1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2020 Alexander V. Chernikov
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_route.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 #include <sys/kernel.h>
37 #include <sys/sbuf.h>
38 #include <sys/lock.h>
39 #include <sys/rmlock.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/kernel.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 #include <sys/queue.h>
51 #include <net/vnet.h>
52
53 #include <net/if.h>
54 #include <net/if_var.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 #include <netinet/ip_var.h>
60 #ifdef INET6
61 #include <netinet/ip6.h>
62 #include <netinet6/ip6_var.h>
63 #endif
64
65 #include <net/route.h>
66 #include <net/route/nhop.h>
67 #include <net/route/route_ctl.h>
68 #include <net/route/route_var.h>
69 #include <net/route/fib_algo.h>
70
71 #include <machine/stdarg.h>
72
73 /*
74 * Fib lookup framework.
75 *
76 * This framework enables accelerated longest-prefix-match lookups for the
77 * routing tables by adding the ability to dynamically attach/detach lookup
78 * algorithms implementation to/from the datapath.
79 *
80 * flm - fib lookup modules - implementation of particular lookup algorithm
81 * fd - fib data - instance of an flm bound to specific routing table
82 *
83 * This file provides main framework functionality.
84 *
85 * The following are the features provided by the framework
86 *
87 * 1) nexhops abstraction -> provides transparent referencing, indexing
88 * and efficient idx->ptr mappings for nexthop and nexthop groups.
89 * 2) Routing table synchronisation
90 * 3) dataplane attachment points
91 * 4) automatic algorithm selection based on the provided preference.
92 *
93 *
94 * DATAPATH
95 * For each supported address family, there is a an allocated array of fib_dp
96 * structures, indexed by fib number. Each array entry contains callback function
97 * and its argument. This function will be called with a family-specific lookup key,
98 * scope and provided argument. This array gets re-created every time when new algo
99 * instance gets created. Please take a look at the replace_rtables_family() function
100 * for more details.
101 *
102 */
103
104 SYSCTL_DECL(_net_route);
105 SYSCTL_NODE(_net_route, OID_AUTO, algo, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
106 "Fib algorithm lookups");
107
108 /* Algorithm sync policy */
109
110 /* Time interval to bucket updates */
111 VNET_DEFINE_STATIC(unsigned int, update_bucket_time_ms) = 50;
112 #define V_update_bucket_time_ms VNET(update_bucket_time_ms)
113 SYSCTL_UINT(_net_route_algo, OID_AUTO, bucket_time_ms, CTLFLAG_RW | CTLFLAG_VNET,
114 &VNET_NAME(update_bucket_time_ms), 0, "Time interval to calculate update rate");
115
116 /* Minimum update rate to delay sync */
117 VNET_DEFINE_STATIC(unsigned int, bucket_change_threshold_rate) = 500;
118 #define V_bucket_change_threshold_rate VNET(bucket_change_threshold_rate)
119 SYSCTL_UINT(_net_route_algo, OID_AUTO, bucket_change_threshold_rate, CTLFLAG_RW | CTLFLAG_VNET,
120 &VNET_NAME(bucket_change_threshold_rate), 0, "Minimum update rate to delay sync");
121
122 /* Max allowed delay to sync */
123 VNET_DEFINE_STATIC(unsigned int, fib_max_sync_delay_ms) = 1000;
124 #define V_fib_max_sync_delay_ms VNET(fib_max_sync_delay_ms)
125 SYSCTL_UINT(_net_route_algo, OID_AUTO, fib_max_sync_delay_ms, CTLFLAG_RW | CTLFLAG_VNET,
126 &VNET_NAME(fib_max_sync_delay_ms), 0, "Maximum time to delay sync (ms)");
127
128
129 #ifdef INET6
130 VNET_DEFINE_STATIC(bool, algo_fixed_inet6) = false;
131 #define V_algo_fixed_inet6 VNET(algo_fixed_inet6)
132 SYSCTL_NODE(_net_route_algo, OID_AUTO, inet6, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133 "IPv6 longest prefix match lookups");
134 #endif
135 #ifdef INET
136 VNET_DEFINE_STATIC(bool, algo_fixed_inet) = false;
137 #define V_algo_fixed_inet VNET(algo_fixed_inet)
138 SYSCTL_NODE(_net_route_algo, OID_AUTO, inet, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
139 "IPv4 longest prefix match lookups");
140 #endif
141
142 /* Fib instance counter */
143 static uint32_t fib_gen = 0;
144
145 struct nhop_ref_table {
146 uint32_t count;
147 int32_t refcnt[0];
148 };
149
150 enum fib_callout_action {
151 FDA_NONE, /* No callout scheduled */
152 FDA_REBUILD, /* Asks to rebuild algo instance */
153 FDA_EVAL, /* Asks to evaluate if the current algo is still be best */
154 FDA_BATCH, /* Asks to submit batch of updates to the algo */
155 };
156
157 struct fib_sync_status {
158 struct timeval diverge_time; /* ts when diverged */
159 uint32_t num_changes; /* number of changes since sync */
160 uint32_t bucket_changes; /* num changes within the current bucket */
161 uint64_t bucket_id; /* 50ms bucket # */
162 struct fib_change_queue fd_change_queue;/* list of scheduled entries */
163 };
164
165 /*
166 * Data structure for the fib lookup instance tied to the particular rib.
167 */
168 struct fib_data {
169 uint32_t number_nhops; /* current # of nhops */
170 uint8_t hit_nhops; /* true if out of nhop limit */
171 uint8_t init_done; /* true if init is competed */
172 uint32_t fd_dead:1; /* Scheduled for deletion */
173 uint32_t fd_linked:1; /* true if linked */
174 uint32_t fd_need_rebuild:1; /* true if rebuild scheduled */
175 uint32_t fd_batch:1; /* true if batched notification scheduled */
176 uint8_t fd_family; /* family */
177 uint32_t fd_fibnum; /* fibnum */
178 uint32_t fd_failed_rebuilds; /* stat: failed rebuilds */
179 uint32_t fd_gen; /* instance gen# */
180 struct callout fd_callout; /* rebuild callout */
181 enum fib_callout_action fd_callout_action; /* Callout action to take */
182 void *fd_algo_data; /* algorithm data */
183 struct nhop_object **nh_idx; /* nhop idx->ptr array */
184 struct nhop_ref_table *nh_ref_table; /* array with # of nhop references */
185 struct rib_head *fd_rh; /* RIB table we're attached to */
186 struct rib_subscription *fd_rs; /* storing table subscription */
187 struct fib_dp fd_dp; /* fib datapath data */
188 struct vnet *fd_vnet; /* vnet fib belongs to */
189 struct epoch_context fd_epoch_ctx; /* epoch context for deletion */
190 struct fib_lookup_module *fd_flm;/* pointer to the lookup module */
191 struct fib_sync_status fd_ss; /* State relevant to the rib sync */
192 uint32_t fd_num_changes; /* number of changes since last callout */
193 TAILQ_ENTRY(fib_data) entries; /* list of all fds in vnet */
194 };
195
196 static bool rebuild_fd(struct fib_data *fd, const char *reason);
197 static bool rebuild_fd_flm(struct fib_data *fd, struct fib_lookup_module *flm_new);
198 static void handle_fd_callout(void *_data);
199 static void destroy_fd_instance_epoch(epoch_context_t ctx);
200 static bool is_idx_free(struct fib_data *fd, uint32_t index);
201 static void set_algo_fixed(struct rib_head *rh);
202 static bool is_algo_fixed(struct rib_head *rh);
203
204 static uint32_t fib_ref_nhop(struct fib_data *fd, struct nhop_object *nh);
205 static void fib_unref_nhop(struct fib_data *fd, struct nhop_object *nh);
206
207 static struct fib_lookup_module *fib_check_best_algo(struct rib_head *rh,
208 struct fib_lookup_module *orig_flm);
209 static void fib_unref_algo(struct fib_lookup_module *flm);
210 static bool flm_error_check(const struct fib_lookup_module *flm, uint32_t fibnum);
211
212 struct mtx fib_mtx;
213 #define FIB_MOD_LOCK() mtx_lock(&fib_mtx)
214 #define FIB_MOD_UNLOCK() mtx_unlock(&fib_mtx)
215 #define FIB_MOD_LOCK_ASSERT() mtx_assert(&fib_mtx, MA_OWNED)
216
217 MTX_SYSINIT(fib_mtx, &fib_mtx, "algo list mutex", MTX_DEF);
218
219 /* Algorithm has to be this percent better than the current to switch */
220 #define BEST_DIFF_PERCENT (5 * 256 / 100)
221 /* Schedule algo re-evaluation X seconds after a change */
222 #define ALGO_EVAL_DELAY_MS 30000
223 /* Force algo re-evaluation after X changes */
224 #define ALGO_EVAL_NUM_ROUTES 100
225 /* Try to setup algorithm X times */
226 #define FIB_MAX_TRIES 32
227 /* Max amount of supported nexthops */
228 #define FIB_MAX_NHOPS 262144
229 #define FIB_CALLOUT_DELAY_MS 50
230
231
232 /* Debug */
233 static int flm_debug_level = LOG_NOTICE;
234 SYSCTL_INT(_net_route_algo, OID_AUTO, debug_level, CTLFLAG_RW | CTLFLAG_RWTUN,
235 &flm_debug_level, 0, "debuglevel");
236 #define FLM_MAX_DEBUG_LEVEL LOG_DEBUG
237 #ifndef LOG_DEBUG2
238 #define LOG_DEBUG2 8
239 #endif
240
241 #define _PASS_MSG(_l) (flm_debug_level >= (_l))
242 #define ALGO_PRINTF(_l, _fmt, ...) if (_PASS_MSG(_l)) { \
243 printf("[fib_algo] %s: " _fmt "\n", __func__, ##__VA_ARGS__); \
244 }
245 #define _ALGO_PRINTF(_fib, _fam, _aname, _gen, _func, _fmt, ...) \
246 printf("[fib_algo] %s.%u (%s#%u) %s: " _fmt "\n",\
247 print_family(_fam), _fib, _aname, _gen, _func, ## __VA_ARGS__)
248 #define _RH_PRINTF(_fib, _fam, _func, _fmt, ...) \
249 printf("[fib_algo] %s.%u %s: " _fmt "\n", print_family(_fam), _fib, _func, ## __VA_ARGS__)
250 #define RH_PRINTF(_l, _rh, _fmt, ...) if (_PASS_MSG(_l)) { \
251 _RH_PRINTF(_rh->rib_fibnum, _rh->rib_family, __func__, _fmt, ## __VA_ARGS__);\
252 }
253 #define FD_PRINTF(_l, _fd, _fmt, ...) FD_PRINTF_##_l(_l, _fd, _fmt, ## __VA_ARGS__)
254 #define _FD_PRINTF(_l, _fd, _fmt, ...) if (_PASS_MSG(_l)) { \
255 _ALGO_PRINTF(_fd->fd_fibnum, _fd->fd_family, _fd->fd_flm->flm_name, \
256 _fd->fd_gen, __func__, _fmt, ## __VA_ARGS__); \
257 }
258 #if FLM_MAX_DEBUG_LEVEL>=LOG_DEBUG2
259 #define FD_PRINTF_LOG_DEBUG2 _FD_PRINTF
260 #else
261 #define FD_PRINTF_LOG_DEBUG2(_l, _fd, _fmt, ...)
