The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1988, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)radix.c     8.5 (Berkeley) 5/19/95
   30  * $FreeBSD: releng/8.0/sys/net/radix.c 186176 2008-12-16 11:01:36Z kmacy $
   31  */
   32 
   33 /*
   34  * Routines to build and maintain radix trees for routing lookups.
   35  */
   36 #ifndef _RADIX_H_
   37 #include <sys/param.h>
   38 #ifdef  _KERNEL
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/rwlock.h>
   42 #include <sys/systm.h>
   43 #include <sys/malloc.h>
   44 #include <sys/domain.h>
   45 #else
   46 #include <stdlib.h>
   47 #endif
   48 #include <sys/syslog.h>
   49 #include <net/radix.h>
   50 #endif
   51 
   52 #include "opt_mpath.h"
   53 
   54 #ifdef RADIX_MPATH
   55 #include <net/radix_mpath.h>
   56 #endif
   57 
   58 
   59 static int      rn_walktree_from(struct radix_node_head *h, void *a, void *m,
   60                     walktree_f_t *f, void *w);
   61 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
   62 static struct radix_node
   63          *rn_insert(void *, struct radix_node_head *, int *,
   64              struct radix_node [2]),
   65          *rn_newpair(void *, int, struct radix_node[2]),
   66          *rn_search(void *, struct radix_node *),
   67          *rn_search_m(void *, struct radix_node *, void *);
   68 
   69 static int      max_keylen;
   70 static struct radix_mask *rn_mkfreelist;
   71 static struct radix_node_head *mask_rnhead;
   72 /*
   73  * Work area -- the following point to 3 buffers of size max_keylen,
   74  * allocated in this order in a block of memory malloc'ed by rn_init.
   75  */
   76 static char *rn_zeros, *rn_ones, *addmask_key;
   77 
   78 #define MKGet(m) {                                              \
   79         if (rn_mkfreelist) {                                    \
   80                 m = rn_mkfreelist;                              \
   81                 rn_mkfreelist = (m)->rm_mklist;                 \
   82         } else                                                  \
   83                 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); }
   84  
   85 #define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);}
   86 
   87 #define rn_masktop (mask_rnhead->rnh_treetop)
   88 
   89 static int      rn_lexobetter(void *m_arg, void *n_arg);
   90 static struct radix_mask *
   91                 rn_new_radix_mask(struct radix_node *tt,
   92                     struct radix_mask *next);
   93 static int      rn_satisfies_leaf(char *trial, struct radix_node *leaf,
   94                     int skip);
   95 
   96 /*
   97  * The data structure for the keys is a radix tree with one way
   98  * branching removed.  The index rn_bit at an internal node n represents a bit
   99  * position to be tested.  The tree is arranged so that all descendants
  100  * of a node n have keys whose bits all agree up to position rn_bit - 1.
  101  * (We say the index of n is rn_bit.)
  102  *
  103  * There is at least one descendant which has a one bit at position rn_bit,
  104  * and at least one with a zero there.
  105  *
  106  * A route is determined by a pair of key and mask.  We require that the
  107  * bit-wise logical and of the key and mask to be the key.
  108  * We define the index of a route to associated with the mask to be
  109  * the first bit number in the mask where 0 occurs (with bit number 0
  110  * representing the highest order bit).
  111  *
  112  * We say a mask is normal if every bit is 0, past the index of the mask.
  113  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
  114  * and m is a normal mask, then the route applies to every descendant of n.
  115  * If the index(m) < rn_bit, this implies the trailing last few bits of k
  116  * before bit b are all 0, (and hence consequently true of every descendant
  117  * of n), so the route applies to all descendants of the node as well.
  118  *
  119  * Similar logic shows that a non-normal mask m such that
  120  * index(m) <= index(n) could potentially apply to many children of n.
  121  * Thus, for each non-host route, we attach its mask to a list at an internal
  122  * node as high in the tree as we can go.
  123  *
  124  * The present version of the code makes use of normal routes in short-
  125  * circuiting an explict mask and compare operation when testing whether
  126  * a key satisfies a normal route, and also in remembering the unique leaf
  127  * that governs a subtree.
  128  */
  129 
  130 /*
  131  * Most of the functions in this code assume that the key/mask arguments
  132  * are sockaddr-like structures, where the first byte is an u_char
  133  * indicating the size of the entire structure.
  134  *
  135  * To make the assumption more explicit, we use the LEN() macro to access
  136  * this field. It is safe to pass an expression with side effects
  137  * to LEN() as the argument is evaluated only once.
  138  */
  139 #define LEN(x) (*(const u_char *)(x))
  140 
  141 /*
  142  * XXX THIS NEEDS TO BE FIXED
  143  * In the code, pointers to keys and masks are passed as either
  144  * 'void *' (because callers use to pass pointers of various kinds), or
  145  * 'caddr_t' (which is fine for pointer arithmetics, but not very
  146  * clean when you dereference it to access data). Furthermore, caddr_t
  147  * is really 'char *', while the natural type to operate on keys and
  148  * masks would be 'u_char'. This mismatch require a lot of casts and
  149  * intermediate variables to adapt types that clutter the code.
  150  */
  151 
  152 /*
  153  * Search a node in the tree matching the key.
