The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/radix.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1988, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)radix.c     8.4 (Berkeley) 11/2/94
   34  * $FreeBSD: src/sys/net/radix.c,v 1.11.4.1 1999/09/05 08:17:56 peter Exp $
   35  */
   36 
   37 /*
   38  * Routines to build and maintain radix trees for routing lookups.
   39  */
   40 #ifndef _RADIX_H_
   41 #include <sys/param.h>
   42 #ifdef  KERNEL
   43 #include <sys/systm.h>
   44 #include <sys/malloc.h>
   45 #define M_DONTWAIT M_NOWAIT
   46 #include <sys/domain.h>
   47 #else
   48 #include <stdlib.h>
   49 #endif
   50 #include <sys/syslog.h>
   51 #include <net/radix.h>
   52 #endif
   53 
   54 static struct radix_node *
   55                 rn_lookup __P((void *v_arg, void *m_arg,
   56                                struct radix_node_head *head));
   57 static int      rn_walktree_from __P((struct radix_node_head *h, void *a,
   58                                       void *m, walktree_f_t *f, void *w));
   59 static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
   60 static struct radix_node
   61          *rn_delete __P((void *, void *, struct radix_node_head *)),
   62          *rn_insert __P((void *, struct radix_node_head *, int *,
   63                         struct radix_node [2])),
   64          *rn_newpair __P((void *, int, struct radix_node[2])),
   65          *rn_search __P((void *, struct radix_node *)),
   66          *rn_search_m __P((void *, struct radix_node *, void *));
   67 
   68 static int      max_keylen;
   69 static struct radix_mask *rn_mkfreelist;
   70 static struct radix_node_head *mask_rnhead;
   71 static char *addmask_key;
   72 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
   73 static char *rn_zeros, *rn_ones;
   74 
   75 #define rn_masktop (mask_rnhead->rnh_treetop)
   76 #undef Bcmp
   77 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
   78 
   79 static int      rn_lexobetter __P((void *m_arg, void *n_arg));
   80 static struct radix_mask *
   81                 rn_new_radix_mask __P((struct radix_node *tt,
   82                                        struct radix_mask *next));
   83 static int      rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
   84                                        int skip));
   85 
   86 /*
   87  * The data structure for the keys is a radix tree with one way
   88  * branching removed.  The index rn_b at an internal node n represents a bit
   89  * position to be tested.  The tree is arranged so that all descendants
   90  * of a node n have keys whose bits all agree up to position rn_b - 1.
   91  * (We say the index of n is rn_b.)
   92  *
   93  * There is at least one descendant which has a one bit at position rn_b,
   94  * and at least one with a zero there.
   95  *
   96  * A route is determined by a pair of key and mask.  We require that the
   97  * bit-wise logical and of the key and mask to be the key.
   98  * We define the index of a route to associated with the mask to be
   99  * the first bit number in the mask where 0 occurs (with bit number 0
  100  * representing the highest order bit).
  101  *
  102  * We say a mask is normal if every bit is 0, past the index of the mask.
  103  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
  104  * and m is a normal mask, then the route applies to every descendant of n.
  105  * If the index(m) < rn_b, this implies the trailing last few bits of k
  106  * before bit b are all 0, (and hence consequently true of every descendant
  107  * of n), so the route applies to all descendants of the node as well.
  108  *
  109  * Similar logic shows that a non-normal mask m such that
  110  * index(m) <= index(n) could potentially apply to many children of n.
  111  * Thus, for each non-host route, we attach its mask to a list at an internal
  112  * node as high in the tree as we can go.
  113  *
  114  * The present version of the code makes use of normal routes in short-
  115  * circuiting an explict mask and compare operation when testing whether
  116  * a key satisfies a normal route, and also in remembering the unique leaf
  117  * that governs a subtree.
