The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1988, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)radix.c     8.5 (Berkeley) 5/19/95
   32  * $FreeBSD$
   33  */
   34 
   35 /*
   36  * Routines to build and maintain radix trees for routing lookups.
   37  */
   38 #include <sys/param.h>
   39 #ifdef  _KERNEL
   40 #include <sys/lock.h>
   41 #include <sys/mutex.h>
   42 #include <sys/rmlock.h>
   43 #include <sys/systm.h>
   44 #include <sys/malloc.h>
   45 #include <sys/syslog.h>
   46 #include <net/radix.h>
   47 #include "opt_mpath.h"
   48 #ifdef RADIX_MPATH
   49 #include <net/radix_mpath.h>
   50 #endif
   51 #else /* !_KERNEL */
   52 #include <stdio.h>
   53 #include <strings.h>
   54 #include <stdlib.h>
   55 #define log(x, arg...)  fprintf(stderr, ## arg)
   56 #define panic(x)        fprintf(stderr, "PANIC: %s", x), exit(1)
   57 #define min(a, b) ((a) < (b) ? (a) : (b) )
   58 #include <net/radix.h>
   59 #endif /* !_KERNEL */
   60 
   61 static struct radix_node
   62          *rn_insert(void *, struct radix_head *, int *,
   63              struct radix_node [2]),
   64          *rn_newpair(void *, int, struct radix_node[2]),
   65          *rn_search(void *, struct radix_node *),
   66          *rn_search_m(void *, struct radix_node *, void *);
   67 static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int);
   68 
   69 static void rn_detachhead_internal(struct radix_head *);
   70 
   71 #define RADIX_MAX_KEY_LEN       32
   72 
   73 static char rn_zeros[RADIX_MAX_KEY_LEN];
   74 static char rn_ones[RADIX_MAX_KEY_LEN] = {
   75         -1, -1, -1, -1, -1, -1, -1, -1,
   76         -1, -1, -1, -1, -1, -1, -1, -1,
   77         -1, -1, -1, -1, -1, -1, -1, -1,
   78         -1, -1, -1, -1, -1, -1, -1, -1,
   79 };
   80 
   81 
   82 static int      rn_lexobetter(void *m_arg, void *n_arg);
   83 static struct radix_mask *
   84                 rn_new_radix_mask(struct radix_node *tt,
   85                     struct radix_mask *next);
   86 static int      rn_satisfies_leaf(char *trial, struct radix_node *leaf,
   87                     int skip);
   88 
   89 /*
   90  * The data structure for the keys is a radix tree with one way
   91  * branching removed.  The index rn_bit at an internal node n represents a bit
   92  * position to be tested.  The tree is arranged so that all descendants
   93  * of a node n have keys whose bits all agree up to position rn_bit - 1.
   94  * (We say the index of n is rn_bit.)
   95  *
   96  * There is at least one descendant which has a one bit at position rn_bit,
   97  * and at least one with a zero there.
   98  *
   99  * A route is determined by a pair of key and mask.  We require that the
  100  * bit-wise logical and of the key and mask to be the key.
  101  * We define the index of a route to associated with the mask to be
  102  * the first bit number in the mask where 0 occurs (with bit number 0
  103  * representing the highest order bit).
  104  *
  105  * We say a mask is normal if every bit is 0, past the index of the mask.
  106  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
  107  * and m is a normal mask, then the route applies to every descendant of n.
  108  * If the index(m) < rn_bit, this implies the trailing last few bits of k
  109  * before bit b are all 0, (and hence consequently true of every descendant
  110  * of n), so the route applies to all descendants of the node as well.
  111  *
  112  * Similar logic shows that a non-normal mask m such that
  113  * index(m) <= index(n) could potentially apply to many children of n.
  114  * Thus, for each non-host route, we attach its mask to a list at an internal
  115  * node as high in the tree as we can go.
  116  *
  117  * The present version of the code makes use of normal routes in short-
  118  * circuiting an explict mask and compare operation when testing whether
  119  * a key satisfies a normal route, and also in remembering the unique leaf
  120  * that governs a subtree.
  121  */
  122 
  123 /*
  124  * Most of the functions in this code assume that the key/mask arguments
  125  * are sockaddr-like structures, where the first byte is an u_char
  126  * indicating the size of the entire structure.
  127  *
  128  * To make the assumption more explicit, we use the LEN() macro to access
  129  * this field. It is safe to pass an expression with side effects
  130  * to LEN() as the argument is evaluated only once.
  131  * We cast the result to int as this is the dominant usage.
  132  */
  133 #define LEN(x) ( (int) (*(const u_char *)(x)) )
  134 
  135 /*
  136  * XXX THIS NEEDS TO BE FIXED
  137  * In the code, pointers to keys and masks are passed as either
  138  * 'void *' (because callers use to pass pointers of various kinds), or
  139  * 'caddr_t' (which is fine for pointer arithmetics, but not very
  140  * clean when you dereference it to access data). Furthermore, caddr_t
  141  * is really 'char *', while the natural type to operate on keys and
  142  * masks would be 'u_char'. This mismatch require a lot of casts and
  143  * intermediate variables to adapt types that clutter the code.
  144  */
  145 
  146 /*
  147  * Search a node in the tree matching the key.
