The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1988, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)radix.c     8.4 (Berkeley) 11/2/94
   34  * $FreeBSD$
   35  */
   36 
   37 /*
   38  * Routines to build and maintain radix trees for routing lookups.
   39  */
   40 #ifndef _RADIX_H_
   41 #include <sys/param.h>
   42 #ifdef  _KERNEL
   43 #include <sys/systm.h>
   44 #include <sys/malloc.h>
   45 #define M_DONTWAIT M_NOWAIT
   46 #include <sys/domain.h>
   47 #else
   48 #include <stdlib.h>
   49 #endif
   50 #include <sys/syslog.h>
   51 #include <net/radix.h>
   52 #endif
   53 
   54 static int      rn_walktree_from __P((struct radix_node_head *h, void *a,
   55                                       void *m, walktree_f_t *f, void *w));
   56 static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
   57 static struct radix_node
   58          *rn_insert __P((void *, struct radix_node_head *, int *,
   59                         struct radix_node [2])),
   60          *rn_newpair __P((void *, int, struct radix_node[2])),
   61          *rn_search __P((void *, struct radix_node *)),
   62          *rn_search_m __P((void *, struct radix_node *, void *));
   63 
   64 static int      max_keylen;
   65 static struct radix_mask *rn_mkfreelist;
   66 static struct radix_node_head *mask_rnhead;
   67 static char *addmask_key;
   68 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
   69 static char *rn_zeros, *rn_ones;
   70 
   71 #define rn_masktop (mask_rnhead->rnh_treetop)
   72 #undef Bcmp
   73 #define Bcmp(a, b, l) \
   74         (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
   75 
   76 static int      rn_lexobetter __P((void *m_arg, void *n_arg));
   77 static struct radix_mask *
   78                 rn_new_radix_mask __P((struct radix_node *tt,
   79                                        struct radix_mask *next));
   80 static int      rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
   81                                        int skip));
   82 
   83 /*
   84  * The data structure for the keys is a radix tree with one way
   85  * branching removed.  The index rn_bit at an internal node n represents a bit
   86  * position to be tested.  The tree is arranged so that all descendants
   87  * of a node n have keys whose bits all agree up to position rn_bit - 1.
   88  * (We say the index of n is rn_bit.)
   89  *
   90  * There is at least one descendant which has a one bit at position rn_bit,
   91  * and at least one with a zero there.
   92  *
   93  * A route is determined by a pair of key and mask.  We require that the
   94  * bit-wise logical and of the key and mask to be the key.
   95  * We define the index of a route to associated with the mask to be
   96  * the first bit number in the mask where 0 occurs (with bit number 0
   97  * representing the highest order bit).
   98  *
   99  * We say a mask is normal if every bit is 0, past the index of the mask.
  100  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
  101  * and m is a normal mask, then the route applies to every descendant of n.
  102  * If the index(m) < rn_bit, this implies the trailing last few bits of k
  103  * before bit b are all 0, (and hence consequently true of every descendant
  104  * of n), so the route applies to all descendants of the node as well.
  105  *
  106  * Similar logic shows that a non-normal mask m such that
  107  * index(m) <= index(n) could potentially apply to many children of n.
  108  * Thus, for each non-host route, we attach its mask to a list at an internal
  109  * node as high in the tree as we can go.
  110  *
  111  * The present version of the code makes use of normal routes in short-
  112  * circuiting an explict mask and compare operation when testing whether
  113  * a key satisfies a normal route, and also in remembering the unique leaf
  114  * that governs a subtree.
