->rn_flags & RNF_ROOT) {
 1057                         /* printf("root, stopping"); */
 1058                         stopping = 1;
 1059                 }
 1060 
 1061         }
 1062         return (0);
 1063 }
 1064 
 1065 int
 1066 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
 1067 {
 1068         int error;
 1069         struct radix_node *base, *next;
 1070         struct radix_node *rn = h->rnh_treetop;
 1071         /*
 1072          * This gets complicated because we may delete the node
 1073          * while applying the function f to it, so we need to calculate
 1074          * the successor node in advance.
 1075          */
 1076 
 1077         /* First time through node, go left */
 1078         while (rn->rn_bit >= 0)
 1079                 rn = rn->rn_left;
 1080         for (;;) {
 1081                 base = rn;
 1082                 /* If at right child go back up, otherwise, go right */
 1083                 while (rn->rn_parent->rn_right == rn
 1084                        && (rn->rn_flags & RNF_ROOT) == 0)
 1085                         rn = rn->rn_parent;
 1086                 /* Find the next *leaf* since next node might vanish, too */
 1087                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1088                         rn = rn->rn_left;
 1089                 next = rn;
 1090                 /* Process leaves */
 1091                 while ((rn = base)) {
 1092                         base = rn->rn_dupedkey;
 1093                         if (!(rn->rn_flags & RNF_ROOT)
 1094                             && (error = (*f)(rn, w)))
 1095                                 return (error);
 1096                 }
 1097                 rn = next;
 1098                 if (rn->rn_flags & RNF_ROOT)
 1099                         return (0);
 1100         }
 1101         /* NOTREACHED */
 1102 }
 1103 
 1104 /*
 1105  * Initialize an empty tree. This has 3 nodes, which are passed
 1106  * via base_nodes (in the order <left,root,right>) and are
 1107  * marked RNF_ROOT so they cannot be freed.
 1108  * The leaves have all-zero and all-one keys, with significant
 1109  * bits starting at 'off'.
 1110  */
 1111 void
 1112 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
 1113 {
 1114         struct radix_node *t, *tt, *ttt;
 1115 
 1116         t = rn_newpair(rn_zeros, off, base_nodes);
 1117         ttt = base_nodes + 2;
 1118         t->rn_right = ttt;
 1119         t->rn_parent = t;
 1120         tt = t->rn_left;        /* ... which in turn is base_nodes */
 1121         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1122         tt->rn_bit = -1 - off;
 1123         *ttt = *tt;
 1124         ttt->rn_key = rn_ones;
 1125 
 1126         rh->rnh_treetop = t;
 1127 }
 1128 
 1129 static void
 1130 rn_detachhead_internal(struct radix_head *head)
 1131 {
 1132 
 1133         KASSERT((head != NULL),
 1134             ("%s: head already freed", __func__));
 1135         
 1136         /* Free <left,root,right> nodes. */
 1137         R_Free(head);
 1138 }
 1139 
 1140 /* Functions used by 'struct radix_node_head' users */
 1141 
 1142 int
 1143 rn_inithead(void **head, int off)
 1144 {
 1145         struct radix_node_head *rnh;
 1146         struct radix_mask_head *rmh;
 1147 
 1148         rnh = *head;
 1149         rmh = NULL;
 1150 
 1151         if (*head != NULL)
 1152                 return (1);
 1153 
 1154         R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
 1155         R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
 1156         if (rnh == NULL || rmh == NULL) {
 1157                 if (rnh != NULL)
 1158                         R_Free(rnh);
 1159                 if (rmh != NULL)
 1160                         R_Free(rmh);
 1161                 return (0);
 1162         }
 1163 
 1164         /* Init trees */
 1165         rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
 1166         rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
 1167         *head = rnh;
 1168         rnh->rh.rnh_masks = rmh;
 1169 
 1170         /* Finally, set base callbacks */
 1171         rnh->rnh_addaddr = rn_addroute;
 1172         rnh->rnh_deladdr = rn_delete;
 1173         rnh->rnh_matchaddr = rn_match;
 1174         rnh->rnh_lookup = rn_lookup;
 1175         rnh->rnh_walktree = rn_walktree;
 1176         rnh->rnh_walktree_from = rn_walktree_from;
 1177 
 1178         return (1);
 1179 }
 1180 
 1181 static int
 1182 rn_freeentry(struct radix_node *rn, void *arg)
 1183 {
 1184         struct radix_head * const rnh = arg;
 1185         struct radix_node *x;
 1186 
 1187         x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
 1188         if (x != NULL)
 1189                 R_Free(x);
 1190         return (0);
 1191 }
 1192 
 1193 int
 1194 rn_detachhead(void **head)
 1195 {
 1196         struct radix_node_head *rnh;
 1197 
 1198         KASSERT((head != NULL && *head != NULL),
 1199             ("%s: head already freed", __func__));
 1200 
 1201         rnh = (struct radix_node_head *)(*head);
 1202 
 1203         rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
 1204         rn_detachhead_internal(&rnh->rh.rnh_masks->head);
 1205         rn_detachhead_internal(&rnh->rh);
 1206 
 1207         *head = NULL;
 1208 
 1209         return (1);
 1210 }
 1211 

Cache object: e154fe9decb34e1913bb4a582d056654


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.