262 #endif
263 #if FLM_MAX_DEBUG_LEVEL>=LOG_DEBUG
264 #define FD_PRINTF_LOG_DEBUG _FD_PRINTF
265 #else
266 #define FD_PRINTF_LOG_DEBUG()
267 #endif
268 #if FLM_MAX_DEBUG_LEVEL>=LOG_INFO
269 #define FD_PRINTF_LOG_INFO _FD_PRINTF
270 #else
271 #define FD_PRINTF_LOG_INFO()
272 #endif
273 #define FD_PRINTF_LOG_NOTICE _FD_PRINTF
274 #define FD_PRINTF_LOG_ERR _FD_PRINTF
275 #define FD_PRINTF_LOG_WARNING _FD_PRINTF
276
277
278 /* List of all registered lookup algorithms */
279 static TAILQ_HEAD(, fib_lookup_module) all_algo_list = TAILQ_HEAD_INITIALIZER(all_algo_list);
280
281 /* List of all fib lookup instances in the vnet */
282 VNET_DEFINE_STATIC(TAILQ_HEAD(fib_data_head, fib_data), fib_data_list);
283 #define V_fib_data_list VNET(fib_data_list)
284
285 /* Datastructure for storing non-transient fib lookup module failures */
286 struct fib_error {
287 int fe_family;
288 uint32_t fe_fibnum; /* failed rtable */
289 struct fib_lookup_module *fe_flm; /* failed module */
290 TAILQ_ENTRY(fib_error) entries;/* list of all errored entries */
291 };
292 VNET_DEFINE_STATIC(TAILQ_HEAD(fib_error_head, fib_error), fib_error_list);
293 #define V_fib_error_list VNET(fib_error_list)
294
295 /* Per-family array of fibnum -> {func, arg} mappings used in datapath */
296 struct fib_dp_header {
297 struct epoch_context fdh_epoch_ctx;
298 uint32_t fdh_num_tables;
299 struct fib_dp fdh_idx[0];
300 };
301
302 /*
303 * Tries to add new non-transient algorithm error to the list of
304 * errors.
305 * Returns true on success.
306 */
307 static bool
308 flm_error_add(struct fib_lookup_module *flm, uint32_t fibnum)
309 {
310 struct fib_error *fe;
311
312 fe = malloc(sizeof(struct fib_error), M_TEMP, M_NOWAIT | M_ZERO);
313 if (fe == NULL)
314 return (false);
315 fe->fe_flm = flm;
316 fe->fe_family = flm->flm_family;
317 fe->fe_fibnum = fibnum;
318
319 FIB_MOD_LOCK();
320 /* Avoid duplicates by checking if error already exists first */
321 if (flm_error_check(flm, fibnum)) {
322 FIB_MOD_UNLOCK();
323 free(fe, M_TEMP);
324 return (true);
325 }
326 TAILQ_INSERT_HEAD(&V_fib_error_list, fe, entries);
327 FIB_MOD_UNLOCK();
328
329 return (true);
330 }
331
332 /*
333 * True if non-transient error has been registered for @flm in @fibnum.
334 */
335 static bool
336 flm_error_check(const struct fib_lookup_module *flm, uint32_t fibnum)
337 {
338 const struct fib_error *fe;
339
340 TAILQ_FOREACH(fe, &V_fib_error_list, entries) {
341 if ((fe->fe_flm == flm) && (fe->fe_fibnum == fibnum))
342 return (true);
343 }
344
345 return (false);
346 }
347
348 /*
349 * Clear all errors of algo specified by @flm.
350 */
351 static void
352 fib_error_clear_flm(struct fib_lookup_module *flm)
353 {
354 struct fib_error *fe, *fe_tmp;
355
356 FIB_MOD_LOCK_ASSERT();
357
358 TAILQ_FOREACH_SAFE(fe, &V_fib_error_list, entries, fe_tmp) {
359 if (fe->fe_flm == flm) {
360 TAILQ_REMOVE(&V_fib_error_list, fe, entries);
361 free(fe, M_TEMP);
362 }
363 }
364 }
365
366 /*
367 * Clears all errors in current VNET.
368 */
369 static void
370 fib_error_clear(void)
371 {
372 struct fib_error *fe, *fe_tmp;
373
374 FIB_MOD_LOCK_ASSERT();
375
376 TAILQ_FOREACH_SAFE(fe, &V_fib_error_list, entries, fe_tmp) {
377 TAILQ_REMOVE(&V_fib_error_list, fe, entries);
378 free(fe, M_TEMP);
379 }
380 }
381
382 static const char *
383 print_op_result(enum flm_op_result result)
384 {
385 switch (result) {
386 case FLM_SUCCESS:
387 return "success";
388 case FLM_REBUILD:
389 return "rebuild";
390 case FLM_BATCH:
391 return "batch";
392 case FLM_ERROR:
393 return "error";
394 }
395
396 return "unknown";
397 }
398
399 static const char *
400 print_family(int family)
401 {
402
403 if (family == AF_INET)
404 return ("inet");
405 else if (family == AF_INET6)
406 return ("inet6");
407 else
408 return ("unknown");
409 }
410
411 /*
412 * Debug function used by lookup algorithms.
413 * Outputs message denoted by @fmt, prepended by "[fib_algo] inetX.Y (algo) "
414 */
415 void
416 fib_printf(int level, struct fib_data *fd, const char *func, char *fmt, ...)
417 {
418 char buf[128];
419 va_list ap;
420
421 if (level > flm_debug_level)
422 return;
423
424 va_start(ap, fmt);
425 vsnprintf(buf, sizeof(buf), fmt, ap);
426 va_end(ap);
427
428 _ALGO_PRINTF(fd->fd_fibnum, fd->fd_family, fd->fd_flm->flm_name,
429 fd->fd_gen, func, "%s", buf);
430 }
431
432 /*
433 * Outputs list of algorithms supported by the provided address family.
434 */
435 static int
436 print_algos_sysctl(struct sysctl_req *req, int family)
437 {
438 struct fib_lookup_module *flm;
439 struct sbuf sbuf;
440 int error, count = 0;
441
442 error = sysctl_wire_old_buffer(req, 0);
443 if (error == 0) {
444 sbuf_new_for_sysctl(&sbuf, NULL, 512, req);
445 TAILQ_FOREACH(flm, &all_algo_list, entries) {
446 if (flm->flm_family == family) {
447 if (count++ > 0)
448 sbuf_cat(&sbuf, ", ");
449 sbuf_cat(&sbuf, flm->flm_name);
450 }
451 }
452 error = sbuf_finish(&sbuf);
453 sbuf_delete(&sbuf);
454 }
455 return (error);
456 }
457
458 #ifdef INET6
459 static int
460 print_algos_sysctl_inet6(SYSCTL_HANDLER_ARGS)
461 {
462
463 return (print_algos_sysctl(req, AF_INET6));
464 }
465 SYSCTL_PROC(_net_route_algo_inet6, OID_AUTO, algo_list,
466 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
467 print_algos_sysctl_inet6, "A", "List of IPv6 lookup algorithms");
468 #endif
469
470 #ifdef INET
471 static int
472 print_algos_sysctl_inet(SYSCTL_HANDLER_ARGS)
473 {
474
475 return (print_algos_sysctl(req, AF_INET));
476 }
477 SYSCTL_PROC(_net_route_algo_inet, OID_AUTO, algo_list,
478 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
479 print_algos_sysctl_inet, "A", "List of IPv4 lookup algorithms");
480 #endif
481
482 /*
483 * Calculate delay between repeated failures.
484 * Returns current delay in milliseconds.
