The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/rtsock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1988, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)rtsock.c    8.7 (Berkeley) 10/12/95
   30  * $FreeBSD$
   31  */
   32 #include "opt_sctp.h"
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/domain.h>
   38 #include <sys/jail.h>
   39 #include <sys/kernel.h>
   40 #include <sys/malloc.h>
   41 #include <sys/mbuf.h>
   42 #include <sys/priv.h>
   43 #include <sys/proc.h>
   44 #include <sys/protosw.h>
   45 #include <sys/signalvar.h>
   46 #include <sys/socket.h>
   47 #include <sys/socketvar.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/systm.h>
   50 
   51 #include <net/if.h>
   52 #include <net/netisr.h>
   53 #include <net/raw_cb.h>
   54 #include <net/route.h>
   55 
   56 #include <netinet/in.h>
   57 #ifdef INET6
   58 #include <netinet6/scope6_var.h>
   59 #endif
   60 
   61 #ifdef SCTP
   62 extern void sctp_addr_change(struct ifaddr *ifa, int cmd);
   63 #endif /* SCTP */
   64 
   65 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
   66 
   67 /* NB: these are not modified */
   68 static struct   sockaddr route_src = { 2, PF_ROUTE, };
   69 static struct   sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
   70 
   71 static struct {
   72         int     ip_count;       /* attached w/ AF_INET */
   73         int     ip6_count;      /* attached w/ AF_INET6 */
   74         int     ipx_count;      /* attached w/ AF_IPX */
   75         int     any_count;      /* total attached */
   76 } route_cb;
   77 
   78 struct mtx rtsock_mtx;
   79 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
   80 
   81 #define RTSOCK_LOCK()   mtx_lock(&rtsock_mtx)
   82 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
   83 #define RTSOCK_LOCK_ASSERT()    mtx_assert(&rtsock_mtx, MA_OWNED)
   84 
   85 static struct   ifqueue rtsintrq;
   86 
   87 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
   88 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW,
   89     &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length");
   90 
   91 struct walkarg {
   92         int     w_tmemsize;
   93         int     w_op, w_arg;
   94         caddr_t w_tmem;
   95         struct sysctl_req *w_req;
   96 };
   97 
   98 static void     rts_input(struct mbuf *m);
   99 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
  100 static int      rt_msg2(int type, struct rt_addrinfo *rtinfo,
  101                         caddr_t cp, struct walkarg *w);
  102 static int      rt_xaddrs(caddr_t cp, caddr_t cplim,
  103                         struct rt_addrinfo *rtinfo);
  104 static int      sysctl_dumpentry(struct radix_node *rn, void *vw);
  105 static int      sysctl_iflist(int af, struct walkarg *w);
  106 static int      sysctl_ifmalist(int af, struct walkarg *w);
  107 static int      route_output(struct mbuf *m, struct socket *so);
  108 static void     rt_setmetrics(u_long which, const struct rt_metrics *in,
  109                         struct rt_metrics_lite *out);
  110 static void     rt_getmetrics(const struct rt_metrics_lite *in,
  111                         struct rt_metrics *out);
  112 static void     rt_dispatch(struct mbuf *, const struct sockaddr *);
  113 
  114 static void
  115 rts_init(void)
  116 {
  117         int tmp;
  118 
  119         rtsintrq.ifq_maxlen = 256;
  120         if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
  121                 rtsintrq.ifq_maxlen = tmp;
  122         mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF);
  123         netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE);
  124 }
  125 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
  126 
  127 static void
  128 rts_input(struct mbuf *m)
  129 {
  130         struct sockproto route_proto;
  131         unsigned short *family;
  132         struct m_tag *tag;
  133 
  134         route_proto.sp_family = PF_ROUTE;
  135         tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
  136         if (tag != NULL) {
  137                 family = (unsigned short *)(tag + 1);
  138                 route_proto.sp_protocol = *family;
  139                 m_tag_delete(m, tag);
  140         } else
  141                 route_proto.sp_protocol = 0;
  142 
  143         raw_input(m, &route_proto, &route_src);
  144 }
  145 
  146 /*
  147  * It really doesn't make any sense at all for this code to share much
  148  * with raw_usrreq.c, since its functionality is so restricted.  XXX
  149  */
  150 static void
  151 rts_abort(struct socket *so)
  152 {
  153 
  154         raw_usrreqs.pru_abort(so);
  155 }
  156 
  157 static void
  158 rts_close(struct socket *so)
  159 {
  160 
  161         raw_usrreqs.pru_close(so);
  162 }
  163 
  164 /* pru_accept is EOPNOTSUPP */
  165 
  166 static int
  167 rts_attach(struct socket *so, int proto, struct thread *td)
  168 {
  169         struct rawcb *rp;
  170         int s, error;
  171 
  172         KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
  173 
  174         /* XXX */
  175         MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
  176         if (rp == NULL)
  177                 return ENOBUFS;
  178 
  179         /*
  180          * The splnet() is necessary to block protocols from sending
  181          * error notifications (like RTM_REDIRECT or RTM_LOSING) while
  182          * this PCB is extant but incompletely initialized.
  183          * Probably we should try to do more of this work beforehand and
  184          * eliminate the spl.
