The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/rtsock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1988, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)rtsock.c    8.7 (Berkeley) 10/12/95
   30  * $FreeBSD$
   31  */
   32 #include "opt_sctp.h"
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/domain.h>
   38 #include <sys/jail.h>
   39 #include <sys/kernel.h>
   40 #include <sys/malloc.h>
   41 #include <sys/mbuf.h>
   42 #include <sys/priv.h>
   43 #include <sys/proc.h>
   44 #include <sys/protosw.h>
   45 #include <sys/signalvar.h>
   46 #include <sys/socket.h>
   47 #include <sys/socketvar.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/systm.h>
   50 
   51 #include <net/if.h>
   52 #include <net/netisr.h>
   53 #include <net/raw_cb.h>
   54 #include <net/route.h>
   55 
   56 #include <netinet/in.h>
   57 #ifdef INET6
   58 #include <netinet6/scope6_var.h>
   59 #endif
   60 
   61 #ifdef SCTP
   62 extern void sctp_addr_change(struct ifaddr *ifa, int cmd);
   63 #endif /* SCTP */
   64 
   65 #ifdef COMPAT_FREEBSD32
   66 #include <sys/mount.h>
   67 #include <compat/freebsd32/freebsd32.h>
   68 
   69 struct if_data32 {
   70         uint8_t ifi_type;
   71         uint8_t ifi_physical;
   72         uint8_t ifi_addrlen;
   73         uint8_t ifi_hdrlen;
   74         uint8_t ifi_link_state;
   75         uint8_t ifi_spare_char1;
   76         uint8_t ifi_spare_char2;
   77         uint8_t ifi_datalen;
   78         uint32_t ifi_mtu;
   79         uint32_t ifi_metric;
   80         uint32_t ifi_baudrate;
   81         uint32_t ifi_ipackets;
   82         uint32_t ifi_ierrors;
   83         uint32_t ifi_opackets;
   84         uint32_t ifi_oerrors;
   85         uint32_t ifi_collisions;
   86         uint32_t ifi_ibytes;
   87         uint32_t ifi_obytes;
   88         uint32_t ifi_imcasts;
   89         uint32_t ifi_omcasts;
   90         uint32_t ifi_iqdrops;
   91         uint32_t ifi_noproto;
   92         uint32_t ifi_hwassist;
   93         int32_t ifi_epoch;
   94         struct  timeval32 ifi_lastchange;
   95 };
   96 
   97 struct if_msghdr32 {
   98         uint16_t ifm_msglen;
   99         uint8_t ifm_version;
  100         uint8_t ifm_type;
  101         int32_t ifm_addrs;
  102         int32_t ifm_flags;
  103         uint16_t ifm_index;
  104         struct  if_data32 ifm_data;
  105 };
  106 
  107 struct if_msghdrl32 {
  108         uint16_t ifm_msglen;
  109         uint8_t ifm_version;
  110         uint8_t ifm_type;
  111         int32_t ifm_addrs;
  112         int32_t ifm_flags;
  113         uint16_t ifm_index;
  114         uint16_t _ifm_spare1;
  115         uint16_t ifm_len;
  116         uint16_t ifm_data_off;
  117         struct  if_data32 ifm_data;
  118 };
  119 
  120 struct ifa_msghdrl32 {
  121         uint16_t ifam_msglen;
  122         uint8_t ifam_version;
  123         uint8_t ifam_type;
  124         int32_t ifam_addrs;
  125         int32_t ifam_flags;
  126         uint16_t ifam_index;
  127         uint16_t _ifam_spare1;
  128         uint16_t ifam_len;
  129         uint16_t ifam_data_off;
  130         int32_t ifam_metric;
  131         struct  if_data32 ifam_data;
  132 };
  133 #endif /* COMPAT_FREEBSD32 */
  134 
  135 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
  136 
  137 /* NB: these are not modified */
  138 static struct   sockaddr route_src = { 2, PF_ROUTE, };
  139 static struct   sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
  140 
  141 /*
  142  * Used by rtsock/raw_input callback code to decide whether to filter the update
  143  * notification to a socket bound to a particular FIB.
  144  */
  145 #define RTS_FILTER_FIB  M_PROTO8
  146 #define RTS_ALLFIBS     -1
  147 
  148 static struct {
  149         int     ip_count;       /* attached w/ AF_INET */
  150         int     ip6_count;      /* attached w/ AF_INET6 */
  151         int     ipx_count;      /* attached w/ AF_IPX */
  152         int     any_count;      /* total attached */
  153 } route_cb;
  154 
  155 struct mtx rtsock_mtx;
  156 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
  157 
  158 #define RTSOCK_LOCK()   mtx_lock(&rtsock_mtx)
  159 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
  160 #define RTSOCK_LOCK_ASSERT()    mtx_assert(&rtsock_mtx, MA_OWNED)
  161 
  162 static struct   ifqueue rtsintrq;
  163 
  164 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
  165 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW,
  166     &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length");
  167 
  168 struct walkarg {
  169         int     w_tmemsize;
  170         int     w_op, w_arg;
  171         caddr_t w_tmem;
  172         struct sysctl_req *w_req;
  173 };
  174 
  175 static void     rts_input(struct mbuf *m);
  176 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
  177 static int      rt_msg2(int type, struct rt_addrinfo *rtinfo,
  178                         caddr_t cp, struct walkarg *w);
  179 static int      rt_xaddrs(caddr_t cp, caddr_t cplim,
  180                         struct rt_addrinfo *rtinfo);
  181 static int      sysctl_dumpentry(struct radix_node *rn, void *vw);
  182 static int      sysctl_iflist(int af, struct walkarg *w);
  183 static int      sysctl_ifmalist(int af, struct walkarg *w);
  184 static int      route_output(struct mbuf *m, struct socket *so);
  185 static void     rt_setmetrics(u_long which, const struct rt_metrics *in,
  186                         struct rt_metrics_lite *out);
  187 static void     rt_getmetrics(const struct rt_metrics_lite *in,
  188                         struct rt_metrics *out);
  189 static void     rt_dispatch(struct mbuf *, const struct sockaddr *);
  190 
  191 static void
  192 rts_init(void)
  193 {
  194         int tmp;
  195 
  196         rtsintrq.ifq_maxlen = 256;
  197         if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
  198                 rtsintrq.ifq_maxlen = tmp;
  199         mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF);
  200         netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE);
  201 }
  202 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
  203 
  204 static int
  205 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
  206     struct rawcb *rp)
  207 {
  208         int fibnum;
  209 
  210         KASSERT(m != NULL, ("%s: m is NULL", __func__));
  211         KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
  212         KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
  213 
  214         /* No filtering requested. */
  215         if ((m->m_flags & RTS_FILTER_FIB) == 0)
  216                 return (0);
  217 
  218         /* Check if it is a rts and the fib matches the one of the socket. */
  219         fibnum = M_GETFIB(m);
  220         if (proto->sp_family != PF_ROUTE ||
  221             rp->rcb_socket == NULL ||
  222             rp->rcb_socket->so_fibnum == fibnum)
  223                 return (0);
  224 
  225         /* Filtering requested and no match, the socket shall be skipped. */
  226         return (1);
  227 }
  228 
  229 static void
  230 rts_input(struct mbuf *m)
  231 {
  232         struct sockproto route_proto;
  233         unsigned short *family;
  234         struct m_tag *tag;
  235 
  236         route_proto.sp_family = PF_ROUTE;
  237         tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
  238         if (tag != NULL) {
  239                 family = (unsigned short *)(tag + 1);
  240                 route_proto.sp_protocol = *family;
  241                 m_tag_delete(m, tag);
  242         } else
  243                 route_proto.sp_protocol = 0;
  244 
  245         raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
  246 }
  247 
  248 /*
  249  * It really doesn't make any sense at all for this code to share much
  250  * with raw_usrreq.c, since its functionality is so restricted.  XXX
  251  */
  252 static void
  253 rts_abort(struct socket *so)
  254 {
  255 
  256         raw_usrreqs.pru_abort(so);
  257 }
  258 
  259 static void
  260 rts_close(struct socket *so)
  261 {
  262 
  263         raw_usrreqs.pru_close(so);
  264 }
  265 
  266 /* pru_accept is EOPNOTSUPP */
  267 
  268 static int
  269 rts_attach(struct socket *so, int proto, struct thread *td)
  270 {
  271         struct rawcb *rp;
  272         int s, error;
  273 
  274         KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
  275 
  276         /* XXX */
  277         MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
  278         if (rp == NULL)
  279                 return ENOBUFS;
  280 
  281         /*
  282          * The splnet() is necessary to block protocols from sending
  283          * error notifications (like RTM_REDIRECT or RTM_LOSING) while
  284          * this PCB is extant but incompletely initialized.
