The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1988, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)radix.c     8.4 (Berkeley) 11/2/94
   34  * $FreeBSD$
   35  */
   36 
   37 /*
   38  * Routines to build and maintain radix trees for routing lookups.
   39  */
   40 #ifndef _RADIX_H_
   41 #include <sys/param.h>
   42 #ifdef  KERNEL
   43 #include <sys/systm.h>
   44 #include <sys/malloc.h>
   45 #define M_DONTWAIT M_NOWAIT
   46 #include <sys/domain.h>
   47 #else
   48 #include <stdlib.h>
   49 #endif
   50 #include <sys/syslog.h>
   51 #include <net/radix.h>
   52 #endif
   53 
   54 static int      rn_walktree_from __P((struct radix_node_head *h, void *a,
   55                                       void *m, walktree_f_t *f, void *w));
   56 static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
   57 static struct radix_node
   58          *rn_insert __P((void *, struct radix_node_head *, int *,
   59                         struct radix_node [2])),
   60          *rn_newpair __P((void *, int, struct radix_node[2])),
   61          *rn_search __P((void *, struct radix_node *)),
   62          *rn_search_m __P((void *, struct radix_node *, void *));
   63 
   64 static int      max_keylen;
   65 static struct radix_mask *rn_mkfreelist;
   66 static struct radix_node_head *mask_rnhead;
   67 static char *addmask_key;
   68 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
   69 static char *rn_zeros, *rn_ones;
   70 
   71 #define rn_masktop (mask_rnhead->rnh_treetop)
   72 #undef Bcmp
   73 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
   74 
   75 static int      rn_lexobetter __P((void *m_arg, void *n_arg));
   76 static struct radix_mask *
   77                 rn_new_radix_mask __P((struct radix_node *tt,
   78                                        struct radix_mask *next));
   79 static int      rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
   80                                        int skip));
   81 
   82 /*
   83  * The data structure for the keys is a radix tree with one way
   84  * branching removed.  The index rn_b at an internal node n represents a bit
   85  * position to be tested.  The tree is arranged so that all descendants
   86  * of a node n have keys whose bits all agree up to position rn_b - 1.
   87  * (We say the index of n is rn_b.)
   88  *
   89  * There is at least one descendant which has a one bit at position rn_b,
   90  * and at least one with a zero there.
   91  *
   92  * A route is determined by a pair of key and mask.  We require that the
   93  * bit-wise logical and of the key and mask to be the key.
   94  * We define the index of a route to associated with the mask to be
   95  * the first bit number in the mask where 0 occurs (with bit number 0
   96  * representing the highest order bit).
   97  *
   98  * We say a mask is normal if every bit is 0, past the index of the mask.
   99  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
  100  * and m is a normal mask, then the route applies to every descendant of n.
  101  * If the index(m) < rn_b, this implies the trailing last few bits of k
  102  * before bit b are all 0, (and hence consequently true of every descendant
  103  * of n), so the route applies to all descendants of the node as well.
  104  *
  105  * Similar logic shows that a non-normal mask m such that
  106  * index(m) <= index(n) could potentially apply to many children of n.
  107  * Thus, for each non-host route, we attach its mask to a list at an internal
  108  * node as high in the tree as we can go.
  109  *
  110  * The present version of the code makes use of normal routes in short-
  111  * circuiting an explict mask and compare operation when testing whether
  112  * a key satisfies a normal route, and also in remembering the unique leaf
  113  * that governs a subtree.