  154  */
  155 static struct radix_node *
  156 rn_search(v_arg, head)
  157         void *v_arg;
  158         struct radix_node *head;
  159 {
  160         register struct radix_node *x;
  161         register caddr_t v;
  162 
  163         for (x = head, v = v_arg; x->rn_bit >= 0;) {
  164                 if (x->rn_bmask & v[x->rn_offset])
  165                         x = x->rn_right;
  166                 else
  167                         x = x->rn_left;
  168         }
  169         return (x);
  170 }
  171 
  172 /*
  173  * Same as above, but with an additional mask.
  174  * XXX note this function is used only once.
  175  */
  176 static struct radix_node *
  177 rn_search_m(v_arg, head, m_arg)
  178         struct radix_node *head;
  179         void *v_arg, *m_arg;
  180 {
  181         register struct radix_node *x;
  182         register caddr_t v = v_arg, m = m_arg;
  183 
  184         for (x = head; x->rn_bit >= 0;) {
  185                 if ((x->rn_bmask & m[x->rn_offset]) &&
  186                     (x->rn_bmask & v[x->rn_offset]))
  187                         x = x->rn_right;
  188                 else
  189                         x = x->rn_left;
  190         }
  191         return x;
  192 }
  193 
  194 int
  195 rn_refines(m_arg, n_arg)
  196         void *m_arg, *n_arg;
  197 {
  198         register caddr_t m = m_arg, n = n_arg;
  199         register caddr_t lim, lim2 = lim = n + LEN(n);
  200         int longer = LEN(n++) - (int)LEN(m++);
  201         int masks_are_equal = 1;
  202 
  203         if (longer > 0)
  204                 lim -= longer;
  205         while (n < lim) {
  206                 if (*n & ~(*m))
  207                         return 0;
  208                 if (*n++ != *m++)
  209                         masks_are_equal = 0;
  210         }
  211         while (n < lim2)
  212                 if (*n++)
  213                         return 0;
  214         if (masks_are_equal && (longer < 0))
  215                 for (lim2 = m - longer; m < lim2; )
  216                         if (*m++)
  217                                 return 1;
  218         return (!masks_are_equal);
  219 }
  220 
  221 struct radix_node *
  222 rn_lookup(v_arg, m_arg, head)
  223         void *v_arg, *m_arg;
  224         struct radix_node_head *head;
  225 {
  226         register struct radix_node *x;
  227         caddr_t netmask = 0;
  228 
  229         if (m_arg) {
  230                 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
  231                 if (x == 0)
  232                         return (0);
  233                 netmask = x->rn_key;
  234         }
  235         x = rn_match(v_arg, head);
  236         if (x && netmask) {
  237                 while (x && x->rn_mask != netmask)
  238                         x = x->rn_dupedkey;
  239         }
  240         return x;
  241 }
  242 
  243 static int
  244 rn_satisfies_leaf(trial, leaf, skip)
  245         char *trial;
  246         register struct radix_node *leaf;
  247         int skip;
  248 {
  249         register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  250         char *cplim;
  251         int length = min(LEN(cp), LEN(cp2));
  252 
  253         if (cp3 == 0)
  254                 cp3 = rn_ones;
  255         else
  256                 length = min(length, *(u_char *)cp3);
  257         cplim = cp + length; cp3 += skip; cp2 += skip;
  258         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  259                 if ((*cp ^ *cp2) & *cp3)
  260                         return 0;
  261         return 1;
  262 }
  263 
  264 struct radix_node *
  265 rn_match(v_arg, head)
  266         void *v_arg;
  267         struct radix_node_head *head;
  268 {
  269         caddr_t v = v_arg;
  270         register struct radix_node *t = head->rnh_treetop, *x;
  271         register caddr_t cp = v, cp2;
  272         caddr_t cplim;
  273         struct radix_node *saved_t, *top = t;
  274         int off = t->rn_offset, vlen = LEN(cp), matched_off;
  275         register int test, b, rn_bit;
  276 
  277         /*
  278          * Open code rn_search(v, top) to avoid overhead of extra
  279          * subroutine call.
  280          */
  281         for (; t->rn_bit >= 0; ) {
  282                 if (t->rn_bmask & cp[t->rn_offset])
  283                         t = t->rn_right;
  284                 else
  285                         t = t->rn_left;
  286         }
  287         /*
  288          * See if we match exactly as a host destination
  289          * or at least learn how many bits match, for normal mask finesse.
  290          *
  291          * It doesn't hurt us to limit how many bytes to check
  292          * to the length of the mask, since if it matches we had a genuine
  293          * match and the leaf we have is the most specific one anyway;
  294          * if it didn't match with a shorter length it would fail
  295          * with a long one.  This wins big for class B&C netmasks which
  296          * are probably the most common case...
  297          */
  298         if (t->rn_mask)
  299                 vlen = *(u_char *)t->rn_mask;
  300         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  301         for (; cp < cplim; cp++, cp2++)
  302                 if (*cp != *cp2)
  303                         goto on1;
  304         /*
  305          * This extra grot is in case we are explicitly asked
  306          * to look up the default.  Ugh!
  307          *
  308          * Never return the root node itself, it seems to cause a
  309          * lot of confusion.