  118  */
  119 
  120 static struct radix_node *
  121 rn_search(v_arg, head)
  122         void *v_arg;
  123         struct radix_node *head;
  124 {
  125         register struct radix_node *x;
  126         register caddr_t v;
  127 
  128         for (x = head, v = v_arg; x->rn_b >= 0;) {
  129                 if (x->rn_bmask & v[x->rn_off])
  130                         x = x->rn_r;
  131                 else
  132                         x = x->rn_l;
  133         }
  134         return (x);
  135 };
  136 
  137 static struct radix_node *
  138 rn_search_m(v_arg, head, m_arg)
  139         struct radix_node *head;
  140         void *v_arg, *m_arg;
  141 {
  142         register struct radix_node *x;
  143         register caddr_t v = v_arg, m = m_arg;
  144 
  145         for (x = head; x->rn_b >= 0;) {
  146                 if ((x->rn_bmask & m[x->rn_off]) &&
  147                     (x->rn_bmask & v[x->rn_off]))
  148                         x = x->rn_r;
  149                 else
  150                         x = x->rn_l;
  151         }
  152         return x;
  153 };
  154 
  155 int
  156 rn_refines(m_arg, n_arg)
  157         void *m_arg, *n_arg;
  158 {
  159         register caddr_t m = m_arg, n = n_arg;
  160         register caddr_t lim, lim2 = lim = n + *(u_char *)n;
  161         int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
  162         int masks_are_equal = 1;
  163 
  164         if (longer > 0)
  165                 lim -= longer;
  166         while (n < lim) {
  167                 if (*n & ~(*m))
  168                         return 0;
  169                 if (*n++ != *m++)
  170                         masks_are_equal = 0;
  171         }
  172         while (n < lim2)
  173                 if (*n++)
  174                         return 0;
  175         if (masks_are_equal && (longer < 0))
  176                 for (lim2 = m - longer; m < lim2; )
  177                         if (*m++)
  178                                 return 1;
  179         return (!masks_are_equal);
  180 }
  181 
  182 struct radix_node *
  183 rn_lookup(v_arg, m_arg, head)
  184         void *v_arg, *m_arg;
  185         struct radix_node_head *head;
  186 {
  187         register struct radix_node *x;
  188         caddr_t netmask = 0;
  189 
  190         if (m_arg) {
  191                 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
  192                         return (0);
  193                 netmask = x->rn_key;
  194         }
  195         x = rn_match(v_arg, head);
  196         if (x && netmask) {
  197                 while (x && x->rn_mask != netmask)
  198                         x = x->rn_dupedkey;
  199         }
  200         return x;
  201 }
  202 
  203 static int
  204 rn_satsifies_leaf(trial, leaf, skip)
  205         char *trial;
  206         register struct radix_node *leaf;
  207         int skip;
  208 {
  209         register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
  210         char *cplim;
  211         int length = min(*(u_char *)cp, *(u_char *)cp2);
  212 
  213         if (cp3 == 0)
  214                 cp3 = rn_ones;
  215         else
  216                 length = min(length, *(u_char *)cp3);
  217         cplim = cp + length; cp3 += skip; cp2 += skip;
  218         for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
  219                 if ((*cp ^ *cp2) & *cp3)
  220                         return 0;
  221         return 1;
  222 }
  223 
  224 struct radix_node *
  225 rn_match(v_arg, head)
  226         void *v_arg;
  227         struct radix_node_head *head;
  228 {
  229         caddr_t v = v_arg;
  230         register struct radix_node *t = head->rnh_treetop, *x;
  231         register caddr_t cp = v, cp2;
  232         caddr_t cplim;
  233         struct radix_node *saved_t, *top = t;
  234         int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
  235         register int test, b, rn_b;
  236 
  237         /*
  238          * Open code rn_search(v, top) to avoid overhead of extra
  239          * subroutine call.
  240          */
  241         for (; t->rn_b >= 0; ) {
  242                 if (t->rn_bmask & cp[t->rn_off])
  243                         t = t->rn_r;
  244                 else
  245                         t = t->rn_l;
  246         }
  247         /*
  248          * See if we match exactly as a host destination
  249          * or at least learn how many bits match, for normal mask finesse.
  250          *
  251          * It doesn't hurt us to limit how many bytes to check
  252          * to the length of the mask, since if it matches we had a genuine
  253          * match and the leaf we have is the most specific one anyway;
  254          * if it didn't match with a shorter length it would fail
  255          * with a long one.  This wins big for class B&C netmasks which
  256          * are probably the most common case...
  257          */
  258         if (t->rn_mask)
  259                 vlen = *(u_char *)t->rn_mask;
  260         cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
  261         for (; cp < cplim; cp++, cp2++)
  262                 if (*cp != *cp2)
  263                         goto on1;
  264         /*
  265          * This extra grot is in case we are explicitly asked
  266          * to look up the default.  Ugh!