  114  */
  115 
  116 static struct radix_node *
  117 rn_search(v_arg, head)
  118         void *v_arg;
  119         struct radix_node *head;
  120 {
  121         register struct radix_node *x;
  122         register caddr_t v;
  123 
  124         for (x = head, v = v_arg; x->rn_b >= 0;) {
  125                 if (x->rn_bmask & v[x->rn_off])
  126                         x = x->rn_r;
  127                 else
  128                         x = x->rn_l;
  129         }
  130         return (x);
  131 }
  132 
  133 static struct radix_node *
  134 rn_search_m(v_arg, head, m_arg)
  135         struct radix_node *head;
  136         void *v_arg, *m_arg;
  137 {
  138         register struct radix_node *x;
  139         register caddr_t v = v_arg, m = m_arg;
  140 
  141         for (x = head; x->rn_b >= 0;) {
  142                 if ((x->rn_bmask & m[x->rn_off]) &&
  143                     (x->rn_bmask & v[x->rn_off]))
  144                         x = x->rn_r;
  145                 else
  146                         x = x->rn_l;
  147         }
  148         return x;
  149 }
  150 
  151 int
  152 rn_refines(m_arg, n_arg)
  153         void *m_arg, *n_arg;
  154 {
  155         register caddr_t m = m_arg, n = n_arg;
  156         register caddr_t lim, lim2 = lim = n + *(u_char *)n;
  157         int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
  158         int masks_are_equal = 1;
  159 
  160         if (longer > 0)
  161                 lim -= longer;
  162         while (n < lim) {
  163                 if (*n & ~(*m))
  164                         return 0;
  165                 if (*n++ != *m++)
  166                         masks_are_equal = 0;
  167         }
  168         while (n < lim2)
  169                 if (*n++)
  170                         return 0;
  171         if (masks_are_equal && (longer < 0))
  172                 for (lim2 = m - longer; m < lim2; )
  173                         if (*m++)
  174                                 return 1;
  175         return (!masks_are_equal);
  176 }
  177 
  178 struct radix_node *
  179 rn_lookup(v_arg, m_arg, head)
  180         void *v_arg, *m_arg;
  181         struct radix_node_head *head;
  182 {
  183         register struct radix_node *x;
  184         caddr_t netmask = 0;
  185 
  186         if (m_arg) {
  187                 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
  188                         return (0);
  189                 netmask = x->rn_key;
  190         }
  191         x = rn_match(v_arg, head);
  192         if (x && netmask) {
  193                 while (x && x->rn_mask != netmask)
  194                         x = x->rn_dupedkey;
  195         }
  196         return x;
  197 }
  198 
  199 static int
  200 rn_satsifies_leaf(trial, leaf, skip)
  201         char *trial;
  202         register struct radix_node *leaf;
  203         int skip;
  204 {
  205         register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  206         char *cplim;
  207         int length = min(*(u_char *)cp, *(u_char *)cp2);
  208 
  209         if (cp3 == 0)
  210                 cp3 = rn_ones;
  211         else
  212                 length = min(length, *(u_char *)cp3);
  213         cplim = cp + length; cp3 += skip; cp2 += skip;
  214         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  215                 if ((*cp ^ *cp2) & *cp3)
  216                         return 0;
  217         return 1;
  218 }
  219 
  220 struct radix_node *
  221 rn_match(v_arg, head)
  222         void *v_arg;
  223         struct radix_node_head *head;
  224 {
  225         caddr_t v = v_arg;
  226         register struct radix_node *t = head->rnh_treetop, *x;
  227         register caddr_t cp = v, cp2;
  228         caddr_t cplim;
  229         struct radix_node *saved_t, *top = t;
  230         int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
  231         register int test, b, rn_b;
  232 
  233         /*
  234          * Open code rn_search(v, top) to avoid overhead of extra
  235          * subroutine call.
  236          */
  237         for (; t->rn_b >= 0; ) {
  238                 if (t->rn_bmask & cp[t->rn_off])
  239                         t = t->rn_r;
  240                 else
  241                         t = t->rn_l;
  242         }
  243         /*
  244          * See if we match exactly as a host destination
  245          * or at least learn how many bits match, for normal mask finesse.
  246          *
  247          * It doesn't hurt us to limit how many bytes to check
  248          * to the length of the mask, since if it matches we had a genuine
  249          * match and the leaf we have is the most specific one anyway;
  250          * if it didn't match with a shorter length it would fail
  251          * with a long one.  This wins big for class B&C netmasks which
  252          * are probably the most common case...
  253          */
  254         if (t->rn_mask)
  255                 vlen = *(u_char *)t->rn_mask;
  256         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  257         for (; cp < cplim; cp++, cp2++)
  258                 if (*cp != *cp2)
  259                         goto on1;
  260         /*
  261          * This extra grot is in case we are explicitly asked
  262          * to look up the default.  Ugh!
  263          *
  264          * Never return the root node itself, it seems to cause a
  265          * lot of confusion.
  266          */
  267         if (t->rn_flags & RNF_ROOT)
  268                 t = t->rn_dupedkey;
  269         return t;
  270 on1:
  271         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  272         for (b = 7; (test >>= 1) > 0;)
  273                 b--;
  274         matched_off = cp - v;
  275         b += matched_off << 3;
  276         rn_b = -1 - b;
  277         /*
  278          * If there is a host route in a duped-key chain, it will be first.
