FreeBSD/Linux Kernel Cross Reference
sys/net/socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro, <bir7@leland.Stanford.Edu>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 */
59
60 #include <linux/config.h>
61 #include <linux/mm.h>
62 #include <linux/smp_lock.h>
63 #include <linux/socket.h>
64 #include <linux/file.h>
65 #include <linux/net.h>
66 #include <linux/interrupt.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/wanrouter.h>
70 #include <linux/netlink.h>
71 #include <linux/rtnetlink.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77
78 #if defined(CONFIG_KMOD) && defined(CONFIG_NET)
79 #include <linux/kmod.h>
80 #endif
81
82 #include <asm/uaccess.h>
83
84 #include <net/sock.h>
85 #include <net/scm.h>
86 #include <linux/netfilter.h>
87
88 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
89 static ssize_t sock_read(struct file *file, char *buf,
90 size_t size, loff_t *ppos);
91 static ssize_t sock_write(struct file *file, const char *buf,
92 size_t size, loff_t *ppos);
93 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
94
95 static int sock_close(struct inode *inode, struct file *file);
96 static unsigned int sock_poll(struct file *file,
97 struct poll_table_struct *wait);
98 static int sock_ioctl(struct inode *inode, struct file *file,
99 unsigned int cmd, unsigned long arg);
100 static int sock_fasync(int fd, struct file *filp, int on);
101 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
102 unsigned long count, loff_t *ppos);
103 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
104 unsigned long count, loff_t *ppos);
105 static ssize_t sock_sendpage(struct file *file, struct page *page,
106 int offset, size_t size, loff_t *ppos, int more);
107
108
109 /*
110 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
111 * in the operation structures but are done directly via the socketcall() multiplexor.
112 */
113
114 static struct file_operations socket_file_ops = {
115 llseek: no_llseek,
116 read: sock_read,
117 write: sock_write,
118 poll: sock_poll,
119 ioctl: sock_ioctl,
120 mmap: sock_mmap,
121 open: sock_no_open, /* special open code to disallow open via /proc */
122 release: sock_close,
123 fasync: sock_fasync,
124 readv: sock_readv,
125 writev: sock_writev,
126 sendpage: sock_sendpage
127 };
128
129 /*
130 * The protocol list. Each protocol is registered in here.
131 */
132
133 static struct net_proto_family *net_families[NPROTO];
134
135 #ifdef CONFIG_SMP
136 static atomic_t net_family_lockct = ATOMIC_INIT(0);
137 static spinlock_t net_family_lock = SPIN_LOCK_UNLOCKED;
138
139 /* The strategy is: modifications net_family vector are short, do not
140 sleep and veeery rare, but read access should be free of any exclusive
141 locks.
142 */
143
144 static void net_family_write_lock(void)
145 {
146 spin_lock(&net_family_lock);
147 while (atomic_read(&net_family_lockct) != 0) {
148 spin_unlock(&net_family_lock);
149
150 yield();
151
152 spin_lock(&net_family_lock);
153 }
154 }
155
156 static __inline__ void net_family_write_unlock(void)
157 {
158 spin_unlock(&net_family_lock);
159 }
160
161 static __inline__ void net_family_read_lock(void)
162 {
163 atomic_inc(&net_family_lockct);
164 spin_unlock_wait(&net_family_lock);
165 }
166
167 static __inline__ void net_family_read_unlock(void)
168 {
169 atomic_dec(&net_family_lockct);
170 }
171
172 #else
173 #define net_family_write_lock() do { } while(0)
174 #define net_family_write_unlock() do { } while(0)
175 #define net_family_read_lock() do { } while(0)
176 #define net_family_read_unlock() do { } while(0)
177 #endif
178
179
180 /*
181 * Statistics counters of the socket lists
182 */
183
184 static union {
185 int counter;
186 char __pad[SMP_CACHE_BYTES];
187 } sockets_in_use[NR_CPUS] __cacheline_aligned = {{0}};
188
189 /*
190 * Support routines. Move socket addresses back and forth across the kernel/user
191 * divide and look after the messy bits.
192 */
193
194 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
195 16 for IP, 16 for IPX,
196 24 for IPv6,
197 about 80 for AX.25
198 must be at least one bigger than
199 the AF_UNIX size (see net/unix/af_unix.c
200 :unix_mkname()).
201 */
202
203 /**
204 * move_addr_to_kernel - copy a socket address into kernel space
205 * @uaddr: Address in user space
206 * @kaddr: Address in kernel space
207 * @ulen: Length in user space
208 *
209 * The address is copied into kernel space. If the provided address is
210 * too long an error code of -EINVAL is returned. If the copy gives
211 * invalid addresses -EFAULT is returned. On a success 0 is returned.
212 */
213
214 int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr)
215 {
216 if(ulen<0||ulen>MAX_SOCK_ADDR)
217 return -EINVAL;
218 if(ulen==0)
219 return 0;
220 if(copy_from_user(kaddr,uaddr,ulen))
221 return -EFAULT;
222 return 0;
223 }
224
225 /**
226 * move_addr_to_user - copy an address to user space
227 * @kaddr: kernel space address
228 * @klen: length of address in kernel
229 * @uaddr: user space address
230 * @ulen: pointer to user length field
231 *
232 * The value pointed to by ulen on entry is the buffer length available.
233 * This is overwritten with the buffer space used. -EINVAL is returned
234 * if an overlong buffer is specified or a negative buffer size. -EFAULT
235 * is returned if either the buffer or the length field are not
236 * accessible.
237 * After copying the data up to the limit the user specifies, the true
238 * length of the data is written over the length limit the user
239 * specified. Zero is returned for a success.
240 */
241
242 int move_addr_to_user(void *kaddr, int klen, void *uaddr, int *ulen)
243 {
244 int err;
245 int len;
246
247 if((err=get_user(len, ulen)))
248 return err;
249 if(len>klen)
250 len=klen;
251 if(len<0 || len> MAX_SOCK_ADDR)
252 return -EINVAL;
253 if(len)
254 {
255 if(copy_to_user(uaddr,kaddr,len))
256 return -EFAULT;
257 }
258 /*
259 * "fromlen shall refer to the value before truncation.."