485 */
486 static uint32_t
487 callout_calc_delay_ms(struct fib_data *fd)
488 {
489 uint32_t shift;
490
491 if (fd->fd_failed_rebuilds > 10)
492 shift = 10;
493 else
494 shift = fd->fd_failed_rebuilds;
495
496 return ((1 << shift) * FIB_CALLOUT_DELAY_MS);
497 }
498
499 static void
500 schedule_callout(struct fib_data *fd, enum fib_callout_action action, int delay_ms)
501 {
502
503 FD_PRINTF(LOG_DEBUG, fd, "delay=%d action=%d", delay_ms, action);
504 fd->fd_callout_action = action;
505 callout_reset_sbt(&fd->fd_callout, SBT_1MS * delay_ms, 0,
506 handle_fd_callout, fd, 0);
507 }
508
509 static void
510 schedule_fd_rebuild(struct fib_data *fd, const char *reason)
511 {
512
513 RIB_WLOCK_ASSERT(fd->fd_rh);
514
515 if (!fd->fd_need_rebuild) {
516 fd->fd_need_rebuild = true;
517 /* Stop batch updates */
518 fd->fd_batch = false;
519
520 /*
521 * Potentially re-schedules pending callout
522 * initiated by schedule_algo_eval.
523 */
524 FD_PRINTF(LOG_INFO, fd, "Scheduling rebuild: %s (failures=%d)",
525 reason, fd->fd_failed_rebuilds);
526 schedule_callout(fd, FDA_REBUILD, callout_calc_delay_ms(fd));
527 }
528 }
529
530 static void
531 sync_rib_gen(struct fib_data *fd)
532 {
533 FD_PRINTF(LOG_DEBUG, fd, "Sync gen %u -> %u", fd->fd_rh->rnh_gen, fd->fd_rh->rnh_gen_rib);
534 fd->fd_rh->rnh_gen = fd->fd_rh->rnh_gen_rib;
535 }
536
537 static int64_t
538 get_tv_diff_ms(const struct timeval *old_tv, const struct timeval *new_tv)
539 {
540 int64_t diff = 0;
541
542 diff = ((int64_t)(new_tv->tv_sec - old_tv->tv_sec)) * 1000;
543 diff += (new_tv->tv_usec - old_tv->tv_usec) / 1000;
544
545 return (diff);
546 }
547
548 static void
549 add_tv_diff_ms(struct timeval *tv, int ms)
550 {
551 tv->tv_sec += ms / 1000;
552 ms = ms % 1000;
553 if (ms * 1000 + tv->tv_usec < 1000000)
554 tv->tv_usec += ms * 1000;
555 else {
556 tv->tv_sec += 1;
557 tv->tv_usec = ms * 1000 + tv->tv_usec - 1000000;
558 }
559 }
560
561 /*
562 * Marks the time when algo state diverges from the rib state.
563 */
564 static void
565 mark_diverge_time(struct fib_data *fd)
566 {
567 struct fib_sync_status *fd_ss = &fd->fd_ss;
568
569 getmicrouptime(&fd_ss->diverge_time);
570 fd_ss->bucket_id = 0;
571 fd_ss->bucket_changes = 0;
572 }
573
574 /*
575 * Calculates and updates the next algorithm sync time, based on the current activity.
576 *
577 * The intent is to provide reasonable balance between the update
578 * latency and efficient batching when changing large amount of routes.
579 *
580 * High-level algorithm looks the following:
581 * 1) all changes are bucketed in 50ms intervals
582 * 2) If amount of changes within the bucket is greater than the threshold,
583 * the update gets delayed, up to maximum delay threshold.
584 */
585 static void
586 update_rebuild_delay(struct fib_data *fd, enum fib_callout_action action)
587 {
588 uint32_t bucket_id, new_delay = 0;
589 struct timeval tv;
590
591 /* Fetch all variables at once to ensure consistent reads */
592 uint32_t bucket_time_ms = V_update_bucket_time_ms;
593 uint32_t threshold_rate = V_bucket_change_threshold_rate;
594 uint32_t max_delay_ms = V_fib_max_sync_delay_ms;
595
596 if (bucket_time_ms == 0)
597 bucket_time_ms = 50;
598 /* calculate per-bucket threshold rate */
599 threshold_rate = threshold_rate * bucket_time_ms / 1000;
600
601 getmicrouptime(&tv);
602
603 struct fib_sync_status *fd_ss = &fd->fd_ss;
604
605 bucket_id = get_tv_diff_ms(&fd_ss->diverge_time, &tv) / bucket_time_ms;
606
607 if (fd_ss->bucket_id == bucket_id) {
608 fd_ss->bucket_changes++;
609 if (fd_ss->bucket_changes == threshold_rate) {
610 new_delay = (bucket_id + 2) * bucket_time_ms;
611 if (new_delay <= max_delay_ms) {
612 FD_PRINTF(LOG_DEBUG, fd,
613 "hit threshold of %u routes, delay update,"
614 "bucket: %u, total delay: %u",
615 threshold_rate, bucket_id + 1, new_delay);
616 } else {
617 new_delay = 0;
618 FD_PRINTF(LOG_DEBUG, fd,
619 "maximum sync delay (%u ms) reached", max_delay_ms);
620 }
621 } else if ((bucket_id == 0) && (fd_ss->bucket_changes == 1))
622 new_delay = bucket_time_ms;
623 } else {
624 fd_ss->bucket_id = bucket_id;
625 fd_ss->bucket_changes = 1;
626 }
627
628 if (new_delay > 0) {
629 /* Calculated time has been updated */
630 struct timeval new_tv = fd_ss->diverge_time;
631 add_tv_diff_ms(&new_tv, new_delay);
632
633 int32_t delay_ms = get_tv_diff_ms(&tv, &new_tv);
634 schedule_callout(fd, action, delay_ms);
635 }
636 }
637
638 static void
639 update_algo_state(struct fib_data *fd)
640 {
641
642 RIB_WLOCK_ASSERT(fd->fd_rh);
643
644 if (fd->fd_batch || fd->fd_need_rebuild) {
645 enum fib_callout_action action = fd->fd_need_rebuild ? FDA_REBUILD : FDA_BATCH;
646 update_rebuild_delay(fd, action);
647 return;
648 }
649
650 if (fd->fd_num_changes++ == 0) {
651 /* Start callout to consider switch */
652 if (!callout_pending(&fd->fd_callout))
653 schedule_callout(fd, FDA_EVAL, ALGO_EVAL_DELAY_MS);
654 } else if (fd->fd_num_changes == ALGO_EVAL_NUM_ROUTES) {
655 /* Reset callout to exec immediately */
656 if (fd->fd_callout_action == FDA_EVAL)
657 schedule_callout(fd, FDA_EVAL, 1);
658 }
659 }
660
661 static bool
662 need_immediate_sync(struct fib_data *fd, struct rib_cmd_info *rc)
663 {
664 struct nhop_object *nh;
665
666 /* Sync addition/removal of interface routes */
667 switch (rc->rc_cmd) {
668 case RTM_ADD:
669 nh = rc->rc_nh_new;
670 if (!NH_IS_NHGRP(nh)) {
671 if (!(nh->nh_flags & NHF_GATEWAY))
672 return (true);
673 if (nhop_get_rtflags(nh) & RTF_STATIC)
674 return (true);
675 }
676 break;
677 case RTM_DELETE:
678 nh = rc->rc_nh_old;
679 if (!NH_IS_NHGRP(nh)) {
680 if (!(nh->nh_flags & NHF_GATEWAY))
681 return (true);
682 if (nhop_get_rtflags(nh) & RTF_STATIC)
683 return (true);
684 }
685 break;
686 }
687
688 return (false);
689 }
690
691 static bool
692 apply_rtable_changes(struct fib_data *fd)
693 {
694 enum flm_op_result result;
695 struct fib_change_queue *q = &fd->fd_ss.fd_change_queue;
696
697 result = fd->fd_flm->flm_change_rib_items_cb(fd->fd_rh, q, fd->fd_algo_data);
698
699 if (result == FLM_SUCCESS) {
700 sync_rib_gen(fd);
701 for (int i = 0; i < q->count; i++)
702 if (q->entries[i].nh_old)
703 fib_unref_nhop(fd, q->entries[i].nh_old);
704 q->count = 0;
705 }
706 fd->fd_batch = false;
707
708 return (result == FLM_SUCCESS);
709 }
710
711 static bool
712 fill_change_entry(struct fib_data *fd, struct fib_change_entry *ce, struct rib_cmd_info *rc)
713 {
714 int plen = 0;
715
716 switch (fd->fd_family) {
717 #ifdef INET
718 case AF_INET:
719 rt_get_inet_prefix_plen(rc->rc_rt, &ce->addr4, &plen, &ce->scopeid);
720 break;
721 #endif
722 #ifdef INET6
723 case AF_INET6:
724 rt_get_inet6_prefix_plen(rc->rc_rt, &ce->addr6, &plen, &ce->scopeid);
725 break;
726 #endif
727 }
728
729 ce->plen = plen;
730 ce->nh_old = rc->rc_nh_old;
731 ce->nh_new = rc->rc_nh_new;
732 if (ce->nh_new != NULL) {
733 if (fib_ref_nhop(fd, ce->nh_new) == 0)
734 return (false);
735 }
736
737 return (true);
738 }
739
740 static bool
741 queue_rtable_change(struct fib_data *fd, struct rib_cmd_info *rc)
742 {
743 struct fib_change_queue *q = &fd->fd_ss.fd_change_queue;
744
745 if (q->count >= q->size) {
746 uint32_t q_size;
747
748 if (q->size == 0)
749 q_size = 256; /* ~18k memory */
750 else
751 q_size = q->size * 2;
752
753 size_t size = q_size * sizeof(struct fib_change_entry);
754 void *a = realloc(q->entries, size, M_TEMP, M_NOWAIT | M_ZERO);
755 if (a == NULL) {
756 FD_PRINTF(LOG_INFO, fd, "Unable to realloc queue for %u elements",
757 q_size);
758 return (false);
759 }
760 q->entries = a;
761 q->size = q_size;
762 }
763
764 return (fill_change_entry(fd, &q->entries[q->count++], rc));
765 }
766
767 /*
768 * Rib subscription handler. Checks if the algorithm is ready to
769 * receive updates, handles nexthop refcounting and passes change
770 * data to the algorithm callback.