  185          */
  186         s = splnet();
  187         so->so_pcb = (caddr_t)rp;
  188         so->so_fibnum = td->td_proc->p_fibnum;
  189         error = raw_attach(so, proto);
  190         rp = sotorawcb(so);
  191         if (error) {
  192                 splx(s);
  193                 so->so_pcb = NULL;
  194                 free(rp, M_PCB);
  195                 return error;
  196         }
  197         RTSOCK_LOCK();
  198         switch(rp->rcb_proto.sp_protocol) {
  199         case AF_INET:
  200                 route_cb.ip_count++;
  201                 break;
  202         case AF_INET6:
  203                 route_cb.ip6_count++;
  204                 break;
  205         case AF_IPX:
  206                 route_cb.ipx_count++;
  207                 break;
  208         }
  209         route_cb.any_count++;
  210         RTSOCK_UNLOCK();
  211         soisconnected(so);
  212         so->so_options |= SO_USELOOPBACK;
  213         splx(s);
  214         return 0;
  215 }
  216 
  217 static int
  218 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
  219 {
  220 
  221         return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
  222 }
  223 
  224 static int
  225 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
  226 {
  227 
  228         return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
  229 }
  230 
  231 /* pru_connect2 is EOPNOTSUPP */
  232 /* pru_control is EOPNOTSUPP */
  233 
  234 static void
  235 rts_detach(struct socket *so)
  236 {
  237         struct rawcb *rp = sotorawcb(so);
  238 
  239         KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
  240 
  241         RTSOCK_LOCK();
  242         switch(rp->rcb_proto.sp_protocol) {
  243         case AF_INET:
  244                 route_cb.ip_count--;
  245                 break;
  246         case AF_INET6:
  247                 route_cb.ip6_count--;
  248                 break;
  249         case AF_IPX:
  250                 route_cb.ipx_count--;
  251                 break;
  252         }
  253         route_cb.any_count--;
  254         RTSOCK_UNLOCK();
  255         raw_usrreqs.pru_detach(so);
  256 }
  257 
  258 static int
  259 rts_disconnect(struct socket *so)
  260 {
  261 
  262         return (raw_usrreqs.pru_disconnect(so));
  263 }
  264 
  265 /* pru_listen is EOPNOTSUPP */
  266 
  267 static int
  268 rts_peeraddr(struct socket *so, struct sockaddr **nam)
  269 {
  270 
  271         return (raw_usrreqs.pru_peeraddr(so, nam));
  272 }
  273 
  274 /* pru_rcvd is EOPNOTSUPP */
  275 /* pru_rcvoob is EOPNOTSUPP */
  276 
  277 static int
  278 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
  279          struct mbuf *control, struct thread *td)
  280 {
  281 
  282         return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
  283 }
  284 
  285 /* pru_sense is null */
  286 
  287 static int
  288 rts_shutdown(struct socket *so)
  289 {
  290 
  291         return (raw_usrreqs.pru_shutdown(so));
  292 }
  293 
  294 static int
  295 rts_sockaddr(struct socket *so, struct sockaddr **nam)
  296 {
  297 
  298         return (raw_usrreqs.pru_sockaddr(so, nam));
  299 }
  300 
  301 static struct pr_usrreqs route_usrreqs = {
  302         .pru_abort =            rts_abort,
  303         .pru_attach =           rts_attach,
  304         .pru_bind =             rts_bind,
  305         .pru_connect =          rts_connect,
  306         .pru_detach =           rts_detach,
  307         .pru_disconnect =       rts_disconnect,
  308         .pru_peeraddr =         rts_peeraddr,
  309         .pru_send =             rts_send,
  310         .pru_shutdown =         rts_shutdown,
  311         .pru_sockaddr =         rts_sockaddr,
  312         .pru_close =            rts_close,
  313 };
  314 
  315 #ifndef _SOCKADDR_UNION_DEFINED
  316 #define _SOCKADDR_UNION_DEFINED
  317 /*
  318  * The union of all possible address formats we handle.
  319  */
  320 union sockaddr_union {
  321         struct sockaddr         sa;
  322         struct sockaddr_in      sin;
  323         struct sockaddr_in6     sin6;
  324 };
  325 #endif /* _SOCKADDR_UNION_DEFINED */
  326 
  327 static int
  328 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
  329     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
  330 {
  331 
  332         /* First, see if the returned address is part of the jail. */
  333         if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
  334                 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
  335                 return (0);
  336         }
  337 
  338         switch (info->rti_info[RTAX_DST]->sa_family) {
  339 #ifdef INET
  340         case AF_INET:
  341         {
  342                 struct in_addr ia;
  343                 struct ifaddr *ifa;
  344                 int found;
  345 
  346                 found = 0;
  347                 /*
  348                  * Try to find an address on the given outgoing interface
  349                  * that belongs to the jail.
  350                  */
  351                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  352                         struct sockaddr *sa;
  353                         sa = ifa->ifa_addr;
  354                         if (sa->sa_family != AF_INET)
  355                                 continue;
  356                         ia = ((struct sockaddr_in *)sa)->sin_addr;
  357                         if (prison_check_ip4(cred, &ia) == 0) {
  358                                 found = 1;
  359                                 break;
  360                         }
  361                 }
  362                 if (!found) {
  363                         /*
  364                          * As a last resort return the 'default' jail address.
  365                          */
  366                         if (prison_get_ip4(cred, &ia) != 0)
  367                                 return (ESRCH);
  368                 }
  369                 bzero(&saun->sin, sizeof(struct sockaddr_in));
  370                 saun->sin.sin_len = sizeof(struct sockaddr_in);
  371                 saun->sin.sin_family = AF_INET;
  372                 saun->sin.sin_addr.s_addr = ia.s_addr;
  373                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
  374                 break;
  375         }
  376 #endif
  377 #ifdef INET6
  378         case AF_INET6:
  379         {
  380                 struct in6_addr ia6;
  381                 struct ifaddr *ifa;
  382                 int found;
  383 
  384                 found = 0;
  385                 /*
  386                  * Try to find an address on the given outgoing interface
  387                  * that belongs to the jail.
  388                  */
  389                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  390                         struct sockaddr *sa;
  391                         sa = ifa->ifa_addr;
  392                         if (sa->sa_family != AF_INET6)
  393                                 continue;
  394                         bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
  395                             &ia6, sizeof(struct in6_addr));
  396                         if (prison_check_ip6(cred, &ia6) == 0) {
  397                                 found = 1;
  398                                 break;
  399                         }
  400                 }
  401                 if (!found) {
  402                         /*
  403                          * As a last resort return the 'default' jail address.