  148  */
  149 static struct radix_node *
  150 rn_search(void *v_arg, struct radix_node *head)
  151 {
  152         struct radix_node *x;
  153         caddr_t v;
  154 
  155         for (x = head, v = v_arg; x->rn_bit >= 0;) {
  156                 if (x->rn_bmask & v[x->rn_offset])
  157                         x = x->rn_right;
  158                 else
  159                         x = x->rn_left;
  160         }
  161         return (x);
  162 }
  163 
  164 /*
  165  * Same as above, but with an additional mask.
  166  * XXX note this function is used only once.
  167  */
  168 static struct radix_node *
  169 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
  170 {
  171         struct radix_node *x;
  172         caddr_t v = v_arg, m = m_arg;
  173 
  174         for (x = head; x->rn_bit >= 0;) {
  175                 if ((x->rn_bmask & m[x->rn_offset]) &&
  176                     (x->rn_bmask & v[x->rn_offset]))
  177                         x = x->rn_right;
  178                 else
  179                         x = x->rn_left;
  180         }
  181         return (x);
  182 }
  183 
  184 int
  185 rn_refines(void *m_arg, void *n_arg)
  186 {
  187         caddr_t m = m_arg, n = n_arg;
  188         caddr_t lim, lim2 = lim = n + LEN(n);
  189         int longer = LEN(n++) - LEN(m++);
  190         int masks_are_equal = 1;
  191 
  192         if (longer > 0)
  193                 lim -= longer;
  194         while (n < lim) {
  195                 if (*n & ~(*m))
  196                         return (0);
  197                 if (*n++ != *m++)
  198                         masks_are_equal = 0;
  199         }
  200         while (n < lim2)
  201                 if (*n++)
  202                         return (0);
  203         if (masks_are_equal && (longer < 0))
  204                 for (lim2 = m - longer; m < lim2; )
  205                         if (*m++)
  206                                 return (1);
  207         return (!masks_are_equal);
  208 }
  209 
  210 /*
  211  * Search for exact match in given @head.
  212  * Assume host bits are cleared in @v_arg if @m_arg is not NULL
  213  * Note that prefixes with /32 or /128 masks are treated differently
  214  * from host routes.
  215  */
  216 struct radix_node *
  217 rn_lookup(void *v_arg, void *m_arg, struct radix_head *head)
  218 {
  219         struct radix_node *x;
  220         caddr_t netmask;
  221 
  222         if (m_arg != NULL) {
  223                 /*
  224                  * Most common case: search exact prefix/mask
  225                  */
  226                 x = rn_addmask(m_arg, head->rnh_masks, 1,
  227                     head->rnh_treetop->rn_offset);
  228                 if (x == NULL)
  229                         return (NULL);
  230                 netmask = x->rn_key;
  231 
  232                 x = rn_match(v_arg, head);
  233 
  234                 while (x != NULL && x->rn_mask != netmask)
  235                         x = x->rn_dupedkey;
  236 
  237                 return (x);
  238         }
  239 
  240         /*
  241          * Search for host address.
  242          */
  243         if ((x = rn_match(v_arg, head)) == NULL)
  244                 return (NULL);
  245 
  246         /* Check if found key is the same */
  247         if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
  248                 return (NULL);
  249 
  250         /* Check if this is not host route */
  251         if (x->rn_mask != NULL)
  252                 return (NULL);
  253 
  254         return (x);
  255 }
  256 
  257 static int
  258 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
  259 {
  260         char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  261         char *cplim;
  262         int length = min(LEN(cp), LEN(cp2));
  263 
  264         if (cp3 == NULL)
  265                 cp3 = rn_ones;
  266         else
  267                 length = min(length, LEN(cp3));
  268         cplim = cp + length; cp3 += skip; cp2 += skip;
  269         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  270                 if ((*cp ^ *cp2) & *cp3)
  271                         return (0);
  272         return (1);
  273 }
  274 
  275 /*
  276  * Search for longest-prefix match in given @head
  277  */
  278 struct radix_node *
  279 rn_match(void *v_arg, struct radix_head *head)
  280 {
  281         caddr_t v = v_arg;
  282         struct radix_node *t = head->rnh_treetop, *x;
  283         caddr_t cp = v, cp2;
  284         caddr_t cplim;
  285         struct radix_node *saved_t, *top = t;
  286         int off = t->rn_offset, vlen = LEN(cp), matched_off;
  287         int test, b, rn_bit;
  288 
  289         /*
  290          * Open code rn_search(v, top) to avoid overhead of extra
  291          * subroutine call.
  292          */
  293         for (; t->rn_bit >= 0; ) {
  294                 if (t->rn_bmask & cp[t->rn_offset])
  295                         t = t->rn_right;
  296                 else
  297                         t = t->rn_left;
  298         }
  299         /*
  300          * See if we match exactly as a host destination
  301          * or at least learn how many bits match, for normal mask finesse.
  302          *
  303          * It doesn't hurt us to limit how many bytes to check
  304          * to the length of the mask, since if it matches we had a genuine
  305          * match and the leaf we have is the most specific one anyway;
  306          * if it didn't match with a shorter length it would fail
  307          * with a long one.  This wins big for class B&C netmasks which
  308          * are probably the most common case...