771 */
772 static void
773 handle_rtable_change_cb(struct rib_head *rnh, struct rib_cmd_info *rc,
774 void *_data)
775 {
776 struct fib_data *fd = (struct fib_data *)_data;
777 enum flm_op_result result;
778
779 RIB_WLOCK_ASSERT(rnh);
780
781 /*
782 * There is a small gap between subscribing for route changes
783 * and initiating rtable dump. Avoid receiving route changes
784 * prior to finishing rtable dump by checking `init_done`.
785 */
786 if (!fd->init_done)
787 return;
788
789 bool immediate_sync = need_immediate_sync(fd, rc);
790
791 /* Consider scheduling algorithm re-evaluation */
792 update_algo_state(fd);
793
794 /*
795 * If algo requested rebuild, stop sending updates by default.
796 * This simplifies nexthop refcount handling logic.
797 */
798 if (fd->fd_need_rebuild) {
799 if (immediate_sync)
800 rebuild_fd(fd, "rtable change type enforced sync");
801 return;
802 }
803
804 /*
805 * Algo requested updates to be delivered in batches.
806 * Add the current change to the queue and return.
807 */
808 if (fd->fd_batch) {
809 if (immediate_sync) {
810 if (!queue_rtable_change(fd, rc) || !apply_rtable_changes(fd))
811 rebuild_fd(fd, "batch sync failed");
812 } else {
813 if (!queue_rtable_change(fd, rc))
814 schedule_fd_rebuild(fd, "batch queue failed");
815 }
816 return;
817 }
818
819 /*
820 * Maintain guarantee that every nexthop returned by the dataplane
821 * lookup has > 0 refcount, so can be safely referenced within current
822 * epoch.
823 */
824 if (rc->rc_nh_new != NULL) {
825 if (fib_ref_nhop(fd, rc->rc_nh_new) == 0) {
826 /* ran out of indexes */
827 schedule_fd_rebuild(fd, "ran out of nhop indexes");
828 return;
829 }
830 }
831
832 result = fd->fd_flm->flm_change_rib_item_cb(rnh, rc, fd->fd_algo_data);
833
834 switch (result) {
835 case FLM_SUCCESS:
836 sync_rib_gen(fd);
837 /* Unref old nexthop on success */
838 if (rc->rc_nh_old != NULL)
839 fib_unref_nhop(fd, rc->rc_nh_old);
840 break;
841 case FLM_BATCH:
842
843 /*
844 * Algo asks to batch the changes.
845 */
846 if (queue_rtable_change(fd, rc)) {
847 if (!immediate_sync) {
848 fd->fd_batch = true;
849 mark_diverge_time(fd);
850 update_rebuild_delay(fd, FDA_BATCH);
851 break;
852 }
853 if (apply_rtable_changes(fd))
854 break;
855 }
856 FD_PRINTF(LOG_ERR, fd, "batched sync failed, force the rebuild");
857
858 case FLM_REBUILD:
859
860 /*
861 * Algo is not able to apply the update.
862 * Schedule algo rebuild.
863 */
864 if (!immediate_sync) {
865 mark_diverge_time(fd);
866 schedule_fd_rebuild(fd, "algo requested rebuild");
867 break;
868 }
869
870 FD_PRINTF(LOG_INFO, fd, "running sync rebuild");
871 rebuild_fd(fd, "rtable change type enforced sync");
872 break;
873 case FLM_ERROR:
874
875 /*
876 * Algo reported a non-recoverable error.
877 * Record the error and schedule rebuild, which will
878 * trigger best algo selection.
879 */
880 FD_PRINTF(LOG_ERR, fd, "algo reported non-recoverable error");
881 if (!flm_error_add(fd->fd_flm, fd->fd_fibnum))
882 FD_PRINTF(LOG_ERR, fd, "failed to ban algo");
883 schedule_fd_rebuild(fd, "algo reported non-recoverable error");
884 }
885 }
886
887 static void
888 estimate_nhop_scale(const struct fib_data *old_fd, struct fib_data *fd)
889 {
890
891 if (old_fd == NULL) {
892 // TODO: read from rtable
893 fd->number_nhops = 16;
894 return;
895 }
896
897 if (old_fd->hit_nhops && old_fd->number_nhops < FIB_MAX_NHOPS)
898 fd->number_nhops = 2 * old_fd->number_nhops;
899 else
900 fd->number_nhops = old_fd->number_nhops;
901 }
902
903 struct walk_cbdata {
904 struct fib_data *fd;
905 flm_dump_t *func;
906 enum flm_op_result result;
907 };
908
909 /*
910 * Handler called after all rtenties have been dumped.
911 * Performs post-dump framework checks and calls
912 * algo:flm_dump_end_cb().
913 *
914 * Updates walk_cbdata result.
915 */
916 static void
917 sync_algo_end_cb(struct rib_head *rnh, enum rib_walk_hook stage, void *_data)
918 {
919 struct walk_cbdata *w = (struct walk_cbdata *)_data;
920 struct fib_data *fd = w->fd;
921
922 RIB_WLOCK_ASSERT(w->fd->fd_rh);
923
924 if (rnh->rib_dying) {
925 w->result = FLM_ERROR;
926 return;
927 }
928
929 if (fd->hit_nhops) {
930 FD_PRINTF(LOG_INFO, fd, "ran out of nexthops at %u nhops",
931 fd->nh_ref_table->count);
932 if (w->result == FLM_SUCCESS)
933 w->result = FLM_REBUILD;
934 return;
935 }
936
937 if (stage != RIB_WALK_HOOK_POST || w->result != FLM_SUCCESS)
938 return;
939
940 /* Post-dump hook, dump successful */
941 w->result = fd->fd_flm->flm_dump_end_cb(fd->fd_algo_data, &fd->fd_dp);
942
943 if (w->result == FLM_SUCCESS) {
944 /* Mark init as done to allow routing updates */
945 fd->init_done = 1;
946 }
947 }
948
949 /*
950 * Callback for each entry in rib.
951 * Calls algo:flm_dump_rib_item_cb func as a part of initial
952 * route table synchronisation.
953 */
954 static int
955 sync_algo_cb(struct rtentry *rt, void *_data)
956 {
957 struct walk_cbdata *w = (struct walk_cbdata *)_data;
958
959 RIB_WLOCK_ASSERT(w->fd->fd_rh);
960
961 if (w->result == FLM_SUCCESS && w->func) {
962
963 /*
964 * Reference nexthops to maintain guarantee that
965 * each nexthop returned by datapath has > 0 references
966 * and can be safely referenced within current epoch.
967 */
968 struct nhop_object *nh = rt_get_raw_nhop(rt);
969 if (fib_ref_nhop(w->fd, nh) != 0)
970 w->result = w->func(rt, w->fd->fd_algo_data);
971 else
972 w->result = FLM_REBUILD;
973 }
974
975 return (0);
976 }
977
978 /*
979 * Dump all routing table state to the algo instance.
980 */
981 static enum flm_op_result
982 sync_algo(struct fib_data *fd)
983 {
984 struct walk_cbdata w = {
985 .fd = fd,
986 .func = fd->fd_flm->flm_dump_rib_item_cb,
987 .result = FLM_SUCCESS,
988 };
989
990 rib_walk_ext_locked(fd->fd_rh, sync_algo_cb, sync_algo_end_cb, &w);
991
992 FD_PRINTF(LOG_INFO, fd,
993 "initial dump completed (rtable version: %d), result: %s",
994 fd->fd_rh->rnh_gen, print_op_result(w.result));
995
996 return (w.result);
997 }
998
999 /*
1000 * Schedules epoch-backed @fd instance deletion.
1001 * * Unlinks @fd from the list of active algo instances.
1002 * * Removes rib subscription.
1003 * * Stops callout.
1004 * * Schedules actual deletion.
1005 *
1006 * Assume @fd is already unlinked from the datapath.
1007 */
1008 static int
1009 schedule_destroy_fd_instance(struct fib_data *fd, bool in_callout)
1010 {
1011 bool is_dead;
1012
1013 NET_EPOCH_ASSERT();
1014 RIB_WLOCK_ASSERT(fd->fd_rh);
1015
1016 FIB_MOD_LOCK();
1017 is_dead = fd->fd_dead;
1018 if (!is_dead)
1019 fd->fd_dead = true;
1020 if (fd->fd_linked) {
1021 TAILQ_REMOVE(&V_fib_data_list, fd, entries);
1022 fd->fd_linked = false;
1023 }
1024 FIB_MOD_UNLOCK();
1025 if (is_dead)
1026 return (0);
1027
1028 FD_PRINTF(LOG_INFO, fd, "DETACH");
1029
1030 if (fd->fd_rs != NULL)
1031 rib_unsubscribe_locked(fd->fd_rs);
1032
1033 /*
1034 * After rib_unsubscribe() no _new_ handle_rtable_change_cb() calls
1035 * will be executed, hence no _new_ callout schedules will happen.
1036 */
1037 callout_stop(&fd->fd_callout);
1038
1039 fib_epoch_call(destroy_fd_instance_epoch, &fd->fd_epoch_ctx);
1040
1041 return (0);
1042 }
1043
1044 /*
1045 * Wipe all fd instances from the list matching rib specified by @rh.
1046 * If @keep_first is set, remove all but the first record.