  285          * Probably we should try to do more of this work beforehand and
  286          * eliminate the spl.
  287          */
  288         s = splnet();
  289         so->so_pcb = (caddr_t)rp;
  290         so->so_fibnum = td->td_proc->p_fibnum;
  291         error = raw_attach(so, proto);
  292         rp = sotorawcb(so);
  293         if (error) {
  294                 splx(s);
  295                 so->so_pcb = NULL;
  296                 free(rp, M_PCB);
  297                 return error;
  298         }
  299         RTSOCK_LOCK();
  300         switch(rp->rcb_proto.sp_protocol) {
  301         case AF_INET:
  302                 route_cb.ip_count++;
  303                 break;
  304         case AF_INET6:
  305                 route_cb.ip6_count++;
  306                 break;
  307         case AF_IPX:
  308                 route_cb.ipx_count++;
  309                 break;
  310         }
  311         route_cb.any_count++;
  312         RTSOCK_UNLOCK();
  313         soisconnected(so);
  314         so->so_options |= SO_USELOOPBACK;
  315         splx(s);
  316         return 0;
  317 }
  318 
  319 static int
  320 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
  321 {
  322 
  323         return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
  324 }
  325 
  326 static int
  327 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
  328 {
  329 
  330         return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
  331 }
  332 
  333 /* pru_connect2 is EOPNOTSUPP */
  334 /* pru_control is EOPNOTSUPP */
  335 
  336 static void
  337 rts_detach(struct socket *so)
  338 {
  339         struct rawcb *rp = sotorawcb(so);
  340 
  341         KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
  342 
  343         RTSOCK_LOCK();
  344         switch(rp->rcb_proto.sp_protocol) {
  345         case AF_INET:
  346                 route_cb.ip_count--;
  347                 break;
  348         case AF_INET6:
  349                 route_cb.ip6_count--;
  350                 break;
  351         case AF_IPX:
  352                 route_cb.ipx_count--;
  353                 break;
  354         }
  355         route_cb.any_count--;
  356         RTSOCK_UNLOCK();
  357         raw_usrreqs.pru_detach(so);
  358 }
  359 
  360 static int
  361 rts_disconnect(struct socket *so)
  362 {
  363 
  364         return (raw_usrreqs.pru_disconnect(so));
  365 }
  366 
  367 /* pru_listen is EOPNOTSUPP */
  368 
  369 static int
  370 rts_peeraddr(struct socket *so, struct sockaddr **nam)
  371 {
  372 
  373         return (raw_usrreqs.pru_peeraddr(so, nam));
  374 }
  375 
  376 /* pru_rcvd is EOPNOTSUPP */
  377 /* pru_rcvoob is EOPNOTSUPP */
  378 
  379 static int
  380 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
  381          struct mbuf *control, struct thread *td)
  382 {
  383 
  384         return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
  385 }
  386 
  387 /* pru_sense is null */
  388 
  389 static int
  390 rts_shutdown(struct socket *so)
  391 {
  392 
  393         return (raw_usrreqs.pru_shutdown(so));
  394 }
  395 
  396 static int
  397 rts_sockaddr(struct socket *so, struct sockaddr **nam)
  398 {
  399 
  400         return (raw_usrreqs.pru_sockaddr(so, nam));
  401 }
  402 
  403 static struct pr_usrreqs route_usrreqs = {
  404         .pru_abort =            rts_abort,
  405         .pru_attach =           rts_attach,
  406         .pru_bind =             rts_bind,
  407         .pru_connect =          rts_connect,
  408         .pru_detach =           rts_detach,
  409         .pru_disconnect =       rts_disconnect,
  410         .pru_peeraddr =         rts_peeraddr,
  411         .pru_send =             rts_send,
  412         .pru_shutdown =         rts_shutdown,
  413         .pru_sockaddr =         rts_sockaddr,
  414         .pru_close =            rts_close,
  415 };
  416 
  417 #ifndef _SOCKADDR_UNION_DEFINED
  418 #define _SOCKADDR_UNION_DEFINED
  419 /*
  420  * The union of all possible address formats we handle.
  421  */
  422 union sockaddr_union {
  423         struct sockaddr         sa;
  424         struct sockaddr_in      sin;
  425         struct sockaddr_in6     sin6;
  426 };
  427 #endif /* _SOCKADDR_UNION_DEFINED */
  428 
  429 static int
  430 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
  431     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
  432 {
  433 
  434         /* First, see if the returned address is part of the jail. */
  435         if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
  436                 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
  437                 return (0);
  438         }
  439 
  440         switch (info->rti_info[RTAX_DST]->sa_family) {
  441 #ifdef INET
  442         case AF_INET:
  443         {
  444                 struct in_addr ia;
  445                 struct ifaddr *ifa;
  446                 int found;
  447 
  448                 found = 0;
  449                 /*
  450                  * Try to find an address on the given outgoing interface
  451                  * that belongs to the jail.
  452                  */
  453                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  454                         struct sockaddr *sa;
  455                         sa = ifa->ifa_addr;
  456                         if (sa->sa_family != AF_INET)
  457                                 continue;
  458                         ia = ((struct sockaddr_in *)sa)->sin_addr;
  459                         if (prison_check_ip4(cred, &ia) == 0) {
  460                                 found = 1;
  461                                 break;
  462                         }
  463                 }
  464                 if (!found) {
  465                         /*
  466                          * As a last resort return the 'default' jail address.
  467                          */
  468                         if (prison_get_ip4(cred, &ia) != 0)
  469                                 return (ESRCH);
  470                 }
  471                 bzero(&saun->sin, sizeof(struct sockaddr_in));
  472                 saun->sin.sin_len = sizeof(struct sockaddr_in);
  473                 saun->sin.sin_family = AF_INET;
  474                 saun->sin.sin_addr.s_addr = ia.s_addr;
  475                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
  476                 break;
  477         }
  478 #endif
  479 #ifdef INET6
  480         case AF_INET6:
  481         {
  482                 struct in6_addr ia6;
  483                 struct ifaddr *ifa;
  484                 int found;
  485 
  486                 found = 0;
  487                 /*
  488                  * Try to find an address on the given outgoing interface
  489                  * that belongs to the jail.
  490                  */
  491                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  492                         struct sockaddr *sa;
  493                         sa = ifa->ifa_addr;
  494                         if (sa->sa_family != AF_INET6)
  495                                 continue;
  496                         bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
  497                             &ia6, sizeof(struct in6_addr));
  498                         if (prison_check_ip6(cred, &ia6) == 0) {
  499                                 found = 1;
  500                                 break;
  501                         }
  502                 }
  503                 if (!found) {
  504                         /*
  505                          * As a last resort return the 'default' jail address.