  115  */
  116 
  117 static struct radix_node *
  118 rn_search(v_arg, head)
  119         void *v_arg;
  120         struct radix_node *head;
  121 {
  122         register struct radix_node *x;
  123         register caddr_t v;
  124 
  125         for (x = head, v = v_arg; x->rn_bit >= 0;) {
  126                 if (x->rn_bmask & v[x->rn_offset])
  127                         x = x->rn_right;
  128                 else
  129                         x = x->rn_left;
  130         }
  131         return (x);
  132 }
  133 
  134 static struct radix_node *
  135 rn_search_m(v_arg, head, m_arg)
  136         struct radix_node *head;
  137         void *v_arg, *m_arg;
  138 {
  139         register struct radix_node *x;
  140         register caddr_t v = v_arg, m = m_arg;
  141 
  142         for (x = head; x->rn_bit >= 0;) {
  143                 if ((x->rn_bmask & m[x->rn_offset]) &&
  144                     (x->rn_bmask & v[x->rn_offset]))
  145                         x = x->rn_right;
  146                 else
  147                         x = x->rn_left;
  148         }
  149         return x;
  150 }
  151 
  152 int
  153 rn_refines(m_arg, n_arg)
  154         void *m_arg, *n_arg;
  155 {
  156         register caddr_t m = m_arg, n = n_arg;
  157         register caddr_t lim, lim2 = lim = n + *(u_char *)n;
  158         int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
  159         int masks_are_equal = 1;
  160 
  161         if (longer > 0)
  162                 lim -= longer;
  163         while (n < lim) {
  164                 if (*n & ~(*m))
  165                         return 0;
  166                 if (*n++ != *m++)
  167                         masks_are_equal = 0;
  168         }
  169         while (n < lim2)
  170                 if (*n++)
  171                         return 0;
  172         if (masks_are_equal && (longer < 0))
  173                 for (lim2 = m - longer; m < lim2; )
  174                         if (*m++)
  175                                 return 1;
  176         return (!masks_are_equal);
  177 }
  178 
  179 struct radix_node *
  180 rn_lookup(v_arg, m_arg, head)
  181         void *v_arg, *m_arg;
  182         struct radix_node_head *head;
  183 {
  184         register struct radix_node *x;
  185         caddr_t netmask = 0;
  186 
  187         if (m_arg) {
  188                 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
  189                 if (x == 0)
  190                         return (0);
  191                 netmask = x->rn_key;
  192         }
  193         x = rn_match(v_arg, head);
  194         if (x && netmask) {
  195                 while (x && x->rn_mask != netmask)
  196                         x = x->rn_dupedkey;
  197         }
  198         return x;
  199 }
  200 
  201 static int
  202 rn_satsifies_leaf(trial, leaf, skip)
  203         char *trial;
  204         register struct radix_node *leaf;
  205         int skip;
  206 {
  207         register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  208         char *cplim;
  209         int length = min(*(u_char *)cp, *(u_char *)cp2);
  210 
  211         if (cp3 == 0)
  212                 cp3 = rn_ones;
  213         else
  214                 length = min(length, *(u_char *)cp3);
  215         cplim = cp + length; cp3 += skip; cp2 += skip;
  216         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  217                 if ((*cp ^ *cp2) & *cp3)
  218                         return 0;
  219         return 1;
  220 }
  221 
  222 struct radix_node *
  223 rn_match(v_arg, head)
  224         void *v_arg;
  225         struct radix_node_head *head;
  226 {
  227         caddr_t v = v_arg;
  228         register struct radix_node *t = head->rnh_treetop, *x;
  229         register caddr_t cp = v, cp2;
  230         caddr_t cplim;
  231         struct radix_node *saved_t, *top = t;
  232         int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
  233         register int test, b, rn_bit;
  234 
  235         /*
  236          * Open code rn_search(v, top) to avoid overhead of extra
  237          * subroutine call.
  238          */
  239         for (; t->rn_bit >= 0; ) {
  240                 if (t->rn_bmask & cp[t->rn_offset])
  241                         t = t->rn_right;
  242                 else
  243                         t = t->rn_left;
  244         }
  245         /*
  246          * See if we match exactly as a host destination
  247          * or at least learn how many bits match, for normal mask finesse.
  248          *
  249          * It doesn't hurt us to limit how many bytes to check
  250          * to the length of the mask, since if it matches we had a genuine
  251          * match and the leaf we have is the most specific one anyway;
  252          * if it didn't match with a shorter length it would fail
  253          * with a long one.  This wins big for class B&C netmasks which
  254          * are probably the most common case...
  255          */
  256         if (t->rn_mask)
  257                 vlen = *(u_char *)t->rn_mask;
  258         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  259         for (; cp < cplim; cp++, cp2++)
  260                 if (*cp != *cp2)
  261                         goto on1;
  262         /*
  263          * This extra grot is in case we are explicitly asked
  264          * to look up the default.  Ugh!
  265          *
  266          * Never return the root node itself, it seems to cause a
  267          * lot of confusion.
  268          */
  269         if (t->rn_flags & RNF_ROOT)
  270                 t = t->rn_dupedkey;
  271         return t;
  272 on1:
  273         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  274         for (b = 7; (test >>= 1) > 0;)
  275                 b--;
  276         matched_off = cp - v;
  277         b += matched_off << 3;
  278         rn_bit = -1 - b;
  279         /*
  280          * If there is a host route in a duped-key chain, it will be first.
  281          */
  282         if ((saved_t = t)->rn_mask == 0)
  283                 t = t->rn_dupedkey;
  284         for (; t; t = t->rn_dupedkey)
  285                 /*
  286                  * Even if we don't match exactly as a host,
  287                  * we may match if the leaf we wound up at is
  288                  * a route to a net.