  404                          */
  405                         if (prison_get_ip6(cred, &ia6) != 0)
  406                                 return (ESRCH);
  407                 }
  408                 bzero(&saun->sin6, sizeof(struct sockaddr_in6));
  409                 saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
  410                 saun->sin6.sin6_family = AF_INET6;
  411                 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
  412                 if (sa6_recoverscope(&saun->sin6) != 0)
  413                         return (ESRCH);
  414                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
  415                 break;
  416         }
  417 #endif
  418         default:
  419                 return (ESRCH);
  420         }
  421         return (0);
  422 }
  423 
  424 /*ARGSUSED*/
  425 static int
  426 route_output(struct mbuf *m, struct socket *so)
  427 {
  428 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
  429         struct rt_msghdr *rtm = NULL;
  430         struct rtentry *rt = NULL;
  431         struct radix_node_head *rnh;
  432         struct rt_addrinfo info;
  433         int len, error = 0;
  434         struct ifnet *ifp = NULL;
  435         union sockaddr_union saun;
  436 
  437 #define senderr(e) { error = e; goto flush;}
  438         if (m == NULL || ((m->m_len < sizeof(long)) &&
  439                        (m = m_pullup(m, sizeof(long))) == NULL))
  440                 return (ENOBUFS);
  441         if ((m->m_flags & M_PKTHDR) == 0)
  442                 panic("route_output");
  443         len = m->m_pkthdr.len;
  444         if (len < sizeof(*rtm) ||
  445             len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
  446                 info.rti_info[RTAX_DST] = NULL;
  447                 senderr(EINVAL);
  448         }
  449         R_Malloc(rtm, struct rt_msghdr *, len);
  450         if (rtm == NULL) {
  451                 info.rti_info[RTAX_DST] = NULL;
  452                 senderr(ENOBUFS);
  453         }
  454         m_copydata(m, 0, len, (caddr_t)rtm);
  455         if (rtm->rtm_version != RTM_VERSION) {
  456                 info.rti_info[RTAX_DST] = NULL;
  457                 senderr(EPROTONOSUPPORT);
  458         }
  459         rtm->rtm_pid = curproc->p_pid;
  460         bzero(&info, sizeof(info));
  461         info.rti_addrs = rtm->rtm_addrs;
  462         if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
  463                 info.rti_info[RTAX_DST] = NULL;
  464                 senderr(EINVAL);
  465         }
  466         info.rti_flags = rtm->rtm_flags;
  467         if (info.rti_info[RTAX_DST] == NULL ||
  468             info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
  469             (info.rti_info[RTAX_GATEWAY] != NULL &&
  470              info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
  471                 senderr(EINVAL);
  472         if (info.rti_info[RTAX_GENMASK]) {
  473                 struct radix_node *t;
  474                 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1);
  475                 if (t != NULL &&
  476                     bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1,
  477                     (char *)(void *)t->rn_key + 1,
  478                     ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0)
  479                         info.rti_info[RTAX_GENMASK] =
  480                             (struct sockaddr *)t->rn_key;
  481                 else
  482                         senderr(ENOBUFS);
  483         }
  484 
  485         /*
  486          * Verify that the caller has the appropriate privilege; RTM_GET
  487          * is the only operation the non-superuser is allowed.
  488          */
  489         if (rtm->rtm_type != RTM_GET) {
  490                 error = priv_check(curthread, PRIV_NET_ROUTE);
  491                 if (error)
  492                         senderr(error);
  493         }
  494 
  495         switch (rtm->rtm_type) {
  496                 struct rtentry *saved_nrt;
  497 
  498         case RTM_ADD:
  499                 if (info.rti_info[RTAX_GATEWAY] == NULL)
  500                         senderr(EINVAL);
  501                 saved_nrt = NULL;
  502                 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
  503                     so->so_fibnum);
  504                 if (error == 0 && saved_nrt) {
  505                         RT_LOCK(saved_nrt);
  506                         rt_setmetrics(rtm->rtm_inits,
  507                                 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
  508                         rtm->rtm_index = saved_nrt->rt_ifp->if_index;
  509                         RT_REMREF(saved_nrt);
  510                         saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
  511                         RT_UNLOCK(saved_nrt);
  512                 }
  513                 break;
  514 
  515         case RTM_DELETE:
  516                 saved_nrt = NULL;
  517                 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
  518                     so->so_fibnum);
  519                 if (error == 0) {
  520                         RT_LOCK(saved_nrt);
  521                         rt = saved_nrt;
  522                         goto report;
  523                 }
  524                 break;
  525 
  526         case RTM_GET:
  527         case RTM_CHANGE:
  528         case RTM_LOCK:
  529                 rnh = rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family];
  530                 if (rnh == NULL)
  531                         senderr(EAFNOSUPPORT);
  532                 RADIX_NODE_HEAD_LOCK(rnh);
  533                 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
  534                         info.rti_info[RTAX_NETMASK], rnh);
  535                 if (rt == NULL) {       /* XXX looks bogus */
  536                         RADIX_NODE_HEAD_UNLOCK(rnh);
  537                         senderr(ESRCH);
  538                 }
  539                 RT_LOCK(rt);
  540                 RT_ADDREF(rt);
  541                 RADIX_NODE_HEAD_UNLOCK(rnh);
  542 
  543                 /* 
  544                  * Fix for PR: 82974
  545                  *
  546                  * RTM_CHANGE/LOCK need a perfect match, rn_lookup()
  547                  * returns a perfect match in case a netmask is
  548                  * specified.  For host routes only a longest prefix
  549                  * match is returned so it is necessary to compare the
  550                  * existence of the netmask.  If both have a netmask
  551                  * rnh_lookup() did a perfect match and if none of them
  552                  * have a netmask both are host routes which is also a
  553                  * perfect match.