  267          */
  268         if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
  269                 t = t->rn_dupedkey;
  270         return t;
  271 on1:
  272         test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
  273         for (b = 7; (test >>= 1) > 0;)
  274                 b--;
  275         matched_off = cp - v;
  276         b += matched_off << 3;
  277         rn_b = -1 - b;
  278         /*
  279          * If there is a host route in a duped-key chain, it will be first.
  280          */
  281         if ((saved_t = t)->rn_mask == 0)
  282                 t = t->rn_dupedkey;
  283         for (; t; t = t->rn_dupedkey)
  284                 /*
  285                  * Even if we don't match exactly as a host,
  286                  * we may match if the leaf we wound up at is
  287                  * a route to a net.
  288                  */
  289                 if (t->rn_flags & RNF_NORMAL) {
  290                         if (rn_b <= t->rn_b)
  291                                 return t;
  292                 } else if (rn_satsifies_leaf(v, t, matched_off))
  293                                 return t;
  294         t = saved_t;
  295         /* start searching up the tree */
  296         do {
  297                 register struct radix_mask *m;
  298                 t = t->rn_p;
  299                 m = t->rn_mklist;
  300                 if (m) {
  301                         /*
  302                          * If non-contiguous masks ever become important
  303                          * we can restore the masking and open coding of
  304                          * the search and satisfaction test and put the
  305                          * calculation of "off" back before the "do".
  306                          */
  307                         do {
  308                                 if (m->rm_flags & RNF_NORMAL) {
  309                                         if (rn_b <= m->rm_b)
  310                                                 return (m->rm_leaf);
  311                                 } else {
  312                                         off = min(t->rn_off, matched_off);
  313                                         x = rn_search_m(v, t, m->rm_mask);
  314                                         while (x && x->rn_mask != m->rm_mask)
  315                                                 x = x->rn_dupedkey;
  316                                         if (x && rn_satsifies_leaf(v, x, off))
  317                                                     return x;
  318                                 }
  319                                 m = m->rm_mklist;
  320                         } while (m);
  321                 }
  322         } while (t != top);
  323         return 0;
  324 };
  325 
  326 #ifdef RN_DEBUG
  327 int     rn_nodenum;
  328 struct  radix_node *rn_clist;
  329 int     rn_saveinfo;
  330 int     rn_debug =  1;
  331 #endif
  332 
  333 static struct radix_node *
  334 rn_newpair(v, b, nodes)
  335         void *v;
  336         int b;
  337         struct radix_node nodes[2];
  338 {
  339         register struct radix_node *tt = nodes, *t = tt + 1;
  340         t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
  341         t->rn_l = tt; t->rn_off = b >> 3;
  342         tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
  343         tt->rn_flags = t->rn_flags = RNF_ACTIVE;
  344 #ifdef RN_DEBUG
  345         tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  346         tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  347 #endif
  348         return t;
  349 }
  350 
  351 static struct radix_node *
  352 rn_insert(v_arg, head, dupentry, nodes)
  353         void *v_arg;
  354         struct radix_node_head *head;
  355         int *dupentry;
  356         struct radix_node nodes[2];
  357 {
  358         caddr_t v = v_arg;
  359         struct radix_node *top = head->rnh_treetop;
  360         int head_off = top->rn_off, vlen = (int)*((u_char *)v);
  361         register struct radix_node *t = rn_search(v_arg, top);
  362         register caddr_t cp = v + head_off;
  363         register int b;
  364         struct radix_node *tt;
  365         /*
  366          * Find first bit at which v and t->rn_key differ
  367          */
  368     {
  369         register caddr_t cp2 = t->rn_key + head_off;
  370         register int cmp_res;
  371         caddr_t cplim = v + vlen;
  372 
  373         while (cp < cplim)
  374                 if (*cp2++ != *cp++)
  375                         goto on1;
  376         *dupentry = 1;
  377         return t;
  378 on1:
  379         *dupentry = 0;
  380         cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
  381         for (b = (cp - v) << 3; cmp_res; b--)
  382                 cmp_res >>= 1;
  383     }
  384     {
  385         register struct radix_node *p, *x = top;
  386         cp = v;
  387         do {
  388                 p = x;
  389                 if (cp[x->rn_off] & x->rn_bmask)
  390                         x = x->rn_r;
  391                 else x = x->rn_l;
  392         } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
  393 #ifdef RN_DEBUG
  394         if (rn_debug)
  395                 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
  396 #endif
  397         t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
  398         if ((cp[p->rn_off] & p->rn_bmask) == 0)
  399                 p->rn_l = t;