  279          */
  280         if ((saved_t = t)->rn_mask == 0)
  281                 t = t->rn_dupedkey;
  282         for (; t; t = t->rn_dupedkey)
  283                 /*
  284                  * Even if we don't match exactly as a host,
  285                  * we may match if the leaf we wound up at is
  286                  * a route to a net.
  287                  */
  288                 if (t->rn_flags & RNF_NORMAL) {
  289                         if (rn_b <= t->rn_b)
  290                                 return t;
  291                 } else if (rn_satsifies_leaf(v, t, matched_off))
  292                                 return t;
  293         t = saved_t;
  294         /* start searching up the tree */
  295         do {
  296                 register struct radix_mask *m;
  297                 t = t->rn_p;
  298                 m = t->rn_mklist;
  299                 if (m) {
  300                         /*
  301                          * If non-contiguous masks ever become important
  302                          * we can restore the masking and open coding of
  303                          * the search and satisfaction test and put the
  304                          * calculation of "off" back before the "do".
  305                          */
  306                         do {
  307                                 if (m->rm_flags & RNF_NORMAL) {
  308                                         if (rn_b <= m->rm_b)
  309                                                 return (m->rm_leaf);
  310                                 } else {
  311                                         off = min(t->rn_off, matched_off);
  312                                         x = rn_search_m(v, t, m->rm_mask);
  313                                         while (x && x->rn_mask != m->rm_mask)
  314                                                 x = x->rn_dupedkey;
  315                                         if (x && rn_satsifies_leaf(v, x, off))
  316                                                     return x;
  317                                 }
  318                                 m = m->rm_mklist;
  319                         } while (m);
  320                 }
  321         } while (t != top);
  322         return 0;
  323 }
  324 
  325 #ifdef RN_DEBUG
  326 int     rn_nodenum;
  327 struct  radix_node *rn_clist;
  328 int     rn_saveinfo;
  329 int     rn_debug =  1;
  330 #endif
  331 
  332 static struct radix_node *
  333 rn_newpair(v, b, nodes)
  334         void *v;
  335         int b;
  336         struct radix_node nodes[2];
  337 {
  338         register struct radix_node *tt = nodes, *t = tt + 1;
  339         t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
  340         t->rn_l = tt; t->rn_off = b >> 3;
  341         tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
  342         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  343 #ifdef RN_DEBUG
  344         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  345         tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  346 #endif
  347         return t;
  348 }
  349 
  350 static struct radix_node *
  351 rn_insert(v_arg, head, dupentry, nodes)
  352         void *v_arg;
  353         struct radix_node_head *head;
  354         int *dupentry;
  355         struct radix_node nodes[2];
  356 {
  357         caddr_t v = v_arg;
  358         struct radix_node *top = head->rnh_treetop;
  359         int head_off = top->rn_off, vlen = (int)*((u_char *)v);
  360         register struct radix_node *t = rn_search(v_arg, top);
  361         register caddr_t cp = v + head_off;
  362         register int b;
  363         struct radix_node *tt;
  364         /*
  365          * Find first bit at which v and t->rn_key differ
  366          */
  367     {
  368         register caddr_t cp2 = t->rn_key + head_off;
  369         register int cmp_res;
  370         caddr_t cplim = v + vlen;
  371 
  372         while (cp < cplim)
  373                 if (*cp2++ != *cp++)
  374                         goto on1;
  375         *dupentry = 1;
  376         return t;
  377 on1:
  378         *dupentry = 0;
  379         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  380         for (b = (cp - v) << 3; cmp_res; b--)
  381                 cmp_res >>= 1;
  382     }
  383     {
  384         register struct radix_node *p, *x = top;
  385         cp = v;
  386         do {
  387                 p = x;
  388                 if (cp[x->rn_off] & x->rn_bmask)
  389                         x = x->rn_r;
  390                 else x = x->rn_l;
  391         } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
  392 #ifdef RN_DEBUG
  393         if (rn_debug)
  394                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  395 #endif
  396         t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
  397         if ((cp[p->rn_off] & p->rn_bmask) == 0)
  398                 p->rn_l = t;
  399         else
  400                 p->rn_r = t;
  401         x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
  402         if ((cp[t->rn_off] & t->rn_bmask) == 0) {
  403                 t->rn_r = x;
  404         } else {
  405                 t->rn_r = tt; t->rn_l = x;
  406         }
  407 #ifdef RN_DEBUG
  408         if (rn_debug)
  409                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  410 #endif
  411     }
  412         return (tt);
  413 }
  414 
  415 struct radix_node *
  416 rn_addmask(n_arg, search, skip)
  417         int search, skip;
  418         void *n_arg;
  419 {
  420         caddr_t netmask = (caddr_t)n_arg;
  421         register struct radix_node *x;
  422         register caddr_t cp, cplim;
  423         register int b = 0, mlen, j;
  424         int maskduplicated, m0, isnormal;
  425         struct radix_node *saved_x;
  426         static int last_zeroed = 0;
  427 
  428         if ((mlen = *(u_char *)netmask) > max_keylen)
  429                 mlen = max_keylen;
  430         if (skip == 0)
  431                 skip = 1;
  432         if (mlen <= skip)
  433                 return (mask_rnhead->rnh_nodes);
  434         if (skip > 1)
  435                 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  436         if ((m0 = mlen) > skip)
  437                 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  438         /*
  439          * Trim trailing zeroes.