  554                  */
  555 
  556                 if (rtm->rtm_type != RTM_GET && 
  557                     (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
  558                         RT_UNLOCK(rt);
  559                         senderr(ESRCH);
  560                 }
  561 
  562                 switch(rtm->rtm_type) {
  563 
  564                 case RTM_GET:
  565                 report:
  566                         RT_LOCK_ASSERT(rt);
  567                         if ((rt->rt_flags & RTF_HOST) == 0
  568                             ? jailed(curthread->td_ucred)
  569                             : prison_if(curthread->td_ucred,
  570                             rt_key(rt)) != 0) {
  571                                 RT_UNLOCK(rt);
  572                                 senderr(ESRCH);
  573                         }
  574                         info.rti_info[RTAX_DST] = rt_key(rt);
  575                         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
  576                         info.rti_info[RTAX_NETMASK] = rt_mask(rt);
  577                         info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
  578                         if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
  579                                 ifp = rt->rt_ifp;
  580                                 if (ifp) {
  581                                         info.rti_info[RTAX_IFP] =
  582                                             ifp->if_addr->ifa_addr;
  583                                         error = rtm_get_jailed(&info, ifp, rt,
  584                                             &saun, curthread->td_ucred);
  585                                         if (error != 0) {
  586                                                 RT_UNLOCK(rt);
  587                                                 senderr(error);
  588                                         }
  589                                         if (ifp->if_flags & IFF_POINTOPOINT)
  590                                                 info.rti_info[RTAX_BRD] =
  591                                                     rt->rt_ifa->ifa_dstaddr;
  592                                         rtm->rtm_index = ifp->if_index;
  593                                 } else {
  594                                         info.rti_info[RTAX_IFP] = NULL;
  595                                         info.rti_info[RTAX_IFA] = NULL;
  596                                 }
  597                         } else if ((ifp = rt->rt_ifp) != NULL) {
  598                                 rtm->rtm_index = ifp->if_index;
  599                         }
  600                         len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
  601                         if (len > rtm->rtm_msglen) {
  602                                 struct rt_msghdr *new_rtm;
  603                                 R_Malloc(new_rtm, struct rt_msghdr *, len);
  604                                 if (new_rtm == NULL) {
  605                                         RT_UNLOCK(rt);
  606                                         senderr(ENOBUFS);
  607                                 }
  608                                 bcopy(rtm, new_rtm, rtm->rtm_msglen);
  609                                 Free(rtm); rtm = new_rtm;
  610                         }
  611                         (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
  612                         rtm->rtm_flags = rt->rt_flags;
  613                         rtm->rtm_use = 0;
  614                         rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
  615                         rtm->rtm_addrs = info.rti_addrs;
  616                         break;
  617 
  618                 case RTM_CHANGE:
  619                         /*
  620                          * New gateway could require new ifaddr, ifp;
  621                          * flags may also be different; ifp may be specified
  622                          * by ll sockaddr when protocol address is ambiguous
  623                          */
  624                         if (((rt->rt_flags & RTF_GATEWAY) &&
  625                              info.rti_info[RTAX_GATEWAY] != NULL) ||
  626                             info.rti_info[RTAX_IFP] != NULL ||
  627                             (info.rti_info[RTAX_IFA] != NULL &&
  628                              !sa_equal(info.rti_info[RTAX_IFA],
  629                                        rt->rt_ifa->ifa_addr))) {
  630                                 RT_UNLOCK(rt);
  631                                 RADIX_NODE_HEAD_LOCK(rnh);
  632                                 error = rt_getifa_fib(&info, rt->rt_fibnum);
  633                                 RADIX_NODE_HEAD_UNLOCK(rnh);
  634                                 if (error != 0)
  635                                         senderr(error);
  636                                 RT_LOCK(rt);
  637                         }
  638                         if (info.rti_ifa != NULL &&
  639                             info.rti_ifa != rt->rt_ifa &&
  640                             rt->rt_ifa != NULL &&
  641                             rt->rt_ifa->ifa_rtrequest != NULL) {
  642                                 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
  643                                     &info);
  644                                 IFAFREE(rt->rt_ifa);
  645                         }
  646                         if (info.rti_info[RTAX_GATEWAY] != NULL) {
  647                                 RT_UNLOCK(rt);
  648                                 RADIX_NODE_HEAD_LOCK(rnh);
  649                                 RT_LOCK(rt);
  650                                 
  651                                 error = rt_setgate(rt, rt_key(rt),
  652                                     info.rti_info[RTAX_GATEWAY]);
  653                                 RADIX_NODE_HEAD_UNLOCK(rnh);
  654                                 if (error != 0) {
  655                                         RT_UNLOCK(rt);
  656                                         senderr(error);
  657                                 }
  658                                 if (!(rt->rt_flags & RTF_LLINFO))
  659                                         rt->rt_flags |= RTF_GATEWAY;
  660                         }
  661                         if (info.rti_ifa != NULL &&
  662                             info.rti_ifa != rt->rt_ifa) {
  663                                 IFAREF(info.rti_ifa);
  664                                 rt->rt_ifa = info.rti_ifa;
  665                                 rt->rt_ifp = info.rti_ifp;
  666                         }
  667                         /* Allow some flags to be toggled on change. */
  668                         if (rtm->rtm_fmask & RTF_FMASK)
  669                                 rt->rt_flags = (rt->rt_flags &
  670                                     ~rtm->rtm_fmask) |
  671                                     (rtm->rtm_flags & rtm->rtm_fmask);
  672                         rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
  673                                         &rt->rt_rmx);
  674                         rtm->rtm_index = rt->rt_ifp->if_index;
  675                         if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
  676                                rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
  677                         if (info.rti_info[RTAX_GENMASK])
  678                                 rt->rt_genmask = info.rti_info[RTAX_GENMASK];
  679                         /* FALLTHROUGH */
  680                 case RTM_LOCK:
  681                         /* We don't support locks anymore */
  682                         break;
  683                 }
  684                 RT_UNLOCK(rt);
  685                 break;
  686 
  687         default:
  688                 senderr(EOPNOTSUPP);
  689         }
  690 
  691 flush:
  692         if (rtm) {
  693                 if (error)
  694                         rtm->rtm_errno = error;
  695                 else
  696                         rtm->rtm_flags |= RTF_DONE;
  697         }
  698         if (rt)         /* XXX can this be true? */
  699                 RTFREE(rt);
  700     {
  701         struct rawcb *rp = NULL;
  702         /*
  703          * Check to see if we don't want our own messages.
  704          */
  705         if ((so->so_options & SO_USELOOPBACK) == 0) {
  706                 if (route_cb.any_count <= 1) {
  707                         if (rtm)
  708                                 Free(rtm);
  709                         m_freem(m);
  710                         return (error);
  711                 }
  712                 /* There is another listener, so construct message */
  713                 rp = sotorawcb(so);
  714         }
  715         if (rtm) {
  716                 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
  717                 if (m->m_pkthdr.len < rtm->rtm_msglen) {
  718                         m_freem(m);
  719                         m = NULL;
  720                 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
  721                         m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
  722                 Free(rtm);
  723         }
  724         if (m) {
  725                 if (rp) {
  726                         /*
  727                          * XXX insure we don't get a copy by
  728                          * invalidating our protocol
  729                          */
  730                         unsigned short family = rp->rcb_proto.sp_family;
  731                         rp->rcb_proto.sp_family = 0;
  732                         rt_dispatch(m, info.rti_info[RTAX_DST]);
  733                         rp->rcb_proto.sp_family = family;
  734                 } else
  735                         rt_dispatch(m, info.rti_info[RTAX_DST]);
  736         }
  737     }
  738         return (error);
  739 #undef  sa_equal
  740 }
  741 
  742 static void
  743 rt_setmetrics(u_long which, const struct rt_metrics *in,
  744         struct rt_metrics_lite *out)
  745 {
  746 #define metric(f, e) if (which & (f)) out->e = in->e;
  747         /*
  748          * Only these are stored in the routing entry since introduction
  749          * of tcp hostcache. The rest is ignored.