  400         else
  401                 p->rn_r = t;
  402         x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
  403         if ((cp[t->rn_off] & t->rn_bmask) == 0) {
  404                 t->rn_r = x;
  405         } else {
  406                 t->rn_r = tt; t->rn_l = x;
  407         }
  408 #ifdef RN_DEBUG
  409         if (rn_debug)
  410                 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
  411 #endif
  412     }
  413         return (tt);
  414 }
  415 
  416 struct radix_node *
  417 rn_addmask(n_arg, search, skip)
  418         int search, skip;
  419         void *n_arg;
  420 {
  421         caddr_t netmask = (caddr_t)n_arg;
  422         register struct radix_node *x;
  423         register caddr_t cp, cplim;
  424         register int b = 0, mlen, j;
  425         int maskduplicated, m0, isnormal;
  426         struct radix_node *saved_x;
  427         static int last_zeroed = 0;
  428 
  429         if ((mlen = *(u_char *)netmask) > max_keylen)
  430                 mlen = max_keylen;
  431         if (skip == 0)
  432                 skip = 1;
  433         if (mlen <= skip)
  434                 return (mask_rnhead->rnh_nodes);
  435         if (skip > 1)
  436                 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
  437         if ((m0 = mlen) > skip)
  438                 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
  439         /*
  440          * Trim trailing zeroes.
  441          */
  442         for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
  443                 cp--;
  444         mlen = cp - addmask_key;
  445         if (mlen <= skip) {
  446                 if (m0 >= last_zeroed)
  447                         last_zeroed = mlen;
  448                 return (mask_rnhead->rnh_nodes);
  449         }
  450         if (m0 < last_zeroed)
  451                 Bzero(addmask_key + m0, last_zeroed - m0);
  452         *addmask_key = last_zeroed = mlen;
  453         x = rn_search(addmask_key, rn_masktop);
  454         if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
  455                 x = 0;
  456         if (x || search)
  457                 return (x);
  458         R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
  459         if ((saved_x = x) == 0)
  460                 return (0);
  461         Bzero(x, max_keylen + 2 * sizeof (*x));
  462         netmask = cp = (caddr_t)(x + 2);
  463         Bcopy(addmask_key, cp, mlen);
  464         x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
  465         if (maskduplicated) {
  466                 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
  467                 Free(saved_x);
  468                 return (x);
  469         }
  470         /*
  471          * Calculate index of mask, and check for normalcy.
  472          */
  473         cplim = netmask + mlen; isnormal = 1;
  474         for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
  475                 cp++;
  476         if (cp != cplim) {
  477                 for (j = 0x80; (j & *cp) != 0; j >>= 1)
  478                         b++;
  479                 if (*cp != normal_chars[b] || cp != (cplim - 1))
  480                         isnormal = 0;
  481         }
  482         b += (cp - netmask) << 3;
  483         x->rn_b = -1 - b;
  484         if (isnormal)
  485                 x->rn_flags |= RNF_NORMAL;
  486         return (x);
  487 }
  488 
  489 static int      /* XXX: arbitrary ordering for non-contiguous masks */
  490 rn_lexobetter(m_arg, n_arg)
  491         void *m_arg, *n_arg;
  492 {
  493         register u_char *mp = m_arg, *np = n_arg, *lim;
  494 
  495         if (*mp > *np)
  496                 return 1;  /* not really, but need to check longer one first */
  497         if (*mp == *np)
  498                 for (lim = mp + *mp; mp < lim;)
  499                         if (*mp++ > *np++)
  500                                 return 1;
  501         return 0;
  502 }
  503 
  504 static struct radix_mask *
  505 rn_new_radix_mask(tt, next)
  506         register struct radix_node *tt;
  507         register struct radix_mask *next;
  508 {
  509         register struct radix_mask *m;
  510 
  511         MKGet(m);
  512         if (m == 0) {
  513                 log(LOG_ERR, "Mask for route not entered\n");
  514                 return (0);
  515         }
  516         Bzero(m, sizeof *m);
  517         m->rm_b = tt->rn_b;
  518         m->rm_flags = tt->rn_flags;
  519         if (tt->rn_flags & RNF_NORMAL)
  520                 m->rm_leaf = tt;
  521         else
  522                 m->rm_mask = tt->rn_mask;
  523         m->rm_mklist = next;
  524         tt->rn_mklist = m;
  525         return m;
  526 }
  527 
  528 struct radix_node *
  529 rn_addroute(v_arg, n_arg, head, treenodes)
  530         void *v_arg, *n_arg;
  531         struct radix_node_head *head;
  532         struct radix_node treenodes[2];
  533 {
  534         caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
  535         register struct radix_node *t, *x = 0, *tt;
  536         struct radix_node *saved_tt, *top = head->rnh_treetop;
  537         short b = 0, b_leaf = 0;
  538         int keyduplicated;
  539         caddr_t mmask;
  540         struct radix_mask *m, **mp;
  541 
  542         /*
  543          * In dealing with non-contiguous masks, there may be
  544          * many different routes which have the same mask.