  289                  */
  290                 if (t->rn_flags & RNF_NORMAL) {
  291                         if (rn_bit <= t->rn_bit)
  292                                 return t;
  293                 } else if (rn_satsifies_leaf(v, t, matched_off))
  294                                 return t;
  295         t = saved_t;
  296         /* start searching up the tree */
  297         do {
  298                 register struct radix_mask *m;
  299                 t = t->rn_parent;
  300                 m = t->rn_mklist;
  301                 /*
  302                  * If non-contiguous masks ever become important
  303                  * we can restore the masking and open coding of
  304                  * the search and satisfaction test and put the
  305                  * calculation of "off" back before the "do".
  306                  */
  307                 while (m) {
  308                         if (m->rm_flags & RNF_NORMAL) {
  309                                 if (rn_bit <= m->rm_bit)
  310                                         return (m->rm_leaf);
  311                         } else {
  312                                 off = min(t->rn_offset, matched_off);
  313                                 x = rn_search_m(v, t, m->rm_mask);
  314                                 while (x && x->rn_mask != m->rm_mask)
  315                                         x = x->rn_dupedkey;
  316                                 if (x && rn_satsifies_leaf(v, x, off))
  317                                         return x;
  318                         }
  319                         m = m->rm_mklist;
  320                 }
  321         } while (t != top);
  322         return 0;
  323 }
  324 
  325 #ifdef RN_DEBUG
  326 int     rn_nodenum;
  327 struct  radix_node *rn_clist;
  328 int     rn_saveinfo;
  329 int     rn_debug =  1;
  330 #endif
  331 
  332 static struct radix_node *
  333 rn_newpair(v, b, nodes)
  334         void *v;
  335         int b;
  336         struct radix_node nodes[2];
  337 {
  338         register struct radix_node *tt = nodes, *t = tt + 1;
  339         t->rn_bit = b;
  340         t->rn_bmask = 0x80 >> (b & 7);
  341         t->rn_left = tt;
  342         t->rn_offset = b >> 3;
  343         tt->rn_bit = -1;
  344         tt->rn_key = (caddr_t)v;
  345         tt->rn_parent = t;
  346         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  347         tt->rn_mklist = t->rn_mklist = 0;
  348 #ifdef RN_DEBUG
  349         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  350         tt->rn_twin = t;
  351         tt->rn_ybro = rn_clist;
  352         rn_clist = tt;
  353 #endif
  354         return t;
  355 }
  356 
  357 static struct radix_node *
  358 rn_insert(v_arg, head, dupentry, nodes)
  359         void *v_arg;
  360         struct radix_node_head *head;
  361         int *dupentry;
  362         struct radix_node nodes[2];
  363 {
  364         caddr_t v = v_arg;
  365         struct radix_node *top = head->rnh_treetop;
  366         int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
  367         register struct radix_node *t = rn_search(v_arg, top);
  368         register caddr_t cp = v + head_off;
  369         register int b;
  370         struct radix_node *tt;
  371         /*
  372          * Find first bit at which v and t->rn_key differ
  373          */
  374     {
  375         register caddr_t cp2 = t->rn_key + head_off;
  376         register int cmp_res;
  377         caddr_t cplim = v + vlen;
  378 
  379         while (cp < cplim)
  380                 if (*cp2++ != *cp++)
  381                         goto on1;
  382         *dupentry = 1;
  383         return t;
  384 on1:
  385         *dupentry = 0;
  386         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  387         for (b = (cp - v) << 3; cmp_res; b--)
  388                 cmp_res >>= 1;
  389     }
  390     {
  391         register struct radix_node *p, *x = top;
  392         cp = v;
  393         do {
  394                 p = x;
  395                 if (cp[x->rn_offset] & x->rn_bmask)
  396                         x = x->rn_right;
  397                 else
  398                         x = x->rn_left;
  399         } while (b > (unsigned) x->rn_bit);
  400                                 /* x->rn_bit < b && x->rn_bit >= 0 */
  401 #ifdef RN_DEBUG
  402         if (rn_debug)
  403                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  404 #endif
  405         t = rn_newpair(v_arg, b, nodes); 
  406         tt = t->rn_left;
  407         if ((cp[p->rn_offset] & p->rn_bmask) == 0)
  408                 p->rn_left = t;
  409         else
  410                 p->rn_right = t;
  411         x->rn_parent = t;
  412         t->rn_parent = p; /* frees x, p as temp vars below */
  413         if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
  414                 t->rn_right = x;
  415         } else {
  416                 t->rn_right = tt;
  417                 t->rn_left = x;
  418         }
  419 #ifdef RN_DEBUG
  420         if (rn_debug)
  421                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  422 #endif
  423     }
  424         return (tt);
  425 }
  426 
  427 struct radix_node *
  428 rn_addmask(n_arg, search, skip)
  429         int search, skip;
  430         void *n_arg;
  431 {
  432         caddr_t netmask = (caddr_t)n_arg;
  433         register struct radix_node *x;
  434         register caddr_t cp, cplim;
  435         register int b = 0, mlen, j;
  436         int maskduplicated, m0, isnormal;
  437         struct radix_node *saved_x;
  438         static int last_zeroed = 0;
  439 
  440         if ((mlen = *(u_char *)netmask) > max_keylen)
  441                 mlen = max_keylen;
  442         if (skip == 0)
  443                 skip = 1;
  444         if (mlen <= skip)
  445                 return (mask_rnhead->rnh_nodes);
  446         if (skip > 1)
  447                 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  448         if ((m0 = mlen) > skip)
  449                 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  450         /*
  451          * Trim trailing zeroes.