260 * 1003.1g
261 */
262 return __put_user(klen, ulen);
263 }
264
265 #define SOCKFS_MAGIC 0x534F434B
266 static int sockfs_statfs(struct super_block *sb, struct statfs *buf)
267 {
268 buf->f_type = SOCKFS_MAGIC;
269 buf->f_bsize = 1024;
270 buf->f_namelen = 255;
271 return 0;
272 }
273
274 static struct super_operations sockfs_ops = {
275 statfs: sockfs_statfs,
276 };
277
278 static struct super_block * sockfs_read_super(struct super_block *sb, void *data, int silent)
279 {
280 struct inode *root = new_inode(sb);
281 if (!root)
282 return NULL;
283 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
284 root->i_uid = root->i_gid = 0;
285 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
286 sb->s_blocksize = 1024;
287 sb->s_blocksize_bits = 10;
288 sb->s_magic = SOCKFS_MAGIC;
289 sb->s_op = &sockfs_ops;
290 sb->s_root = d_alloc(NULL, &(const struct qstr) { "socket:", 7, 0 });
291 if (!sb->s_root) {
292 iput(root);
293 return NULL;
294 }
295 sb->s_root->d_sb = sb;
296 sb->s_root->d_parent = sb->s_root;
297 d_instantiate(sb->s_root, root);
298 return sb;
299 }
300
301 static struct vfsmount *sock_mnt;
302 static DECLARE_FSTYPE(sock_fs_type, "sockfs", sockfs_read_super, FS_NOMOUNT);
303 static int sockfs_delete_dentry(struct dentry *dentry)
304 {
305 return 1;
306 }
307 static struct dentry_operations sockfs_dentry_operations = {
308 d_delete: sockfs_delete_dentry,
309 };
310
311 /*
312 * Obtains the first available file descriptor and sets it up for use.
313 *
314 * This function creates file structure and maps it to fd space
315 * of current process. On success it returns file descriptor
316 * and file struct implicitly stored in sock->file.
317 * Note that another thread may close file descriptor before we return
318 * from this function. We use the fact that now we do not refer
319 * to socket after mapping. If one day we will need it, this
320 * function will increment ref. count on file by 1.
321 *
322 * In any case returned fd MAY BE not valid!
323 * This race condition is unavoidable
324 * with shared fd spaces, we cannot solve it inside kernel,
325 * but we take care of internal coherence yet.
326 */
327
328 static int sock_map_fd(struct socket *sock)
329 {
330 int fd;
331 struct qstr this;
332 char name[32];
333
334 /*
335 * Find a file descriptor suitable for return to the user.
336 */
337
338 fd = get_unused_fd();
339 if (fd >= 0) {
340 struct file *file = get_empty_filp();
341
342 if (!file) {
343 put_unused_fd(fd);
344 fd = -ENFILE;
345 goto out;
346 }
347
348 sprintf(name, "[%lu]", sock->inode->i_ino);
349 this.name = name;
350 this.len = strlen(name);
351 this.hash = sock->inode->i_ino;
352
353 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
354 if (!file->f_dentry) {
355 put_filp(file);
356 put_unused_fd(fd);
357 fd = -ENOMEM;
358 goto out;
359 }
360 file->f_dentry->d_op = &sockfs_dentry_operations;
361 d_add(file->f_dentry, sock->inode);
362 file->f_vfsmnt = mntget(sock_mnt);
363
364 sock->file = file;
365 file->f_op = sock->inode->i_fop = &socket_file_ops;
366 file->f_mode = 3;
367 file->f_flags = O_RDWR;
368 file->f_pos = 0;
369 fd_install(fd, file);
370 }
371
372 out:
373 return fd;
374 }
375
376 extern __inline__ struct socket *socki_lookup(struct inode *inode)
377 {
378 return &inode->u.socket_i;
379 }
380
381 /**
382 * sockfd_lookup - Go from a file number to its socket slot
383 * @fd: file handle
384 * @err: pointer to an error code return
385 *
386 * The file handle passed in is locked and the socket it is bound
387 * too is returned. If an error occurs the err pointer is overwritten
388 * with a negative errno code and NULL is returned. The function checks
389 * for both invalid handles and passing a handle which is not a socket.
390 *
391 * On a success the socket object pointer is returned.
392 */
393
394 struct socket *sockfd_lookup(int fd, int *err)
395 {
396 struct file *file;
397 struct inode *inode;
398 struct socket *sock;
399
400 if (!(file = fget(fd)))
401 {
402 *err = -EBADF;
403 return NULL;
404 }
405
406 inode = file->f_dentry->d_inode;
407 if (!inode->i_sock || !(sock = socki_lookup(inode)))
408 {
409 *err = -ENOTSOCK;
410 fput(file);
411 return NULL;
412 }
413
414 if (sock->file != file) {
415 printk(KERN_ERR "socki_lookup: socket file changed!\n");
416 sock->file = file;
417 }
418 return sock;
419 }
420
421 extern __inline__ void sockfd_put(struct socket *sock)
422 {
423 fput(sock->file);
424 }
425
426 /**
427 * sock_alloc - allocate a socket
428 *
429 * Allocate a new inode and socket object. The two are bound together
430 * and initialised. The socket is then returned. If we are out of inodes
431 * NULL is returned.