  309          */
  310         if (t->rn_mask)
  311                 vlen = *(u_char *)t->rn_mask;
  312         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  313         for (; cp < cplim; cp++, cp2++)
  314                 if (*cp != *cp2)
  315                         goto on1;
  316         /*
  317          * This extra grot is in case we are explicitly asked
  318          * to look up the default.  Ugh!
  319          *
  320          * Never return the root node itself, it seems to cause a
  321          * lot of confusion.
  322          */
  323         if (t->rn_flags & RNF_ROOT)
  324                 t = t->rn_dupedkey;
  325         return (t);
  326 on1:
  327         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  328         for (b = 7; (test >>= 1) > 0;)
  329                 b--;
  330         matched_off = cp - v;
  331         b += matched_off << 3;
  332         rn_bit = -1 - b;
  333         /*
  334          * If there is a host route in a duped-key chain, it will be first.
  335          */
  336         if ((saved_t = t)->rn_mask == 0)
  337                 t = t->rn_dupedkey;
  338         for (; t; t = t->rn_dupedkey)
  339                 /*
  340                  * Even if we don't match exactly as a host,
  341                  * we may match if the leaf we wound up at is
  342                  * a route to a net.
  343                  */
  344                 if (t->rn_flags & RNF_NORMAL) {
  345                         if (rn_bit <= t->rn_bit)
  346                                 return (t);
  347                 } else if (rn_satisfies_leaf(v, t, matched_off))
  348                                 return (t);
  349         t = saved_t;
  350         /* start searching up the tree */
  351         do {
  352                 struct radix_mask *m;
  353                 t = t->rn_parent;
  354                 m = t->rn_mklist;
  355                 /*
  356                  * If non-contiguous masks ever become important
  357                  * we can restore the masking and open coding of
  358                  * the search and satisfaction test and put the
  359                  * calculation of "off" back before the "do".
  360                  */
  361                 while (m) {
  362                         if (m->rm_flags & RNF_NORMAL) {
  363                                 if (rn_bit <= m->rm_bit)
  364                                         return (m->rm_leaf);
  365                         } else {
  366                                 off = min(t->rn_offset, matched_off);
  367                                 x = rn_search_m(v, t, m->rm_mask);
  368                                 while (x && x->rn_mask != m->rm_mask)
  369                                         x = x->rn_dupedkey;
  370                                 if (x && rn_satisfies_leaf(v, x, off))
  371                                         return (x);
  372                         }
  373                         m = m->rm_mklist;
  374                 }
  375         } while (t != top);
  376         return (0);
  377 }
  378 
  379 #ifdef RN_DEBUG
  380 int     rn_nodenum;
  381 struct  radix_node *rn_clist;
  382 int     rn_saveinfo;
  383 int     rn_debug =  1;
  384 #endif
  385 
  386 /*
  387  * Whenever we add a new leaf to the tree, we also add a parent node,
  388  * so we allocate them as an array of two elements: the first one must be
  389  * the leaf (see RNTORT() in route.c), the second one is the parent.
  390  * This routine initializes the relevant fields of the nodes, so that
  391  * the leaf is the left child of the parent node, and both nodes have
  392  * (almost) all all fields filled as appropriate.
  393  * (XXX some fields are left unset, see the '#if 0' section).
  394  * The function returns a pointer to the parent node.
  395  */
  396 
  397 static struct radix_node *
  398 rn_newpair(void *v, int b, struct radix_node nodes[2])
  399 {
  400         struct radix_node *tt = nodes, *t = tt + 1;
  401         t->rn_bit = b;
  402         t->rn_bmask = 0x80 >> (b & 7);
  403         t->rn_left = tt;
  404         t->rn_offset = b >> 3;
  405 
  406 #if 0  /* XXX perhaps we should fill these fields as well. */
  407         t->rn_parent = t->rn_right = NULL;
  408 
  409         tt->rn_mask = NULL;
  410         tt->rn_dupedkey = NULL;
  411         tt->rn_bmask = 0;
  412 #endif
  413         tt->rn_bit = -1;
  414         tt->rn_key = (caddr_t)v;
  415         tt->rn_parent = t;
  416         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  417         tt->rn_mklist = t->rn_mklist = 0;
  418 #ifdef RN_DEBUG
  419         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  420         tt->rn_twin = t;
  421         tt->rn_ybro = rn_clist;
  422         rn_clist = tt;
  423 #endif
  424         return (t);
  425 }
  426 
  427 static struct radix_node *
  428 rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
  429     struct radix_node nodes[2])
  430 {
  431         caddr_t v = v_arg;
  432         struct radix_node *top = head->rnh_treetop;
  433         int head_off = top->rn_offset, vlen = LEN(v);
  434         struct radix_node *t = rn_search(v_arg, top);
  435         caddr_t cp = v + head_off;
  436         int b;
  437         struct radix_node *p, *tt, *x;
  438         /*
  439          * Find first bit at which v and t->rn_key differ
  440          */
  441         caddr_t cp2 = t->rn_key + head_off;
  442         int cmp_res;
  443         caddr_t cplim = v + vlen;
  444 
  445         while (cp < cplim)
  446                 if (*cp2++ != *cp++)
  447                         goto on1;
  448         *dupentry = 1;
  449         return (t);
  450 on1:
  451         *dupentry = 0;
  452         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  453         for (b = (cp - v) << 3; cmp_res; b--)
  454                 cmp_res >>= 1;
  455 
  456         x = top;
  457         cp = v;
  458         do {
  459                 p = x;
  460                 if (cp[x->rn_offset] & x->rn_bmask)