  440          */
  441         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  442                 cp--;
  443         mlen = cp - addmask_key;
  444         if (mlen <= skip) {
  445                 if (m0 >= last_zeroed)
  446                         last_zeroed = mlen;
  447                 return (mask_rnhead->rnh_nodes);
  448         }
  449         if (m0 < last_zeroed)
  450                 Bzero(addmask_key + m0, last_zeroed - m0);
  451         *addmask_key = last_zeroed = mlen;
  452         x = rn_search(addmask_key, rn_masktop);
  453         if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
  454                 x = 0;
  455         if (x || search)
  456                 return (x);
  457         R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
  458         if ((saved_x = x) == 0)
  459                 return (0);
  460         Bzero(x, max_keylen + 2 * sizeof (*x));
  461         netmask = cp = (caddr_t)(x + 2);
  462         Bcopy(addmask_key, cp, mlen);
  463         x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
  464         if (maskduplicated) {
  465                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  466                 Free(saved_x);
  467                 return (x);
  468         }
  469         /*
  470          * Calculate index of mask, and check for normalcy.
  471          */
  472         cplim = netmask + mlen; isnormal = 1;
  473         for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
  474                 cp++;
  475         if (cp != cplim) {
  476                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  477                         b++;
  478                 if (*cp != normal_chars[b] || cp != (cplim - 1))
  479                         isnormal = 0;
  480         }
  481         b += (cp - netmask) << 3;
  482         x->rn_b = -1 - b;
  483         if (isnormal)
  484                 x->rn_flags |= RNF_NORMAL;
  485         return (x);
  486 }
  487 
  488 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  489 rn_lexobetter(m_arg, n_arg)
  490         void *m_arg, *n_arg;
  491 {
  492         register u_char *mp = m_arg, *np = n_arg, *lim;
  493 
  494         if (*mp > *np)
  495                 return 1;  /* not really, but need to check longer one first */
  496         if (*mp == *np)
  497                 for (lim = mp + *mp; mp < lim;)
  498                         if (*mp++ > *np++)
  499                                 return 1;
  500         return 0;
  501 }
  502 
  503 static struct radix_mask *
  504 rn_new_radix_mask(tt, next)
  505         register struct radix_node *tt;
  506         register struct radix_mask *next;
  507 {
  508         register struct radix_mask *m;
  509 
  510         MKGet(m);
  511         if (m == 0) {
  512                 log(LOG_ERR, "Mask for route not entered\n");
  513                 return (0);
  514         }
  515         Bzero(m, sizeof *m);
  516         m->rm_b = tt->rn_b;
  517         m->rm_flags = tt->rn_flags;
  518         if (tt->rn_flags & RNF_NORMAL)
  519                 m->rm_leaf = tt;
  520         else
  521                 m->rm_mask = tt->rn_mask;
  522         m->rm_mklist = next;
  523         tt->rn_mklist = m;
  524         return m;
  525 }
  526 
  527 struct radix_node *
  528 rn_addroute(v_arg, n_arg, head, treenodes)
  529         void *v_arg, *n_arg;
  530         struct radix_node_head *head;
  531         struct radix_node treenodes[2];
  532 {
  533         caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
  534         register struct radix_node *t, *x = 0, *tt;
  535         struct radix_node *saved_tt, *top = head->rnh_treetop;
  536         short b = 0, b_leaf = 0;
  537         int keyduplicated;
  538         caddr_t mmask;
  539         struct radix_mask *m, **mp;
  540 
  541         /*
  542          * In dealing with non-contiguous masks, there may be
  543          * many different routes which have the same mask.