  750          */
  751         metric(RTV_MTU, rmx_mtu);
  752         /* Userland -> kernel timebase conversion. */
  753         if (which & RTV_EXPIRE)
  754                 out->rmx_expire = in->rmx_expire ?
  755                     in->rmx_expire - time_second + time_uptime : 0;
  756 #undef metric
  757 }
  758 
  759 static void
  760 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
  761 {
  762 #define metric(e) out->e = in->e;
  763         bzero(out, sizeof(*out));
  764         metric(rmx_mtu);
  765         /* Kernel -> userland timebase conversion. */
  766         out->rmx_expire = in->rmx_expire ?
  767             in->rmx_expire - time_uptime + time_second : 0;
  768 #undef metric
  769 }
  770 
  771 /*
  772  * Extract the addresses of the passed sockaddrs.
  773  * Do a little sanity checking so as to avoid bad memory references.
  774  * This data is derived straight from userland.
  775  */
  776 static int
  777 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
  778 {
  779         struct sockaddr *sa;
  780         int i;
  781 
  782         for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
  783                 if ((rtinfo->rti_addrs & (1 << i)) == 0)
  784                         continue;
  785                 sa = (struct sockaddr *)cp;
  786                 /*
  787                  * It won't fit.
  788                  */
  789                 if (cp + sa->sa_len > cplim)
  790                         return (EINVAL);
  791                 /*
  792                  * there are no more.. quit now
  793                  * If there are more bits, they are in error.
  794                  * I've seen this. route(1) can evidently generate these. 
  795                  * This causes kernel to core dump.
  796                  * for compatibility, If we see this, point to a safe address.
  797                  */
  798                 if (sa->sa_len == 0) {
  799                         rtinfo->rti_info[i] = &sa_zero;
  800                         return (0); /* should be EINVAL but for compat */
  801                 }
  802                 /* accept it */
  803                 rtinfo->rti_info[i] = sa;
  804                 cp += SA_SIZE(sa);
  805         }
  806         return (0);
  807 }
  808 
  809 static struct mbuf *
  810 rt_msg1(int type, struct rt_addrinfo *rtinfo)
  811 {
  812         struct rt_msghdr *rtm;
  813         struct mbuf *m;
  814         int i;
  815         struct sockaddr *sa;
  816         int len, dlen;
  817 
  818         switch (type) {
  819 
  820         case RTM_DELADDR:
  821         case RTM_NEWADDR:
  822                 len = sizeof(struct ifa_msghdr);
  823                 break;
  824 
  825         case RTM_DELMADDR:
  826         case RTM_NEWMADDR:
  827                 len = sizeof(struct ifma_msghdr);
  828                 break;
  829 
  830         case RTM_IFINFO:
  831                 len = sizeof(struct if_msghdr);
  832                 break;
  833 
  834         case RTM_IFANNOUNCE:
  835         case RTM_IEEE80211:
  836                 len = sizeof(struct if_announcemsghdr);
  837                 break;
  838 
  839         default:
  840                 len = sizeof(struct rt_msghdr);
  841         }
  842         if (len > MCLBYTES)
  843                 panic("rt_msg1");
  844         m = m_gethdr(M_DONTWAIT, MT_DATA);
  845         if (m && len > MHLEN) {
  846                 MCLGET(m, M_DONTWAIT);
  847                 if ((m->m_flags & M_EXT) == 0) {
  848                         m_free(m);
  849                         m = NULL;
  850                 }
  851         }
  852         if (m == NULL)
  853                 return (m);
  854         m->m_pkthdr.len = m->m_len = len;
  855         m->m_pkthdr.rcvif = NULL;
  856         rtm = mtod(m, struct rt_msghdr *);
  857         bzero((caddr_t)rtm, len);
  858         for (i = 0; i < RTAX_MAX; i++) {
  859                 if ((sa = rtinfo->rti_info[i]) == NULL)
  860                         continue;
  861                 rtinfo->rti_addrs |= (1 << i);
  862                 dlen = SA_SIZE(sa);
  863                 m_copyback(m, len, dlen, (caddr_t)sa);
  864                 len += dlen;
  865         }
  866         if (m->m_pkthdr.len != len) {
  867                 m_freem(m);
  868                 return (NULL);
  869         }
  870         rtm->rtm_msglen = len;
  871         rtm->rtm_version = RTM_VERSION;
  872         rtm->rtm_type = type;
  873         return (m);
  874 }
  875 
  876 static int
  877 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
  878 {
  879         int i;
  880         int len, dlen, second_time = 0;
  881         caddr_t cp0;
  882 
  883         rtinfo->rti_addrs = 0;
  884 again:
  885         switch (type) {
  886 
  887         case RTM_DELADDR:
  888         case RTM_NEWADDR:
  889                 len = sizeof(struct ifa_msghdr);
  890                 break;
  891 
  892         case RTM_IFINFO:
  893                 len = sizeof(struct if_msghdr);
  894                 break;
  895 
  896         case RTM_NEWMADDR:
  897                 len = sizeof(struct ifma_msghdr);
  898                 break;
  899 
  900         default:
  901                 len = sizeof(struct rt_msghdr);
  902         }
  903         cp0 = cp;
  904         if (cp0)
  905                 cp += len;
  906         for (i = 0; i < RTAX_MAX; i++) {
  907                 struct sockaddr *sa;
  908 
  909                 if ((sa = rtinfo->rti_info[i]) == NULL)
  910                         continue;
  911                 rtinfo->rti_addrs |= (1 << i);
  912                 dlen = SA_SIZE(sa);
  913                 if (cp) {
  914                         bcopy((caddr_t)sa, cp, (unsigned)dlen);
  915                         cp += dlen;
  916                 }
  917                 len += dlen;
  918         }
  919         len = ALIGN(len);
  920         if (cp == NULL && w != NULL && !second_time) {
  921                 struct walkarg *rw = w;
  922 
  923                 if (rw->w_req) {
  924                         if (rw->w_tmemsize < len) {
  925                                 if (rw->w_tmem)
  926                                         free(rw->w_tmem, M_RTABLE);
  927                                 rw->w_tmem = (caddr_t)
  928                                         malloc(len, M_RTABLE, M_NOWAIT);
  929                                 if (rw->w_tmem)
  930                                         rw->w_tmemsize = len;
  931                         }
  932                         if (rw->w_tmem) {
  933                                 cp = rw->w_tmem;
  934                                 second_time = 1;
  935                                 goto again;
  936                         }
  937                 }
  938         }
  939         if (cp) {
  940                 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
  941 
  942                 rtm->rtm_version = RTM_VERSION;
  943                 rtm->rtm_type = type;
  944                 rtm->rtm_msglen = len;
  945         }
  946         return (len);
  947 }
  948 
  949 /*
  950  * This routine is called to generate a message from the routing
  951  * socket indicating that a redirect has occured, a routing lookup
  952  * has failed, or that a protocol has detected timeouts to a particular
  953  * destination.