  461                         x = x->rn_right;
  462                 else
  463                         x = x->rn_left;
  464         } while (b > (unsigned) x->rn_bit);
  465                                 /* x->rn_bit < b && x->rn_bit >= 0 */
  466 #ifdef RN_DEBUG
  467         if (rn_debug)
  468                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  469 #endif
  470         t = rn_newpair(v_arg, b, nodes); 
  471         tt = t->rn_left;
  472         if ((cp[p->rn_offset] & p->rn_bmask) == 0)
  473                 p->rn_left = t;
  474         else
  475                 p->rn_right = t;
  476         x->rn_parent = t;
  477         t->rn_parent = p; /* frees x, p as temp vars below */
  478         if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
  479                 t->rn_right = x;
  480         } else {
  481                 t->rn_right = tt;
  482                 t->rn_left = x;
  483         }
  484 #ifdef RN_DEBUG
  485         if (rn_debug)
  486                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  487 #endif
  488         return (tt);
  489 }
  490 
  491 struct radix_node *
  492 rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
  493 {
  494         unsigned char *netmask = n_arg;
  495         unsigned char *cp, *cplim;
  496         struct radix_node *x;
  497         int b = 0, mlen, j;
  498         int maskduplicated, isnormal;
  499         struct radix_node *saved_x;
  500         unsigned char addmask_key[RADIX_MAX_KEY_LEN];
  501 
  502         if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
  503                 mlen = RADIX_MAX_KEY_LEN;
  504         if (skip == 0)
  505                 skip = 1;
  506         if (mlen <= skip)
  507                 return (maskhead->mask_nodes);
  508 
  509         bzero(addmask_key, RADIX_MAX_KEY_LEN);
  510         if (skip > 1)
  511                 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  512         bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  513         /*
  514          * Trim trailing zeroes.
  515          */
  516         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  517                 cp--;
  518         mlen = cp - addmask_key;
  519         if (mlen <= skip)
  520                 return (maskhead->mask_nodes);
  521         *addmask_key = mlen;
  522         x = rn_search(addmask_key, maskhead->head.rnh_treetop);
  523         if (bcmp(addmask_key, x->rn_key, mlen) != 0)
  524                 x = NULL;
  525         if (x || search)
  526                 return (x);
  527         R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
  528         if ((saved_x = x) == NULL)
  529                 return (0);
  530         netmask = cp = (unsigned char *)(x + 2);
  531         bcopy(addmask_key, cp, mlen);
  532         x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
  533         if (maskduplicated) {
  534                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  535                 R_Free(saved_x);
  536                 return (x);
  537         }
  538         /*
  539          * Calculate index of mask, and check for normalcy.
  540          * First find the first byte with a 0 bit, then if there are
  541          * more bits left (remember we already trimmed the trailing 0's),
  542          * the bits should be contiguous, otherwise we have got
  543          * a non-contiguous mask.
  544          */
  545 #define CONTIG(_c)      (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
  546         cplim = netmask + mlen;
  547         isnormal = 1;
  548         for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
  549                 cp++;
  550         if (cp != cplim) {
  551                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  552                         b++;
  553                 if (!CONTIG(*cp) || cp != (cplim - 1))
  554                         isnormal = 0;
  555         }
  556         b += (cp - netmask) << 3;
  557         x->rn_bit = -1 - b;
  558         if (isnormal)
  559                 x->rn_flags |= RNF_NORMAL;
  560         return (x);
  561 }
  562 
  563 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  564 rn_lexobetter(void *m_arg, void *n_arg)
  565 {
  566         u_char *mp = m_arg, *np = n_arg, *lim;
  567 
  568         if (LEN(mp) > LEN(np))
  569                 return (1);  /* not really, but need to check longer one first */
  570         if (LEN(mp) == LEN(np))
  571                 for (lim = mp + LEN(mp); mp < lim;)
  572                         if (*mp++ > *np++)
  573                                 return (1);
  574         return (0);
  575 }
  576 
  577 static struct radix_mask *
  578 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
  579 {
  580         struct radix_mask *m;
  581 
  582         R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
  583         if (m == NULL) {
  584                 log(LOG_ERR, "Failed to allocate route mask\n");
  585                 return (0);
  586         }
  587         bzero(m, sizeof(*m));
  588         m->rm_bit = tt->rn_bit;
  589         m->rm_flags = tt->rn_flags;
  590         if (tt->rn_flags & RNF_NORMAL)
  591                 m->rm_leaf = tt;
  592         else
  593                 m->rm_mask = tt->rn_mask;
  594         m->rm_mklist = next;
  595         tt->rn_mklist = m;
  596         return (m);
  597 }
  598 
  599 struct radix_node *
  600 rn_addroute(void *v_arg, void *n_arg, struct radix_head *head,
  601     struct radix_node treenodes[2])
  602 {
  603         caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
  604         struct radix_node *t, *x = NULL, *tt;
  605         struct radix_node *saved_tt, *top = head->rnh_treetop;
  606         short b = 0, b_leaf = 0;
  607         int keyduplicated;
  608         caddr_t mmask;
  609         struct radix_mask *m, **mp;
  610 
  611         /*
  612          * In dealing with non-contiguous masks, there may be
  613          * many different routes which have the same mask.