432 */
433
434 struct socket *sock_alloc(void)
435 {
436 struct inode * inode;
437 struct socket * sock;
438
439 inode = new_inode(sock_mnt->mnt_sb);
440 if (!inode)
441 return NULL;
442
443 inode->i_dev = NODEV;
444 sock = socki_lookup(inode);
445
446 inode->i_mode = S_IFSOCK|S_IRWXUGO;
447 inode->i_sock = 1;
448 inode->i_uid = current->fsuid;
449 inode->i_gid = current->fsgid;
450
451 sock->inode = inode;
452 init_waitqueue_head(&sock->wait);
453 sock->fasync_list = NULL;
454 sock->state = SS_UNCONNECTED;
455 sock->flags = 0;
456 sock->ops = NULL;
457 sock->sk = NULL;
458 sock->file = NULL;
459
460 sockets_in_use[smp_processor_id()].counter++;
461 return sock;
462 }
463
464 /*
465 * In theory you can't get an open on this inode, but /proc provides
466 * a back door. Remember to keep it shut otherwise you'll let the
467 * creepy crawlies in.
468 */
469
470 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
471 {
472 return -ENXIO;
473 }
474
475 /**
476 * sock_release - close a socket
477 * @sock: socket to close
478 *
479 * The socket is released from the protocol stack if it has a release
480 * callback, and the inode is then released if the socket is bound to
481 * an inode not a file.
482 */
483
484 void sock_release(struct socket *sock)
485 {
486 if (sock->ops)
487 sock->ops->release(sock);
488
489 if (sock->fasync_list)
490 printk(KERN_ERR "sock_release: fasync list not empty!\n");
491
492 sockets_in_use[smp_processor_id()].counter--;
493 if (!sock->file) {
494 iput(sock->inode);
495 return;
496 }
497 sock->file=NULL;
498 }
499
500 int sock_sendmsg(struct socket *sock, struct msghdr *msg, int size)
501 {
502 int err;
503 struct scm_cookie scm;
504
505 err = scm_send(sock, msg, &scm);
506 if (err >= 0) {
507 err = sock->ops->sendmsg(sock, msg, size, &scm);
508 scm_destroy(&scm);
509 }
510 return err;
511 }
512
513 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags)
514 {
515 struct scm_cookie scm;
516
517 memset(&scm, 0, sizeof(scm));
518
519 size = sock->ops->recvmsg(sock, msg, size, flags, &scm);
520 if (size >= 0)
521 scm_recv(sock, msg, &scm, flags);
522
523 return size;
524 }
525
526
527 /*
528 * Read data from a socket. ubuf is a user mode pointer. We make sure the user
529 * area ubuf...ubuf+size-1 is writable before asking the protocol.
530 */
531
532 static ssize_t sock_read(struct file *file, char *ubuf,
533 size_t size, loff_t *ppos)
534 {
535 struct socket *sock;
536 struct iovec iov;
537 struct msghdr msg;
538 int flags;
539
540 if (ppos != &file->f_pos)
541 return -ESPIPE;
542 if (size==0) /* Match SYS5 behaviour */
543 return 0;
544
545 sock = socki_lookup(file->f_dentry->d_inode);
546
547 msg.msg_name=NULL;
548 msg.msg_namelen=0;
549 msg.msg_iov=&iov;
550 msg.msg_iovlen=1;
551 msg.msg_control=NULL;
552 msg.msg_controllen=0;
553 iov.iov_base=ubuf;
554 iov.iov_len=size;
555 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
556
557 return sock_recvmsg(sock, &msg, size, flags);
558 }
559
560
561 /*
562 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1
563 * is readable by the user process.
564 */
565
566 static ssize_t sock_write(struct file *file, const char *ubuf,
567 size_t size, loff_t *ppos)
568 {
569 struct socket *sock;
570 struct msghdr msg;
571 struct iovec iov;
572
573 if (ppos != &file->f_pos)
574 return -ESPIPE;
575 if(size==0) /* Match SYS5 behaviour */
576 return 0;
577
578 sock = socki_lookup(file->f_dentry->d_inode);
579
580 msg.msg_name=NULL;
581 msg.msg_namelen=0;
582 msg.msg_iov=&iov;
583 msg.msg_iovlen=1;
584 msg.msg_control=NULL;
585 msg.msg_controllen=0;
586 msg.msg_flags=!(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
587 if (sock->type == SOCK_SEQPACKET)
588 msg.msg_flags |= MSG_EOR;
589 iov.iov_base=(void *)ubuf;
590 iov.iov_len=size;
591
592 return sock_sendmsg(sock, &msg, size);
593 }
594
595 ssize_t sock_sendpage(struct file *file, struct page *page,
596 int offset, size_t size, loff_t *ppos, int more)
597 {
598 struct socket *sock;
599 int flags;
600
601 if (ppos != &file->f_pos)
602 return -ESPIPE;
603
604 sock = socki_lookup(file->f_dentry->d_inode);
605
606 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
607 if (more)
608 flags |= MSG_MORE;
609
610 return sock->ops->sendpage(sock, page, offset, size, flags);
611 }
612
613 int sock_readv_writev(int type, struct inode * inode, struct file * file,
614 const struct iovec * iov, long count, long size)
615 {
616 struct msghdr msg;
617 struct socket *sock;
618
619 sock = socki_lookup(inode);
620
621 msg.msg_name = NULL;
622 msg.msg_namelen = 0;
623 msg.msg_control = NULL;
624 msg.msg_controllen = 0;
625 msg.msg_iov = (struct iovec *) iov;
626 msg.msg_iovlen = count;
627 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
628
629 /* read() does a VERIFY_WRITE */
630 if (type == VERIFY_WRITE)
631 return sock_recvmsg(sock, &msg, size, msg.msg_flags);
632
633 if (sock->type == SOCK_SEQPACKET)
634 msg.msg_flags |= MSG_EOR;
635
636 return sock_sendmsg(sock, &msg, size);
637 }
638
639 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
640 unsigned long count, loff_t *ppos)
641 {
642 size_t tot_len = 0;
643 int i;
644 for (i = 0 ; i < count ; i++)
645 tot_len += vector[i].iov_len;
646 return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
647 file, vector, count, tot_len);
648 }
649
650 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
651 unsigned long count, loff_t *ppos)
652 {
653 size_t tot_len = 0;
654 int i;
655 for (i = 0 ; i < count ; i++)
656 tot_len += vector[i].iov_len;
657 return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
658 file, vector, count, tot_len);
659 }
660
661 /*
662 * With an ioctl arg may well be a user mode pointer, but we don't know what to do
663 * with it - that's up to the protocol still.