  545          * We will find it useful to have a unique pointer to
  546          * the mask to speed avoiding duplicate references at
  547          * nodes and possibly save time in calculating indices.
  548          */
  549         if (netmask)  {
  550                 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
  551                         return (0);
  552                 b_leaf = x->rn_b;
  553                 b = -1 - x->rn_b;
  554                 netmask = x->rn_key;
  555         }
  556         /*
  557          * Deal with duplicated keys: attach node to previous instance
  558          */
  559         saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
  560         if (keyduplicated) {
  561                 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
  562                         if (tt->rn_mask == netmask)
  563                                 return (0);
  564                         if (netmask == 0 ||
  565                             (tt->rn_mask &&
  566                              ((b_leaf < tt->rn_b) || /* index(netmask) > node */
  567                                rn_refines(netmask, tt->rn_mask) ||
  568                                rn_lexobetter(netmask, tt->rn_mask))))
  569                                 break;
  570                 }
  571                 /*
  572                  * If the mask is not duplicated, we wouldn't
  573                  * find it among possible duplicate key entries
  574                  * anyway, so the above test doesn't hurt.
  575                  *
  576                  * We sort the masks for a duplicated key the same way as
  577                  * in a masklist -- most specific to least specific.
  578                  * This may require the unfortunate nuisance of relocating
  579                  * the head of the list.
  580                  */
  581                 if (tt == saved_tt) {
  582                         struct  radix_node *xx = x;
  583                         /* link in at head of list */
  584                         (tt = treenodes)->rn_dupedkey = t;
  585                         tt->rn_flags = t->rn_flags;
  586                         tt->rn_p = x = t->rn_p;
  587                         t->rn_p = tt;                           /* parent */
  588                         if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
  589                         saved_tt = tt; x = xx;
  590                 } else {
  591                         (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
  592                         t->rn_dupedkey = tt;
  593                         tt->rn_p = t;                           /* parent */
  594                         if (tt->rn_dupedkey)                    /* parent */
  595                                 tt->rn_dupedkey->rn_p = tt;     /* parent */
  596                 }
  597 #ifdef RN_DEBUG
  598                 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
  599                 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
  600 #endif
  601                 tt->rn_key = (caddr_t) v;
  602                 tt->rn_b = -1;
  603                 tt->rn_flags = RNF_ACTIVE;
  604         }
  605         /*
  606          * Put mask in tree.
  607          */
  608         if (netmask) {
  609                 tt->rn_mask = netmask;
  610                 tt->rn_b = x->rn_b;
  611                 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
  612         }
  613         t = saved_tt->rn_p;
  614         if (keyduplicated)
  615                 goto on2;
  616         b_leaf = -1 - t->rn_b;
  617         if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
  618         /* Promote general routes from below */
  619         if (x->rn_b < 0) {
  620             for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
  621                 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
  622                         *mp = m = rn_new_radix_mask(x, 0);
  623                         if (m)
  624                                 mp = &m->rm_mklist;
  625                 }
  626         } else if (x->rn_mklist) {
  627                 /*
  628                  * Skip over masks whose index is > that of new node
  629                  */
  630                 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  631                         if (m->rm_b >= b_leaf)
  632                                 break;
  633                 t->rn_mklist = m; *mp = 0;
  634         }
  635 on2:
  636         /* Add new route to highest possible ancestor's list */
  637         if ((netmask == 0) || (b > t->rn_b ))
  638                 return tt; /* can't lift at all */
  639         b_leaf = tt->rn_b;
  640         do {
  641                 x = t;
  642                 t = t->rn_p;
  643         } while (b <= t->rn_b && x != top);
  644         /*
  645          * Search through routes associated with node to
  646          * insert new route according to index.
  647          * Need same criteria as when sorting dupedkeys to avoid
  648          * double loop on deletion.