  954  */
  955 void
  956 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
  957 {
  958         struct rt_msghdr *rtm;
  959         struct mbuf *m;
  960         struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
  961 
  962         if (route_cb.any_count == 0)
  963                 return;
  964         m = rt_msg1(type, rtinfo);
  965         if (m == NULL)
  966                 return;
  967         rtm = mtod(m, struct rt_msghdr *);
  968         rtm->rtm_flags = RTF_DONE | flags;
  969         rtm->rtm_errno = error;
  970         rtm->rtm_addrs = rtinfo->rti_addrs;
  971         rt_dispatch(m, sa);
  972 }
  973 
  974 /*
  975  * This routine is called to generate a message from the routing
  976  * socket indicating that the status of a network interface has changed.
  977  */
  978 void
  979 rt_ifmsg(struct ifnet *ifp)
  980 {
  981         struct if_msghdr *ifm;
  982         struct mbuf *m;
  983         struct rt_addrinfo info;
  984 
  985         if (route_cb.any_count == 0)
  986                 return;
  987         bzero((caddr_t)&info, sizeof(info));
  988         m = rt_msg1(RTM_IFINFO, &info);
  989         if (m == NULL)
  990                 return;
  991         ifm = mtod(m, struct if_msghdr *);
  992         ifm->ifm_index = ifp->if_index;
  993         ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
  994         ifm->ifm_data = ifp->if_data;
  995         ifm->ifm_addrs = 0;
  996         rt_dispatch(m, NULL);
  997 }
  998 
  999 /*
 1000  * This is called to generate messages from the routing socket
 1001  * indicating a network interface has had addresses associated with it.
 1002  * if we ever reverse the logic and replace messages TO the routing
 1003  * socket indicate a request to configure interfaces, then it will
 1004  * be unnecessary as the routing socket will automatically generate
 1005  * copies of it.
 1006  */
 1007 void
 1008 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
 1009 {
 1010         struct rt_addrinfo info;
 1011         struct sockaddr *sa = NULL;
 1012         int pass;
 1013         struct mbuf *m = NULL;
 1014         struct ifnet *ifp = ifa->ifa_ifp;
 1015 
 1016         KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
 1017                 ("unexpected cmd %u", cmd));
 1018 #ifdef SCTP
 1019         /*
 1020          * notify the SCTP stack
 1021          * this will only get called when an address is added/deleted
 1022          * XXX pass the ifaddr struct instead if ifa->ifa_addr...
 1023          */
 1024         sctp_addr_change(ifa, cmd);
 1025 #endif /* SCTP */
 1026         if (route_cb.any_count == 0)
 1027                 return;
 1028         for (pass = 1; pass < 3; pass++) {
 1029                 bzero((caddr_t)&info, sizeof(info));
 1030                 if ((cmd == RTM_ADD && pass == 1) ||
 1031                     (cmd == RTM_DELETE && pass == 2)) {
 1032                         struct ifa_msghdr *ifam;
 1033                         int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
 1034 
 1035                         info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
 1036                         info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
 1037                         info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
 1038                         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
 1039                         if ((m = rt_msg1(ncmd, &info)) == NULL)
 1040                                 continue;
 1041                         ifam = mtod(m, struct ifa_msghdr *);
 1042                         ifam->ifam_index = ifp->if_index;
 1043                         ifam->ifam_metric = ifa->ifa_metric;
 1044                         ifam->ifam_flags = ifa->ifa_flags;
 1045                         ifam->ifam_addrs = info.rti_addrs;
 1046                 }
 1047                 if ((cmd == RTM_ADD && pass == 2) ||
 1048                     (cmd == RTM_DELETE && pass == 1)) {
 1049                         struct rt_msghdr *rtm;
 1050 
 1051                         if (rt == NULL)
 1052                                 continue;
 1053                         info.rti_info[RTAX_NETMASK] = rt_mask(rt);
 1054                         info.rti_info[RTAX_DST] = sa = rt_key(rt);
 1055                         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
 1056                         if ((m = rt_msg1(cmd, &info)) == NULL)
 1057                                 continue;
 1058                         rtm = mtod(m, struct rt_msghdr *);
 1059                         rtm->rtm_index = ifp->if_index;
 1060                         rtm->rtm_flags |= rt->rt_flags;
 1061                         rtm->rtm_errno = error;
 1062                         rtm->rtm_addrs = info.rti_addrs;
 1063                 }
 1064                 rt_dispatch(m, sa);
 1065         }
 1066 }
 1067 
 1068 /*
 1069  * This is the analogue to the rt_newaddrmsg which performs the same
 1070  * function but for multicast group memberhips.  This is easier since
 1071  * there is no route state to worry about.
 1072  */
 1073 void
 1074 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
 1075 {
 1076         struct rt_addrinfo info;
 1077         struct mbuf *m = NULL;
 1078         struct ifnet *ifp = ifma->ifma_ifp;
 1079         struct ifma_msghdr *ifmam;
 1080 
 1081         if (route_cb.any_count == 0)
 1082                 return;
 1083 
 1084         bzero((caddr_t)&info, sizeof(info));
 1085         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
 1086         info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
 1087         /*
 1088          * If a link-layer address is present, present it as a ``gateway''
 1089          * (similarly to how ARP entries, e.g., are presented).