1047 */
1048 static void
1049 fib_cleanup_algo(struct rib_head *rh, bool keep_first, bool in_callout)
1050 {
1051 struct fib_data_head tmp_head = TAILQ_HEAD_INITIALIZER(tmp_head);
1052 struct fib_data *fd, *fd_tmp;
1053 struct epoch_tracker et;
1054
1055 FIB_MOD_LOCK();
1056 TAILQ_FOREACH_SAFE(fd, &V_fib_data_list, entries, fd_tmp) {
1057 if (fd->fd_rh == rh) {
1058 if (keep_first) {
1059 keep_first = false;
1060 continue;
1061 }
1062 TAILQ_REMOVE(&V_fib_data_list, fd, entries);
1063 fd->fd_linked = false;
1064 TAILQ_INSERT_TAIL(&tmp_head, fd, entries);
1065 }
1066 }
1067 FIB_MOD_UNLOCK();
1068
1069 /* Pass 2: remove each entry */
1070 NET_EPOCH_ENTER(et);
1071 TAILQ_FOREACH_SAFE(fd, &tmp_head, entries, fd_tmp) {
1072 if (!in_callout)
1073 RIB_WLOCK(fd->fd_rh);
1074 schedule_destroy_fd_instance(fd, in_callout);
1075 if (!in_callout)
1076 RIB_WUNLOCK(fd->fd_rh);
1077 }
1078 NET_EPOCH_EXIT(et);
1079 }
1080
1081 void
1082 fib_destroy_rib(struct rib_head *rh)
1083 {
1084
1085 /*
1086 * rnh has `is_dying` flag set, so setup of new fd's will fail at
1087 * sync_algo() stage, preventing new entries to be added to the list
1088 * of active algos. Remove all existing entries for the particular rib.
1089 */
1090 fib_cleanup_algo(rh, false, false);
1091 }
1092
1093 /*
1094 * Finalises fd destruction by freeing all fd resources.
1095 */
1096 static void
1097 destroy_fd_instance(struct fib_data *fd)
1098 {
1099
1100 FD_PRINTF(LOG_INFO, fd, "destroy fd %p", fd);
1101
1102 /* Call destroy callback first */
1103 if (fd->fd_algo_data != NULL)
1104 fd->fd_flm->flm_destroy_cb(fd->fd_algo_data);
1105
1106 /* Nhop table */
1107 if ((fd->nh_idx != NULL) && (fd->nh_ref_table != NULL)) {
1108 for (int i = 0; i < fd->number_nhops; i++) {
1109 if (!is_idx_free(fd, i)) {
1110 FD_PRINTF(LOG_DEBUG2, fd, " FREE nhop %d %p",
1111 i, fd->nh_idx[i]);
1112 nhop_free_any(fd->nh_idx[i]);
1113 }
1114 }
1115 free(fd->nh_idx, M_RTABLE);
1116 }
1117 if (fd->nh_ref_table != NULL)
1118 free(fd->nh_ref_table, M_RTABLE);
1119
1120 if (fd->fd_ss.fd_change_queue.entries != NULL)
1121 free(fd->fd_ss.fd_change_queue.entries, M_TEMP);
1122
1123 fib_unref_algo(fd->fd_flm);
1124
1125 free(fd, M_RTABLE);
1126 }
1127
1128 /*
1129 * Epoch callback indicating fd is safe to destroy
1130 */
1131 static void
1132 destroy_fd_instance_epoch(epoch_context_t ctx)
1133 {
1134 struct fib_data *fd;
1135
1136 fd = __containerof(ctx, struct fib_data, fd_epoch_ctx);
1137
1138 CURVNET_SET(fd->fd_vnet);
1139 destroy_fd_instance(fd);
1140 CURVNET_RESTORE();
1141 }
1142
1143 /*
1144 * Tries to setup fd instance.
1145 * - Allocates fd/nhop table
1146 * - Runs algo:flm_init_cb algo init
1147 * - Subscribes fd to the rib
1148 * - Runs rtable dump
1149 * - Adds instance to the list of active instances.
1150 *
1151 * Returns: operation result. Fills in @pfd with resulting fd on success.
1152 *
1153 */
1154 static enum flm_op_result
1155 try_setup_fd_instance(struct fib_lookup_module *flm, struct rib_head *rh,
1156 struct fib_data *old_fd, struct fib_data **pfd)
1157 {
1158 struct fib_data *fd;
1159 size_t size;
1160 enum flm_op_result result;
1161
1162 /* Allocate */
1163 fd = malloc(sizeof(struct fib_data), M_RTABLE, M_NOWAIT | M_ZERO);
1164 if (fd == NULL) {
1165 *pfd = NULL;
1166 RH_PRINTF(LOG_INFO, rh, "Unable to allocate fib_data structure");
1167 return (FLM_REBUILD);
1168 }
1169 *pfd = fd;
1170
1171 estimate_nhop_scale(old_fd, fd);
1172
1173 fd->fd_rh = rh;
1174 fd->fd_family = rh->rib_family;
1175 fd->fd_fibnum = rh->rib_fibnum;
1176 callout_init_rm(&fd->fd_callout, &rh->rib_lock, 0);
1177 fd->fd_vnet = curvnet;
1178 fd->fd_flm = flm;
1179
1180 FIB_MOD_LOCK();
1181 flm->flm_refcount++;
1182 fd->fd_gen = ++fib_gen;
1183 FIB_MOD_UNLOCK();
1184
1185 FD_PRINTF(LOG_DEBUG, fd, "allocated fd %p", fd);
1186
1187 /* Allocate nhidx -> nhop_ptr table */
1188 size = fd->number_nhops * sizeof(void *);
1189 fd->nh_idx = malloc(size, M_RTABLE, M_NOWAIT | M_ZERO);
1190 if (fd->nh_idx == NULL) {
1191 FD_PRINTF(LOG_INFO, fd, "Unable to allocate nhop table idx (sz:%zu)", size);
1192 return (FLM_REBUILD);
1193 }
1194
1195 /* Allocate nhop index refcount table */
1196 size = sizeof(struct nhop_ref_table);
1197 size += fd->number_nhops * sizeof(uint32_t);
1198 fd->nh_ref_table = malloc(size, M_RTABLE, M_NOWAIT | M_ZERO);
1199 if (fd->nh_ref_table == NULL) {
1200 FD_PRINTF(LOG_INFO, fd, "Unable to allocate nhop refcount table (sz:%zu)", size);
1201 return (FLM_REBUILD);
1202 }
1203 FD_PRINTF(LOG_DEBUG, fd, "Allocated %u nhop indexes", fd->number_nhops);
1204
1205 /* Okay, we're ready for algo init */
1206 void *old_algo_data = (old_fd != NULL) ? old_fd->fd_algo_data : NULL;
1207 result = flm->flm_init_cb(fd->fd_fibnum, fd, old_algo_data, &fd->fd_algo_data);
1208 if (result != FLM_SUCCESS) {
1209 FD_PRINTF(LOG_INFO, fd, "%s algo init failed", flm->flm_name);
1210 return (result);
1211 }
1212
1213 /* Try to subscribe */
1214 if (flm->flm_change_rib_item_cb != NULL) {
1215 fd->fd_rs = rib_subscribe_locked(fd->fd_rh,
1216 handle_rtable_change_cb, fd, RIB_NOTIFY_IMMEDIATE);
1217 if (fd->fd_rs == NULL) {
1218 FD_PRINTF(LOG_INFO, fd, "failed to subscribe to the rib changes");
1219 return (FLM_REBUILD);
1220 }
1221 }
1222
1223 /* Dump */
1224 result = sync_algo(fd);
1225 if (result != FLM_SUCCESS) {
1226 FD_PRINTF(LOG_INFO, fd, "rib sync failed");
1227 return (result);
1228 }
1229 FD_PRINTF(LOG_INFO, fd, "DUMP completed successfully.");
1230
1231 FIB_MOD_LOCK();
1232 /*
1233 * Insert fd in the beginning of a list, to maintain invariant
1234 * that first matching entry for the AF/fib is always the active
1235 * one.
1236 */
1237 TAILQ_INSERT_HEAD(&V_fib_data_list, fd, entries);
1238 fd->fd_linked = true;
1239 FIB_MOD_UNLOCK();
1240
1241 return (FLM_SUCCESS);
1242 }
1243
1244 /*
1245 * Sets up algo @flm for table @rh and links it to the datapath.
1246 *
1247 */
1248 static enum flm_op_result
1249 setup_fd_instance(struct fib_lookup_module *flm, struct rib_head *rh,
1250 struct fib_data *orig_fd, struct fib_data **pfd, bool attach)
1251 {
1252 struct fib_data *prev_fd, *new_fd;
1253 enum flm_op_result result;
1254
1255 NET_EPOCH_ASSERT();
1256 RIB_WLOCK_ASSERT(rh);
1257
1258 prev_fd = orig_fd;
1259 new_fd = NULL;
1260 for (int i = 0; i < FIB_MAX_TRIES; i++) {
1261 result = try_setup_fd_instance(flm, rh, prev_fd, &new_fd);
1262
1263 if ((result == FLM_SUCCESS) && attach) {
1264 if (fib_set_datapath_ptr(new_fd, &new_fd->fd_dp))
1265 sync_rib_gen(new_fd);
1266 else
1267 result = FLM_REBUILD;
1268 }
1269
1270 if ((prev_fd != NULL) && (prev_fd != orig_fd)) {
1271 schedule_destroy_fd_instance(prev_fd, false);
1272 prev_fd = NULL;
1273 }
1274
1275 RH_PRINTF(LOG_INFO, rh, "try %d: fib algo result: %s", i,
1276 print_op_result(result));
1277
1278 if (result == FLM_REBUILD) {
1279 prev_fd = new_fd;
1280 new_fd = NULL;
1281 continue;
1282 }
1283
1284 break;
1285 }
1286
1287 if (result != FLM_SUCCESS) {
1288 RH_PRINTF(LOG_WARNING, rh,
1289 "%s algo instance setup failed, failures=%d", flm->flm_name,
1290 orig_fd ? orig_fd->fd_failed_rebuilds + 1 : 0);
1291 /* update failure count */
1292 FIB_MOD_LOCK();
1293 if (orig_fd != NULL)
1294 orig_fd->fd_failed_rebuilds++;
1295 FIB_MOD_UNLOCK();
1296
1297 /* Ban algo on non-recoverable error */
1298 if (result == FLM_ERROR)
1299 flm_error_add(flm, rh->rib_fibnum);
1300
1301 if ((prev_fd != NULL) && (prev_fd != orig_fd))
1302 schedule_destroy_fd_instance(prev_fd, false);
1303 if (new_fd != NULL) {
1304 schedule_destroy_fd_instance(new_fd, false);
1305 new_fd = NULL;
1306 }
1307 }
1308
1309 *pfd = new_fd;
1310 return (result);
1311 }
1312
1313 /*
1314 * Tries to sync algo with the current rtable state, either
1315 * by executing batch update or rebuilding.