664 */
665
666 int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
667 unsigned long arg)
668 {
669 struct socket *sock;
670 int err;
671
672 unlock_kernel();
673 sock = socki_lookup(inode);
674 err = sock->ops->ioctl(sock, cmd, arg);
675 lock_kernel();
676
677 return err;
678 }
679
680
681 /* No kernel lock held - perfect */
682 static unsigned int sock_poll(struct file *file, poll_table * wait)
683 {
684 struct socket *sock;
685
686 /*
687 * We can't return errors to poll, so it's either yes or no.
688 */
689 sock = socki_lookup(file->f_dentry->d_inode);
690 return sock->ops->poll(file, sock, wait);
691 }
692
693 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
694 {
695 struct socket *sock = socki_lookup(file->f_dentry->d_inode);
696
697 return sock->ops->mmap(file, sock, vma);
698 }
699
700 int sock_close(struct inode *inode, struct file *filp)
701 {
702 /*
703 * It was possible the inode is NULL we were
704 * closing an unfinished socket.
705 */
706
707 if (!inode)
708 {
709 printk(KERN_DEBUG "sock_close: NULL inode\n");
710 return 0;
711 }
712 sock_fasync(-1, filp, 0);
713 sock_release(socki_lookup(inode));
714 return 0;
715 }
716
717 /*
718 * Update the socket async list
719 *
720 * Fasync_list locking strategy.
721 *
722 * 1. fasync_list is modified only under process context socket lock
723 * i.e. under semaphore.
724 * 2. fasync_list is used under read_lock(&sk->callback_lock)
725 * or under socket lock.
726 * 3. fasync_list can be used from softirq context, so that
727 * modification under socket lock have to be enhanced with
728 * write_lock_bh(&sk->callback_lock).
729 * --ANK (990710)
730 */
731
732 static int sock_fasync(int fd, struct file *filp, int on)
733 {
734 struct fasync_struct *fa, *fna=NULL, **prev;
735 struct socket *sock;
736 struct sock *sk;
737
738 if (on)
739 {
740 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
741 if(fna==NULL)
742 return -ENOMEM;
743 }
744
745 sock = socki_lookup(filp->f_dentry->d_inode);
746
747 if ((sk=sock->sk) == NULL) {
748 if (fna)
749 kfree(fna);
750 return -EINVAL;
751 }
752
753 lock_sock(sk);
754
755 prev=&(sock->fasync_list);
756
757 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
758 if (fa->fa_file==filp)
759 break;
760
761 if(on)
762 {
763 if(fa!=NULL)
764 {
765 write_lock_bh(&sk->callback_lock);
766 fa->fa_fd=fd;
767 write_unlock_bh(&sk->callback_lock);
768
769 kfree(fna);
770 goto out;
771 }
772 fna->fa_file=filp;
773 fna->fa_fd=fd;
774 fna->magic=FASYNC_MAGIC;
775 fna->fa_next=sock->fasync_list;
776 write_lock_bh(&sk->callback_lock);
777 sock->fasync_list=fna;
778 write_unlock_bh(&sk->callback_lock);
779 }
780 else
781 {
782 if (fa!=NULL)
783 {
784 write_lock_bh(&sk->callback_lock);
785 *prev=fa->fa_next;
786 write_unlock_bh(&sk->callback_lock);
787 kfree(fa);
788 }
789 }
790
791 out:
792 release_sock(sock->sk);
793 return 0;
794 }
795
796 /* This function may be called only under socket lock or callback_lock */
797
798 int sock_wake_async(struct socket *sock, int how, int band)
799 {
800 if (!sock || !sock->fasync_list)
801 return -1;
802 switch (how)
803 {
804 case 1:
805
806 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
807 break;
808 goto call_kill;
809 case 2:
810 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
811 break;
812 /* fall through */
813 case 0:
814 call_kill:
815 __kill_fasync(sock->fasync_list, SIGIO, band);
816 break;
817 case 3:
818 __kill_fasync(sock->fasync_list, SIGURG, band);
819 }
820 return 0;
821 }
822
823
824 int sock_create(int family, int type, int protocol, struct socket **res)
825 {
826 int i;
827 struct socket *sock;
828
829 /*
830 * Check protocol is in range
831 */
832 if (family < 0 || family >= NPROTO)
833 return -EAFNOSUPPORT;
834 if (type < 0 || type >= SOCK_MAX)
835 return -EINVAL;
836
837 /* Compatibility.
838
839 This uglymoron is moved from INET layer to here to avoid
840 deadlock in module load.
841 */
842 if (family == PF_INET && type == SOCK_PACKET) {
843 static int warned;
844 if (!warned) {
845 warned = 1;
846 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
847 }
848 family = PF_PACKET;
849 }
850
851 #if defined(CONFIG_KMOD) && defined(CONFIG_NET)
852 /* Attempt to load a protocol module if the find failed.
853 *
854 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
855 * requested real, full-featured networking support upon configuration.
856 * Otherwise module support will break!
857 */
858 if (net_families[family]==NULL)
859 {
860 char module_name[30];
861 sprintf(module_name,"net-pf-%d",family);
862 request_module(module_name);
863 }
864 #endif
865
866 net_family_read_lock();
867 if (net_families[family] == NULL) {
868 i = -EAFNOSUPPORT;
869 goto out;
870 }
871
872 /*
873 * Allocate the socket and allow the family to set things up. if
874 * the protocol is 0, the family is instructed to select an appropriate
875 * default.