  506                          */
  507                         if (prison_get_ip6(cred, &ia6) != 0)
  508                                 return (ESRCH);
  509                 }
  510                 bzero(&saun->sin6, sizeof(struct sockaddr_in6));
  511                 saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
  512                 saun->sin6.sin6_family = AF_INET6;
  513                 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
  514                 if (sa6_recoverscope(&saun->sin6) != 0)
  515                         return (ESRCH);
  516                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
  517                 break;
  518         }
  519 #endif
  520         default:
  521                 return (ESRCH);
  522         }
  523         return (0);
  524 }
  525 
  526 /*ARGSUSED*/
  527 static int
  528 route_output(struct mbuf *m, struct socket *so)
  529 {
  530 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
  531         struct rt_msghdr *rtm = NULL;
  532         struct rtentry *rt = NULL;
  533         struct radix_node_head *rnh;
  534         struct rt_addrinfo info;
  535         int len, error = 0;
  536         struct ifnet *ifp = NULL;
  537         union sockaddr_union saun;
  538 
  539 #define senderr(e) { error = e; goto flush;}
  540         if (m == NULL || ((m->m_len < sizeof(long)) &&
  541                        (m = m_pullup(m, sizeof(long))) == NULL))
  542                 return (ENOBUFS);
  543         if ((m->m_flags & M_PKTHDR) == 0)
  544                 panic("route_output");
  545         len = m->m_pkthdr.len;
  546         if (len < sizeof(*rtm) ||
  547             len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
  548                 info.rti_info[RTAX_DST] = NULL;
  549                 senderr(EINVAL);
  550         }
  551         R_Malloc(rtm, struct rt_msghdr *, len);
  552         if (rtm == NULL) {
  553                 info.rti_info[RTAX_DST] = NULL;
  554                 senderr(ENOBUFS);
  555         }
  556         m_copydata(m, 0, len, (caddr_t)rtm);
  557         if (rtm->rtm_version != RTM_VERSION) {
  558                 info.rti_info[RTAX_DST] = NULL;
  559                 senderr(EPROTONOSUPPORT);
  560         }
  561         rtm->rtm_pid = curproc->p_pid;
  562         bzero(&info, sizeof(info));
  563         info.rti_addrs = rtm->rtm_addrs;
  564         if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
  565                 info.rti_info[RTAX_DST] = NULL;
  566                 senderr(EINVAL);
  567         }
  568         info.rti_flags = rtm->rtm_flags;
  569         if (info.rti_info[RTAX_DST] == NULL ||
  570             info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
  571             (info.rti_info[RTAX_GATEWAY] != NULL &&
  572              info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
  573                 senderr(EINVAL);
  574         if (info.rti_info[RTAX_GENMASK]) {
  575                 struct radix_node *t;
  576                 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1);
  577                 if (t != NULL &&
  578                     bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1,
  579                     (char *)(void *)t->rn_key + 1,
  580                     ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0)
  581                         info.rti_info[RTAX_GENMASK] =
  582                             (struct sockaddr *)t->rn_key;
  583                 else
  584                         senderr(ENOBUFS);
  585         }
  586 
  587         /*
  588          * Verify that the caller has the appropriate privilege; RTM_GET
  589          * is the only operation the non-superuser is allowed.
  590          */
  591         if (rtm->rtm_type != RTM_GET) {
  592                 error = priv_check(curthread, PRIV_NET_ROUTE);
  593                 if (error)
  594                         senderr(error);
  595         }
  596 
  597         switch (rtm->rtm_type) {
  598                 struct rtentry *saved_nrt;
  599 
  600         case RTM_ADD:
  601                 if (info.rti_info[RTAX_GATEWAY] == NULL)
  602                         senderr(EINVAL);
  603                 saved_nrt = NULL;
  604                 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
  605                     so->so_fibnum);
  606                 if (error == 0 && saved_nrt) {
  607                         RT_LOCK(saved_nrt);
  608                         rt_setmetrics(rtm->rtm_inits,
  609                                 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
  610                         rtm->rtm_index = saved_nrt->rt_ifp->if_index;
  611                         RT_REMREF(saved_nrt);
  612                         saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
  613                         RT_UNLOCK(saved_nrt);
  614                 }
  615                 break;
  616 
  617         case RTM_DELETE:
  618                 saved_nrt = NULL;
  619                 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
  620                     so->so_fibnum);
  621                 if (error == 0) {
  622                         RT_LOCK(saved_nrt);
  623                         rt = saved_nrt;
  624                         goto report;
  625                 }
  626                 break;
  627 
  628         case RTM_GET:
  629         case RTM_CHANGE:
  630         case RTM_LOCK:
  631                 rnh = rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family];
  632                 if (rnh == NULL)
  633                         senderr(EAFNOSUPPORT);
  634                 RADIX_NODE_HEAD_LOCK(rnh);
  635                 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
  636                         info.rti_info[RTAX_NETMASK], rnh);
  637                 if (rt == NULL) {       /* XXX looks bogus */
  638                         RADIX_NODE_HEAD_UNLOCK(rnh);
  639                         senderr(ESRCH);
  640                 }
  641                 RT_LOCK(rt);
  642                 RT_ADDREF(rt);
  643                 RADIX_NODE_HEAD_UNLOCK(rnh);
  644 
  645                 /* 
  646                  * Fix for PR: 82974
  647                  *
  648                  * RTM_CHANGE/LOCK need a perfect match, rn_lookup()
  649                  * returns a perfect match in case a netmask is
  650                  * specified.  For host routes only a longest prefix
  651                  * match is returned so it is necessary to compare the
  652                  * existence of the netmask.  If both have a netmask
  653                  * rnh_lookup() did a perfect match and if none of them
  654                  * have a netmask both are host routes which is also a
  655                  * perfect match.