  452          */
  453         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  454                 cp--;
  455         mlen = cp - addmask_key;
  456         if (mlen <= skip) {
  457                 if (m0 >= last_zeroed)
  458                         last_zeroed = mlen;
  459                 return (mask_rnhead->rnh_nodes);
  460         }
  461         if (m0 < last_zeroed)
  462                 Bzero(addmask_key + m0, last_zeroed - m0);
  463         *addmask_key = last_zeroed = mlen;
  464         x = rn_search(addmask_key, rn_masktop);
  465         if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
  466                 x = 0;
  467         if (x || search)
  468                 return (x);
  469         R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
  470         if ((saved_x = x) == 0)
  471                 return (0);
  472         Bzero(x, max_keylen + 2 * sizeof (*x));
  473         netmask = cp = (caddr_t)(x + 2);
  474         Bcopy(addmask_key, cp, mlen);
  475         x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
  476         if (maskduplicated) {
  477                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  478                 Free(saved_x);
  479                 return (x);
  480         }
  481         /*
  482          * Calculate index of mask, and check for normalcy.
  483          */
  484         cplim = netmask + mlen; isnormal = 1;
  485         for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
  486                 cp++;
  487         if (cp != cplim) {
  488                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  489                         b++;
  490                 if (*cp != normal_chars[b] || cp != (cplim - 1))
  491                         isnormal = 0;
  492         }
  493         b += (cp - netmask) << 3;
  494         x->rn_bit = -1 - b;
  495         if (isnormal)
  496                 x->rn_flags |= RNF_NORMAL;
  497         return (x);
  498 }
  499 
  500 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  501 rn_lexobetter(m_arg, n_arg)
  502         void *m_arg, *n_arg;
  503 {
  504         register u_char *mp = m_arg, *np = n_arg, *lim;
  505 
  506         if (*mp > *np)
  507                 return 1;  /* not really, but need to check longer one first */
  508         if (*mp == *np)
  509                 for (lim = mp + *mp; mp < lim;)
  510                         if (*mp++ > *np++)
  511                                 return 1;
  512         return 0;
  513 }
  514 
  515 static struct radix_mask *
  516 rn_new_radix_mask(tt, next)
  517         register struct radix_node *tt;
  518         register struct radix_mask *next;
  519 {
  520         register struct radix_mask *m;
  521 
  522         MKGet(m);
  523         if (m == 0) {
  524                 log(LOG_ERR, "Mask for route not entered\n");
  525                 return (0);
  526         }
  527         Bzero(m, sizeof *m);
  528         m->rm_bit = tt->rn_bit;
  529         m->rm_flags = tt->rn_flags;
  530         if (tt->rn_flags & RNF_NORMAL)
  531                 m->rm_leaf = tt;
  532         else
  533                 m->rm_mask = tt->rn_mask;
  534         m->rm_mklist = next;
  535         tt->rn_mklist = m;
  536         return m;
  537 }
  538 
  539 struct radix_node *
  540 rn_addroute(v_arg, n_arg, head, treenodes)
  541         void *v_arg, *n_arg;
  542         struct radix_node_head *head;
  543         struct radix_node treenodes[2];
  544 {
  545         caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
  546         register struct radix_node *t, *x = 0, *tt;
  547         struct radix_node *saved_tt, *top = head->rnh_treetop;
  548         short b = 0, b_leaf = 0;
  549         int keyduplicated;
  550         caddr_t mmask;
  551         struct radix_mask *m, **mp;
  552 
  553         /*
  554          * In dealing with non-contiguous masks, there may be
  555          * many different routes which have the same mask.