 1090          */
 1091         info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
 1092         m = rt_msg1(cmd, &info);
 1093         if (m == NULL)
 1094                 return;
 1095         ifmam = mtod(m, struct ifma_msghdr *);
 1096         KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
 1097             __func__));
 1098         ifmam->ifmam_index = ifp->if_index;
 1099         ifmam->ifmam_addrs = info.rti_addrs;
 1100         rt_dispatch(m, ifma->ifma_addr);
 1101 }
 1102 
 1103 static struct mbuf *
 1104 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
 1105         struct rt_addrinfo *info)
 1106 {
 1107         struct if_announcemsghdr *ifan;
 1108         struct mbuf *m;
 1109 
 1110         if (route_cb.any_count == 0)
 1111                 return NULL;
 1112         bzero((caddr_t)info, sizeof(*info));
 1113         m = rt_msg1(type, info);
 1114         if (m != NULL) {
 1115                 ifan = mtod(m, struct if_announcemsghdr *);
 1116                 ifan->ifan_index = ifp->if_index;
 1117                 strlcpy(ifan->ifan_name, ifp->if_xname,
 1118                         sizeof(ifan->ifan_name));
 1119                 ifan->ifan_what = what;
 1120         }
 1121         return m;
 1122 }
 1123 
 1124 /*
 1125  * This is called to generate routing socket messages indicating
 1126  * IEEE80211 wireless events.
 1127  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
 1128  */
 1129 void
 1130 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
 1131 {
 1132         struct mbuf *m;
 1133         struct rt_addrinfo info;
 1134 
 1135         m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
 1136         if (m != NULL) {
 1137                 /*
 1138                  * Append the ieee80211 data.  Try to stick it in the
 1139                  * mbuf containing the ifannounce msg; otherwise allocate
 1140                  * a new mbuf and append.
 1141                  *
 1142                  * NB: we assume m is a single mbuf.
 1143                  */
 1144                 if (data_len > M_TRAILINGSPACE(m)) {
 1145                         struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
 1146                         if (n == NULL) {
 1147                                 m_freem(m);
 1148                                 return;
 1149                         }
 1150                         bcopy(data, mtod(n, void *), data_len);
 1151                         n->m_len = data_len;
 1152                         m->m_next = n;
 1153                 } else if (data_len > 0) {
 1154                         bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
 1155                         m->m_len += data_len;
 1156                 }
 1157                 if (m->m_flags & M_PKTHDR)
 1158                         m->m_pkthdr.len += data_len;
 1159                 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
 1160                 rt_dispatch(m, NULL);
 1161         }
 1162 }
 1163 
 1164 /*
 1165  * This is called to generate routing socket messages indicating
 1166  * network interface arrival and departure.
 1167  */
 1168 void
 1169 rt_ifannouncemsg(struct ifnet *ifp, int what)
 1170 {
 1171         struct mbuf *m;
 1172         struct rt_addrinfo info;
 1173 
 1174         m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
 1175         if (m != NULL)
 1176                 rt_dispatch(m, NULL);
 1177 }
 1178 
 1179 static void
 1180 rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
 1181 {
 1182         struct m_tag *tag;
 1183 
 1184         /*
 1185          * Preserve the family from the sockaddr, if any, in an m_tag for
 1186          * use when injecting the mbuf into the routing socket buffer from
 1187          * the netisr.
 1188          */
 1189         if (sa != NULL) {
 1190                 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
 1191                     M_NOWAIT);
 1192                 if (tag == NULL) {
 1193                         m_freem(m);
 1194                         return;
 1195                 }
 1196                 *(unsigned short *)(tag + 1) = sa->sa_family;
 1197                 m_tag_prepend(m, tag);
 1198         }
 1199         netisr_queue(NETISR_ROUTE, m);  /* mbuf is free'd on failure. */
 1200 }
 1201 
 1202 /*
 1203  * This is used in dumping the kernel table via sysctl().
 1204  */
 1205 static int
 1206 sysctl_dumpentry(struct radix_node *rn, void *vw)
 1207 {
 1208         struct walkarg *w = vw;
 1209         struct rtentry *rt = (struct rtentry *)rn;
 1210         int error = 0, size;
 1211         struct rt_addrinfo info;
 1212 
 1213         if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
 1214                 return 0;
 1215         if ((rt->rt_flags & RTF_HOST) == 0
 1216             ? jailed(w->w_req->td->td_ucred)
 1217             : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
 1218                 return (0);
 1219         bzero((caddr_t)&info, sizeof(info));
 1220         info.rti_info[RTAX_DST] = rt_key(rt);
 1221         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
 1222         info.rti_info[RTAX_NETMASK] = rt_mask(rt);
 1223         info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
 1224         if (rt->rt_ifp) {
 1225                 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
 1226                 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
 1227                 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
 1228                         info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
 1229         }
 1230         size = rt_msg2(RTM_GET, &info, NULL, w);
 1231         if (w->w_req && w->w_tmem) {
 1232                 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
 1233 
 1234                 rtm->rtm_flags = rt->rt_flags;
 1235                 rtm->rtm_use = rt->rt_rmx.rmx_pksent;
 1236                 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
 1237                 rtm->rtm_index = rt->rt_ifp->if_index;
 1238                 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
 1239                 rtm->rtm_addrs = info.rti_addrs;
 1240                 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
 1241                 return (error);
 1242         }
 1243         return (error);
 1244 }
 1245 
 1246 static int
 1247 sysctl_iflist(int af, struct walkarg *w)
 1248 {
 1249         struct ifnet *ifp;
 1250         struct ifaddr *ifa;
 1251         struct rt_addrinfo info;
 1252         int len, error = 0;
 1253 
 1254         bzero((caddr_t)&info, sizeof(info));
 1255         IFNET_RLOCK();
 1256         TAILQ_FOREACH(ifp, &ifnet, if_link) {
 1257                 if (w->w_arg && w->w_arg != ifp->if_index)
 1258                         continue;
 1259                 ifa = ifp->if_addr;
 1260                 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
 1261                 len = rt_msg2(RTM_IFINFO, &info, NULL, w);
 1262                 info.rti_info[RTAX_IFP] = NULL;
 1263                 if (w->w_req && w->w_tmem) {
 1264                         struct if_msghdr *ifm;
 1265 
 1266                         ifm = (struct if_msghdr *)w->w_tmem;
 1267                         ifm->ifm_index = ifp->if_index;
 1268                         ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 1269                         ifm->ifm_data = ifp->if_data;
 1270                         ifm->ifm_addrs = info.rti_addrs;
 1271                         error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