  656                  */
  657 
  658                 if (rtm->rtm_type != RTM_GET && 
  659                     (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
  660                         RT_UNLOCK(rt);
  661                         senderr(ESRCH);
  662                 }
  663 
  664                 switch(rtm->rtm_type) {
  665 
  666                 case RTM_GET:
  667                 report:
  668                         RT_LOCK_ASSERT(rt);
  669                         if ((rt->rt_flags & RTF_HOST) == 0
  670                             ? jailed(curthread->td_ucred)
  671                             : prison_if(curthread->td_ucred,
  672                             rt_key(rt)) != 0) {
  673                                 RT_UNLOCK(rt);
  674                                 senderr(ESRCH);
  675                         }
  676                         info.rti_info[RTAX_DST] = rt_key(rt);
  677                         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
  678                         info.rti_info[RTAX_NETMASK] = rt_mask(rt);
  679                         info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
  680                         if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
  681                                 ifp = rt->rt_ifp;
  682                                 if (ifp) {
  683                                         info.rti_info[RTAX_IFP] =
  684                                             ifp->if_addr->ifa_addr;
  685                                         error = rtm_get_jailed(&info, ifp, rt,
  686                                             &saun, curthread->td_ucred);
  687                                         if (error != 0) {
  688                                                 RT_UNLOCK(rt);
  689                                                 senderr(error);
  690                                         }
  691                                         if (ifp->if_flags & IFF_POINTOPOINT)
  692                                                 info.rti_info[RTAX_BRD] =
  693                                                     rt->rt_ifa->ifa_dstaddr;
  694                                         rtm->rtm_index = ifp->if_index;
  695                                 } else {
  696                                         info.rti_info[RTAX_IFP] = NULL;
  697                                         info.rti_info[RTAX_IFA] = NULL;
  698                                 }
  699                         } else if ((ifp = rt->rt_ifp) != NULL) {
  700                                 rtm->rtm_index = ifp->if_index;
  701                         }
  702                         len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
  703                         if (len > rtm->rtm_msglen) {
  704                                 struct rt_msghdr *new_rtm;
  705                                 R_Malloc(new_rtm, struct rt_msghdr *, len);
  706                                 if (new_rtm == NULL) {
  707                                         RT_UNLOCK(rt);
  708                                         senderr(ENOBUFS);
  709                                 }
  710                                 bcopy(rtm, new_rtm, rtm->rtm_msglen);
  711                                 Free(rtm); rtm = new_rtm;
  712                         }
  713                         (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
  714                         rtm->rtm_flags = rt->rt_flags;
  715                         rtm->rtm_use = 0;
  716                         rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
  717                         rtm->rtm_addrs = info.rti_addrs;
  718                         break;
  719 
  720                 case RTM_CHANGE:
  721                         /*
  722                          * New gateway could require new ifaddr, ifp;
  723                          * flags may also be different; ifp may be specified
  724                          * by ll sockaddr when protocol address is ambiguous
  725                          */
  726                         if (((rt->rt_flags & RTF_GATEWAY) &&
  727                              info.rti_info[RTAX_GATEWAY] != NULL) ||
  728                             info.rti_info[RTAX_IFP] != NULL ||
  729                             (info.rti_info[RTAX_IFA] != NULL &&
  730                              !sa_equal(info.rti_info[RTAX_IFA],
  731                                        rt->rt_ifa->ifa_addr))) {
  732                                 RT_UNLOCK(rt);
  733                                 RADIX_NODE_HEAD_LOCK(rnh);
  734                                 error = rt_getifa_fib(&info, rt->rt_fibnum);
  735                                 RADIX_NODE_HEAD_UNLOCK(rnh);
  736                                 if (error != 0)
  737                                         senderr(error);
  738                                 RT_LOCK(rt);
  739                         }
  740                         if (info.rti_ifa != NULL &&
  741                             info.rti_ifa != rt->rt_ifa &&
  742                             rt->rt_ifa != NULL &&
  743                             rt->rt_ifa->ifa_rtrequest != NULL) {
  744                                 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
  745                                     &info);
  746                                 IFAFREE(rt->rt_ifa);
  747                         }
  748                         if (info.rti_info[RTAX_GATEWAY] != NULL) {
  749                                 RT_UNLOCK(rt);
  750                                 RADIX_NODE_HEAD_LOCK(rnh);
  751                                 RT_LOCK(rt);
  752                                 
  753                                 error = rt_setgate(rt, rt_key(rt),
  754                                     info.rti_info[RTAX_GATEWAY]);
  755                                 RADIX_NODE_HEAD_UNLOCK(rnh);
  756                                 if (error != 0) {
  757                                         RT_UNLOCK(rt);
  758                                         senderr(error);
  759                                 }
  760                                 if (!(rt->rt_flags & RTF_LLINFO))
  761                                         rt->rt_flags |= RTF_GATEWAY;
  762                         }
  763                         if (info.rti_ifa != NULL &&
  764                             info.rti_ifa != rt->rt_ifa) {
  765                                 IFAREF(info.rti_ifa);
  766                                 rt->rt_ifa = info.rti_ifa;
  767                                 rt->rt_ifp = info.rti_ifp;
  768                         }
  769                         /* Allow some flags to be toggled on change. */
  770                         if (rtm->rtm_fmask & RTF_FMASK)
  771                                 rt->rt_flags = (rt->rt_flags &
  772                                     ~rtm->rtm_fmask) |
  773                                     (rtm->rtm_flags & rtm->rtm_fmask);
  774                         rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
  775                                         &rt->rt_rmx);
  776                         rtm->rtm_index = rt->rt_ifp->if_index;
  777                         if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) {
  778                                 RT_UNLOCK(rt);
  779                                 RADIX_NODE_HEAD_LOCK(rnh);
  780                                 RT_LOCK(rt);
  781                                 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
  782                                 RADIX_NODE_HEAD_UNLOCK(rnh);
  783                         }
  784                         if (info.rti_info[RTAX_GENMASK])
  785                                 rt->rt_genmask = info.rti_info[RTAX_GENMASK];
  786                         /* FALLTHROUGH */
  787                 case RTM_LOCK:
  788                         /* We don't support locks anymore */
  789                         break;
  790                 }
  791                 RT_UNLOCK(rt);
  792                 break;
  793 
  794         default:
  795                 senderr(EOPNOTSUPP);
  796         }
  797 
  798 flush:
  799         if (rtm) {
  800                 if (error)
  801                         rtm->rtm_errno = error;
  802                 else
  803                         rtm->rtm_flags |= RTF_DONE;
  804         }
  805         if (rt)         /* XXX can this be true? */
  806                 RTFREE(rt);
  807     {
  808         struct rawcb *rp = NULL;
  809         /*
  810          * Check to see if we don't want our own messages.
  811          */
  812         if ((so->so_options & SO_USELOOPBACK) == 0) {
  813                 if (route_cb.any_count <= 1) {
  814                         if (rtm)
  815                                 Free(rtm);
  816                         m_freem(m);
  817                         return (error);
  818                 }
  819                 /* There is another listener, so construct message */
  820                 rp = sotorawcb(so);
  821         }
  822         if (rtm) {
  823                 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
  824                 if (m->m_pkthdr.len < rtm->rtm_msglen) {
  825                         m_freem(m);
  826                         m = NULL;
  827                 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
  828                         m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
  829                 Free(rtm);
  830         }
  831         if (m) {
  832                 M_SETFIB(m, so->so_fibnum);
  833                 m->m_flags |= RTS_FILTER_FIB;
  834                 if (rp) {
  835                         /*
  836                          * XXX insure we don't get a copy by
  837                          * invalidating our protocol
  838                          */
  839                         unsigned short family = rp->rcb_proto.sp_family;
  840                         rp->rcb_proto.sp_family = 0;
  841                         rt_dispatch(m, info.rti_info[RTAX_DST]);
  842                         rp->rcb_proto.sp_family = family;
  843                 } else
  844                         rt_dispatch(m, info.rti_info[RTAX_DST]);
  845         }
  846     }
  847         return (error);
  848 #undef  sa_equal
  849 }
  850 
  851 static void
  852 rt_setmetrics(u_long which, const struct rt_metrics *in,
  853         struct rt_metrics_lite *out)
  854 {
  855 #define metric(f, e) if (which & (f)) out->e = in->e;
  856         /*
  857          * Only these are stored in the routing entry since introduction
  858          * of tcp hostcache. The rest is ignored.
  859          */
  860         metric(RTV_MTU, rmx_mtu);
  861         /* Userland -> kernel timebase conversion. */
  862         if (which & RTV_EXPIRE)
  863                 out->rmx_expire = in->rmx_expire ?
  864                     in->rmx_expire - time_second + time_uptime : 0;
  865 #undef metric
  866 }
  867 
  868 static void
  869 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
  870 {
  871 #define metric(e) out->e = in->e;
  872         bzero(out, sizeof(*out));
  873         metric(rmx_mtu);
  874         /* Kernel -> userland timebase conversion. */
  875         out->rmx_expire = in->rmx_expire ?
  876             in->rmx_expire - time_uptime + time_second : 0;
  877 #undef metric
  878 }
  879 
  880 /*
  881  * Extract the addresses of the passed sockaddrs.
  882  * Do a little sanity checking so as to avoid bad memory references.
  883  * This data is derived straight from userland.
  884  */
  885 static int
  886 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
  887 {
  888         struct sockaddr *sa;
  889         int i;
  890 
  891         for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
  892                 if ((rtinfo->rti_addrs & (1 << i)) == 0)
  893                         continue;
  894                 sa = (struct sockaddr *)cp;
  895                 /*
  896                  * It won't fit.