1316 * Returns true on success.
1317 */
1318 static bool
1319 execute_callout_action(struct fib_data *fd)
1320 {
1321 enum fib_callout_action action = fd->fd_callout_action;
1322 struct fib_lookup_module *flm_new = NULL;
1323 bool result = true;
1324
1325 NET_EPOCH_ASSERT();
1326 RIB_WLOCK_ASSERT(fd->fd_rh);
1327
1328 fd->fd_need_rebuild = false;
1329 fd->fd_batch = false;
1330 fd->fd_num_changes = 0;
1331
1332 /* First, check if we're still OK to use this algo */
1333 if (!is_algo_fixed(fd->fd_rh))
1334 flm_new = fib_check_best_algo(fd->fd_rh, fd->fd_flm);
1335 if (flm_new != NULL)
1336 action = FDA_REBUILD;
1337
1338 if (action == FDA_BATCH) {
1339 /* Try to sync */
1340 if (!apply_rtable_changes(fd))
1341 action = FDA_REBUILD;
1342 }
1343
1344 if (action == FDA_REBUILD)
1345 result = rebuild_fd_flm(fd, flm_new != NULL ? flm_new : fd->fd_flm);
1346 if (flm_new != NULL)
1347 fib_unref_algo(flm_new);
1348
1349 return (result);
1350 }
1351
1352 /*
1353 * Callout for all scheduled fd-related work.
1354 * - Checks if the current algo is still the best algo
1355 * - Synchronises algo instance to the rtable (batch usecase)
1356 * - Creates a new instance of an algo for af/fib if desired.
1357 */
1358 static void
1359 handle_fd_callout(void *_data)
1360 {
1361 struct fib_data *fd = (struct fib_data *)_data;
1362 struct epoch_tracker et;
1363
1364 FD_PRINTF(LOG_INFO, fd, "running callout type=%d", fd->fd_callout_action);
1365
1366 NET_EPOCH_ENTER(et);
1367 CURVNET_SET(fd->fd_vnet);
1368 execute_callout_action(fd);
1369 CURVNET_RESTORE();
1370 NET_EPOCH_EXIT(et);
1371 }
1372
1373 /*
1374 * Tries to create new algo instance based on @fd data.
1375 * Returns true on success.
1376 */
1377 static bool
1378 rebuild_fd_flm(struct fib_data *fd, struct fib_lookup_module *flm_new)
1379 {
1380 struct fib_data *fd_new, *fd_tmp = NULL;
1381 bool result;
1382
1383 if (flm_new == fd->fd_flm)
1384 fd_tmp = fd;
1385 else
1386 FD_PRINTF(LOG_NOTICE, fd, "switching algo to %s", flm_new->flm_name);
1387
1388 result = setup_fd_instance(flm_new, fd->fd_rh, fd_tmp, &fd_new, true);
1389 if (result != FLM_SUCCESS) {
1390 FD_PRINTF(LOG_NOTICE, fd, "table rebuild failed");
1391 return (false);
1392 }
1393 FD_PRINTF(LOG_INFO, fd_new, "switched to new instance");
1394
1395 /* Remove old instance */
1396 schedule_destroy_fd_instance(fd, true);
1397
1398 return (true);
1399 }
1400
1401 static bool
1402 rebuild_fd(struct fib_data *fd, const char *reason)
1403 {
1404 struct fib_lookup_module *flm_new = NULL;
1405 bool result;
1406
1407 if (!is_algo_fixed(fd->fd_rh))
1408 flm_new = fib_check_best_algo(fd->fd_rh, fd->fd_flm);
1409
1410 FD_PRINTF(LOG_INFO, fd, "running sync rebuild: %s", reason);
1411 result = rebuild_fd_flm(fd, flm_new != NULL ? flm_new : fd->fd_flm);
1412 if (flm_new != NULL)
1413 fib_unref_algo(flm_new);
1414
1415 if (!result) {
1416 FD_PRINTF(LOG_ERR, fd, "sync rebuild failed");
1417 schedule_fd_rebuild(fd, "sync rebuild failed");
1418 }
1419
1420 return (result);
1421 }
1422
1423 /*
1424 * Finds algo by name/family.
1425 * Returns referenced algo or NULL.
1426 */
1427 static struct fib_lookup_module *
1428 fib_find_algo(const char *algo_name, int family)
1429 {
1430 struct fib_lookup_module *flm;
1431
1432 FIB_MOD_LOCK();
1433 TAILQ_FOREACH(flm, &all_algo_list, entries) {
1434 if ((strcmp(flm->flm_name, algo_name) == 0) &&
1435 (family == flm->flm_family)) {
1436 flm->flm_refcount++;
1437 FIB_MOD_UNLOCK();
1438 return (flm);
1439 }
1440 }
1441 FIB_MOD_UNLOCK();
1442
1443 return (NULL);
1444 }
1445
1446 static void
1447 fib_unref_algo(struct fib_lookup_module *flm)
1448 {
1449
1450 FIB_MOD_LOCK();
1451 flm->flm_refcount--;
1452 FIB_MOD_UNLOCK();
1453 }
1454
1455 static int
1456 set_fib_algo(uint32_t fibnum, int family, struct sysctl_oid *oidp, struct sysctl_req *req)
1457 {
1458 struct fib_lookup_module *flm = NULL;
1459 struct fib_data *fd = NULL;
1460 char old_algo_name[32], algo_name[32];
1461 struct rib_head *rh = NULL;
1462 enum flm_op_result result;
1463 struct epoch_tracker et;
1464 int error;
1465
1466 /* Fetch current algo/rib for af/family */
1467 FIB_MOD_LOCK();
1468 TAILQ_FOREACH(fd, &V_fib_data_list, entries) {
1469 if ((fd->fd_family == family) && (fd->fd_fibnum == fibnum))
1470 break;
1471 }
1472 if (fd == NULL) {
1473 FIB_MOD_UNLOCK();
1474 return (ENOENT);
1475 }
1476 rh = fd->fd_rh;
1477 strlcpy(old_algo_name, fd->fd_flm->flm_name,
1478 sizeof(old_algo_name));
1479 FIB_MOD_UNLOCK();
1480
1481 strlcpy(algo_name, old_algo_name, sizeof(algo_name));
1482 error = sysctl_handle_string(oidp, algo_name, sizeof(algo_name), req);
1483 if (error != 0 || req->newptr == NULL)
1484 return (error);
1485
1486 if (strcmp(algo_name, old_algo_name) == 0)
1487 return (0);
1488
1489 /* New algorithm name is different */
1490 flm = fib_find_algo(algo_name, family);
1491 if (flm == NULL) {
1492 RH_PRINTF(LOG_INFO, rh, "unable to find algo %s", algo_name);
1493 return (ESRCH);
1494 }
1495
1496 fd = NULL;
1497 NET_EPOCH_ENTER(et);
1498 RIB_WLOCK(rh);
1499 result = setup_fd_instance(flm, rh, NULL, &fd, true);
1500 RIB_WUNLOCK(rh);
1501 NET_EPOCH_EXIT(et);
1502 fib_unref_algo(flm);
1503 if (result != FLM_SUCCESS)
1504 return (EINVAL);
1505
1506 /* Disable automated jumping between algos */
1507 FIB_MOD_LOCK();
1508 set_algo_fixed(rh);
1509 FIB_MOD_UNLOCK();
1510 /* Remove old instance(s) */
1511 fib_cleanup_algo(rh, true, false);
1512
1513 /* Drain cb so user can unload the module after userret if so desired */
1514 NET_EPOCH_DRAIN_CALLBACKS();
1515
1516 return (0);
1517 }
1518
1519 #ifdef INET
1520 static int
1521 set_algo_inet_sysctl_handler(SYSCTL_HANDLER_ARGS)
1522 {
1523
1524 return (set_fib_algo(curthread->td_proc->p_fibnum, AF_INET, oidp, req));
1525 }
1526 SYSCTL_PROC(_net_route_algo_inet, OID_AUTO, algo,
1527 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1528 set_algo_inet_sysctl_handler, "A", "Set IPv4 lookup algo");
1529 #endif
1530
1531 #ifdef INET6
1532 static int
1533 set_algo_inet6_sysctl_handler(SYSCTL_HANDLER_ARGS)
1534 {
1535
1536 return (set_fib_algo(curthread->td_proc->p_fibnum, AF_INET6, oidp, req));
1537 }
1538 SYSCTL_PROC(_net_route_algo_inet6, OID_AUTO, algo,
1539 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1540 set_algo_inet6_sysctl_handler, "A", "Set IPv6 lookup algo");
1541 #endif
1542
1543 static struct nhop_object *
1544 dummy_lookup(void *algo_data, const struct flm_lookup_key key, uint32_t scopeid)
1545 {
1546 return (NULL);
1547 }
1548
1549 static void
1550 destroy_fdh_epoch(epoch_context_t ctx)
1551 {
1552 struct fib_dp_header *fdh;
1553
1554 fdh = __containerof(ctx, struct fib_dp_header, fdh_epoch_ctx);
1555 free(fdh, M_RTABLE);
1556 }
1557
1558 static struct fib_dp_header *
1559 alloc_fib_dp_array(uint32_t num_tables, bool waitok)
1560 {
1561 size_t sz;
1562 struct fib_dp_header *fdh;
1563
1564 sz = sizeof(struct fib_dp_header);
1565 sz += sizeof(struct fib_dp) * num_tables;
1566 fdh = malloc(sz, M_RTABLE, (waitok ? M_WAITOK : M_NOWAIT) | M_ZERO);
1567 if (fdh != NULL) {
1568 fdh->fdh_num_tables = num_tables;
1569 /*
1570 * Set dummy lookup function ptr always returning NULL, so
1571 * we can delay algo init.