  310          */
  311         if (t->rn_flags & RNF_ROOT)
  312                 t = t->rn_dupedkey;
  313         return t;
  314 on1:
  315         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  316         for (b = 7; (test >>= 1) > 0;)
  317                 b--;
  318         matched_off = cp - v;
  319         b += matched_off << 3;
  320         rn_bit = -1 - b;
  321         /*
  322          * If there is a host route in a duped-key chain, it will be first.
  323          */
  324         if ((saved_t = t)->rn_mask == 0)
  325                 t = t->rn_dupedkey;
  326         for (; t; t = t->rn_dupedkey)
  327                 /*
  328                  * Even if we don't match exactly as a host,
  329                  * we may match if the leaf we wound up at is
  330                  * a route to a net.
  331                  */
  332                 if (t->rn_flags & RNF_NORMAL) {
  333                         if (rn_bit <= t->rn_bit)
  334                                 return t;
  335                 } else if (rn_satisfies_leaf(v, t, matched_off))
  336                                 return t;
  337         t = saved_t;
  338         /* start searching up the tree */
  339         do {
  340                 register struct radix_mask *m;
  341                 t = t->rn_parent;
  342                 m = t->rn_mklist;
  343                 /*
  344                  * If non-contiguous masks ever become important
  345                  * we can restore the masking and open coding of
  346                  * the search and satisfaction test and put the
  347                  * calculation of "off" back before the "do".
  348                  */
  349                 while (m) {
  350                         if (m->rm_flags & RNF_NORMAL) {
  351                                 if (rn_bit <= m->rm_bit)
  352                                         return (m->rm_leaf);
  353                         } else {
  354                                 off = min(t->rn_offset, matched_off);
  355                                 x = rn_search_m(v, t, m->rm_mask);
  356                                 while (x && x->rn_mask != m->rm_mask)
  357                                         x = x->rn_dupedkey;
  358                                 if (x && rn_satisfies_leaf(v, x, off))
  359                                         return x;
  360                         }
  361                         m = m->rm_mklist;
  362                 }
  363         } while (t != top);
  364         return 0;
  365 }
  366 
  367 #ifdef RN_DEBUG
  368 int     rn_nodenum;
  369 struct  radix_node *rn_clist;
  370 int     rn_saveinfo;
  371 int     rn_debug =  1;
  372 #endif
  373 
  374 /*
  375  * Whenever we add a new leaf to the tree, we also add a parent node,
  376  * so we allocate them as an array of two elements: the first one must be
  377  * the leaf (see RNTORT() in route.c), the second one is the parent.
  378  * This routine initializes the relevant fields of the nodes, so that
  379  * the leaf is the left child of the parent node, and both nodes have
  380  * (almost) all all fields filled as appropriate.
  381  * (XXX some fields are left unset, see the '#if 0' section).
  382  * The function returns a pointer to the parent node.
  383  */
  384 
  385 static struct radix_node *
  386 rn_newpair(v, b, nodes)
  387         void *v;
  388         int b;
  389         struct radix_node nodes[2];
  390 {
  391         register struct radix_node *tt = nodes, *t = tt + 1;
  392         t->rn_bit = b;
  393         t->rn_bmask = 0x80 >> (b & 7);
  394         t->rn_left = tt;
  395         t->rn_offset = b >> 3;
  396 
  397 #if 0  /* XXX perhaps we should fill these fields as well. */
  398         t->rn_parent = t->rn_right = NULL;
  399 
  400         tt->rn_mask = NULL;
  401         tt->rn_dupedkey = NULL;
  402         tt->rn_bmask = 0;
  403 #endif
  404         tt->rn_bit = -1;
  405         tt->rn_key = (caddr_t)v;
  406         tt->rn_parent = t;
  407         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  408         tt->rn_mklist = t->rn_mklist = 0;
  409 #ifdef RN_DEBUG
  410         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  411         tt->rn_twin = t;
  412         tt->rn_ybro = rn_clist;
  413         rn_clist = tt;
  414 #endif
  415         return t;
  416 }
  417 
  418 static struct radix_node *
  419 rn_insert(v_arg, head, dupentry, nodes)
  420         void *v_arg;
  421         struct radix_node_head *head;
  422         int *dupentry;
  423         struct radix_node nodes[2];
  424 {
  425         caddr_t v = v_arg;
  426         struct radix_node *top = head->rnh_treetop;
  427         int head_off = top->rn_offset, vlen = (int)LEN(v);
  428         register struct radix_node *t = rn_search(v_arg, top);
  429         register caddr_t cp = v + head_off;
  430         register int b;
  431         struct radix_node *tt;
  432         /*
  433          * Find first bit at which v and t->rn_key differ
  434          */
  435     {
  436         register caddr_t cp2 = t->rn_key + head_off;
  437         register int cmp_res;
  438         caddr_t cplim = v + vlen;
  439 
  440         while (cp < cplim)
  441                 if (*cp2++ != *cp++)
  442                         goto on1;
  443         *dupentry = 1;
  444         return t;
  445 on1:
  446         *dupentry = 0;
  447         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  448         for (b = (cp - v) << 3; cmp_res; b--)
  449                 cmp_res >>= 1;
  450     }
  451     {
  452         register struct radix_node *p, *x = top;
  453         cp = v;
  454         do {
  455                 p = x;
  456                 if (cp[x->rn_offset] & x->rn_bmask)
  457                         x = x->rn_right;
  458                 else
  459                         x = x->rn_left;
  460         } while (b > (unsigned) x->rn_bit);
  461                                 /* x->rn_bit < b && x->rn_bit >= 0 */
  462 #ifdef RN_DEBUG
  463         if (rn_debug)
  464                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  465 #endif