  897                  */
  898                 if (cp + sa->sa_len > cplim)
  899                         return (EINVAL);
  900                 /*
  901                  * there are no more.. quit now
  902                  * If there are more bits, they are in error.
  903                  * I've seen this. route(1) can evidently generate these. 
  904                  * This causes kernel to core dump.
  905                  * for compatibility, If we see this, point to a safe address.
  906                  */
  907                 if (sa->sa_len == 0) {
  908                         rtinfo->rti_info[i] = &sa_zero;
  909                         return (0); /* should be EINVAL but for compat */
  910                 }
  911                 /* accept it */
  912                 rtinfo->rti_info[i] = sa;
  913                 cp += SA_SIZE(sa);
  914         }
  915         return (0);
  916 }
  917 
  918 /*
  919  * Used by the routing socket.
  920  */
  921 static struct mbuf *
  922 rt_msg1(int type, struct rt_addrinfo *rtinfo)
  923 {
  924         struct rt_msghdr *rtm;
  925         struct mbuf *m;
  926         int i;
  927         struct sockaddr *sa;
  928         int len, dlen;
  929 
  930         switch (type) {
  931 
  932         case RTM_DELADDR:
  933         case RTM_NEWADDR:
  934                 len = sizeof(struct ifa_msghdr);
  935                 break;
  936 
  937         case RTM_DELMADDR:
  938         case RTM_NEWMADDR:
  939                 len = sizeof(struct ifma_msghdr);
  940                 break;
  941 
  942         case RTM_IFINFO:
  943                 len = sizeof(struct if_msghdr);
  944                 break;
  945 
  946         case RTM_IFANNOUNCE:
  947         case RTM_IEEE80211:
  948                 len = sizeof(struct if_announcemsghdr);
  949                 break;
  950 
  951         default:
  952                 len = sizeof(struct rt_msghdr);
  953         }
  954         if (len > MCLBYTES)
  955                 panic("rt_msg1");
  956         m = m_gethdr(M_DONTWAIT, MT_DATA);
  957         if (m && len > MHLEN) {
  958                 MCLGET(m, M_DONTWAIT);
  959                 if ((m->m_flags & M_EXT) == 0) {
  960                         m_free(m);
  961                         m = NULL;
  962                 }
  963         }
  964         if (m == NULL)
  965                 return (m);
  966         m->m_pkthdr.len = m->m_len = len;
  967         m->m_pkthdr.rcvif = NULL;
  968         rtm = mtod(m, struct rt_msghdr *);
  969         bzero((caddr_t)rtm, len);
  970         for (i = 0; i < RTAX_MAX; i++) {
  971                 if ((sa = rtinfo->rti_info[i]) == NULL)
  972                         continue;
  973                 rtinfo->rti_addrs |= (1 << i);
  974                 dlen = SA_SIZE(sa);
  975                 m_copyback(m, len, dlen, (caddr_t)sa);
  976                 len += dlen;
  977         }
  978         if (m->m_pkthdr.len != len) {
  979                 m_freem(m);
  980                 return (NULL);
  981         }
  982         rtm->rtm_msglen = len;
  983         rtm->rtm_version = RTM_VERSION;
  984         rtm->rtm_type = type;
  985         return (m);
  986 }
  987 
  988 /*
  989  * Used by the sysctl code and routing socket.
  990  */
  991 static int
  992 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
  993 {
  994         int i;
  995         int len, dlen, second_time = 0;
  996         caddr_t cp0;
  997 
  998         rtinfo->rti_addrs = 0;
  999 again:
 1000         switch (type) {
 1001 
 1002         case RTM_DELADDR:
 1003         case RTM_NEWADDR:
 1004                 if (w != NULL && w->w_op == NET_RT_IFLISTL) {
 1005 #ifdef COMPAT_FREEBSD32
 1006                         if (w->w_req->flags & SCTL_MASK32)
 1007                                 len = sizeof(struct ifa_msghdrl32);
 1008                         else
 1009 #endif
 1010                                 len = sizeof(struct ifa_msghdrl);
 1011                 } else
 1012                         len = sizeof(struct ifa_msghdr);
 1013                 break;
 1014 
 1015         case RTM_IFINFO:
 1016 #ifdef COMPAT_FREEBSD32
 1017                 if (w != NULL && w->w_req->flags & SCTL_MASK32) {
 1018                         if (w->w_op == NET_RT_IFLISTL)
 1019                                 len = sizeof(struct if_msghdrl32);
 1020                         else
 1021                                 len = sizeof(struct if_msghdr32);
 1022                         break;
 1023                 }
 1024 #endif
 1025                 if (w != NULL && w->w_op == NET_RT_IFLISTL)
 1026                         len = sizeof(struct if_msghdrl);
 1027                 else
 1028                         len = sizeof(struct if_msghdr);
 1029                 break;
 1030 
 1031         case RTM_NEWMADDR:
 1032                 len = sizeof(struct ifma_msghdr);
 1033                 break;
 1034 
 1035         default:
 1036                 len = sizeof(struct rt_msghdr);
 1037         }
 1038         cp0 = cp;
 1039         if (cp0)
 1040                 cp += len;
 1041         for (i = 0; i < RTAX_MAX; i++) {
 1042                 struct sockaddr *sa;
 1043 
 1044                 if ((sa = rtinfo->rti_info[i]) == NULL)
 1045                         continue;
 1046                 rtinfo->rti_addrs |= (1 << i);
 1047                 dlen = SA_SIZE(sa);
 1048                 if (cp) {
 1049                         bcopy((caddr_t)sa, cp, (unsigned)dlen);
 1050                         cp += dlen;
 1051                 }
 1052                 len += dlen;
 1053         }
 1054         len = ALIGN(len);
 1055         if (cp == NULL && w != NULL && !second_time) {
 1056                 struct walkarg *rw = w;
 1057 
 1058                 if (rw->w_req) {
 1059                         if (rw->w_tmemsize < len) {
 1060                                 if (rw->w_tmem)
 1061                                         free(rw->w_tmem, M_RTABLE);
 1062                                 rw->w_tmem = (caddr_t)
 1063                                         malloc(len, M_RTABLE, M_NOWAIT);
 1064                                 if (rw->w_tmem)
 1065                                         rw->w_tmemsize = len;
 1066                         }
 1067                         if (rw->w_tmem) {
 1068                                 cp = rw->w_tmem;
 1069                                 second_time = 1;
 1070                                 goto again;
 1071                         }
 1072                 }
 1073         }
 1074         if (cp) {
 1075                 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
 1076 
 1077                 rtm->rtm_version = RTM_VERSION;
 1078                 rtm->rtm_type = type;
 1079                 rtm->rtm_msglen = len;
 1080         }
 1081         return (len);
 1082 }
 1083 
 1084 /*
 1085  * This routine is called to generate a message from the routing
 1086  * socket indicating that a redirect has occured, a routing lookup
 1087  * has failed, or that a protocol has detected timeouts to a particular
 1088  * destination.
 1089  */
 1090 void
 1091 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
 1092     int fibnum)
 1093 {
 1094         struct rt_msghdr *rtm;
 1095         struct mbuf *m;
 1096         struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
 1097 
 1098         if (route_cb.any_count == 0)
 1099                 return;
 1100         m = rt_msg1(type, rtinfo);
 1101         if (m == NULL)
 1102                 return;
 1103 
 1104         if (fibnum != RTS_ALLFIBS) {
 1105                 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
 1106                     "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
 1107                 M_SETFIB(m, fibnum);
 1108                 m->m_flags |= RTS_FILTER_FIB;
 1109         }
 1110 
 1111         rtm = mtod(m, struct rt_msghdr *);
 1112         rtm->rtm_flags = RTF_DONE | flags;
 1113         rtm->rtm_errno = error;
 1114         rtm->rtm_addrs = rtinfo->rti_addrs;
 1115         rt_dispatch(m, sa);
 1116 }
 1117 
 1118 void
 1119 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
 1120 {
 1121 
 1122         rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS);
 1123 }
 1124 
 1125 /*
 1126  * This routine is called to generate a message from the routing
 1127  * socket indicating that the status of a network interface has changed.