  614          * We will find it useful to have a unique pointer to
  615          * the mask to speed avoiding duplicate references at
  616          * nodes and possibly save time in calculating indices.
  617          */
  618         if (netmask)  {
  619                 x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset);
  620                 if (x == NULL)
  621                         return (0);
  622                 b_leaf = x->rn_bit;
  623                 b = -1 - x->rn_bit;
  624                 netmask = x->rn_key;
  625         }
  626         /*
  627          * Deal with duplicated keys: attach node to previous instance
  628          */
  629         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  630         if (keyduplicated) {
  631                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  632 #ifdef RADIX_MPATH
  633                         /* permit multipath, if enabled for the family */
  634                         if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
  635                                 /*
  636                                  * go down to the end of multipaths, so that
  637                                  * new entry goes into the end of rn_dupedkey
  638                                  * chain.
  639                                  */
  640                                 do {
  641                                         t = tt;
  642                                         tt = tt->rn_dupedkey;
  643                                 } while (tt && t->rn_mask == tt->rn_mask);
  644                                 break;
  645                         }
  646 #endif
  647                         if (tt->rn_mask == netmask)
  648                                 return (0);
  649                         if (netmask == 0 ||
  650                             (tt->rn_mask &&
  651                              ((b_leaf < tt->rn_bit) /* index(netmask) > node */
  652                               || rn_refines(netmask, tt->rn_mask)
  653                               || rn_lexobetter(netmask, tt->rn_mask))))
  654                                 break;
  655                 }
  656                 /*
  657                  * If the mask is not duplicated, we wouldn't
  658                  * find it among possible duplicate key entries
  659                  * anyway, so the above test doesn't hurt.
  660                  *
  661                  * We sort the masks for a duplicated key the same way as
  662                  * in a masklist -- most specific to least specific.
  663                  * This may require the unfortunate nuisance of relocating
  664                  * the head of the list.
  665                  *
  666                  * We also reverse, or doubly link the list through the
  667                  * parent pointer.
  668                  */
  669                 if (tt == saved_tt) {
  670                         struct  radix_node *xx = x;
  671                         /* link in at head of list */
  672                         (tt = treenodes)->rn_dupedkey = t;
  673                         tt->rn_flags = t->rn_flags;
  674                         tt->rn_parent = x = t->rn_parent;
  675                         t->rn_parent = tt;                      /* parent */
  676                         if (x->rn_left == t)
  677                                 x->rn_left = tt;
  678                         else
  679                                 x->rn_right = tt;
  680                         saved_tt = tt; x = xx;
  681                 } else {
  682                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  683                         t->rn_dupedkey = tt;
  684                         tt->rn_parent = t;                      /* parent */
  685                         if (tt->rn_dupedkey)                    /* parent */
  686                                 tt->rn_dupedkey->rn_parent = tt; /* parent */
  687                 }
  688 #ifdef RN_DEBUG
  689                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  690                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  691 #endif
  692                 tt->rn_key = (caddr_t) v;
  693                 tt->rn_bit = -1;
  694                 tt->rn_flags = RNF_ACTIVE;
  695         }
  696         /*
  697          * Put mask in tree.
  698          */
  699         if (netmask) {
  700                 tt->rn_mask = netmask;
  701                 tt->rn_bit = x->rn_bit;
  702                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  703         }
  704         t = saved_tt->rn_parent;
  705         if (keyduplicated)
  706                 goto on2;
  707         b_leaf = -1 - t->rn_bit;
  708         if (t->rn_right == saved_tt)
  709                 x = t->rn_left;
  710         else
  711                 x = t->rn_right;
  712         /* Promote general routes from below */
  713         if (x->rn_bit < 0) {
  714             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  715                 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
  716                         *mp = m = rn_new_radix_mask(x, 0);
  717                         if (m)
  718                                 mp = &m->rm_mklist;
  719                 }
  720         } else if (x->rn_mklist) {
  721                 /*
  722                  * Skip over masks whose index is > that of new node
  723                  */
  724                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  725                         if (m->rm_bit >= b_leaf)
  726                                 break;
  727                 t->rn_mklist = m; *mp = NULL;
  728         }
  729 on2:
  730         /* Add new route to highest possible ancestor's list */
  731         if ((netmask == 0) || (b > t->rn_bit ))
  732                 return (tt); /* can't lift at all */
  733         b_leaf = tt->rn_bit;
  734         do {
  735                 x = t;
  736                 t = t->rn_parent;
  737         } while (b <= t->rn_bit && x != top);
  738         /*
  739          * Search through routes associated with node to
  740          * insert new route according to index.
  741          * Need same criteria as when sorting dupedkeys to avoid
  742          * double loop on deletion.