  466         t = rn_newpair(v_arg, b, nodes); 
  467         tt = t->rn_left;
  468         if ((cp[p->rn_offset] & p->rn_bmask) == 0)
  469                 p->rn_left = t;
  470         else
  471                 p->rn_right = t;
  472         x->rn_parent = t;
  473         t->rn_parent = p; /* frees x, p as temp vars below */
  474         if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
  475                 t->rn_right = x;
  476         } else {
  477                 t->rn_right = tt;
  478                 t->rn_left = x;
  479         }
  480 #ifdef RN_DEBUG
  481         if (rn_debug)
  482                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  483 #endif
  484     }
  485         return (tt);
  486 }
  487 
  488 struct radix_node *
  489 rn_addmask(n_arg, search, skip)
  490         int search, skip;
  491         void *n_arg;
  492 {
  493         caddr_t netmask = (caddr_t)n_arg;
  494         register struct radix_node *x;
  495         register caddr_t cp, cplim;
  496         register int b = 0, mlen, j;
  497         int maskduplicated, m0, isnormal;
  498         struct radix_node *saved_x;
  499         static int last_zeroed = 0;
  500 
  501         if ((mlen = LEN(netmask)) > max_keylen)
  502                 mlen = max_keylen;
  503         if (skip == 0)
  504                 skip = 1;
  505         if (mlen <= skip)
  506                 return (mask_rnhead->rnh_nodes);
  507         if (skip > 1)
  508                 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  509         if ((m0 = mlen) > skip)
  510                 bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  511         /*
  512          * Trim trailing zeroes.
  513          */
  514         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  515                 cp--;
  516         mlen = cp - addmask_key;
  517         if (mlen <= skip) {
  518                 if (m0 >= last_zeroed)
  519                         last_zeroed = mlen;
  520                 return (mask_rnhead->rnh_nodes);
  521         }
  522         if (m0 < last_zeroed)
  523                 bzero(addmask_key + m0, last_zeroed - m0);
  524         *addmask_key = last_zeroed = mlen;
  525         x = rn_search(addmask_key, rn_masktop);
  526         if (bcmp(addmask_key, x->rn_key, mlen) != 0)
  527                 x = 0;
  528         if (x || search)
  529                 return (x);
  530         R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
  531         if ((saved_x = x) == 0)
  532                 return (0);
  533         netmask = cp = (caddr_t)(x + 2);
  534         bcopy(addmask_key, cp, mlen);
  535         x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
  536         if (maskduplicated) {
  537                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  538                 Free(saved_x);
  539                 return (x);
  540         }
  541         /*
  542          * Calculate index of mask, and check for normalcy.
  543          * First find the first byte with a 0 bit, then if there are
  544          * more bits left (remember we already trimmed the trailing 0's),
  545          * the pattern must be one of those in normal_chars[], or we have
  546          * a non-contiguous mask.
  547          */
  548         cplim = netmask + mlen;
  549         isnormal = 1;
  550         for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
  551                 cp++;
  552         if (cp != cplim) {
  553                 static char normal_chars[] = {
  554                         0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
  555 
  556                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  557                         b++;
  558                 if (*cp != normal_chars[b] || cp != (cplim - 1))
  559                         isnormal = 0;
  560         }
  561         b += (cp - netmask) << 3;
  562         x->rn_bit = -1 - b;
  563         if (isnormal)
  564                 x->rn_flags |= RNF_NORMAL;
  565         return (x);
  566 }
  567 
  568 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  569 rn_lexobetter(m_arg, n_arg)
  570         void *m_arg, *n_arg;
  571 {
  572         register u_char *mp = m_arg, *np = n_arg, *lim;
  573 
  574         if (LEN(mp) > LEN(np))
  575                 return 1;  /* not really, but need to check longer one first */
  576         if (LEN(mp) == LEN(np))
  577                 for (lim = mp + LEN(mp); mp < lim;)
  578                         if (*mp++ > *np++)
  579                                 return 1;
  580         return 0;
  581 }
  582 
  583 static struct radix_mask *
  584 rn_new_radix_mask(tt, next)
  585         register struct radix_node *tt;
  586         register struct radix_mask *next;
  587 {
  588         register struct radix_mask *m;
  589 
  590         MKGet(m);
  591         if (m == 0) {
  592                 log(LOG_ERR, "Mask for route not entered\n");
  593                 return (0);
  594         }
  595         bzero(m, sizeof *m);
  596         m->rm_bit = tt->rn_bit;
  597         m->rm_flags = tt->rn_flags;
  598         if (tt->rn_flags & RNF_NORMAL)
  599                 m->rm_leaf = tt;
  600         else
  601                 m->rm_mask = tt->rn_mask;
  602         m->rm_mklist = next;
  603         tt->rn_mklist = m;
  604         return m;
  605 }
  606 
  607 struct radix_node *
  608 rn_addroute(v_arg, n_arg, head, treenodes)
  609         void *v_arg, *n_arg;
  610         struct radix_node_head *head;
  611         struct radix_node treenodes[2];
  612 {
  613         caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
  614         register struct radix_node *t, *x = 0, *tt;
  615         struct radix_node *saved_tt, *top = head->rnh_treetop;
  616         short b = 0, b_leaf = 0;
  617         int keyduplicated;
  618         caddr_t mmask;
  619         struct radix_mask *m, **mp;
  620 
  621         /*
  622          * In dealing with non-contiguous masks, there may be
  623          * many different routes which have the same mask.