876 */
877
878 if (!(sock = sock_alloc()))
879 {
880 printk(KERN_WARNING "socket: no more sockets\n");
881 i = -ENFILE; /* Not exactly a match, but its the
882 closest posix thing */
883 goto out;
884 }
885
886 sock->type = type;
887
888 if ((i = net_families[family]->create(sock, protocol)) < 0)
889 {
890 sock_release(sock);
891 goto out;
892 }
893
894 *res = sock;
895
896 out:
897 net_family_read_unlock();
898 return i;
899 }
900
901 asmlinkage long sys_socket(int family, int type, int protocol)
902 {
903 int retval;
904 struct socket *sock;
905
906 retval = sock_create(family, type, protocol, &sock);
907 if (retval < 0)
908 goto out;
909
910 retval = sock_map_fd(sock);
911 if (retval < 0)
912 goto out_release;
913
914 out:
915 /* It may be already another descriptor 8) Not kernel problem. */
916 return retval;
917
918 out_release:
919 sock_release(sock);
920 return retval;
921 }
922
923 /*
924 * Create a pair of connected sockets.
925 */
926
927 asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2])
928 {
929 struct socket *sock1, *sock2;
930 int fd1, fd2, err;
931
932 /*
933 * Obtain the first socket and check if the underlying protocol
934 * supports the socketpair call.
935 */
936
937 err = sock_create(family, type, protocol, &sock1);
938 if (err < 0)
939 goto out;
940
941 err = sock_create(family, type, protocol, &sock2);
942 if (err < 0)
943 goto out_release_1;
944
945 err = sock1->ops->socketpair(sock1, sock2);
946 if (err < 0)
947 goto out_release_both;
948
949 fd1 = fd2 = -1;
950
951 err = sock_map_fd(sock1);
952 if (err < 0)
953 goto out_release_both;
954 fd1 = err;
955
956 err = sock_map_fd(sock2);
957 if (err < 0)
958 goto out_close_1;
959 fd2 = err;
960
961 /* fd1 and fd2 may be already another descriptors.
962 * Not kernel problem.
963 */
964
965 err = put_user(fd1, &usockvec[0]);
966 if (!err)
967 err = put_user(fd2, &usockvec[1]);
968 if (!err)
969 return 0;
970
971 sys_close(fd2);
972 sys_close(fd1);
973 return err;
974
975 out_close_1:
976 sock_release(sock2);
977 sys_close(fd1);
978 return err;
979
980 out_release_both:
981 sock_release(sock2);
982 out_release_1:
983 sock_release(sock1);
984 out:
985 return err;
986 }
987
988
989 /*
990 * Bind a name to a socket. Nothing much to do here since it's
991 * the protocol's responsibility to handle the local address.
992 *
993 * We move the socket address to kernel space before we call
994 * the protocol layer (having also checked the address is ok).
995 */
996
997 asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen)
998 {
999 struct socket *sock;
1000 char address[MAX_SOCK_ADDR];
1001 int err;
1002
1003 if((sock = sockfd_lookup(fd,&err))!=NULL)
1004 {
1005 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0)
1006 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1007 sockfd_put(sock);
1008 }
1009 return err;
1010 }
1011
1012
1013 /*
1014 * Perform a listen. Basically, we allow the protocol to do anything
1015 * necessary for a listen, and if that works, we mark the socket as
1016 * ready for listening.
1017 */
1018
1019 asmlinkage long sys_listen(int fd, int backlog)
1020 {
1021 struct socket *sock;
1022 int err;
1023
1024 if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1025 if ((unsigned) backlog > SOMAXCONN)
1026 backlog = SOMAXCONN;
1027 err=sock->ops->listen(sock, backlog);
1028 sockfd_put(sock);
1029 }
1030 return err;
1031 }
1032
1033
1034 /*
1035 * For accept, we attempt to create a new socket, set up the link
1036 * with the client, wake up the client, then return the new
1037 * connected fd. We collect the address of the connector in kernel
1038 * space and move it to user at the very end. This is unclean because
1039 * we open the socket then return an error.
1040 *
1041 * 1003.1g adds the ability to recvmsg() to query connection pending
1042 * status to recvmsg. We need to add that support in a way thats
1043 * clean when we restucture accept also.
1044 */
1045
1046 asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen)
1047 {
1048 struct socket *sock, *newsock;
1049 int err, len;
1050 char address[MAX_SOCK_ADDR];
1051
1052 sock = sockfd_lookup(fd, &err);
1053 if (!sock)
1054 goto out;
1055
1056 err = -EMFILE;
1057 if (!(newsock = sock_alloc()))
1058 goto out_put;
1059
1060 newsock->type = sock->type;
1061 newsock->ops = sock->ops;
1062
1063 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1064 if (err < 0)
1065 goto out_release;
1066
1067 if (upeer_sockaddr) {
1068 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1069 err = -ECONNABORTED;
1070 goto out_release;
1071 }
1072 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1073 if (err < 0)
1074 goto out_release;
1075 }
1076
1077 /* File flags are not inherited via accept() unlike another OSes. */
1078
1079 if ((err = sock_map_fd(newsock)) < 0)
1080 goto out_release;
1081
1082 out_put:
1083 sockfd_put(sock);
1084 out:
1085 return err;
1086
1087 out_release:
1088 sock_release(newsock);
1089 goto out_put;
1090 }
1091
1092
1093 /*
1094 * Attempt to connect to a socket with the server address. The address
1095 * is in user space so we verify it is OK and move it to kernel space.
1096 *
1097 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1098 * break bindings
1099 *
1100 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1101 * other SEQPACKET protocols that take time to connect() as it doesn't
1102 * include the -EINPROGRESS status for such sockets.
1103 */
1104
1105 asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen)
1106 {
1107 struct socket *sock;
1108 char address[MAX_SOCK_ADDR];
1109 int err;
1110
1111 sock = sockfd_lookup(fd, &err);
1112 if (!sock)
1113 goto out;
1114 err = move_addr_to_kernel(uservaddr, addrlen, address);
1115 if (err < 0)
1116 goto out_put;
1117 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1118 sock->file->f_flags);
1119 out_put:
1120 sockfd_put(sock);
1121 out:
1122 return err;
1123 }
1124
1125 /*
1126 * Get the local address ('name') of a socket object. Move the obtained
1127 * name to user space.