  649          */
  650         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
  651                 if (m->rm_b < b_leaf)
  652                         continue;
  653                 if (m->rm_b > b_leaf)
  654                         break;
  655                 if (m->rm_flags & RNF_NORMAL) {
  656                         mmask = m->rm_leaf->rn_mask;
  657                         if (tt->rn_flags & RNF_NORMAL) {
  658                                 log(LOG_ERR,
  659                                    "Non-unique normal route, mask not entered");
  660                                 return tt;
  661                         }
  662                 } else
  663                         mmask = m->rm_mask;
  664                 if (mmask == netmask) {
  665                         m->rm_refs++;
  666                         tt->rn_mklist = m;
  667                         return tt;
  668                 }
  669                 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
  670                         break;
  671         }
  672         *mp = rn_new_radix_mask(tt, *mp);
  673         return tt;
  674 }
  675 
  676 static struct radix_node *
  677 rn_delete(v_arg, netmask_arg, head)
  678         void *v_arg, *netmask_arg;
  679         struct radix_node_head *head;
  680 {
  681         register struct radix_node *t, *p, *x, *tt;
  682         struct radix_mask *m, *saved_m, **mp;
  683         struct radix_node *dupedkey, *saved_tt, *top;
  684         caddr_t v, netmask;
  685         int b, head_off, vlen;
  686 
  687         v = v_arg;
  688         netmask = netmask_arg;
  689         x = head->rnh_treetop;
  690         tt = rn_search(v, x);
  691         head_off = x->rn_off;
  692         vlen =  *(u_char *)v;
  693         saved_tt = tt;
  694         top = x;
  695         if (tt == 0 ||
  696             Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
  697                 return (0);
  698         /*
  699          * Delete our route from mask lists.
  700          */
  701         if (netmask) {
  702                 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
  703                         return (0);
  704                 netmask = x->rn_key;
  705                 while (tt->rn_mask != netmask)
  706                         if ((tt = tt->rn_dupedkey) == 0)
  707                                 return (0);
  708         }
  709         if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
  710                 goto on1;
  711         if (tt->rn_flags & RNF_NORMAL) {
  712                 if (m->rm_leaf != tt || m->rm_refs > 0) {
  713                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  714                         return 0;  /* dangling ref could cause disaster */
  715                 }
  716         } else {
  717                 if (m->rm_mask != tt->rn_mask) {
  718                         log(LOG_ERR, "rn_delete: inconsistent annotation\n");
  719                         goto on1;
  720                 }
  721                 if (--m->rm_refs >= 0)
  722                         goto on1;
  723         }
  724         b = -1 - tt->rn_b;
  725         t = saved_tt->rn_p;
  726         if (b > t->rn_b)
  727                 goto on1; /* Wasn't lifted at all */
  728         do {
  729                 x = t;
  730                 t = t->rn_p;
  731         } while (b <= t->rn_b && x != top);
  732         for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
  733                 if (m == saved_m) {
  734                         *mp = m->rm_mklist;
  735                         MKFree(m);
  736                         break;
  737                 }
  738         if (m == 0) {
  739                 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
  740                 if (tt->rn_flags & RNF_NORMAL)
  741                         return (0); /* Dangling ref to us */
  742         }
  743 on1:
  744         /*
  745          * Eliminate us from tree
  746          */
  747         if (tt->rn_flags & RNF_ROOT)
  748                 return (0);
  749 #ifdef RN_DEBUG
  750         /* Get us out of the creation list */
  751         for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
  752         if (t) t->rn_ybro = tt->rn_ybro;
  753 #endif
  754         t = tt->rn_p;
  755         dupedkey = saved_tt->rn_dupedkey;
  756         if (dupedkey) {
  757                 /*
  758                  * at this point, tt is the deletion target and saved_tt
  759                  * is the head of the dupekey chain
  760                  */
  761                 if (tt == saved_tt) {
  762                         /* remove from head of chain */
  763                         x = dupedkey; x->rn_p = t;
  764                         if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
  765                 } else {
  766                         /* find node in front of tt on the chain */
  767                         for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
  768                                 p = p->rn_dupedkey;
  769                         if (p) {
  770                                 p->rn_dupedkey = tt->rn_dupedkey;
  771                                 if (tt->rn_dupedkey)               /* parent */
  772                                         tt->rn_dupedkey->rn_p = p; /* parent */
  773                         } else log(LOG_ERR, "rn_delete: couldn't find us\n");
  774                 }
  775                 t = tt + 1;
  776                 if  (t->rn_flags & RNF_ACTIVE) {
  777 #ifndef RN_DEBUG
  778                         *++x = *t; p = t->rn_p;
  779 #else
  780                         b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
  781 #endif
  782                         if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
  783                         x->rn_l->rn_p = x; x->rn_r->rn_p = x;
  784                 }
  785                 goto out;
  786         }
  787         if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
  788         p = t->rn_p;
  789         if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
  790         x->rn_p = p;
  791         /*
  792          * Demote routes attached to us.