  743          */
  744         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  745                 if (m->rm_bit < b_leaf)
  746                         continue;
  747                 if (m->rm_bit > b_leaf)
  748                         break;
  749                 if (m->rm_flags & RNF_NORMAL) {
  750                         mmask = m->rm_leaf->rn_mask;
  751                         if (tt->rn_flags & RNF_NORMAL) {
  752 #if !defined(RADIX_MPATH)
  753                             log(LOG_ERR,
  754                                 "Non-unique normal route, mask not entered\n");
  755 #endif
  756                                 return (tt);
  757                         }
  758                 } else
  759                         mmask = m->rm_mask;
  760                 if (mmask == netmask) {
  761                         m->rm_refs++;
  762                         tt->rn_mklist = m;
  763                         return (tt);
  764                 }
  765                 if (rn_refines(netmask, mmask)
  766                     || rn_lexobetter(netmask, mmask))
  767                         break;
  768         }
  769         *mp = rn_new_radix_mask(tt, *mp);
  770         return (tt);
  771 }
  772 
  773 struct radix_node *
  774 rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head)
  775 {
  776         struct radix_node *t, *p, *x, *tt;
  777         struct radix_mask *m, *saved_m, **mp;
  778         struct radix_node *dupedkey, *saved_tt, *top;
  779         caddr_t v, netmask;
  780         int b, head_off, vlen;
  781 
  782         v = v_arg;
  783         netmask = netmask_arg;
  784         x = head->rnh_treetop;
  785         tt = rn_search(v, x);
  786         head_off = x->rn_offset;
  787         vlen =  LEN(v);
  788         saved_tt = tt;
  789         top = x;
  790         if (tt == NULL ||
  791             bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  792                 return (0);
  793         /*
  794          * Delete our route from mask lists.
  795          */
  796         if (netmask) {
  797                 x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
  798                 if (x == NULL)
  799                         return (0);
  800                 netmask = x->rn_key;
  801                 while (tt->rn_mask != netmask)
  802                         if ((tt = tt->rn_dupedkey) == NULL)
  803                                 return (0);
  804         }
  805         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
  806                 goto on1;
  807         if (tt->rn_flags & RNF_NORMAL) {
  808                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  809                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  810                         return (0);  /* dangling ref could cause disaster */
  811                 }
  812         } else {
  813                 if (m->rm_mask != tt->rn_mask) {
  814                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  815                         goto on1;
  816                 }
  817                 if (--m->rm_refs >= 0)
  818                         goto on1;
  819         }
  820         b = -1 - tt->rn_bit;
  821         t = saved_tt->rn_parent;
  822         if (b > t->rn_bit)
  823                 goto on1; /* Wasn't lifted at all */
  824         do {
  825                 x = t;
  826                 t = t->rn_parent;
  827         } while (b <= t->rn_bit && x != top);
  828         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  829                 if (m == saved_m) {
  830                         *mp = m->rm_mklist;
  831                         R_Free(m);
  832                         break;
  833                 }
  834         if (m == NULL) {
  835                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  836                 if (tt->rn_flags & RNF_NORMAL)
  837                         return (0); /* Dangling ref to us */
  838         }
  839 on1:
  840         /*
  841          * Eliminate us from tree
  842          */
  843         if (tt->rn_flags & RNF_ROOT)
  844                 return (0);
  845 #ifdef RN_DEBUG
  846         /* Get us out of the creation list */
  847         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  848         if (t) t->rn_ybro = tt->rn_ybro;
  849 #endif
  850         t = tt->rn_parent;
  851         dupedkey = saved_tt->rn_dupedkey;
  852         if (dupedkey) {
  853                 /*
  854                  * Here, tt is the deletion target and
  855                  * saved_tt is the head of the dupekey chain.
  856                  */
  857                 if (tt == saved_tt) {
  858                         /* remove from head of chain */
  859                         x = dupedkey; x->rn_parent = t;
  860                         if (t->rn_left == tt)
  861                                 t->rn_left = x;
  862                         else
  863                                 t->rn_right = x;
  864                 } else {
  865                         /* find node in front of tt on the chain */
  866                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  867                                 p = p->rn_dupedkey;
  868                         if (p) {
  869                                 p->rn_dupedkey = tt->rn_dupedkey;
  870                                 if (tt->rn_dupedkey)            /* parent */
  871                                         tt->rn_dupedkey->rn_parent = p;
  872                                                                 /* parent */
  873                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  874                 }
  875                 t = tt + 1;
  876                 if  (t->rn_flags & RNF_ACTIVE) {
  877 #ifndef RN_DEBUG
  878                         *++x = *t;
  879                         p = t->rn_parent;
  880 #else
  881                         b = t->rn_info;
  882                         *++x = *t;
  883                         t->rn_info = b;
  884                         p = t->rn_parent;
  885 #endif
  886                         if (p->rn_left == t)
  887                                 p->rn_left = x;
  888                         else
  889                                 p->rn_right = x;
  890                         x->rn_left->rn_parent = x;
  891                         x->rn_right->rn_parent = x;
  892                 }
  893                 goto out;
  894         }
  895         if (t->rn_left == tt)
  896                 x = t->rn_right;
  897         else
  898                 x = t->rn_left;
  899         p = t->rn_parent;
  900         if (p->rn_right == t)
  901                 p->rn_right = x;
  902         else
  903                 p->rn_left = x;
  904         x->rn_parent = p;
  905         /*
  906          * Demote routes attached to us.