1572 */
1573 for (uint32_t i = 0; i < num_tables; i++)
1574 fdh->fdh_idx[i].f = dummy_lookup;
1575 }
1576 return (fdh);
1577 }
1578
1579 static struct fib_dp_header *
1580 get_fib_dp_header(struct fib_dp *dp)
1581 {
1582
1583 return (__containerof((void *)dp, struct fib_dp_header, fdh_idx));
1584 }
1585
1586 /*
1587 * Replace per-family index pool @pdp with a new one which
1588 * contains updated callback/algo data from @fd.
1589 * Returns true on success.
1590 */
1591 static bool
1592 replace_rtables_family(struct fib_dp **pdp, struct fib_data *fd, struct fib_dp *dp)
1593 {
1594 struct fib_dp_header *new_fdh, *old_fdh;
1595
1596 NET_EPOCH_ASSERT();
1597
1598 FD_PRINTF(LOG_DEBUG, fd, "[vnet %p] replace with f:%p arg:%p",
1599 curvnet, dp->f, dp->arg);
1600
1601 FIB_MOD_LOCK();
1602 old_fdh = get_fib_dp_header(*pdp);
1603
1604 if (old_fdh->fdh_idx[fd->fd_fibnum].f == dp->f) {
1605 /*
1606 * Function is the same, data pointer needs update.
1607 * Perform in-line replace without reallocation.
1608 */
1609 old_fdh->fdh_idx[fd->fd_fibnum].arg = dp->arg;
1610 FD_PRINTF(LOG_DEBUG, fd, "FDH %p inline update", old_fdh);
1611 FIB_MOD_UNLOCK();
1612 return (true);
1613 }
1614
1615 new_fdh = alloc_fib_dp_array(old_fdh->fdh_num_tables, false);
1616 FD_PRINTF(LOG_DEBUG, fd, "OLD FDH: %p NEW FDH: %p", old_fdh, new_fdh);
1617 if (new_fdh == NULL) {
1618 FIB_MOD_UNLOCK();
1619 FD_PRINTF(LOG_WARNING, fd, "error attaching datapath");
1620 return (false);
1621 }
1622
1623 memcpy(&new_fdh->fdh_idx[0], &old_fdh->fdh_idx[0],
1624 old_fdh->fdh_num_tables * sizeof(struct fib_dp));
1625 /* Update relevant data structure for @fd */
1626 new_fdh->fdh_idx[fd->fd_fibnum] = *dp;
1627
1628 /* Ensure memcpy() writes have completed */
1629 atomic_thread_fence_rel();
1630 /* Set new datapath pointer */
1631 *pdp = &new_fdh->fdh_idx[0];
1632 FIB_MOD_UNLOCK();
1633 FD_PRINTF(LOG_DEBUG, fd, "update %p -> %p", old_fdh, new_fdh);
1634
1635 fib_epoch_call(destroy_fdh_epoch, &old_fdh->fdh_epoch_ctx);
1636
1637 return (true);
1638 }
1639
1640 static struct fib_dp **
1641 get_family_dp_ptr(int family)
1642 {
1643 switch (family) {
1644 #ifdef INET
1645 case AF_INET:
1646 return (&V_inet_dp);
1647 #endif
1648 #ifdef INET6
1649 case AF_INET6:
1650 return (&V_inet6_dp);
1651 #endif
1652 }
1653 return (NULL);
1654 }
1655
1656 /*
1657 * Make datapath use fib instance @fd
1658 */
1659 bool
1660 fib_set_datapath_ptr(struct fib_data *fd, struct fib_dp *dp)
1661 {
1662 struct fib_dp **pdp;
1663
1664 pdp = get_family_dp_ptr(fd->fd_family);
1665 return (replace_rtables_family(pdp, fd, dp));
1666 }
1667
1668 /*
1669 * Grow datapath pointers array.
1670 * Called from sysctl handler on growing number of routing tables.
1671 */
1672 static void
1673 grow_rtables_family(struct fib_dp **pdp, uint32_t new_num_tables)
1674 {
1675 struct fib_dp_header *new_fdh, *old_fdh = NULL;
1676
1677 new_fdh = alloc_fib_dp_array(new_num_tables, true);
1678
1679 FIB_MOD_LOCK();
1680 if (*pdp != NULL) {
1681 old_fdh = get_fib_dp_header(*pdp);
1682 memcpy(&new_fdh->fdh_idx[0], &old_fdh->fdh_idx[0],
1683 old_fdh->fdh_num_tables * sizeof(struct fib_dp));
1684 }
1685
1686 /* Wait till all writes completed */
1687 atomic_thread_fence_rel();
1688
1689 *pdp = &new_fdh->fdh_idx[0];
1690 FIB_MOD_UNLOCK();
1691
1692 if (old_fdh != NULL)
1693 fib_epoch_call(destroy_fdh_epoch, &old_fdh->fdh_epoch_ctx);
1694 }
1695
1696 /*
1697 * Grows per-AF arrays of datapath pointers for each supported family.
1698 * Called from fibs resize sysctl handler.
1699 */
1700 void
1701 fib_grow_rtables(uint32_t new_num_tables)
1702 {
1703
1704 #ifdef INET
1705 grow_rtables_family(get_family_dp_ptr(AF_INET), new_num_tables);
1706 #endif
1707 #ifdef INET6
1708 grow_rtables_family(get_family_dp_ptr(AF_INET6), new_num_tables);
1709 #endif
1710 }
1711
1712 void
1713 fib_get_rtable_info(struct rib_head *rh, struct rib_rtable_info *rinfo)
1714 {
1715
1716 bzero(rinfo, sizeof(struct rib_rtable_info));
1717 rinfo->num_prefixes = rh->rnh_prefixes;
1718 rinfo->num_nhops = nhops_get_count(rh);
1719 #ifdef ROUTE_MPATH
1720 rinfo->num_nhgrp = nhgrp_get_count(rh);
1721 #endif
1722 }
1723
1724 /*
1725 * Updates pointer to the algo data for the @fd.
1726 */
1727 void
1728 fib_set_algo_ptr(struct fib_data *fd, void *algo_data)
1729 {
1730 RIB_WLOCK_ASSERT(fd->fd_rh);
1731
1732 fd->fd_algo_data = algo_data;
1733 }
1734
1735 /*
1736 * Calls @callback with @ctx after the end of a current epoch.
1737 */
1738 void
1739 fib_epoch_call(epoch_callback_t callback, epoch_context_t ctx)
1740 {
1741 NET_EPOCH_CALL(callback, ctx);
1742 }
1743
1744 /*
1745 * Accessor to get rib instance @fd is attached to.
1746 */
1747 struct rib_head *
1748 fib_get_rh(struct fib_data *fd)
1749 {
1750
1751 return (fd->fd_rh);
1752 }
1753
1754 /*
1755 * Accessor to export idx->nhop array
1756 */
1757 struct nhop_object **
1758 fib_get_nhop_array(struct fib_data *fd)
1759 {
1760
1761 return (fd->nh_idx);
1762 }
1763
1764 static uint32_t
1765 get_nhop_idx(struct nhop_object *nh)
1766 {
1767 #ifdef ROUTE_MPATH
1768 if (NH_IS_NHGRP(nh))
1769 return (nhgrp_get_idx((struct nhgrp_object *)nh));
1770 else
1771 #endif
1772 return (nhop_get_idx(nh));
1773 }
1774
1775 uint32_t
1776 fib_get_nhop_idx(struct fib_data *fd, struct nhop_object *nh)
1777 {
1778
1779 return (get_nhop_idx(nh));
1780 }
1781
1782 static bool
1783 is_idx_free(struct fib_data *fd, uint32_t index)
1784 {
1785
1786 return (fd->nh_ref_table->refcnt[index] == 0);
1787 }
1788
1789 static uint32_t
1790 fib_ref_nhop(struct fib_data *fd, struct nhop_object *nh)
1791 {
1792 uint32_t idx = get_nhop_idx(nh);
1793
1794 if (idx >= fd->number_nhops) {
1795 fd->hit_nhops = 1;
1796 return (0);
1797 }
1798
1799 if (is_idx_free(fd, idx)) {
1800 nhop_ref_any(nh);
1801 fd->nh_idx[idx] = nh;
1802 fd->nh_ref_table->count++;
1803 FD_PRINTF(LOG_DEBUG2, fd, " REF nhop %u %p", idx, fd->nh_idx[idx]);
1804 }
1805 fd->nh_ref_table->refcnt[idx]++;
1806
1807 return (idx);
1808 }
1809
1810 struct nhop_release_data {
1811 struct nhop_object *nh;
1812 struct epoch_context ctx;
1813 };
1814
1815 static void
1816 release_nhop_epoch(epoch_context_t ctx)
1817 {
1818 struct nhop_release_data *nrd;
1819
1820 nrd = __containerof(ctx, struct nhop_release_data, ctx);
1821 nhop_free_any(nrd->nh);
1822 free(nrd, M_TEMP);
1823 }
1824
1825 /*
1826 * Delays nexthop refcount release.