  624          * We will find it useful to have a unique pointer to
  625          * the mask to speed avoiding duplicate references at
  626          * nodes and possibly save time in calculating indices.
  627          */
  628         if (netmask)  {
  629                 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
  630                         return (0);
  631                 b_leaf = x->rn_bit;
  632                 b = -1 - x->rn_bit;
  633                 netmask = x->rn_key;
  634         }
  635         /*
  636          * Deal with duplicated keys: attach node to previous instance
  637          */
  638         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  639         if (keyduplicated) {
  640                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  641 #ifdef RADIX_MPATH
  642                         /* permit multipath, if enabled for the family */
  643                         if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
  644                                 /*
  645                                  * go down to the end of multipaths, so that
  646                                  * new entry goes into the end of rn_dupedkey
  647                                  * chain.
  648                                  */
  649                                 do {
  650                                         t = tt;
  651                                         tt = tt->rn_dupedkey;
  652                                 } while (tt && t->rn_mask == tt->rn_mask);
  653                                 break;
  654                         }
  655 #endif
  656                         if (tt->rn_mask == netmask)
  657                                 return (0);
  658                         if (netmask == 0 ||
  659                             (tt->rn_mask &&
  660                              ((b_leaf < tt->rn_bit) /* index(netmask) > node */
  661                               || rn_refines(netmask, tt->rn_mask)
  662                               || rn_lexobetter(netmask, tt->rn_mask))))
  663                                 break;
  664                 }
  665                 /*
  666                  * If the mask is not duplicated, we wouldn't
  667                  * find it among possible duplicate key entries
  668                  * anyway, so the above test doesn't hurt.
  669                  *
  670                  * We sort the masks for a duplicated key the same way as
  671                  * in a masklist -- most specific to least specific.
  672                  * This may require the unfortunate nuisance of relocating
  673                  * the head of the list.
  674                  *
  675                  * We also reverse, or doubly link the list through the
  676                  * parent pointer.
  677                  */
  678                 if (tt == saved_tt) {
  679                         struct  radix_node *xx = x;
  680                         /* link in at head of list */
  681                         (tt = treenodes)->rn_dupedkey = t;
  682                         tt->rn_flags = t->rn_flags;
  683                         tt->rn_parent = x = t->rn_parent;
  684                         t->rn_parent = tt;                      /* parent */
  685                         if (x->rn_left == t)
  686                                 x->rn_left = tt;
  687                         else
  688                                 x->rn_right = tt;
  689                         saved_tt = tt; x = xx;
  690                 } else {
  691                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  692                         t->rn_dupedkey = tt;
  693                         tt->rn_parent = t;                      /* parent */
  694                         if (tt->rn_dupedkey)                    /* parent */
  695                                 tt->rn_dupedkey->rn_parent = tt; /* parent */
  696                 }
  697 #ifdef RN_DEBUG
  698                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  699                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  700 #endif
  701                 tt->rn_key = (caddr_t) v;
  702                 tt->rn_bit = -1;
  703                 tt->rn_flags = RNF_ACTIVE;
  704         }
  705         /*
  706          * Put mask in tree.
  707          */
  708         if (netmask) {
  709                 tt->rn_mask = netmask;
  710                 tt->rn_bit = x->rn_bit;
  711                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  712         }
  713         t = saved_tt->rn_parent;
  714         if (keyduplicated)
  715                 goto on2;
  716         b_leaf = -1 - t->rn_bit;
  717         if (t->rn_right == saved_tt)
  718                 x = t->rn_left;
  719         else
  720                 x = t->rn_right;
  721         /* Promote general routes from below */
  722         if (x->rn_bit < 0) {
  723             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  724                 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
  725                         *mp = m = rn_new_radix_mask(x, 0);
  726                         if (m)
  727                                 mp = &m->rm_mklist;
  728                 }
  729         } else if (x->rn_mklist) {
  730                 /*
  731                  * Skip over masks whose index is > that of new node
  732                  */
  733                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  734                         if (m->rm_bit >= b_leaf)
  735                                 break;
  736                 t->rn_mklist = m; *mp = 0;
  737         }
  738 on2:
  739         /* Add new route to highest possible ancestor's list */
  740         if ((netmask == 0) || (b > t->rn_bit ))
  741                 return tt; /* can't lift at all */
  742         b_leaf = tt->rn_bit;
  743         do {
  744                 x = t;
  745                 t = t->rn_parent;
  746         } while (b <= t->rn_bit && x != top);
  747         /*
  748          * Search through routes associated with node to
  749          * insert new route according to index.