 1272                         if (error)
 1273                                 goto done;
 1274                 }
 1275                 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
 1276                         if (af && af != ifa->ifa_addr->sa_family)
 1277                                 continue;
 1278                         if (prison_if(w->w_req->td->td_ucred,
 1279                             ifa->ifa_addr) != 0)
 1280                                 continue;
 1281                         info.rti_info[RTAX_IFA] = ifa->ifa_addr;
 1282                         info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
 1283                         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
 1284                         len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
 1285                         if (w->w_req && w->w_tmem) {
 1286                                 struct ifa_msghdr *ifam;
 1287 
 1288                                 ifam = (struct ifa_msghdr *)w->w_tmem;
 1289                                 ifam->ifam_index = ifa->ifa_ifp->if_index;
 1290                                 ifam->ifam_flags = ifa->ifa_flags;
 1291                                 ifam->ifam_metric = ifa->ifa_metric;
 1292                                 ifam->ifam_addrs = info.rti_addrs;
 1293                                 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
 1294                                 if (error)
 1295                                         goto done;
 1296                         }
 1297                 }
 1298                 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
 1299                         info.rti_info[RTAX_BRD] = NULL;
 1300         }
 1301 done:
 1302         IFNET_RUNLOCK();
 1303         return (error);
 1304 }
 1305 
 1306 static int
 1307 sysctl_ifmalist(int af, struct walkarg *w)
 1308 {
 1309         struct ifnet *ifp;
 1310         struct ifmultiaddr *ifma;
 1311         struct  rt_addrinfo info;
 1312         int     len, error = 0;
 1313         struct ifaddr *ifa;
 1314 
 1315         bzero((caddr_t)&info, sizeof(info));
 1316         IFNET_RLOCK();
 1317         TAILQ_FOREACH(ifp, &ifnet, if_link) {
 1318                 if (w->w_arg && w->w_arg != ifp->if_index)
 1319                         continue;
 1320                 ifa = ifp->if_addr;
 1321                 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
 1322                 IF_ADDR_LOCK(ifp);
 1323                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1324                         if (af && af != ifma->ifma_addr->sa_family)
 1325                                 continue;
 1326                         if (prison_if(w->w_req->td->td_ucred,
 1327                             ifma->ifma_addr) != 0)
 1328                                 continue;
 1329                         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
 1330                         info.rti_info[RTAX_GATEWAY] =
 1331                             (ifma->ifma_addr->sa_family != AF_LINK) ?
 1332                             ifma->ifma_lladdr : NULL;
 1333                         len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
 1334                         if (w->w_req && w->w_tmem) {
 1335                                 struct ifma_msghdr *ifmam;
 1336 
 1337                                 ifmam = (struct ifma_msghdr *)w->w_tmem;
 1338                                 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
 1339                                 ifmam->ifmam_flags = 0;
 1340                                 ifmam->ifmam_addrs = info.rti_addrs;
 1341                                 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
 1342                                 if (error) {
 1343                                         IF_ADDR_UNLOCK(ifp);
 1344                                         goto done;
 1345                                 }
 1346                         }
 1347                 }
 1348                 IF_ADDR_UNLOCK(ifp);
 1349         }
 1350 done:
 1351         IFNET_RUNLOCK();
 1352         return (error);
 1353 }
 1354 
 1355 static int
 1356 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
 1357 {
 1358         int     *name = (int *)arg1;
 1359         u_int   namelen = arg2;
 1360         struct radix_node_head *rnh;
 1361         int     i, lim, error = EINVAL;
 1362         u_char  af;
 1363         struct  walkarg w;
 1364 
 1365         name ++;
 1366         namelen--;
 1367         if (req->newptr)
 1368                 return (EPERM);
 1369         if (namelen != 3)
 1370                 return ((namelen < 3) ? EISDIR : ENOTDIR);
 1371         af = name[0];
 1372         if (af > AF_MAX)
 1373                 return (EINVAL);
 1374         bzero(&w, sizeof(w));
 1375         w.w_op = name[1];
 1376         w.w_arg = name[2];
 1377         w.w_req = req;
 1378 
 1379         error = sysctl_wire_old_buffer(req, 0);
 1380         if (error)
 1381                 return (error);
 1382         switch (w.w_op) {
 1383 
 1384         case NET_RT_DUMP:
 1385         case NET_RT_FLAGS:
 1386                 if (af == 0) {                  /* dump all tables */
 1387                         i = 1;
 1388                         lim = AF_MAX;
 1389                 } else                          /* dump only one table */
 1390                         i = lim = af;
 1391                 for (error = 0; error == 0 && i <= lim; i++)
 1392                         if ((rnh = rt_tables[req->td->td_proc->p_fibnum][i]) != NULL) {
 1393                                 RADIX_NODE_HEAD_LOCK(rnh); 
 1394                                 error = rnh->rnh_walktree(rnh,
 1395                                     sysctl_dumpentry, &w);
 1396                                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1397                         } else if (af != 0)
 1398                                 error = EAFNOSUPPORT;
 1399                 break;
 1400 
 1401         case NET_RT_IFLIST:
 1402                 error = sysctl_iflist(af, &w);
 1403                 break;
 1404 
 1405         case NET_RT_IFMALIST:
 1406                 error = sysctl_ifmalist(af, &w);
 1407                 break;
 1408         }
 1409         if (w.w_tmem)
 1410                 free(w.w_tmem, M_RTABLE);
 1411         return (error);
 1412 }
 1413 
 1414 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
 1415 
 1416 /*
 1417  * Definitions of protocols supported in the ROUTE domain.
 1418  */
 1419 
 1420 static struct domain routedomain;               /* or at least forward */
 1421 
 1422 static struct protosw routesw[] = {
 1423 {
 1424         .pr_type =              SOCK_RAW,
 1425         .pr_domain =            &routedomain,
 1426         .pr_flags =             PR_ATOMIC|PR_ADDR,
 1427         .pr_output =            route_output,
 1428         .pr_ctlinput =          raw_ctlinput,
 1429         .pr_init =              raw_init,
 1430         .pr_usrreqs =           &route_usrreqs
 1431 }
 1432 };
 1433 
 1434 static struct domain routedomain = {
 1435         .dom_family =           PF_ROUTE,
 1436         .dom_name =              "route",
 1437         .dom_protosw =          routesw,
 1438         .dom_protoswNPROTOSW =  &routesw[sizeof(routesw)/sizeof(routesw[0])]
 1439 };
 1440 
 1441 DOMAIN_SET(route);

Cache object: d9a2d4f5e71a8a4144c7d047acfdcd18


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.