1128 */
1129
1130 asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
1131 {
1132 struct socket *sock;
1133 char address[MAX_SOCK_ADDR];
1134 int len, err;
1135
1136 sock = sockfd_lookup(fd, &err);
1137 if (!sock)
1138 goto out;
1139 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1140 if (err)
1141 goto out_put;
1142 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1143
1144 out_put:
1145 sockfd_put(sock);
1146 out:
1147 return err;
1148 }
1149
1150 /*
1151 * Get the remote address ('name') of a socket object. Move the obtained
1152 * name to user space.
1153 */
1154
1155 asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
1156 {
1157 struct socket *sock;
1158 char address[MAX_SOCK_ADDR];
1159 int len, err;
1160
1161 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1162 {
1163 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1164 if (!err)
1165 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1166 sockfd_put(sock);
1167 }
1168 return err;
1169 }
1170
1171 /*
1172 * Send a datagram to a given address. We move the address into kernel
1173 * space and check the user space data area is readable before invoking
1174 * the protocol.
1175 */
1176
1177 asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags,
1178 struct sockaddr *addr, int addr_len)
1179 {
1180 struct socket *sock;
1181 char address[MAX_SOCK_ADDR];
1182 int err;
1183 struct msghdr msg;
1184 struct iovec iov;
1185
1186 sock = sockfd_lookup(fd, &err);
1187 if (!sock)
1188 goto out;
1189 iov.iov_base=buff;
1190 iov.iov_len=len;
1191 msg.msg_name=NULL;
1192 msg.msg_iov=&iov;
1193 msg.msg_iovlen=1;
1194 msg.msg_control=NULL;
1195 msg.msg_controllen=0;
1196 msg.msg_namelen=0;
1197 if(addr)
1198 {
1199 err = move_addr_to_kernel(addr, addr_len, address);
1200 if (err < 0)
1201 goto out_put;
1202 msg.msg_name=address;
1203 msg.msg_namelen=addr_len;
1204 }
1205 if (sock->file->f_flags & O_NONBLOCK)
1206 flags |= MSG_DONTWAIT;
1207 msg.msg_flags = flags;
1208 err = sock_sendmsg(sock, &msg, len);
1209
1210 out_put:
1211 sockfd_put(sock);
1212 out:
1213 return err;
1214 }
1215
1216 /*
1217 * Send a datagram down a socket.
1218 */
1219
1220 asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags)
1221 {
1222 return sys_sendto(fd, buff, len, flags, NULL, 0);
1223 }
1224
1225 /*
1226 * Receive a frame from the socket and optionally record the address of the
1227 * sender. We verify the buffers are writable and if needed move the
1228 * sender address from kernel to user space.
1229 */
1230
1231 asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags,
1232 struct sockaddr *addr, int *addr_len)
1233 {
1234 struct socket *sock;
1235 struct iovec iov;
1236 struct msghdr msg;
1237 char address[MAX_SOCK_ADDR];
1238 int err,err2;
1239
1240 sock = sockfd_lookup(fd, &err);
1241 if (!sock)
1242 goto out;
1243
1244 msg.msg_control=NULL;
1245 msg.msg_controllen=0;
1246 msg.msg_iovlen=1;
1247 msg.msg_iov=&iov;
1248 iov.iov_len=size;
1249 iov.iov_base=ubuf;
1250 msg.msg_name=address;
1251 msg.msg_namelen=MAX_SOCK_ADDR;
1252 if (sock->file->f_flags & O_NONBLOCK)
1253 flags |= MSG_DONTWAIT;
1254 err=sock_recvmsg(sock, &msg, size, flags);
1255
1256 if(err >= 0 && addr != NULL)
1257 {
1258 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1259 if(err2<0)
1260 err=err2;
1261 }
1262 sockfd_put(sock);
1263 out:
1264 return err;
1265 }
1266
1267 /*
1268 * Receive a datagram from a socket.
1269 */
1270
1271 asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags)
1272 {
1273 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1274 }
1275
1276 /*
1277 * Set a socket option. Because we don't know the option lengths we have
1278 * to pass the user mode parameter for the protocols to sort out.
1279 */
1280
1281 asmlinkage long sys_setsockopt(int fd, int level, int optname, char *optval, int optlen)
1282 {
1283 int err;
1284 struct socket *sock;
1285
1286 if (optlen < 0)
1287 return -EINVAL;
1288
1289 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1290 {
1291 if (level == SOL_SOCKET)
1292 err=sock_setsockopt(sock,level,optname,optval,optlen);
1293 else
1294 err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1295 sockfd_put(sock);
1296 }
1297 return err;
1298 }
1299
1300 /*
1301 * Get a socket option. Because we don't know the option lengths we have
1302 * to pass a user mode parameter for the protocols to sort out.
1303 */
1304
1305 asmlinkage long sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen)
1306 {
1307 int err;
1308 struct socket *sock;
1309
1310 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1311 {
1312 if (level == SOL_SOCKET)
1313 err=sock_getsockopt(sock,level,optname,optval,optlen);
1314 else
1315 err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1316 sockfd_put(sock);
1317 }
1318 return err;
1319 }
1320
1321
1322 /*
1323 * Shutdown a socket.