  907          */
  908         if (t->rn_mklist) {
  909                 if (x->rn_bit >= 0) {
  910                         for (mp = &x->rn_mklist; (m = *mp);)
  911                                 mp = &m->rm_mklist;
  912                         *mp = t->rn_mklist;
  913                 } else {
  914                         /* If there are any key,mask pairs in a sibling
  915                            duped-key chain, some subset will appear sorted
  916                            in the same order attached to our mklist */
  917                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  918                                 if (m == x->rn_mklist) {
  919                                         struct radix_mask *mm = m->rm_mklist;
  920                                         x->rn_mklist = 0;
  921                                         if (--(m->rm_refs) < 0)
  922                                                 R_Free(m);
  923                                         m = mm;
  924                                 }
  925                         if (m)
  926                                 log(LOG_ERR,
  927                                     "rn_delete: Orphaned Mask %p at %p\n",
  928                                     m, x);
  929                 }
  930         }
  931         /*
  932          * We may be holding an active internal node in the tree.
  933          */
  934         x = tt + 1;
  935         if (t != x) {
  936 #ifndef RN_DEBUG
  937                 *t = *x;
  938 #else
  939                 b = t->rn_info;
  940                 *t = *x;
  941                 t->rn_info = b;
  942 #endif
  943                 t->rn_left->rn_parent = t;
  944                 t->rn_right->rn_parent = t;
  945                 p = x->rn_parent;
  946                 if (p->rn_left == x)
  947                         p->rn_left = t;
  948                 else
  949                         p->rn_right = t;
  950         }
  951 out:
  952         tt->rn_flags &= ~RNF_ACTIVE;
  953         tt[1].rn_flags &= ~RNF_ACTIVE;
  954         return (tt);
  955 }
  956 
  957 /*
  958  * This is the same as rn_walktree() except for the parameters and the
  959  * exit.
  960  */
  961 int
  962 rn_walktree_from(struct radix_head *h, void *a, void *m,
  963     walktree_f_t *f, void *w)
  964 {
  965         int error;
  966         struct radix_node *base, *next;
  967         u_char *xa = (u_char *)a;
  968         u_char *xm = (u_char *)m;
  969         struct radix_node *rn, *last = NULL; /* shut up gcc */
  970         int stopping = 0;
  971         int lastb;
  972 
  973         KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
  974 
  975         /*
  976          * rn_search_m is sort-of-open-coded here. We cannot use the
  977          * function because we need to keep track of the last node seen.
  978          */
  979         /* printf("about to search\n"); */
  980         for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
  981                 last = rn;
  982                 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
  983                        rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
  984                 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
  985                         break;
  986                 }
  987                 if (rn->rn_bmask & xa[rn->rn_offset]) {
  988                         rn = rn->rn_right;
  989                 } else {
  990                         rn = rn->rn_left;
  991                 }
  992         }
  993         /* printf("done searching\n"); */
  994 
  995         /*
  996          * Two cases: either we stepped off the end of our mask,
  997          * in which case last == rn, or we reached a leaf, in which
  998          * case we want to start from the leaf.
  999          */
 1000         if (rn->rn_bit >= 0)
 1001                 rn = last;
 1002         lastb = last->rn_bit;
 1003 
 1004         /* printf("rn %p, lastb %d\n", rn, lastb);*/
 1005 
 1006         /*
 1007          * This gets complicated because we may delete the node
 1008          * while applying the function f to it, so we need to calculate
 1009          * the successor node in advance.
 1010          */
 1011         while (rn->rn_bit >= 0)
 1012                 rn = rn->rn_left;
 1013 
 1014         while (!stopping) {
 1015                 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
 1016                 base = rn;
 1017                 /* If at right child go back up, otherwise, go right */
 1018                 while (rn->rn_parent->rn_right == rn
 1019                        && !(rn->rn_flags & RNF_ROOT)) {
 1020                         rn = rn->rn_parent;
 1021 
 1022                         /* if went up beyond last, stop */
 1023                         if (rn->rn_bit <= lastb) {
 1024                                 stopping = 1;
 1025                                 /* printf("up too far\n"); */
 1026                                 /*
 1027                                  * XXX we should jump to the 'Process leaves'
 1028                                  * part, because the values of 'rn' and 'next'
 1029                                  * we compute will not be used. Not a big deal
 1030                                  * because this loop will terminate, but it is
 1031                                  * inefficient and hard to understand!
 1032                                  */
 1033                         }
 1034                 }
 1035                 
 1036                 /* 
 1037                  * At the top of the tree, no need to traverse the right
 1038                  * half, prevent the traversal of the entire tree in the
 1039                  * case of default route.
 1040                  */
 1041                 if (rn->rn_parent->rn_flags & RNF_ROOT)
 1042                         stopping = 1;
 1043 
 1044                 /* Find the next *leaf* since next node might vanish, too */
 1045                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1046                         rn = rn->rn_left;
 1047                 next = rn;
 1048                 /* Process leaves */
 1049                 while ((rn = base) != NULL) {
 1050                         base = rn->rn_dupedkey;
 1051                         /* printf("leaf %p\n", rn); */
 1052                         if (!(rn->rn_flags & RNF_ROOT)
 1053                             && (error = (*f)(rn, w)))
 1054                                 return (error);
 1055                 }
 1056                 rn = next;
 1057 
 1058                 if (rn->rn_flags & RNF_ROOT) {
 1059                         /* printf("root, stopping"); */
 1060                         stopping = 1;
 1061                 }
 1062 
 1063         }
 1064         return (0);
 1065 }
 1066 
 1067 int
 1068 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
 1069 {
 1070         int error;
 1071         struct radix_node *base, *next;
 1072         struct radix_node *rn = h->rnh_treetop;
 1073         /*
 1074          * This gets complicated because we may delete the node
 1075          * while applying the function f to it, so we need to calculate
 1076          * the successor node in advance.