  750          * Need same criteria as when sorting dupedkeys to avoid
  751          * double loop on deletion.
  752          */
  753         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  754                 if (m->rm_bit < b_leaf)
  755                         continue;
  756                 if (m->rm_bit > b_leaf)
  757                         break;
  758                 if (m->rm_flags & RNF_NORMAL) {
  759                         mmask = m->rm_leaf->rn_mask;
  760                         if (tt->rn_flags & RNF_NORMAL) {
  761                             log(LOG_ERR,
  762                                 "Non-unique normal route, mask not entered\n");
  763                                 return tt;
  764                         }
  765                 } else
  766                         mmask = m->rm_mask;
  767                 if (mmask == netmask) {
  768                         m->rm_refs++;
  769                         tt->rn_mklist = m;
  770                         return tt;
  771                 }
  772                 if (rn_refines(netmask, mmask)
  773                     || rn_lexobetter(netmask, mmask))
  774                         break;
  775         }
  776         *mp = rn_new_radix_mask(tt, *mp);
  777         return tt;
  778 }
  779 
  780 struct radix_node *
  781 rn_delete(v_arg, netmask_arg, head)
  782         void *v_arg, *netmask_arg;
  783         struct radix_node_head *head;
  784 {
  785         register struct radix_node *t, *p, *x, *tt;
  786         struct radix_mask *m, *saved_m, **mp;
  787         struct radix_node *dupedkey, *saved_tt, *top;
  788         caddr_t v, netmask;
  789         int b, head_off, vlen;
  790 
  791         v = v_arg;
  792         netmask = netmask_arg;
  793         x = head->rnh_treetop;
  794         tt = rn_search(v, x);
  795         head_off = x->rn_offset;
  796         vlen =  LEN(v);
  797         saved_tt = tt;
  798         top = x;
  799         if (tt == 0 ||
  800             bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  801                 return (0);
  802         /*
  803          * Delete our route from mask lists.
  804          */
  805         if (netmask) {
  806                 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
  807                         return (0);
  808                 netmask = x->rn_key;
  809                 while (tt->rn_mask != netmask)
  810                         if ((tt = tt->rn_dupedkey) == 0)
  811                                 return (0);
  812         }
  813         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
  814                 goto on1;
  815         if (tt->rn_flags & RNF_NORMAL) {
  816                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  817                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  818                         return 0;  /* dangling ref could cause disaster */
  819                 }
  820         } else {
  821                 if (m->rm_mask != tt->rn_mask) {
  822                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  823                         goto on1;
  824                 }
  825                 if (--m->rm_refs >= 0)
  826                         goto on1;
  827         }
  828         b = -1 - tt->rn_bit;
  829         t = saved_tt->rn_parent;
  830         if (b > t->rn_bit)
  831                 goto on1; /* Wasn't lifted at all */
  832         do {
  833                 x = t;
  834                 t = t->rn_parent;
  835         } while (b <= t->rn_bit && x != top);
  836         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  837                 if (m == saved_m) {
  838                         *mp = m->rm_mklist;
  839                         MKFree(m);
  840                         break;
  841                 }
  842         if (m == 0) {
  843                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  844                 if (tt->rn_flags & RNF_NORMAL)
  845                         return (0); /* Dangling ref to us */
  846         }
  847 on1:
  848         /*
  849          * Eliminate us from tree
  850          */
  851         if (tt->rn_flags & RNF_ROOT)
  852                 return (0);
  853 #ifdef RN_DEBUG
  854         /* Get us out of the creation list */
  855         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  856         if (t) t->rn_ybro = tt->rn_ybro;
  857 #endif
  858         t = tt->rn_parent;
  859         dupedkey = saved_tt->rn_dupedkey;
  860         if (dupedkey) {
  861                 /*
  862                  * Here, tt is the deletion target and
  863                  * saved_tt is the head of the dupekey chain.
  864                  */
  865                 if (tt == saved_tt) {
  866                         /* remove from head of chain */
  867                         x = dupedkey; x->rn_parent = t;
  868                         if (t->rn_left == tt)
  869                                 t->rn_left = x;
  870                         else
  871                                 t->rn_right = x;
  872                 } else {
  873                         /* find node in front of tt on the chain */
  874                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  875                                 p = p->rn_dupedkey;
  876                         if (p) {
  877                                 p->rn_dupedkey = tt->rn_dupedkey;
  878                                 if (tt->rn_dupedkey)            /* parent */
  879                                         tt->rn_dupedkey->rn_parent = p;
  880                                                                 /* parent */
  881                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  882                 }
  883                 t = tt + 1;
  884                 if  (t->rn_flags & RNF_ACTIVE) {
  885 #ifndef RN_DEBUG
  886                         *++x = *t;
  887                         p = t->rn_parent;
  888 #else
  889                         b = t->rn_info;
  890                         *++x = *t;
  891                         t->rn_info = b;
  892                         p = t->rn_parent;
  893 #endif
  894                         if (p->rn_left == t)
  895                                 p->rn_left = x;
  896                         else
  897                                 p->rn_right = x;
  898                         x->rn_left->rn_parent = x;
  899                         x->rn_right->rn_parent = x;
  900                 }
  901                 goto out;
  902         }
  903         if (t->rn_left == tt)
  904                 x = t->rn_right;
  905         else
  906                 x = t->rn_left;
  907         p = t->rn_parent;
  908         if (p->rn_right == t)
  909                 p->rn_right = x;
  910         else
  911                 p->rn_left = x;
  912         x->rn_parent = p;
  913         /*
  914          * Demote routes attached to us.