1324 */
1325
1326 asmlinkage long sys_shutdown(int fd, int how)
1327 {
1328 int err;
1329 struct socket *sock;
1330
1331 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1332 {
1333 err=sock->ops->shutdown(sock, how);
1334 sockfd_put(sock);
1335 }
1336 return err;
1337 }
1338
1339 /*
1340 * BSD sendmsg interface
1341 */
1342
1343 asmlinkage long sys_sendmsg(int fd, struct msghdr *msg, unsigned flags)
1344 {
1345 struct socket *sock;
1346 char address[MAX_SOCK_ADDR];
1347 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1348 unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */
1349 unsigned char *ctl_buf = ctl;
1350 struct msghdr msg_sys;
1351 int err, ctl_len, iov_size, total_len;
1352
1353 err = -EFAULT;
1354 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1355 goto out;
1356
1357 sock = sockfd_lookup(fd, &err);
1358 if (!sock)
1359 goto out;
1360
1361 /* do not move before msg_sys is valid */
1362 err = -EMSGSIZE;
1363 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1364 goto out_put;
1365
1366 /* Check whether to allocate the iovec area*/
1367 err = -ENOMEM;
1368 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1369 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1370 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1371 if (!iov)
1372 goto out_put;
1373 }
1374
1375 /* This will also move the address data into kernel space */
1376 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1377 if (err < 0)
1378 goto out_freeiov;
1379 total_len = err;
1380
1381 err = -ENOBUFS;
1382
1383 if (msg_sys.msg_controllen > INT_MAX)
1384 goto out_freeiov;
1385 ctl_len = msg_sys.msg_controllen;
1386 if (ctl_len)
1387 {
1388 if (ctl_len > sizeof(ctl))
1389 {
1390 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1391 if (ctl_buf == NULL)
1392 goto out_freeiov;
1393 }
1394 err = -EFAULT;
1395 if (copy_from_user(ctl_buf, msg_sys.msg_control, ctl_len))
1396 goto out_freectl;
1397 msg_sys.msg_control = ctl_buf;
1398 }
1399 msg_sys.msg_flags = flags;
1400
1401 if (sock->file->f_flags & O_NONBLOCK)
1402 msg_sys.msg_flags |= MSG_DONTWAIT;
1403 err = sock_sendmsg(sock, &msg_sys, total_len);
1404
1405 out_freectl:
1406 if (ctl_buf != ctl)
1407 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1408 out_freeiov:
1409 if (iov != iovstack)
1410 sock_kfree_s(sock->sk, iov, iov_size);
1411 out_put:
1412 sockfd_put(sock);
1413 out:
1414 return err;
1415 }
1416
1417 /*
1418 * BSD recvmsg interface
1419 */
1420
1421 asmlinkage long sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags)
1422 {
1423 struct socket *sock;
1424 struct iovec iovstack[UIO_FASTIOV];
1425 struct iovec *iov=iovstack;
1426 struct msghdr msg_sys;
1427 unsigned long cmsg_ptr;
1428 int err, iov_size, total_len, len;
1429
1430 /* kernel mode address */
1431 char addr[MAX_SOCK_ADDR];
1432
1433 /* user mode address pointers */
1434 struct sockaddr *uaddr;
1435 int *uaddr_len;
1436
1437 err=-EFAULT;
1438 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1439 goto out;
1440
1441 sock = sockfd_lookup(fd, &err);
1442 if (!sock)
1443 goto out;
1444
1445 err = -EMSGSIZE;
1446 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1447 goto out_put;
1448
1449 /* Check whether to allocate the iovec area*/
1450 err = -ENOMEM;
1451 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1452 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1453 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1454 if (!iov)
1455 goto out_put;
1456 }
1457
1458 /*
1459 * Save the user-mode address (verify_iovec will change the
1460 * kernel msghdr to use the kernel address space)
1461 */
1462
1463 uaddr = msg_sys.msg_name;
1464 uaddr_len = &msg->msg_namelen;
1465 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1466 if (err < 0)
1467 goto out_freeiov;
1468 total_len=err;
1469
1470 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1471 msg_sys.msg_flags = 0;
1472
1473 if (sock->file->f_flags & O_NONBLOCK)
1474 flags |= MSG_DONTWAIT;
1475 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1476 if (err < 0)
1477 goto out_freeiov;
1478 len = err;
1479
1480 if (uaddr != NULL) {
1481 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1482 if (err < 0)
1483 goto out_freeiov;
1484 }
1485 err = __put_user(msg_sys.msg_flags, &msg->msg_flags);
1486 if (err)
1487 goto out_freeiov;
1488 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1489 &msg->msg_controllen);
1490 if (err)
1491 goto out_freeiov;
1492 err = len;
1493
1494 out_freeiov:
1495 if (iov != iovstack)
1496 sock_kfree_s(sock->sk, iov, iov_size);
1497 out_put:
1498 sockfd_put(sock);
1499 out:
1500 return err;
1501 }
1502
1503
1504 /*
1505 * Perform a file control on a socket file descriptor.
1506 *
1507 * Doesn't acquire a fd lock, because no network fcntl
1508 * function sleeps currently.
1509 */
1510
1511 int sock_fcntl(struct file *filp, unsigned int cmd, unsigned long arg)
1512 {
1513 struct socket *sock;
1514
1515 sock = socki_lookup (filp->f_dentry->d_inode);
1516 if (sock && sock->ops)
1517 return sock_no_fcntl(sock, cmd, arg);
1518 return(-EINVAL);
1519 }
1520
1521 /* Argument list sizes for sys_socketcall */
1522 #define AL(x) ((x) * sizeof(unsigned long))
1523 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1524 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1525 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1526 #undef AL
1527
1528 /*
1529 * System call vectors.
1530 *
1531 * Argument checking cleaned up. Saved 20% in size.
1532 * This function doesn't need to set the kernel lock because
1533 * it is set by the callees.