  793          */
  794         if (t->rn_mklist) {
  795                 if (x->rn_b >= 0) {
  796                         for (mp = &x->rn_mklist; (m = *mp);)
  797                                 mp = &m->rm_mklist;
  798                         *mp = t->rn_mklist;
  799                 } else {
  800                         /* If there are any key,mask pairs in a sibling
  801                            duped-key chain, some subset will appear sorted
  802                            in the same order attached to our mklist */
  803                         for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
  804                                 if (m == x->rn_mklist) {
  805                                         struct radix_mask *mm = m->rm_mklist;
  806                                         x->rn_mklist = 0;
  807                                         if (--(m->rm_refs) < 0)
  808                                                 MKFree(m);
  809                                         m = mm;
  810                                 }
  811                         if (m)
  812                                 log(LOG_ERR, "%s %p at %x\n",
  813                                             "rn_delete: Orphaned Mask", m, x);
  814                 }
  815         }
  816         /*
  817          * We may be holding an active internal node in the tree.
  818          */
  819         x = tt + 1;
  820         if (t != x) {
  821 #ifndef RN_DEBUG
  822                 *t = *x;
  823 #else
  824                 b = t->rn_info; *t = *x; t->rn_info = b;
  825 #endif
  826                 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
  827                 p = x->rn_p;
  828                 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
  829         }
  830 out:
  831         tt->rn_flags &= ~RNF_ACTIVE;
  832         tt[1].rn_flags &= ~RNF_ACTIVE;
  833         return (tt);
  834 }
  835 
  836 /*
  837  * This is the same as rn_walktree() except for the parameters and the
  838  * exit.
  839  */
  840 static int
  841 rn_walktree_from(h, a, m, f, w)
  842         struct radix_node_head *h;
  843         void *a, *m;
  844         walktree_f_t *f;
  845         void *w;
  846 {
  847         int error;
  848         struct radix_node *base, *next;
  849         u_char *xa = (u_char *)a;
  850         u_char *xm = (u_char *)m;
  851         register struct radix_node *rn, *last = 0 /* shut up gcc */;
  852         int stopping = 0;
  853         int lastb;
  854 
  855         /*
  856          * rn_search_m is sort-of-open-coded here.
  857          */
  858         /* printf("about to search\n"); */
  859         for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
  860                 last = rn;
  861                 /* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
  862                        rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
  863                 if (!(rn->rn_bmask & xm[rn->rn_off])) {
  864                         break;
  865                 }
  866                 if (rn->rn_bmask & xa[rn->rn_off]) {
  867                         rn = rn->rn_r;
  868                 } else {
  869                         rn = rn->rn_l;
  870                 }
  871         }
  872         /* printf("done searching\n"); */
  873 
  874         /*
  875          * Two cases: either we stepped off the end of our mask,
  876          * in which case last == rn, or we reached a leaf, in which
  877          * case we want to start from the last node we looked at.
  878          * Either way, last is the node we want to start from.
  879          */
  880         rn = last;
  881         lastb = rn->rn_b;
  882 
  883         /* printf("rn %p, lastb %d\n", rn, lastb);*/
  884 
  885         /*
  886          * This gets complicated because we may delete the node
  887          * while applying the function f to it, so we need to calculate
  888          * the successor node in advance.