  556          * We will find it useful to have a unique pointer to
  557          * the mask to speed avoiding duplicate references at
  558          * nodes and possibly save time in calculating indices.
  559          */
  560         if (netmask)  {
  561                 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
  562                         return (0);
  563                 b_leaf = x->rn_bit;
  564                 b = -1 - x->rn_bit;
  565                 netmask = x->rn_key;
  566         }
  567         /*
  568          * Deal with duplicated keys: attach node to previous instance
  569          */
  570         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  571         if (keyduplicated) {
  572                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  573                         if (tt->rn_mask == netmask)
  574                                 return (0);
  575                         if (netmask == 0 ||
  576                             (tt->rn_mask &&
  577                              ((b_leaf < tt->rn_bit) /* index(netmask) > node */
  578                               || rn_refines(netmask, tt->rn_mask)
  579                               || rn_lexobetter(netmask, tt->rn_mask))))
  580                                 break;
  581                 }
  582                 /*
  583                  * If the mask is not duplicated, we wouldn't
  584                  * find it among possible duplicate key entries
  585                  * anyway, so the above test doesn't hurt.
  586                  *
  587                  * We sort the masks for a duplicated key the same way as
  588                  * in a masklist -- most specific to least specific.
  589                  * This may require the unfortunate nuisance of relocating
  590                  * the head of the list.
  591                  */
  592                 if (tt == saved_tt) {
  593                         struct  radix_node *xx = x;
  594                         /* link in at head of list */
  595                         (tt = treenodes)->rn_dupedkey = t;
  596                         tt->rn_flags = t->rn_flags;
  597                         tt->rn_parent = x = t->rn_parent;
  598                         t->rn_parent = tt;                      /* parent */
  599                         if (x->rn_left == t)
  600                                 x->rn_left = tt;
  601                         else
  602                                 x->rn_right = tt;
  603                         saved_tt = tt; x = xx;
  604                 } else {
  605                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  606                         t->rn_dupedkey = tt;
  607                         tt->rn_parent = t;                      /* parent */
  608                         if (tt->rn_dupedkey)                    /* parent */
  609                                 tt->rn_dupedkey->rn_parent = tt; /* parent */
  610                 }
  611 #ifdef RN_DEBUG
  612                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  613                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  614 #endif
  615                 tt->rn_key = (caddr_t) v;
  616                 tt->rn_bit = -1;
  617                 tt->rn_flags = RNF_ACTIVE;
  618         }
  619         /*
  620          * Put mask in tree.
  621          */
  622         if (netmask) {
  623                 tt->rn_mask = netmask;
  624                 tt->rn_bit = x->rn_bit;
  625                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  626         }
  627         t = saved_tt->rn_parent;
  628         if (keyduplicated)
  629                 goto on2;
  630         b_leaf = -1 - t->rn_bit;
  631         if (t->rn_right == saved_tt)
  632                 x = t->rn_left;
  633         else
  634                 x = t->rn_right;
  635         /* Promote general routes from below */
  636         if (x->rn_bit < 0) {
  637             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  638                 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
  639                         *mp = m = rn_new_radix_mask(x, 0);
  640                         if (m)
  641                                 mp = &m->rm_mklist;
  642                 }
  643         } else if (x->rn_mklist) {
  644                 /*
  645                  * Skip over masks whose index is > that of new node
  646                  */
  647                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  648                         if (m->rm_bit >= b_leaf)
  649                                 break;
  650                 t->rn_mklist = m; *mp = 0;
  651         }
  652 on2:
  653         /* Add new route to highest possible ancestor's list */
  654         if ((netmask == 0) || (b > t->rn_bit ))
  655                 return tt; /* can't lift at all */
  656         b_leaf = tt->rn_bit;
  657         do {
  658                 x = t;
  659                 t = t->rn_parent;
  660         } while (b <= t->rn_bit && x != top);
  661         /*
  662          * Search through routes associated with node to
  663          * insert new route according to index.
  664          * Need same criteria as when sorting dupedkeys to avoid
  665          * double loop on deletion.