 1128  */
 1129 void
 1130 rt_ifmsg(struct ifnet *ifp)
 1131 {
 1132         struct if_msghdr *ifm;
 1133         struct mbuf *m;
 1134         struct rt_addrinfo info;
 1135 
 1136         if (route_cb.any_count == 0)
 1137                 return;
 1138         bzero((caddr_t)&info, sizeof(info));
 1139         m = rt_msg1(RTM_IFINFO, &info);
 1140         if (m == NULL)
 1141                 return;
 1142         ifm = mtod(m, struct if_msghdr *);
 1143         ifm->ifm_index = ifp->if_index;
 1144         ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 1145         ifm->ifm_data = ifp->if_data;
 1146         ifm->ifm_addrs = 0;
 1147         rt_dispatch(m, NULL);
 1148 }
 1149 
 1150 /*
 1151  * This is called to generate messages from the routing socket
 1152  * indicating a network interface has had addresses associated with it.
 1153  * if we ever reverse the logic and replace messages TO the routing
 1154  * socket indicate a request to configure interfaces, then it will
 1155  * be unnecessary as the routing socket will automatically generate
 1156  * copies of it.
 1157  */
 1158 void
 1159 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt,
 1160     int fibnum)
 1161 {
 1162         struct rt_addrinfo info;
 1163         struct sockaddr *sa = NULL;
 1164         int pass;
 1165         struct mbuf *m = NULL;
 1166         struct ifnet *ifp = ifa->ifa_ifp;
 1167 
 1168         KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
 1169                 ("unexpected cmd %u", cmd));
 1170 #ifdef SCTP
 1171         /*
 1172          * notify the SCTP stack
 1173          * this will only get called when an address is added/deleted
 1174          * XXX pass the ifaddr struct instead if ifa->ifa_addr...
 1175          */
 1176         sctp_addr_change(ifa, cmd);
 1177 #endif /* SCTP */
 1178         if (route_cb.any_count == 0)
 1179                 return;
 1180         for (pass = 1; pass < 3; pass++) {
 1181                 bzero((caddr_t)&info, sizeof(info));
 1182                 if ((cmd == RTM_ADD && pass == 1) ||
 1183                     (cmd == RTM_DELETE && pass == 2)) {
 1184                         struct ifa_msghdr *ifam;
 1185                         int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
 1186 
 1187                         info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
 1188                         info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
 1189                         info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
 1190                         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
 1191                         if ((m = rt_msg1(ncmd, &info)) == NULL)
 1192                                 continue;
 1193                         ifam = mtod(m, struct ifa_msghdr *);
 1194                         ifam->ifam_index = ifp->if_index;
 1195                         ifam->ifam_metric = ifa->ifa_metric;
 1196                         ifam->ifam_flags = ifa->ifa_flags;
 1197                         ifam->ifam_addrs = info.rti_addrs;
 1198                 }
 1199                 if ((cmd == RTM_ADD && pass == 2) ||
 1200                     (cmd == RTM_DELETE && pass == 1)) {
 1201                         struct rt_msghdr *rtm;
 1202 
 1203                         if (rt == NULL)
 1204                                 continue;
 1205                         info.rti_info[RTAX_NETMASK] = rt_mask(rt);
 1206                         info.rti_info[RTAX_DST] = sa = rt_key(rt);
 1207                         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
 1208                         if ((m = rt_msg1(cmd, &info)) == NULL)
 1209                                 continue;
 1210                         rtm = mtod(m, struct rt_msghdr *);
 1211                         rtm->rtm_index = ifp->if_index;
 1212                         rtm->rtm_flags |= rt->rt_flags;
 1213                         rtm->rtm_errno = error;
 1214                         rtm->rtm_addrs = info.rti_addrs;
 1215                 }
 1216                 if (fibnum != RTS_ALLFIBS) {
 1217                         KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: "
 1218                             "fibnum out of range 0 <= %d < %d", __func__,
 1219                              fibnum, rt_numfibs));
 1220                         M_SETFIB(m, fibnum);
 1221                         m->m_flags |= RTS_FILTER_FIB;
 1222                 }
 1223                 rt_dispatch(m, sa);
 1224         }
 1225 }
 1226 
 1227 void
 1228 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
 1229 {
 1230 
 1231         rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS);
 1232 }
 1233 
 1234 /*
 1235  * This is the analogue to the rt_newaddrmsg which performs the same
 1236  * function but for multicast group memberhips.  This is easier since
 1237  * there is no route state to worry about.
 1238  */
 1239 void
 1240 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
 1241 {
 1242         struct rt_addrinfo info;
 1243         struct mbuf *m = NULL;
 1244         struct ifnet *ifp = ifma->ifma_ifp;
 1245         struct ifma_msghdr *ifmam;
 1246 
 1247         if (route_cb.any_count == 0)
 1248                 return;
 1249 
 1250         bzero((caddr_t)&info, sizeof(info));
 1251         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
 1252         info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
 1253         /*
 1254          * If a link-layer address is present, present it as a ``gateway''
 1255          * (similarly to how ARP entries, e.g., are presented).
 1256          */
 1257         info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
 1258         m = rt_msg1(cmd, &info);
 1259         if (m == NULL)
 1260                 return;
 1261         ifmam = mtod(m, struct ifma_msghdr *);
 1262         KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
 1263             __func__));
 1264         ifmam->ifmam_index = ifp->if_index;
 1265         ifmam->ifmam_addrs = info.rti_addrs;
 1266         rt_dispatch(m, ifma->ifma_addr);
 1267 }
 1268 
 1269 static struct mbuf *
 1270 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
 1271         struct rt_addrinfo *info)
 1272 {
 1273         struct if_announcemsghdr *ifan;
 1274         struct mbuf *m;
 1275 
 1276         if (route_cb.any_count == 0)
 1277                 return NULL;
 1278         bzero((caddr_t)info, sizeof(*info));
 1279         m = rt_msg1(type, info);
 1280         if (m != NULL) {
 1281                 ifan = mtod(m, struct if_announcemsghdr *);
 1282                 ifan->ifan_index = ifp->if_index;
 1283                 strlcpy(ifan->ifan_name, ifp->if_xname,
 1284                         sizeof(ifan->ifan_name));
 1285                 ifan->ifan_what = what;
 1286         }
 1287         return m;
 1288 }
 1289 
 1290 /*
 1291  * This is called to generate routing socket messages indicating
 1292  * IEEE80211 wireless events.
 1293  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
 1294  */
 1295 void
 1296 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
 1297 {
 1298         struct mbuf *m;
 1299         struct rt_addrinfo info;
 1300 
 1301         m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
 1302         if (m != NULL) {
 1303                 /*
 1304                  * Append the ieee80211 data.  Try to stick it in the
 1305                  * mbuf containing the ifannounce msg; otherwise allocate
 1306                  * a new mbuf and append.
 1307                  *
 1308                  * NB: we assume m is a single mbuf.
 1309                  */
 1310                 if (data_len > M_TRAILINGSPACE(m)) {
 1311                         struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
 1312                         if (n == NULL) {
 1313                                 m_freem(m);
 1314                                 return;
 1315                         }
 1316                         bcopy(data, mtod(n, void *), data_len);
 1317                         n->m_len = data_len;
 1318                         m->m_next = n;
 1319                 } else if (data_len > 0) {
 1320                         bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
 1321                         m->m_len += data_len;
 1322                 }
 1323                 if (m->m_flags & M_PKTHDR)
 1324                         m->m_pkthdr.len += data_len;
 1325                 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
 1326                 rt_dispatch(m, NULL);
 1327         }
 1328 }
 1329 
 1330 /*
 1331  * This is called to generate routing socket messages indicating
 1332  * network interface arrival and departure.