 1077          */
 1078 
 1079         /* First time through node, go left */
 1080         while (rn->rn_bit >= 0)
 1081                 rn = rn->rn_left;
 1082         for (;;) {
 1083                 base = rn;
 1084                 /* If at right child go back up, otherwise, go right */
 1085                 while (rn->rn_parent->rn_right == rn
 1086                        && (rn->rn_flags & RNF_ROOT) == 0)
 1087                         rn = rn->rn_parent;
 1088                 /* Find the next *leaf* since next node might vanish, too */
 1089                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1090                         rn = rn->rn_left;
 1091                 next = rn;
 1092                 /* Process leaves */
 1093                 while ((rn = base)) {
 1094                         base = rn->rn_dupedkey;
 1095                         if (!(rn->rn_flags & RNF_ROOT)
 1096                             && (error = (*f)(rn, w)))
 1097                                 return (error);
 1098                 }
 1099                 rn = next;
 1100                 if (rn->rn_flags & RNF_ROOT)
 1101                         return (0);
 1102         }
 1103         /* NOTREACHED */
 1104 }
 1105 
 1106 /*
 1107  * Initialize an empty tree. This has 3 nodes, which are passed
 1108  * via base_nodes (in the order <left,root,right>) and are
 1109  * marked RNF_ROOT so they cannot be freed.
 1110  * The leaves have all-zero and all-one keys, with significant
 1111  * bits starting at 'off'.
 1112  */
 1113 void
 1114 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
 1115 {
 1116         struct radix_node *t, *tt, *ttt;
 1117 
 1118         t = rn_newpair(rn_zeros, off, base_nodes);
 1119         ttt = base_nodes + 2;
 1120         t->rn_right = ttt;
 1121         t->rn_parent = t;
 1122         tt = t->rn_left;        /* ... which in turn is base_nodes */
 1123         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1124         tt->rn_bit = -1 - off;
 1125         *ttt = *tt;
 1126         ttt->rn_key = rn_ones;
 1127 
 1128         rh->rnh_treetop = t;
 1129 }
 1130 
 1131 static void
 1132 rn_detachhead_internal(struct radix_head *head)
 1133 {
 1134 
 1135         KASSERT((head != NULL),
 1136             ("%s: head already freed", __func__));
 1137         
 1138         /* Free <left,root,right> nodes. */
 1139         R_Free(head);
 1140 }
 1141 
 1142 /* Functions used by 'struct radix_node_head' users */
 1143 
 1144 int
 1145 rn_inithead(void **head, int off)
 1146 {
 1147         struct radix_node_head *rnh;
 1148         struct radix_mask_head *rmh;
 1149 
 1150         rnh = *head;
 1151         rmh = NULL;
 1152 
 1153         if (*head != NULL)
 1154                 return (1);
 1155 
 1156         R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
 1157         R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
 1158         if (rnh == NULL || rmh == NULL) {
 1159                 if (rnh != NULL)
 1160                         R_Free(rnh);
 1161                 if (rmh != NULL)
 1162                         R_Free(rmh);
 1163                 return (0);
 1164         }
 1165 
 1166         /* Init trees */
 1167         rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
 1168         rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
 1169         *head = rnh;
 1170         rnh->rh.rnh_masks = rmh;
 1171 
 1172         /* Finally, set base callbacks */
 1173         rnh->rnh_addaddr = rn_addroute;
 1174         rnh->rnh_deladdr = rn_delete;
 1175         rnh->rnh_matchaddr = rn_match;
 1176         rnh->rnh_lookup = rn_lookup;
 1177         rnh->rnh_walktree = rn_walktree;
 1178         rnh->rnh_walktree_from = rn_walktree_from;
 1179 
 1180         return (1);
 1181 }
 1182 
 1183 static int
 1184 rn_freeentry(struct radix_node *rn, void *arg)
 1185 {
 1186         struct radix_head * const rnh = arg;
 1187         struct radix_node *x;
 1188 
 1189         x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
 1190         if (x != NULL)
 1191                 R_Free(x);
 1192         return (0);
 1193 }
 1194 
 1195 int
 1196 rn_detachhead(void **head)
 1197 {
 1198         struct radix_node_head *rnh;
 1199 
 1200         KASSERT((head != NULL && *head != NULL),
 1201             ("%s: head already freed", __func__));
 1202 
 1203         rnh = (struct radix_node_head *)(*head);
 1204 
 1205         rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
 1206         rn_detachhead_internal(&rnh->rh.rnh_masks->head);
 1207         rn_detachhead_internal(&rnh->rh);
 1208 
 1209         *head = NULL;
 1210 
 1211         return (1);
 1212 }
 1213 

Cache object: 0caa55d4c452795ff0d60188f2384076


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.