  889          */
  890         while (rn->rn_b >= 0)
  891                 rn = rn->rn_l;
  892 
  893         while (!stopping) {
  894                 /* printf("node %p (%d)\n", rn, rn->rn_b); */
  895                 base = rn;
  896                 /* If at right child go back up, otherwise, go right */
  897                 while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
  898                         rn = rn->rn_p;
  899 
  900                         /* if went up beyond last, stop */
  901                         if (rn->rn_b < lastb) {
  902                                 stopping = 1;
  903                                 /* printf("up too far\n"); */
  904                         }
  905                 }
  906 
  907                 /* Find the next *leaf* since next node might vanish, too */
  908                 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
  909                         rn = rn->rn_l;
  910                 next = rn;
  911                 /* Process leaves */
  912                 while ((rn = base) != 0) {
  913                         base = rn->rn_dupedkey;
  914                         /* printf("leaf %p\n", rn); */
  915                         if (!(rn->rn_flags & RNF_ROOT)
  916                             && (error = (*f)(rn, w)))
  917                                 return (error);
  918                 }
  919                 rn = next;
  920 
  921                 if (rn->rn_flags & RNF_ROOT) {
  922                         /* printf("root, stopping"); */
  923                         stopping = 1;
  924                 }
  925 
  926         }
  927         return 0;
  928 }
  929 
  930 static int
  931 rn_walktree(h, f, w)
  932         struct radix_node_head *h;
  933         walktree_f_t *f;
  934         void *w;
  935 {
  936         int error;
  937         struct radix_node *base, *next;
  938         register struct radix_node *rn = h->rnh_treetop;
  939         /*
  940          * This gets complicated because we may delete the node
  941          * while applying the function f to it, so we need to calculate
  942          * the successor node in advance.
  943          */
  944         /* First time through node, go left */
  945         while (rn->rn_b >= 0)
  946                 rn = rn->rn_l;
  947         for (;;) {
  948                 base = rn;
  949                 /* If at right child go back up, otherwise, go right */
  950                 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
  951                         rn = rn->rn_p;
  952                 /* Find the next *leaf* since next node might vanish, too */
  953                 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
  954                         rn = rn->rn_l;
  955                 next = rn;
  956                 /* Process leaves */
  957                 while ((rn = base)) {
  958                         base = rn->rn_dupedkey;
  959                         if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
  960                                 return (error);
  961                 }
  962                 rn = next;
  963                 if (rn->rn_flags & RNF_ROOT)
  964                         return (0);
  965         }
  966         /* NOTREACHED */
  967 }
  968 
  969 int
  970 rn_inithead(head, off)
  971         void **head;
  972         int off;
  973 {
  974         register struct radix_node_head *rnh;
  975         register struct radix_node *t, *tt, *ttt;
  976         if (*head)
  977                 return (1);
  978         R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
  979         if (rnh == 0)
  980                 return (0);
  981         Bzero(rnh, sizeof (*rnh));
  982         *head = rnh;
  983         t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
  984         ttt = rnh->rnh_nodes + 2;
  985         t->rn_r = ttt;
  986         t->rn_p = t;
  987         tt = t->rn_l;
  988         tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
  989         tt->rn_b = -1 - off;
  990         *ttt = *tt;
  991         ttt->rn_key = rn_ones;
  992         rnh->rnh_addaddr = rn_addroute;
  993         rnh->rnh_deladdr = rn_delete;
  994         rnh->rnh_matchaddr = rn_match;
  995         rnh->rnh_lookup = rn_lookup;
  996         rnh->rnh_walktree = rn_walktree;
  997         rnh->rnh_walktree_from = rn_walktree_from;
  998         rnh->rnh_treetop = t;
  999         return (1);
 1000 }
 1001 
 1002 void
 1003 rn_init()
 1004 {
 1005         char *cp, *cplim;
 1006 #ifdef KERNEL
 1007         struct domain *dom;
 1008 
 1009         for (dom = domains; dom; dom = dom->dom_next)
 1010                 if (dom->dom_maxrtkey > max_keylen)
 1011                         max_keylen = dom->dom_maxrtkey;
 1012 #endif
 1013         if (max_keylen == 0) {
 1014                 log(LOG_ERR,
 1015                     "rn_init: radix functions require max_keylen be set\n");
 1016                 return;
 1017         }
 1018         R_Malloc(rn_zeros, char *, 3 * max_keylen);
 1019         if (rn_zeros == NULL)
 1020                 panic("rn_init");
 1021         Bzero(rn_zeros, 3 * max_keylen);
 1022         rn_ones = cp = rn_zeros + max_keylen;
 1023         addmask_key = cplim = rn_ones + max_keylen;
 1024         while (cp < cplim)
 1025                 *cp++ = -1;
 1026         if (rn_inithead((void **)&mask_rnhead, 0) == 0)
 1027                 panic("rn_init 2");
 1028 }

Cache object: 1e026c463283430970e1df1af30b4ec2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.