  666          */
  667         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  668                 if (m->rm_bit < b_leaf)
  669                         continue;
  670                 if (m->rm_bit > b_leaf)
  671                         break;
  672                 if (m->rm_flags & RNF_NORMAL) {
  673                         mmask = m->rm_leaf->rn_mask;
  674                         if (tt->rn_flags & RNF_NORMAL) {
  675                             log(LOG_ERR,
  676                                 "Non-unique normal route, mask not entered\n");
  677                                 return tt;
  678                         }
  679                 } else
  680                         mmask = m->rm_mask;
  681                 if (mmask == netmask) {
  682                         m->rm_refs++;
  683                         tt->rn_mklist = m;
  684                         return tt;
  685                 }
  686                 if (rn_refines(netmask, mmask)
  687                     || rn_lexobetter(netmask, mmask))
  688                         break;
  689         }
  690         *mp = rn_new_radix_mask(tt, *mp);
  691         return tt;
  692 }
  693 
  694 struct radix_node *
  695 rn_delete(v_arg, netmask_arg, head)
  696         void *v_arg, *netmask_arg;
  697         struct radix_node_head *head;
  698 {
  699         register struct radix_node *t, *p, *x, *tt;
  700         struct radix_mask *m, *saved_m, **mp;
  701         struct radix_node *dupedkey, *saved_tt, *top;
  702         caddr_t v, netmask;
  703         int b, head_off, vlen;
  704 
  705         v = v_arg;
  706         netmask = netmask_arg;
  707         x = head->rnh_treetop;
  708         tt = rn_search(v, x);
  709         head_off = x->rn_offset;
  710         vlen =  *(u_char *)v;
  711         saved_tt = tt;
  712         top = x;
  713         if (tt == 0 ||
  714             Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  715                 return (0);
  716         /*
  717          * Delete our route from mask lists.
  718          */
  719         if (netmask) {
  720                 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
  721                         return (0);
  722                 netmask = x->rn_key;
  723                 while (tt->rn_mask != netmask)
  724                         if ((tt = tt->rn_dupedkey) == 0)
  725                                 return (0);
  726         }
  727         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
  728                 goto on1;
  729         if (tt->rn_flags & RNF_NORMAL) {
  730                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  731                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  732                         return 0;  /* dangling ref could cause disaster */
  733                 }
  734         } else {
  735                 if (m->rm_mask != tt->rn_mask) {
  736                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  737                         goto on1;
  738                 }
  739                 if (--m->rm_refs >= 0)
  740                         goto on1;
  741         }
  742         b = -1 - tt->rn_bit;
  743         t = saved_tt->rn_parent;
  744         if (b > t->rn_bit)
  745                 goto on1; /* Wasn't lifted at all */
  746         do {
  747                 x = t;
  748                 t = t->rn_parent;
  749         } while (b <= t->rn_bit && x != top);
  750         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  751                 if (m == saved_m) {
  752                         *mp = m->rm_mklist;
  753                         MKFree(m);
  754                         break;
  755                 }
  756         if (m == 0) {
  757                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  758                 if (tt->rn_flags & RNF_NORMAL)
  759                         return (0); /* Dangling ref to us */
  760         }
  761 on1:
  762         /*
  763          * Eliminate us from tree
  764          */
  765         if (tt->rn_flags & RNF_ROOT)
  766                 return (0);
  767 #ifdef RN_DEBUG
  768         /* Get us out of the creation list */
  769         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  770         if (t) t->rn_ybro = tt->rn_ybro;
  771 #endif
  772         t = tt->rn_parent;
  773         dupedkey = saved_tt->rn_dupedkey;
  774         if (dupedkey) {
  775                 /*
  776                  * at this point, tt is the deletion target and saved_tt
  777                  * is the head of the dupekey chain
  778                  */
  779                 if (tt == saved_tt) {
  780                         /* remove from head of chain */
  781                         x = dupedkey; x->rn_parent = t;
  782                         if (t->rn_left == tt)
  783                                 t->rn_left = x;
  784                         else
  785                                 t->rn_right = x;
  786                 } else {
  787                         /* find node in front of tt on the chain */
  788                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  789                                 p = p->rn_dupedkey;
  790                         if (p) {
  791                                 p->rn_dupedkey = tt->rn_dupedkey;
  792                                 if (tt->rn_dupedkey)            /* parent */
  793                                         tt->rn_dupedkey->rn_parent = p;
  794                                                                 /* parent */
  795                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  796                 }
  797                 t = tt + 1;
  798                 if  (t->rn_flags & RNF_ACTIVE) {
  799 #ifndef RN_DEBUG
  800                         *++x = *t;
  801                         p = t->rn_parent;
  802 #else
  803                         b = t->rn_info;
  804                         *++x = *t;
  805                         t->rn_info = b;
  806                         p = t->rn_parent;
  807 #endif
  808                         if (p->rn_left == t)
  809                                 p->rn_left = x;
  810                         else
  811                                 p->rn_right = x;
  812                         x->rn_left->rn_parent = x;
  813                         x->rn_right->rn_parent = x;
  814                 }
  815                 goto out;
  816         }
  817         if (t->rn_left == tt)
  818                 x = t->rn_right;
  819         else
  820                 x = t->rn_left;
  821         p = t->rn_parent;
  822         if (p->rn_right == t)
  823                 p->rn_right = x;
  824         else
  825                 p->rn_left = x;
  826         x->rn_parent = p;
  827         /*
  828          * Demote routes attached to us.