 1333  */
 1334 void
 1335 rt_ifannouncemsg(struct ifnet *ifp, int what)
 1336 {
 1337         struct mbuf *m;
 1338         struct rt_addrinfo info;
 1339 
 1340         m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
 1341         if (m != NULL)
 1342                 rt_dispatch(m, NULL);
 1343 }
 1344 
 1345 static void
 1346 rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
 1347 {
 1348         struct m_tag *tag;
 1349 
 1350         /*
 1351          * Preserve the family from the sockaddr, if any, in an m_tag for
 1352          * use when injecting the mbuf into the routing socket buffer from
 1353          * the netisr.
 1354          */
 1355         if (sa != NULL) {
 1356                 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
 1357                     M_NOWAIT);
 1358                 if (tag == NULL) {
 1359                         m_freem(m);
 1360                         return;
 1361                 }
 1362                 *(unsigned short *)(tag + 1) = sa->sa_family;
 1363                 m_tag_prepend(m, tag);
 1364         }
 1365         netisr_queue(NETISR_ROUTE, m);  /* mbuf is free'd on failure. */
 1366 }
 1367 
 1368 /*
 1369  * This is used in dumping the kernel table via sysctl().
 1370  */
 1371 static int
 1372 sysctl_dumpentry(struct radix_node *rn, void *vw)
 1373 {
 1374         struct walkarg *w = vw;
 1375         struct rtentry *rt = (struct rtentry *)rn;
 1376         int error = 0, size;
 1377         struct rt_addrinfo info;
 1378 
 1379         if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
 1380                 return 0;
 1381         if ((rt->rt_flags & RTF_HOST) == 0
 1382             ? jailed(w->w_req->td->td_ucred)
 1383             : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
 1384                 return (0);
 1385         bzero((caddr_t)&info, sizeof(info));
 1386         info.rti_info[RTAX_DST] = rt_key(rt);
 1387         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
 1388         info.rti_info[RTAX_NETMASK] = rt_mask(rt);
 1389         info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
 1390         if (rt->rt_ifp) {
 1391                 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
 1392                 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
 1393                 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
 1394                         info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
 1395         }
 1396         size = rt_msg2(RTM_GET, &info, NULL, w);
 1397         if (w->w_req && w->w_tmem) {
 1398                 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
 1399 
 1400                 rtm->rtm_flags = rt->rt_flags;
 1401                 rtm->rtm_use = rt->rt_rmx.rmx_pksent;
 1402                 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
 1403                 rtm->rtm_index = rt->rt_ifp->if_index;
 1404                 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
 1405                 rtm->rtm_addrs = info.rti_addrs;
 1406                 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
 1407                 return (error);
 1408         }
 1409         return (error);
 1410 }
 1411 
 1412 static int
 1413 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info,
 1414     struct walkarg *w, int len)
 1415 {
 1416         struct if_msghdrl *ifm;
 1417 
 1418 #ifdef COMPAT_FREEBSD32
 1419         if (w->w_req->flags & SCTL_MASK32) {
 1420                 struct if_msghdrl32 *ifm32;
 1421 
 1422                 ifm32 = (struct if_msghdrl32 *)w->w_tmem;
 1423                 ifm32->ifm_addrs = info->rti_addrs;
 1424                 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 1425                 ifm32->ifm_index = ifp->if_index;
 1426                 ifm32->_ifm_spare1 = 0;
 1427                 ifm32->ifm_len = sizeof(*ifm32);
 1428                 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
 1429 
 1430                 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data);
 1431 
 1432                 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len));
 1433         }
 1434 #endif
 1435         ifm = (struct if_msghdrl *)w->w_tmem;
 1436         ifm->ifm_addrs = info->rti_addrs;
 1437         ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 1438         ifm->ifm_index = ifp->if_index;
 1439         ifm->_ifm_spare1 = 0;
 1440         ifm->ifm_len = sizeof(*ifm);
 1441         ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
 1442 
 1443         ifm->ifm_data = ifp->if_data;
 1444 
 1445         return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
 1446 }
 1447 
 1448 static int
 1449 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info,
 1450     struct walkarg *w, int len)
 1451 {
 1452         struct if_msghdr *ifm;
 1453 
 1454 #ifdef COMPAT_FREEBSD32
 1455         if (w->w_req->flags & SCTL_MASK32) {
 1456                 struct if_msghdr32 *ifm32;
 1457 
 1458                 ifm32 = (struct if_msghdr32 *)w->w_tmem;
 1459                 ifm32->ifm_addrs = info->rti_addrs;
 1460                 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 1461                 ifm32->ifm_index = ifp->if_index;
 1462 
 1463                 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data);
 1464 
 1465                 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len));
 1466         }
 1467 #endif
 1468         ifm = (struct if_msghdr *)w->w_tmem;
 1469         ifm->ifm_addrs = info->rti_addrs;
 1470         ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
 1471         ifm->ifm_index = ifp->if_index;
 1472 
 1473         ifm->ifm_data = ifp->if_data;
 1474 
 1475         return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
 1476 }
 1477 
 1478 static int
 1479 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
 1480     struct walkarg *w, int len)
 1481 {
 1482         struct ifa_msghdrl *ifam;
 1483 
 1484 #ifdef COMPAT_FREEBSD32
 1485         if (w->w_req->flags & SCTL_MASK32) {
 1486                 struct ifa_msghdrl32 *ifam32;
 1487 
 1488                 ifam32 = (struct ifa_msghdrl32 *)w->w_tmem;
 1489                 ifam32->ifam_addrs = info->rti_addrs;
 1490                 ifam32->ifam_flags = ifa->ifa_flags;
 1491                 ifam32->ifam_index = ifa->ifa_ifp->if_index;
 1492                 ifam32->_ifam_spare1 = 0;
 1493                 ifam32->ifam_len = sizeof(*ifam32);
 1494                 ifam32->ifam_data_off =
 1495                     offsetof(struct ifa_msghdrl32, ifam_data);
 1496                 ifam32->ifam_metric = ifa->ifa_metric;
 1497 
 1498                 copy_ifdata32(&ifa->ifa_ifp->if_data, &ifam32->ifam_data);
 1499 
 1500                 return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len));
 1501         }
 1502 #endif
 1503 
 1504         ifam = (struct ifa_msghdrl *)w->w_tmem;
 1505         ifam->ifam_addrs = info->rti_addrs;
 1506         ifam->ifam_flags = ifa->ifa_flags;
 1507         ifam->ifam_index = ifa->ifa_ifp->if_index;
 1508         ifam->_ifam_spare1 = 0;
 1509         ifam->ifam_len = sizeof(*ifam);
 1510         ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
 1511         ifam->ifam_metric = ifa->ifa_metric;
 1512 
 1513         ifam->ifam_data = ifa->if_data;
 1514 
 1515         return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
 1516 }
 1517 
 1518 static int
 1519 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
 1520     struct walkarg *w, int len)
 1521 {
 1522         struct ifa_msghdr *ifam;
 1523 
 1524         ifam = (struct ifa_msghdr *)w->w_tmem;
 1525         ifam->ifam_addrs = info->rti_addrs;
 1526         ifam->ifam_flags = ifa->ifa_flags;
 1527         ifam->ifam_index = ifa->ifa_ifp->if_index;
 1528         ifam->ifam_metric = ifa->ifa_metric;
 1529 
 1530         return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
 1531 }
 1532 
 1533 static int
 1534 sysctl_iflist(int af, struct walkarg *w)
 1535 {
 1536         struct ifnet *ifp;
 1537         struct ifaddr *ifa;
 1538         struct rt_addrinfo info;
 1539         int len, error = 0;
 1540 
 1541         bzero((caddr_t)&info, sizeof(info));
 1542         IFNET_RLOCK();