  544          * We will find it useful to have a unique pointer to
  545          * the mask to speed avoiding duplicate references at
  546          * nodes and possibly save time in calculating indices.
  547          */
  548         if (netmask)  {
  549                 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
  550                         return (0);
  551                 b_leaf = x->rn_b;
  552                 b = -1 - x->rn_b;
  553                 netmask = x->rn_key;
  554         }
  555         /*
  556          * Deal with duplicated keys: attach node to previous instance
  557          */
  558         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  559         if (keyduplicated) {
  560                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  561                         if (tt->rn_mask == netmask)
  562                                 return (0);
  563                         if (netmask == 0 ||
  564                             (tt->rn_mask &&
  565                              ((b_leaf < tt->rn_b) || /* index(netmask) > node */
  566                                rn_refines(netmask, tt->rn_mask) ||
  567                                rn_lexobetter(netmask, tt->rn_mask))))
  568                                 break;
  569                 }
  570                 /*
  571                  * If the mask is not duplicated, we wouldn't
  572                  * find it among possible duplicate key entries
  573                  * anyway, so the above test doesn't hurt.
  574                  *
  575                  * We sort the masks for a duplicated key the same way as
  576                  * in a masklist -- most specific to least specific.
  577                  * This may require the unfortunate nuisance of relocating
  578                  * the head of the list.
  579                  */
  580                 if (tt == saved_tt) {
  581                         struct  radix_node *xx = x;
  582                         /* link in at head of list */
  583                         (tt = treenodes)->rn_dupedkey = t;
  584                         tt->rn_flags = t->rn_flags;
  585                         tt->rn_p = x = t->rn_p;
  586                         t->rn_p = tt;                           /* parent */
  587                         if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
  588                         saved_tt = tt; x = xx;
  589                 } else {
  590                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  591                         t->rn_dupedkey = tt;
  592                         tt->rn_p = t;                           /* parent */
  593                         if (tt->rn_dupedkey)                    /* parent */
  594                                 tt->rn_dupedkey->rn_p = tt;     /* parent */
  595                 }
  596 #ifdef RN_DEBUG
  597                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  598                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  599 #endif
  600                 tt->rn_key = (caddr_t) v;
  601                 tt->rn_b = -1;
  602                 tt->rn_flags = RNF_ACTIVE;
  603         }
  604         /*
  605          * Put mask in tree.
  606          */
  607         if (netmask) {
  608                 tt->rn_mask = netmask;
  609                 tt->rn_b = x->rn_b;
  610                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  611         }
  612         t = saved_tt->rn_p;
  613         if (keyduplicated)
  614                 goto on2;
  615         b_leaf = -1 - t->rn_b;
  616         if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
  617         /* Promote general routes from below */
  618         if (x->rn_b < 0) {
  619             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  620                 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
  621                         *mp = m = rn_new_radix_mask(x, 0);
  622                         if (m)
  623                                 mp = &m->rm_mklist;
  624                 }
  625         } else if (x->rn_mklist) {
  626                 /*
  627                  * Skip over masks whose index is > that of new node
  628                  */
  629                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  630                         if (m->rm_b >= b_leaf)
  631                                 break;
  632                 t->rn_mklist = m; *mp = 0;
  633         }
  634 on2:
  635         /* Add new route to highest possible ancestor's list */
  636         if ((netmask == 0) || (b > t->rn_b ))
  637                 return tt; /* can't lift at all */
  638         b_leaf = tt->rn_b;
  639         do {
  640                 x = t;
  641                 t = t->rn_p;
  642         } while (b <= t->rn_b && x != top);
  643         /*
  644          * Search through routes associated with node to
  645          * insert new route according to index.
  646          * Need same criteria as when sorting dupedkeys to avoid
  647          * double loop on deletion.