  829          */
  830         if (t->rn_mklist) {
  831                 if (x->rn_bit >= 0) {
  832                         for (mp = &x->rn_mklist; (m = *mp);)
  833                                 mp = &m->rm_mklist;
  834                         *mp = t->rn_mklist;
  835                 } else {
  836                         /* If there are any key,mask pairs in a sibling
  837                            duped-key chain, some subset will appear sorted
  838                            in the same order attached to our mklist */
  839                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  840                                 if (m == x->rn_mklist) {
  841                                         struct radix_mask *mm = m->rm_mklist;
  842                                         x->rn_mklist = 0;
  843                                         if (--(m->rm_refs) < 0)
  844                                                 MKFree(m);
  845                                         m = mm;
  846                                 }
  847                         if (m)
  848                                 log(LOG_ERR,
  849                                     "rn_delete: Orphaned Mask %p at %p\n",
  850                                     (void *)m, (void *)x);
  851                 }
  852         }
  853         /*
  854          * We may be holding an active internal node in the tree.
  855          */
  856         x = tt + 1;
  857         if (t != x) {
  858 #ifndef RN_DEBUG
  859                 *t = *x;
  860 #else
  861                 b = t->rn_info;
  862                 *t = *x;
  863                 t->rn_info = b;
  864 #endif
  865                 t->rn_left->rn_parent = t;
  866                 t->rn_right->rn_parent = t;
  867                 p = x->rn_parent;
  868                 if (p->rn_left == x)
  869                         p->rn_left = t;
  870                 else
  871                         p->rn_right = t;
  872         }
  873 out:
  874         tt->rn_flags &= ~RNF_ACTIVE;
  875         tt[1].rn_flags &= ~RNF_ACTIVE;
  876         return (tt);
  877 }
  878 
  879 /*
  880  * This is the same as rn_walktree() except for the parameters and the
  881  * exit.
  882  */
  883 static int
  884 rn_walktree_from(h, a, m, f, w)
  885         struct radix_node_head *h;
  886         void *a, *m;
  887         walktree_f_t *f;
  888         void *w;
  889 {
  890         int error;
  891         struct radix_node *base, *next;
  892         u_char *xa = (u_char *)a;
  893         u_char *xm = (u_char *)m;
  894         register struct radix_node *rn, *last = 0 /* shut up gcc */;
  895         int stopping = 0;
  896         int lastb;
  897 
  898         /*
  899          * rn_search_m is sort-of-open-coded here.
  900          */
  901         /* printf("about to search\n"); */
  902         for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
  903                 last = rn;
  904                 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
  905                        rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
  906                 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
  907                         break;
  908                 }
  909                 if (rn->rn_bmask & xa[rn->rn_offset]) {
  910                         rn = rn->rn_right;
  911                 } else {
  912                         rn = rn->rn_left;
  913                 }
  914         }
  915         /* printf("done searching\n"); */
  916 
  917         /*
  918          * Two cases: either we stepped off the end of our mask,
  919          * in which case last == rn, or we reached a leaf, in which
  920          * case we want to start from the last node we looked at.
  921          * Either way, last is the node we want to start from.
  922          */
  923         rn = last;
  924         lastb = rn->rn_bit;
  925 
  926         /* printf("rn %p, lastb %d\n", rn, lastb);*/
  927 
  928         /*
  929          * This gets complicated because we may delete the node
  930          * while applying the function f to it, so we need to calculate
  931          * the successor node in advance.