 1543         TAILQ_FOREACH(ifp, &ifnet, if_link) {
 1544                 if (w->w_arg && w->w_arg != ifp->if_index)
 1545                         continue;
 1546                 IF_ADDR_LOCK(ifp);
 1547                 ifa = ifp->if_addr;
 1548                 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
 1549                 len = rt_msg2(RTM_IFINFO, &info, NULL, w);
 1550                 info.rti_info[RTAX_IFP] = NULL;
 1551                 if (w->w_req && w->w_tmem) {
 1552                         if (w->w_op == NET_RT_IFLISTL)
 1553                                 error = sysctl_iflist_ifml(ifp, &info, w, len);
 1554                         else
 1555                                 error = sysctl_iflist_ifm(ifp, &info, w, len);
 1556                         if (error)
 1557                                 goto done;
 1558                 }
 1559                 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
 1560                         if (af && af != ifa->ifa_addr->sa_family)
 1561                                 continue;
 1562                         if (prison_if(w->w_req->td->td_ucred,
 1563                             ifa->ifa_addr) != 0)
 1564                                 continue;
 1565                         info.rti_info[RTAX_IFA] = ifa->ifa_addr;
 1566                         info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
 1567                         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
 1568                         len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
 1569                         if (w->w_req && w->w_tmem) {
 1570                                 if (w->w_op == NET_RT_IFLISTL)
 1571                                         error = sysctl_iflist_ifaml(ifa, &info,
 1572                                             w, len);
 1573                                 else
 1574                                         error = sysctl_iflist_ifam(ifa, &info,
 1575                                             w, len);
 1576                                 if (error)
 1577                                         goto done;
 1578                         }
 1579                 }
 1580                 IF_ADDR_UNLOCK(ifp);
 1581                 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
 1582                         info.rti_info[RTAX_BRD] = NULL;
 1583         }
 1584 done:
 1585         if (ifp != NULL)
 1586                 IF_ADDR_UNLOCK(ifp);
 1587         IFNET_RUNLOCK();
 1588         return (error);
 1589 }
 1590 
 1591 static int
 1592 sysctl_ifmalist(int af, struct walkarg *w)
 1593 {
 1594         struct ifnet *ifp;
 1595         struct ifmultiaddr *ifma;
 1596         struct  rt_addrinfo info;
 1597         int     len, error = 0;
 1598         struct ifaddr *ifa;
 1599 
 1600         bzero((caddr_t)&info, sizeof(info));
 1601         IFNET_RLOCK();
 1602         TAILQ_FOREACH(ifp, &ifnet, if_link) {
 1603                 if (w->w_arg && w->w_arg != ifp->if_index)
 1604                         continue;
 1605                 ifa = ifp->if_addr;
 1606                 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
 1607                 IF_ADDR_LOCK(ifp);
 1608                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1609                         if (af && af != ifma->ifma_addr->sa_family)
 1610                                 continue;
 1611                         if (prison_if(w->w_req->td->td_ucred,
 1612                             ifma->ifma_addr) != 0)
 1613                                 continue;
 1614                         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
 1615                         info.rti_info[RTAX_GATEWAY] =
 1616                             (ifma->ifma_addr->sa_family != AF_LINK) ?
 1617                             ifma->ifma_lladdr : NULL;
 1618                         len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
 1619                         if (w->w_req && w->w_tmem) {
 1620                                 struct ifma_msghdr *ifmam;
 1621 
 1622                                 ifmam = (struct ifma_msghdr *)w->w_tmem;
 1623                                 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
 1624                                 ifmam->ifmam_flags = 0;
 1625                                 ifmam->ifmam_addrs = info.rti_addrs;
 1626                                 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
 1627                                 if (error) {
 1628                                         IF_ADDR_UNLOCK(ifp);
 1629                                         goto done;
 1630                                 }
 1631                         }
 1632                 }
 1633                 IF_ADDR_UNLOCK(ifp);
 1634         }
 1635 done:
 1636         IFNET_RUNLOCK();
 1637         return (error);
 1638 }
 1639 
 1640 static int
 1641 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
 1642 {
 1643         int     *name = (int *)arg1;
 1644         u_int   namelen = arg2;
 1645         struct radix_node_head *rnh;
 1646         int     i, lim, error = EINVAL;
 1647         u_char  af;
 1648         struct  walkarg w;
 1649 
 1650         name ++;
 1651         namelen--;
 1652         if (req->newptr)
 1653                 return (EPERM);
 1654         if (namelen != 3)
 1655                 return ((namelen < 3) ? EISDIR : ENOTDIR);
 1656         af = name[0];
 1657         if (af > AF_MAX)
 1658                 return (EINVAL);
 1659         bzero(&w, sizeof(w));
 1660         w.w_op = name[1];
 1661         w.w_arg = name[2];
 1662         w.w_req = req;
 1663 
 1664         error = sysctl_wire_old_buffer(req, 0);
 1665         if (error)
 1666                 return (error);
 1667         switch (w.w_op) {
 1668 
 1669         case NET_RT_DUMP:
 1670         case NET_RT_FLAGS:
 1671                 if (af == 0) {                  /* dump all tables */
 1672                         i = 1;
 1673                         lim = AF_MAX;
 1674                 } else                          /* dump only one table */
 1675                         i = lim = af;
 1676                 for (error = 0; error == 0 && i <= lim; i++)
 1677                         if ((rnh = rt_tables[req->td->td_proc->p_fibnum][i]) != NULL) {
 1678                                 RADIX_NODE_HEAD_LOCK(rnh); 
 1679                                 error = rnh->rnh_walktree(rnh,
 1680                                     sysctl_dumpentry, &w);
 1681                                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1682                         } else if (af != 0)
 1683                                 error = EAFNOSUPPORT;
 1684                 break;
 1685 
 1686         case NET_RT_IFLIST:
 1687         case NET_RT_IFLISTL:
 1688                 error = sysctl_iflist(af, &w);
 1689                 break;
 1690 
 1691         case NET_RT_IFMALIST:
 1692                 error = sysctl_ifmalist(af, &w);
 1693                 break;
 1694         }
 1695         if (w.w_tmem)
 1696                 free(w.w_tmem, M_RTABLE);
 1697         return (error);
 1698 }
 1699 
 1700 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
 1701 
 1702 /*
 1703  * Definitions of protocols supported in the ROUTE domain.
 1704  */
 1705 
 1706 static struct domain routedomain;               /* or at least forward */
 1707 
 1708 static struct protosw routesw[] = {
 1709 {
 1710         .pr_type =              SOCK_RAW,
 1711         .pr_domain =            &routedomain,
 1712         .pr_flags =             PR_ATOMIC|PR_ADDR,
 1713         .pr_output =            route_output,
 1714         .pr_ctlinput =          raw_ctlinput,
 1715         .pr_init =              raw_init,
 1716         .pr_usrreqs =           &route_usrreqs
 1717 }
 1718 };
 1719 
 1720 static struct domain routedomain = {
 1721         .dom_family =           PF_ROUTE,
 1722         .dom_name =              "route",
 1723         .dom_protosw =          routesw,
 1724         .dom_protoswNPROTOSW =  &routesw[sizeof(routesw)/sizeof(routesw[0])]
 1725 };
 1726 
 1727 DOMAIN_SET(route);

Cache object: b76d196b4a1dcce3242e69bcc5f0b48b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.