  648          */
  649         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  650                 if (m->rm_b < b_leaf)
  651                         continue;
  652                 if (m->rm_b > b_leaf)
  653                         break;
  654                 if (m->rm_flags & RNF_NORMAL) {
  655                         mmask = m->rm_leaf->rn_mask;
  656                         if (tt->rn_flags & RNF_NORMAL) {
  657                                 log(LOG_ERR,
  658                                    "Non-unique normal route, mask not entered");
  659                                 return tt;
  660                         }
  661                 } else
  662                         mmask = m->rm_mask;
  663                 if (mmask == netmask) {
  664                         m->rm_refs++;
  665                         tt->rn_mklist = m;
  666                         return tt;
  667                 }
  668                 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
  669                         break;
  670         }
  671         *mp = rn_new_radix_mask(tt, *mp);
  672         return tt;
  673 }
  674 
  675 struct radix_node *
  676 rn_delete(v_arg, netmask_arg, head)
  677         void *v_arg, *netmask_arg;
  678         struct radix_node_head *head;
  679 {
  680         register struct radix_node *t, *p, *x, *tt;
  681         struct radix_mask *m, *saved_m, **mp;
  682         struct radix_node *dupedkey, *saved_tt, *top;
  683         caddr_t v, netmask;
  684         int b, head_off, vlen;
  685 
  686         v = v_arg;
  687         netmask = netmask_arg;
  688         x = head->rnh_treetop;
  689         tt = rn_search(v, x);
  690         head_off = x->rn_off;
  691         vlen =  *(u_char *)v;
  692         saved_tt = tt;
  693         top = x;
  694         if (tt == 0 ||
  695             Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  696                 return (0);
  697         /*
  698          * Delete our route from mask lists.
  699          */
  700         if (netmask) {
  701                 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
  702                         return (0);
  703                 netmask = x->rn_key;
  704                 while (tt->rn_mask != netmask)
  705                         if ((tt = tt->rn_dupedkey) == 0)
  706                                 return (0);
  707         }
  708         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
  709                 goto on1;
  710         if (tt->rn_flags & RNF_NORMAL) {
  711                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  712                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  713                         return 0;  /* dangling ref could cause disaster */
  714                 }
  715         } else {
  716                 if (m->rm_mask != tt->rn_mask) {
  717                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  718                         goto on1;
  719                 }
  720                 if (--m->rm_refs >= 0)
  721                         goto on1;
  722         }
  723         b = -1 - tt->rn_b;
  724         t = saved_tt->rn_p;
  725         if (b > t->rn_b)
  726                 goto on1; /* Wasn't lifted at all */
  727         do {
  728                 x = t;
  729                 t = t->rn_p;
  730         } while (b <= t->rn_b && x != top);
  731         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  732                 if (m == saved_m) {
  733                         *mp = m->rm_mklist;
  734                         MKFree(m);
  735                         break;
  736                 }
  737         if (m == 0) {
  738                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  739                 if (tt->rn_flags & RNF_NORMAL)
  740                         return (0); /* Dangling ref to us */
  741         }
  742 on1:
  743         /*
  744          * Eliminate us from tree
  745          */
  746         if (tt->rn_flags & RNF_ROOT)
  747                 return (0);
  748 #ifdef RN_DEBUG
  749         /* Get us out of the creation list */
  750         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  751         if (t) t->rn_ybro = tt->rn_ybro;
  752 #endif
  753         t = tt->rn_p;
  754         dupedkey = saved_tt->rn_dupedkey;
  755         if (dupedkey) {
  756                 /*
  757                  * at this point, tt is the deletion target and saved_tt
  758                  * is the head of the dupekey chain
  759                  */
  760                 if (tt == saved_tt) {
  761                         /* remove from head of chain */
  762                         x = dupedkey; x->rn_p = t;
  763                         if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
  764                 } else {
  765                         /* find node in front of tt on the chain */
  766                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  767                                 p = p->rn_dupedkey;
  768                         if (p) {
  769                                 p->rn_dupedkey = tt->rn_dupedkey;
  770                                 if (tt->rn_dupedkey)               /* parent */
  771                                         tt->rn_dupedkey->rn_p = p; /* parent */
  772                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  773                 }
  774                 t = tt + 1;
  775                 if  (t->rn_flags & RNF_ACTIVE) {
  776 #ifndef RN_DEBUG
  777                         *++x = *t; p = t->rn_p;
  778 #else
  779                         b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
  780 #endif
  781                         if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
  782                         x->rn_l->rn_p = x; x->rn_r->rn_p = x;
  783                 }
  784                 goto out;
  785         }
  786         if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
  787         p = t->rn_p;
  788         if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
  789         x->rn_p = p;
  790         /*
  791          * Demote routes attached to us.