  932          */
  933         while (rn->rn_bit >= 0)
  934                 rn = rn->rn_left;
  935 
  936         while (!stopping) {
  937                 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
  938                 base = rn;
  939                 /* If at right child go back up, otherwise, go right */
  940                 while (rn->rn_parent->rn_right == rn
  941                        && !(rn->rn_flags & RNF_ROOT)) {
  942                         rn = rn->rn_parent;
  943 
  944                         /* if went up beyond last, stop */
  945                         if (rn->rn_bit < lastb) {
  946                                 stopping = 1;
  947                                 /* printf("up too far\n"); */
  948                         }
  949                 }
  950 
  951                 /* Find the next *leaf* since next node might vanish, too */
  952                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
  953                         rn = rn->rn_left;
  954                 next = rn;
  955                 /* Process leaves */
  956                 while ((rn = base) != 0) {
  957                         base = rn->rn_dupedkey;
  958                         /* printf("leaf %p\n", rn); */
  959                         if (!(rn->rn_flags & RNF_ROOT)
  960                             && (error = (*f)(rn, w)))
  961                                 return (error);
  962                 }
  963                 rn = next;
  964 
  965                 if (rn->rn_flags & RNF_ROOT) {
  966                         /* printf("root, stopping"); */
  967                         stopping = 1;
  968                 }
  969 
  970         }
  971         return 0;
  972 }
  973 
  974 static int
  975 rn_walktree(h, f, w)
  976         struct radix_node_head *h;
  977         walktree_f_t *f;
  978         void *w;
  979 {
  980         int error;
  981         struct radix_node *base, *next;
  982         register struct radix_node *rn = h->rnh_treetop;
  983         /*
  984          * This gets complicated because we may delete the node
  985          * while applying the function f to it, so we need to calculate
  986          * the successor node in advance.
  987          */
  988         /* First time through node, go left */
  989         while (rn->rn_bit >= 0)
  990                 rn = rn->rn_left;
  991         for (;;) {
  992                 base = rn;
  993                 /* If at right child go back up, otherwise, go right */
  994                 while (rn->rn_parent->rn_right == rn
  995                        && (rn->rn_flags & RNF_ROOT) == 0)
  996                         rn = rn->rn_parent;
  997                 /* Find the next *leaf* since next node might vanish, too */
  998                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
  999                         rn = rn->rn_left;
 1000                 next = rn;
 1001                 /* Process leaves */
 1002                 while ((rn = base)) {
 1003                         base = rn->rn_dupedkey;
 1004                         if (!(rn->rn_flags & RNF_ROOT)
 1005                             && (error = (*f)(rn, w)))
 1006                                 return (error);
 1007                 }
 1008                 rn = next;
 1009                 if (rn->rn_flags & RNF_ROOT)
 1010                         return (0);
 1011         }
 1012         /* NOTREACHED */
 1013 }
 1014 
 1015 int
 1016 rn_inithead(head, off)
 1017         void **head;
 1018         int off;
 1019 {
 1020         register struct radix_node_head *rnh;
 1021         register struct radix_node *t, *tt, *ttt;
 1022         if (*head)
 1023                 return (1);
 1024         R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
 1025         if (rnh == 0)
 1026                 return (0);
 1027         Bzero(rnh, sizeof (*rnh));
 1028         *head = rnh;
 1029         t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
 1030         ttt = rnh->rnh_nodes + 2;
 1031         t->rn_right = ttt;
 1032         t->rn_parent = t;
 1033         tt = t->rn_left;
 1034         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1035         tt->rn_bit = -1 - off;
 1036         *ttt = *tt;
 1037         ttt->rn_key = rn_ones;
 1038         rnh->rnh_addaddr = rn_addroute;
 1039         rnh->rnh_deladdr = rn_delete;
 1040         rnh->rnh_matchaddr = rn_match;
 1041         rnh->rnh_lookup = rn_lookup;
 1042         rnh->rnh_walktree = rn_walktree;
 1043         rnh->rnh_walktree_from = rn_walktree_from;
 1044         rnh->rnh_treetop = t;
 1045         return (1);
 1046 }
 1047 
 1048 void
 1049 rn_init()
 1050 {
 1051         char *cp, *cplim;
 1052 #ifdef _KERNEL
 1053         struct domain *dom;
 1054 
 1055         for (dom = domains; dom; dom = dom->dom_next)
 1056                 if (dom->dom_maxrtkey > max_keylen)
 1057                         max_keylen = dom->dom_maxrtkey;
 1058 #endif
 1059         if (max_keylen == 0) {
 1060                 log(LOG_ERR,
 1061                     "rn_init: radix functions require max_keylen be set\n");
 1062                 return;
 1063         }
 1064         R_Malloc(rn_zeros, char *, 3 * max_keylen);
 1065         if (rn_zeros == NULL)
 1066                 panic("rn_init");
 1067         Bzero(rn_zeros, 3 * max_keylen);
 1068         rn_ones = cp = rn_zeros + max_keylen;
 1069         addmask_key = cplim = rn_ones + max_keylen;
 1070         while (cp < cplim)
 1071                 *cp++ = -1;
 1072         if (rn_inithead((void **)&mask_rnhead, 0) == 0)
 1073                 panic("rn_init 2");
 1074 }

Cache object: 5fbb426fa571f7e95c7d3c758b39b580


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.