  915          */
  916         if (t->rn_mklist) {
  917                 if (x->rn_bit >= 0) {
  918                         for (mp = &x->rn_mklist; (m = *mp);)
  919                                 mp = &m->rm_mklist;
  920                         *mp = t->rn_mklist;
  921                 } else {
  922                         /* If there are any key,mask pairs in a sibling
  923                            duped-key chain, some subset will appear sorted
  924                            in the same order attached to our mklist */
  925                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  926                                 if (m == x->rn_mklist) {
  927                                         struct radix_mask *mm = m->rm_mklist;
  928                                         x->rn_mklist = 0;
  929                                         if (--(m->rm_refs) < 0)
  930                                                 MKFree(m);
  931                                         m = mm;
  932                                 }
  933                         if (m)
  934                                 log(LOG_ERR,
  935                                     "rn_delete: Orphaned Mask %p at %p\n",
  936                                     (void *)m, (void *)x);
  937                 }
  938         }
  939         /*
  940          * We may be holding an active internal node in the tree.
  941          */
  942         x = tt + 1;
  943         if (t != x) {
  944 #ifndef RN_DEBUG
  945                 *t = *x;
  946 #else
  947                 b = t->rn_info;
  948                 *t = *x;
  949                 t->rn_info = b;
  950 #endif
  951                 t->rn_left->rn_parent = t;
  952                 t->rn_right->rn_parent = t;
  953                 p = x->rn_parent;
  954                 if (p->rn_left == x)
  955                         p->rn_left = t;
  956                 else
  957                         p->rn_right = t;
  958         }
  959 out:
  960         tt->rn_flags &= ~RNF_ACTIVE;
  961         tt[1].rn_flags &= ~RNF_ACTIVE;
  962         return (tt);
  963 }
  964 
  965 /*
  966  * This is the same as rn_walktree() except for the parameters and the
  967  * exit.
  968  */
  969 static int
  970 rn_walktree_from(h, a, m, f, w)
  971         struct radix_node_head *h;
  972         void *a, *m;
  973         walktree_f_t *f;
  974         void *w;
  975 {
  976         int error;
  977         struct radix_node *base, *next;
  978         u_char *xa = (u_char *)a;
  979         u_char *xm = (u_char *)m;
  980         register struct radix_node *rn, *last = 0 /* shut up gcc */;
  981         int stopping = 0;
  982         int lastb;
  983 
  984         /*
  985          * rn_search_m is sort-of-open-coded here. We cannot use the
  986          * function because we need to keep track of the last node seen.
  987          */
  988         /* printf("about to search\n"); */
  989         for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
  990                 last = rn;
  991                 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
  992                        rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
  993                 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
  994                         break;
  995                 }
  996                 if (rn->rn_bmask & xa[rn->rn_offset]) {
  997                         rn = rn->rn_right;
  998                 } else {
  999                         rn = rn->rn_left;
 1000                 }
 1001         }
 1002         /* printf("done searching\n"); */
 1003 
 1004         /*
 1005          * Two cases: either we stepped off the end of our mask,
 1006          * in which case last == rn, or we reached a leaf, in which
 1007          * case we want to start from the last node we looked at.
 1008          * Either way, last is the node we want to start from.
 1009          */
 1010         rn = last;
 1011         lastb = rn->rn_bit;
 1012 
 1013         /* printf("rn %p, lastb %d\n", rn, lastb);*/
 1014 
 1015         /*
 1016          * This gets complicated because we may delete the node
 1017          * while applying the function f to it, so we need to calculate
 1018          * the successor node in advance.
 1019          */
 1020         while (rn->rn_bit >= 0)
 1021                 rn = rn->rn_left;
 1022 
 1023         while (!stopping) {
 1024                 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
 1025                 base = rn;
 1026                 /* If at right child go back up, otherwise, go right */
 1027                 while (rn->rn_parent->rn_right == rn
 1028                        && !(rn->rn_flags & RNF_ROOT)) {
 1029                         rn = rn->rn_parent;
 1030 
 1031                         /* if went up beyond last, stop */
 1032                         if (rn->rn_bit <= lastb) {
 1033                                 stopping = 1;
 1034                                 /* printf("up too far\n"); */
 1035                                 /*
 1036                                  * XXX we should jump to the 'Process leaves'
 1037                                  * part, because the values of 'rn' and 'next'
 1038                                  * we compute will not be used. Not a big deal
 1039                                  * because this loop will terminate, but it is
 1040                                  * inefficient and hard to understand!
 1041                                  */
 1042                         }
 1043                 }
 1044                 
 1045                 /* 
 1046                  * At the top of the tree, no need to traverse the right
 1047                  * half, prevent the traversal of the entire tree in the
 1048                  * case of default route.