  792          */
  793         if (t->rn_mklist) {
  794                 if (x->rn_b >= 0) {
  795                         for (mp = &x->rn_mklist; (m = *mp);)
  796                                 mp = &m->rm_mklist;
  797                         *mp = t->rn_mklist;
  798                 } else {
  799                         /* If there are any key,mask pairs in a sibling
  800                            duped-key chain, some subset will appear sorted
  801                            in the same order attached to our mklist */
  802                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  803                                 if (m == x->rn_mklist) {
  804                                         struct radix_mask *mm = m->rm_mklist;
  805                                         x->rn_mklist = 0;
  806                                         if (--(m->rm_refs) < 0)
  807                                                 MKFree(m);
  808                                         m = mm;
  809                                 }
  810                         if (m)
  811                                 log(LOG_ERR,
  812                                     "rn_delete: Orphaned Mask %p at %p\n",
  813                                     (void *)m, (void *)x);
  814                 }
  815         }
  816         /*
  817          * We may be holding an active internal node in the tree.
  818          */
  819         x = tt + 1;
  820         if (t != x) {
  821 #ifndef RN_DEBUG
  822                 *t = *x;
  823 #else
  824                 b = t->rn_info; *t = *x; t->rn_info = b;
  825 #endif
  826                 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
  827                 p = x->rn_p;
  828                 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
  829         }
  830 out:
  831         tt->rn_flags &= ~RNF_ACTIVE;
  832         tt[1].rn_flags &= ~RNF_ACTIVE;
  833         return (tt);
  834 }
  835 
  836 /*
  837  * This is the same as rn_walktree() except for the parameters and the
  838  * exit.
  839  */
  840 static int
  841 rn_walktree_from(h, a, m, f, w)
  842         struct radix_node_head *h;
  843         void *a, *m;
  844         walktree_f_t *f;
  845         void *w;
  846 {
  847         int error;
  848         struct radix_node *base, *next;
  849         u_char *xa = (u_char *)a;
  850         u_char *xm = (u_char *)m;
  851         register struct radix_node *rn, *last = 0 /* shut up gcc */;
  852         int stopping = 0;
  853         int lastb;
  854 
  855         /*
  856          * rn_search_m is sort-of-open-coded here.
  857          */
  858         /* printf("about to search\n"); */
  859         for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
  860                 last = rn;
  861                 /* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
  862                        rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
  863                 if (!(rn->rn_bmask & xm[rn->rn_off])) {
  864                         break;
  865                 }
  866                 if (rn->rn_bmask & xa[rn->rn_off]) {
  867                         rn = rn->rn_r;
  868                 } else {
  869                         rn = rn->rn_l;
  870                 }
  871         }
  872         /* printf("done searching\n"); */
  873 
  874         /*
  875          * Two cases: either we stepped off the end of our mask,
  876          * in which case last == rn, or we reached a leaf, in which
  877          * case we want to start from the last node we looked at.
  878          * Either way, last is the node we want to start from.
  879          */
  880         rn = last;
  881         lastb = rn->rn_b;
  882 
  883         /* printf("rn %p, lastb %d\n", rn, lastb);*/
  884 
  885         /*
  886          * This gets complicated because we may delete the node
  887          * while applying the function f to it, so we need to calculate
  888          * the successor node in advance.