1827 * Datapath may have the datastructures not updated yet, so the old
1828 * nexthop may still be returned till the end of current epoch. Delay
1829 * refcount removal, as we may be removing the last instance, which will
1830 * trigger nexthop deletion, rendering returned nexthop invalid.
1831 */
1832 static void
1833 fib_schedule_release_nhop(struct fib_data *fd, struct nhop_object *nh)
1834 {
1835 struct nhop_release_data *nrd;
1836
1837 nrd = malloc(sizeof(struct nhop_release_data), M_TEMP, M_NOWAIT | M_ZERO);
1838 if (nrd != NULL) {
1839 nrd->nh = nh;
1840 fib_epoch_call(release_nhop_epoch, &nrd->ctx);
1841 } else {
1842 /*
1843 * Unable to allocate memory. Leak nexthop to maintain guarantee
1844 * that each nhop can be referenced.
1845 */
1846 FD_PRINTF(LOG_ERR, fd, "unable to schedule nhop %p deletion", nh);
1847 }
1848 }
1849
1850 static void
1851 fib_unref_nhop(struct fib_data *fd, struct nhop_object *nh)
1852 {
1853 uint32_t idx = get_nhop_idx(nh);
1854
1855 KASSERT((idx < fd->number_nhops), ("invalid nhop index"));
1856 KASSERT((nh == fd->nh_idx[idx]), ("index table contains whong nh"));
1857
1858 fd->nh_ref_table->refcnt[idx]--;
1859 if (fd->nh_ref_table->refcnt[idx] == 0) {
1860 FD_PRINTF(LOG_DEBUG, fd, " FREE nhop %d %p", idx, fd->nh_idx[idx]);
1861 fib_schedule_release_nhop(fd, fd->nh_idx[idx]);
1862 }
1863 }
1864
1865 static void
1866 set_algo_fixed(struct rib_head *rh)
1867 {
1868 switch (rh->rib_family) {
1869 #ifdef INET
1870 case AF_INET:
1871 V_algo_fixed_inet = true;
1872 break;
1873 #endif
1874 #ifdef INET6
1875 case AF_INET6:
1876 V_algo_fixed_inet6 = true;
1877 break;
1878 #endif
1879 }
1880 }
1881
1882 static bool
1883 is_algo_fixed(struct rib_head *rh)
1884 {
1885
1886 switch (rh->rib_family) {
1887 #ifdef INET
1888 case AF_INET:
1889 return (V_algo_fixed_inet);
1890 #endif
1891 #ifdef INET6
1892 case AF_INET6:
1893 return (V_algo_fixed_inet6);
1894 #endif
1895 }
1896 return (false);
1897 }
1898
1899 /*
1900 * Runs the check on what would be the best algo for rib @rh, assuming
1901 * that the current algo is the one specified by @orig_flm. Note that
1902 * it can be NULL for initial selection.
1903 *
1904 * Returns referenced new algo or NULL if the current one is the best.
1905 */
1906 static struct fib_lookup_module *
1907 fib_check_best_algo(struct rib_head *rh, struct fib_lookup_module *orig_flm)
1908 {
1909 uint8_t preference, curr_preference = 0, best_preference = 0;
1910 struct fib_lookup_module *flm, *best_flm = NULL;
1911 struct rib_rtable_info rinfo;
1912 int candidate_algos = 0;
1913
1914 fib_get_rtable_info(rh, &rinfo);
1915
1916 FIB_MOD_LOCK();
1917 TAILQ_FOREACH(flm, &all_algo_list, entries) {
1918 if (flm->flm_family != rh->rib_family)
1919 continue;
1920 candidate_algos++;
1921 preference = flm->flm_get_pref(&rinfo);
1922 if (preference > best_preference) {
1923 if (!flm_error_check(flm, rh->rib_fibnum)) {
1924 best_preference = preference;
1925 best_flm = flm;
1926 }
1927 }
1928 if (flm == orig_flm)
1929 curr_preference = preference;
1930 }
1931 if ((best_flm != NULL) && (curr_preference + BEST_DIFF_PERCENT < best_preference))
1932 best_flm->flm_refcount++;
1933 else
1934 best_flm = NULL;
1935 FIB_MOD_UNLOCK();
1936
1937 RH_PRINTF(LOG_DEBUG, rh, "candidate_algos: %d, curr: %s(%d) result: %s(%d)",
1938 candidate_algos, orig_flm ? orig_flm->flm_name : "NULL", curr_preference,
1939 best_flm ? best_flm->flm_name : (orig_flm ? orig_flm->flm_name : "NULL"),
1940 best_preference);
1941
1942 return (best_flm);
1943 }
1944
1945 /*
1946 * Called when new route table is created.
1947 * Selects, allocates and attaches fib algo for the table.
1948 */
1949 static bool
1950 fib_select_algo_initial(struct rib_head *rh, struct fib_dp *dp)
1951 {
1952 struct fib_lookup_module *flm;
1953 struct fib_data *fd = NULL;
1954 enum flm_op_result result;
1955 struct epoch_tracker et;
1956
1957 flm = fib_check_best_algo(rh, NULL);
1958 if (flm == NULL) {
1959 RH_PRINTF(LOG_CRIT, rh, "no algo selected");
1960 return (false);
1961 }
1962 RH_PRINTF(LOG_INFO, rh, "selected algo %s", flm->flm_name);
1963
1964 NET_EPOCH_ENTER(et);
1965 RIB_WLOCK(rh);
1966 result = setup_fd_instance(flm, rh, NULL, &fd, false);
1967 RIB_WUNLOCK(rh);
1968 NET_EPOCH_EXIT(et);
1969
1970 RH_PRINTF(LOG_DEBUG, rh, "result=%d fd=%p", result, fd);
1971 if (result == FLM_SUCCESS)
1972 *dp = fd->fd_dp;
1973 else
1974 RH_PRINTF(LOG_CRIT, rh, "unable to setup algo %s", flm->flm_name);
1975
1976 fib_unref_algo(flm);
1977
1978 return (result == FLM_SUCCESS);
1979 }
1980
1981 /*
1982 * Sets up fib algo instances for the non-initialized RIBs in the @family.
1983 * Allocates temporary datapath index to amortize datapaint index updates
1984 * with large @num_tables.
1985 */
1986 void
1987 fib_setup_family(int family, uint32_t num_tables)
1988 {
1989 struct fib_dp_header *new_fdh = alloc_fib_dp_array(num_tables, false);
1990 if (new_fdh == NULL) {
1991 ALGO_PRINTF(LOG_CRIT, "Unable to setup framework for %s", print_family(family));
1992 return;
1993 }
1994
1995 for (int i = 0; i < num_tables; i++) {
1996 struct rib_head *rh = rt_tables_get_rnh(i, family);
1997 if (rh->rib_algo_init)
1998 continue;
1999 if (!fib_select_algo_initial(rh, &new_fdh->fdh_idx[i]))
2000 continue;
2001
2002 rh->rib_algo_init = true;
2003 }
2004
2005 FIB_MOD_LOCK();
2006 struct fib_dp **pdp = get_family_dp_ptr(family);
2007 struct fib_dp_header *old_fdh = get_fib_dp_header(*pdp);
2008
2009 /* Update the items not touched by the new init, from the old data pointer */
2010 for (int i = 0; i < num_tables; i++) {
2011 if (new_fdh->fdh_idx[i].f == dummy_lookup)
2012 new_fdh->fdh_idx[i] = old_fdh->fdh_idx[i];
2013 }
2014
2015 /* Ensure all index writes have completed */
2016 atomic_thread_fence_rel();
2017 /* Set new datapath pointer */
2018 *pdp = &new_fdh->fdh_idx[0];
2019
2020 FIB_MOD_UNLOCK();
2021
2022 fib_epoch_call(destroy_fdh_epoch, &old_fdh->fdh_epoch_ctx);
2023 }
2024
2025 /*
2026 * Registers fib lookup module within the subsystem.
2027 */
2028 int
2029 fib_module_register(struct fib_lookup_module *flm)
2030 {
2031
2032 FIB_MOD_LOCK();
2033 ALGO_PRINTF(LOG_INFO, "attaching %s to %s", flm->flm_name,
2034 print_family(flm->flm_family));
2035 TAILQ_INSERT_TAIL(&all_algo_list, flm, entries);
2036 FIB_MOD_UNLOCK();
2037
2038 return (0);
2039 }
2040
2041 /*
2042 * Tries to unregister fib lookup module.
2043 *
2044 * Returns 0 on success, EBUSY if module is still used
2045 * by some of the tables.
2046 */
2047 int
2048 fib_module_unregister(struct fib_lookup_module *flm)
2049 {
2050
2051 FIB_MOD_LOCK();
2052 if (flm->flm_refcount > 0) {
2053 FIB_MOD_UNLOCK();
2054 return (EBUSY);
2055 }
2056 fib_error_clear_flm(flm);
2057 ALGO_PRINTF(LOG_INFO, "detaching %s from %s", flm->flm_name,
2058 print_family(flm->flm_family));
2059 TAILQ_REMOVE(&all_algo_list, flm, entries);
2060 FIB_MOD_UNLOCK();
2061
2062 return (0);
2063 }
2064
2065 void
2066 vnet_fib_init(void)
2067 {
2068
2069 TAILQ_INIT(&V_fib_data_list);
2070 }
2071
2072 void
2073 vnet_fib_destroy(void)
2074 {
2075
2076 FIB_MOD_LOCK();
2077 fib_error_clear();
2078 FIB_MOD_UNLOCK();
2079 }
Cache object: a60b62654b6a08ed460513de5d5368bf
|