 1049                  */
 1050                 if (rn->rn_parent->rn_flags & RNF_ROOT)
 1051                         stopping = 1;
 1052 
 1053                 /* Find the next *leaf* since next node might vanish, too */
 1054                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1055                         rn = rn->rn_left;
 1056                 next = rn;
 1057                 /* Process leaves */
 1058                 while ((rn = base) != 0) {
 1059                         base = rn->rn_dupedkey;
 1060                         /* printf("leaf %p\n", rn); */
 1061                         if (!(rn->rn_flags & RNF_ROOT)
 1062                             && (error = (*f)(rn, w)))
 1063                                 return (error);
 1064                 }
 1065                 rn = next;
 1066 
 1067                 if (rn->rn_flags & RNF_ROOT) {
 1068                         /* printf("root, stopping"); */
 1069                         stopping = 1;
 1070                 }
 1071 
 1072         }
 1073         return 0;
 1074 }
 1075 
 1076 static int
 1077 rn_walktree(h, f, w)
 1078         struct radix_node_head *h;
 1079         walktree_f_t *f;
 1080         void *w;
 1081 {
 1082         int error;
 1083         struct radix_node *base, *next;
 1084         register struct radix_node *rn = h->rnh_treetop;
 1085         /*
 1086          * This gets complicated because we may delete the node
 1087          * while applying the function f to it, so we need to calculate
 1088          * the successor node in advance.
 1089          */
 1090 
 1091         /* First time through node, go left */
 1092         while (rn->rn_bit >= 0)
 1093                 rn = rn->rn_left;
 1094         for (;;) {
 1095                 base = rn;
 1096                 /* If at right child go back up, otherwise, go right */
 1097                 while (rn->rn_parent->rn_right == rn
 1098                        && (rn->rn_flags & RNF_ROOT) == 0)
 1099                         rn = rn->rn_parent;
 1100                 /* Find the next *leaf* since next node might vanish, too */
 1101                 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
 1102                         rn = rn->rn_left;
 1103                 next = rn;
 1104                 /* Process leaves */
 1105                 while ((rn = base)) {
 1106                         base = rn->rn_dupedkey;
 1107                         if (!(rn->rn_flags & RNF_ROOT)
 1108                             && (error = (*f)(rn, w)))
 1109                                 return (error);
 1110                 }
 1111                 rn = next;
 1112                 if (rn->rn_flags & RNF_ROOT)
 1113                         return (0);
 1114         }
 1115         /* NOTREACHED */
 1116 }
 1117 
 1118 /*
 1119  * Allocate and initialize an empty tree. This has 3 nodes, which are
 1120  * part of the radix_node_head (in the order <left,root,right>) and are
 1121  * marked RNF_ROOT so they cannot be freed.
 1122  * The leaves have all-zero and all-one keys, with significant
 1123  * bits starting at 'off'.
 1124  * Return 1 on success, 0 on error.
 1125  */
 1126 int
 1127 rn_inithead(head, off)
 1128         void **head;
 1129         int off;
 1130 {
 1131         register struct radix_node_head *rnh;
 1132         register struct radix_node *t, *tt, *ttt;
 1133         if (*head)
 1134                 return (1);
 1135         R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
 1136         if (rnh == 0)
 1137                 return (0);
 1138 #ifdef _KERNEL
 1139         RADIX_NODE_HEAD_LOCK_INIT(rnh);
 1140 #endif
 1141         *head = rnh;
 1142         t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
 1143         ttt = rnh->rnh_nodes + 2;
 1144         t->rn_right = ttt;
 1145         t->rn_parent = t;
 1146         tt = t->rn_left;        /* ... which in turn is rnh->rnh_nodes */
 1147         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
 1148         tt->rn_bit = -1 - off;
 1149         *ttt = *tt;
 1150         ttt->rn_key = rn_ones;
 1151         rnh->rnh_addaddr = rn_addroute;
 1152         rnh->rnh_deladdr = rn_delete;
 1153         rnh->rnh_matchaddr = rn_match;
 1154         rnh->rnh_lookup = rn_lookup;
 1155         rnh->rnh_walktree = rn_walktree;
 1156         rnh->rnh_walktree_from = rn_walktree_from;
 1157         rnh->rnh_treetop = t;
 1158         return (1);
 1159 }
 1160 
 1161 void
 1162 rn_init()
 1163 {
 1164         char *cp, *cplim;
 1165 #ifdef _KERNEL
 1166         struct domain *dom;
 1167 
 1168         for (dom = domains; dom; dom = dom->dom_next)
 1169                 if (dom->dom_maxrtkey > max_keylen)
 1170                         max_keylen = dom->dom_maxrtkey;
 1171 #endif
 1172         if (max_keylen == 0) {
 1173                 log(LOG_ERR,
 1174                     "rn_init: radix functions require max_keylen be set\n");
 1175                 return;
 1176         }
 1177         R_Malloc(rn_zeros, char *, 3 * max_keylen);
 1178         if (rn_zeros == NULL)
 1179                 panic("rn_init");
 1180         bzero(rn_zeros, 3 * max_keylen);
 1181         rn_ones = cp = rn_zeros + max_keylen;
 1182         addmask_key = cplim = rn_ones + max_keylen;
 1183         while (cp < cplim)
 1184                 *cp++ = -1;
 1185         if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
 1186                 panic("rn_init 2");
 1187 }

Cache object: 3a0ab3ab44c85461cb2abd52a51deb86


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.