  889          */
  890         while (rn->rn_b >= 0)
  891                 rn = rn->rn_l;
  892 
  893         while (!stopping) {
  894                 /* printf("node %p (%d)\n", rn, rn->rn_b); */
  895                 base = rn;
  896                 /* If at right child go back up, otherwise, go right */
  897                 while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
  898                         rn = rn->rn_p;
  899 
  900                         /* if went up beyond last, stop */
  901                         if (rn->rn_b < lastb) {
  902                                 stopping = 1;
  903                                 /* printf("up too far\n"); */
  904                         }
  905                 }
  906 
  907                 /* Find the next *leaf* since next node might vanish, too */
  908                 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
  909                         rn = rn->rn_l;
  910                 next = rn;
  911                 /* Process leaves */
  912                 while ((rn = base) != 0) {
  913                         base = rn->rn_dupedkey;
  914                         /* printf("leaf %p\n", rn); */
  915                         if (!(rn->rn_flags & RNF_ROOT)
  916                             && (error = (*f)(rn, w)))
  917                                 return (error);
  918                 }
  919                 rn = next;
  920 
  921                 if (rn->rn_flags & RNF_ROOT) {
  922                         /* printf("root, stopping"); */
  923                         stopping = 1;
  924                 }
  925 
  926         }
  927         return 0;
  928 }
  929 
  930 static int
  931 rn_walktree(h, f, w)
  932         struct radix_node_head *h;
  933         walktree_f_t *f;
  934         void *w;
  935 {
  936         int error;
  937         struct radix_node *base, *next;
  938         register struct radix_node *rn = h->rnh_treetop;
  939         /*
  940          * This gets complicated because we may delete the node
  941          * while applying the function f to it, so we need to calculate
  942          * the successor node in advance.
  943          */
  944         /* First time through node, go left */
  945         while (rn->rn_b >= 0)
  946                 rn = rn->rn_l;
  947         for (;;) {
  948                 base = rn;
  949                 /* If at right child go back up, otherwise, go right */
  950                 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
  951                         rn = rn->rn_p;
  952                 /* Find the next *leaf* since next node might vanish, too */
  953                 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
  954                         rn = rn->rn_l;
  955                 next = rn;
  956                 /* Process leaves */
  957                 while ((rn = base)) {
  958                         base = rn->rn_dupedkey;
  959                         if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
  960                                 return (error);
  961                 }
  962                 rn = next;
  963                 if (rn->rn_flags & RNF_ROOT)
  964                         return (0);
  965         }
  966         /* NOTREACHED */
  967 }
  968 
  969 int
  970 rn_inithead(head, off)
  971         void **head;
  972         int off;
  973 {
  974         register struct radix_node_head *rnh;
  975         register struct radix_node *t, *tt, *ttt;
  976         if (*head)
  977                 return (1);
  978         R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
  979         if (rnh == 0)
  980                 return (0);
  981         Bzero(rnh, sizeof (*rnh));
  982         *head = rnh;
  983         t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
  984         ttt = rnh->rnh_nodes + 2;
  985         t->rn_r = ttt;
  986         t->rn_p = t;
  987         tt = t->rn_l;
  988         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
  989         tt->rn_b = -1 - off;
  990         *ttt = *tt;
  991         ttt->rn_key = rn_ones;
  992         rnh->rnh_addaddr = rn_addroute;
  993         rnh->rnh_deladdr = rn_delete;
  994         rnh->rnh_matchaddr = rn_match;
  995         rnh->rnh_lookup = rn_lookup;
  996         rnh->rnh_walktree = rn_walktree;
  997         rnh->rnh_walktree_from = rn_walktree_from;
  998         rnh->rnh_treetop = t;
  999         return (1);
 1000 }
 1001 
 1002 void
 1003 rn_init()
 1004 {
 1005         char *cp, *cplim;
 1006 #ifdef KERNEL
 1007         struct domain *dom;
 1008 
 1009         for (dom = domains; dom; dom = dom->dom_next)
 1010                 if (dom->dom_maxrtkey > max_keylen)
 1011                         max_keylen = dom->dom_maxrtkey;
 1012 #endif
 1013         if (max_keylen == 0) {
 1014                 log(LOG_ERR,
 1015                     "rn_init: radix functions require max_keylen be set\n");
 1016                 return;
 1017         }
 1018         R_Malloc(rn_zeros, char *, 3 * max_keylen);
 1019         if (rn_zeros == NULL)
 1020                 panic("rn_init");
 1021         Bzero(rn_zeros, 3 * max_keylen);
 1022         rn_ones = cp = rn_zeros + max_keylen;
 1023         addmask_key = cplim = rn_ones + max_keylen;
 1024         while (cp < cplim)
 1025                 *cp++ = -1;
 1026         if (rn_inithead((void **)&mask_rnhead, 0) == 0)
 1027                 panic("rn_init 2");
 1028 }

Cache object: db3f6fef41e6b6f8bd6fdd9eb3135efc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.