1534 */
1535
1536 asmlinkage long sys_socketcall(int call, unsigned long *args)
1537 {
1538 unsigned long a[6];
1539 unsigned long a0,a1;
1540 int err;
1541
1542 if(call<1||call>SYS_RECVMSG)
1543 return -EINVAL;
1544
1545 /* copy_from_user should be SMP safe. */
1546 if (copy_from_user(a, args, nargs[call]))
1547 return -EFAULT;
1548
1549 a0=a[0];
1550 a1=a[1];
1551
1552 switch(call)
1553 {
1554 case SYS_SOCKET:
1555 err = sys_socket(a0,a1,a[2]);
1556 break;
1557 case SYS_BIND:
1558 err = sys_bind(a0,(struct sockaddr *)a1, a[2]);
1559 break;
1560 case SYS_CONNECT:
1561 err = sys_connect(a0, (struct sockaddr *)a1, a[2]);
1562 break;
1563 case SYS_LISTEN:
1564 err = sys_listen(a0,a1);
1565 break;
1566 case SYS_ACCEPT:
1567 err = sys_accept(a0,(struct sockaddr *)a1, (int *)a[2]);
1568 break;
1569 case SYS_GETSOCKNAME:
1570 err = sys_getsockname(a0,(struct sockaddr *)a1, (int *)a[2]);
1571 break;
1572 case SYS_GETPEERNAME:
1573 err = sys_getpeername(a0, (struct sockaddr *)a1, (int *)a[2]);
1574 break;
1575 case SYS_SOCKETPAIR:
1576 err = sys_socketpair(a0,a1, a[2], (int *)a[3]);
1577 break;
1578 case SYS_SEND:
1579 err = sys_send(a0, (void *)a1, a[2], a[3]);
1580 break;
1581 case SYS_SENDTO:
1582 err = sys_sendto(a0,(void *)a1, a[2], a[3],
1583 (struct sockaddr *)a[4], a[5]);
1584 break;
1585 case SYS_RECV:
1586 err = sys_recv(a0, (void *)a1, a[2], a[3]);
1587 break;
1588 case SYS_RECVFROM:
1589 err = sys_recvfrom(a0, (void *)a1, a[2], a[3],
1590 (struct sockaddr *)a[4], (int *)a[5]);
1591 break;
1592 case SYS_SHUTDOWN:
1593 err = sys_shutdown(a0,a1);
1594 break;
1595 case SYS_SETSOCKOPT:
1596 err = sys_setsockopt(a0, a1, a[2], (char *)a[3], a[4]);
1597 break;
1598 case SYS_GETSOCKOPT:
1599 err = sys_getsockopt(a0, a1, a[2], (char *)a[3], (int *)a[4]);
1600 break;
1601 case SYS_SENDMSG:
1602 err = sys_sendmsg(a0, (struct msghdr *) a1, a[2]);
1603 break;
1604 case SYS_RECVMSG:
1605 err = sys_recvmsg(a0, (struct msghdr *) a1, a[2]);
1606 break;
1607 default:
1608 err = -EINVAL;
1609 break;
1610 }
1611 return err;
1612 }
1613
1614 /*
1615 * This function is called by a protocol handler that wants to
1616 * advertise its address family, and have it linked into the
1617 * SOCKET module.
1618 */
1619
1620 int sock_register(struct net_proto_family *ops)
1621 {
1622 int err;
1623
1624 if (ops->family >= NPROTO) {
1625 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1626 return -ENOBUFS;
1627 }
1628 net_family_write_lock();
1629 err = -EEXIST;
1630 if (net_families[ops->family] == NULL) {
1631 net_families[ops->family]=ops;
1632 err = 0;
1633 }
1634 net_family_write_unlock();
1635 return err;
1636 }
1637
1638 /*
1639 * This function is called by a protocol handler that wants to
1640 * remove its address family, and have it unlinked from the
1641 * SOCKET module.
1642 */
1643
1644 int sock_unregister(int family)
1645 {
1646 if (family < 0 || family >= NPROTO)
1647 return -1;
1648
1649 net_family_write_lock();
1650 net_families[family]=NULL;
1651 net_family_write_unlock();
1652 return 0;
1653 }
1654
1655
1656 extern void sk_init(void);
1657
1658 #ifdef CONFIG_WAN_ROUTER
1659 extern void wanrouter_init(void);
1660 #endif
1661
1662 #ifdef CONFIG_BLUEZ
1663 extern void bluez_init(void);
1664 #endif
1665
1666 void __init sock_init(void)
1667 {
1668 int i;
1669
1670 printk(KERN_INFO "Linux NET4.0 for Linux 2.4\n");
1671 printk(KERN_INFO "Based upon Swansea University Computer Society NET3.039\n");
1672
1673 /*
1674 * Initialize all address (protocol) families.
1675 */
1676
1677 for (i = 0; i < NPROTO; i++)
1678 net_families[i] = NULL;
1679
1680 /*
1681 * Initialize sock SLAB cache.
1682 */
1683
1684 sk_init();
1685
1686 #ifdef SLAB_SKB
1687 /*
1688 * Initialize skbuff SLAB cache
1689 */
1690 skb_init();
1691 #endif
1692
1693 /*
1694 * Wan router layer.
1695 */
1696
1697 #ifdef CONFIG_WAN_ROUTER
1698 wanrouter_init();
1699 #endif
1700
1701 /*
1702 * Initialize the protocols module.
1703 */
1704
1705 register_filesystem(&sock_fs_type);
1706 sock_mnt = kern_mount(&sock_fs_type);
1707 /* The real protocol initialization is performed when
1708 * do_initcalls is run.
1709 */
1710
1711
1712 /*
1713 * The netlink device handler may be needed early.
1714 */
1715
1716 #ifdef CONFIG_NET
1717 rtnetlink_init();
1718 #endif
1719 #ifdef CONFIG_NETLINK_DEV
1720 init_netlink();
1721 #endif
1722 #ifdef CONFIG_NETFILTER
1723 netfilter_init();
1724 #endif
1725
1726 #ifdef CONFIG_BLUEZ
1727 bluez_init();
1728 #endif
1729 }
1730
1731 int socket_get_info(char *buffer, char **start, off_t offset, int length)
1732 {
1733 int len, cpu;
1734 int counter = 0;
1735
1736 for (cpu=0; cpu<smp_num_cpus; cpu++)
1737 counter += sockets_in_use[cpu_logical_map(cpu)].counter;
1738
1739 /* It can be negative, by the way. 8) */
1740 if (counter < 0)
1741 counter = 0;
1742
1743 len = sprintf(buffer, "sockets: used %d\n", counter);
1744 if (offset >= len)
1745 {
1746 *start = buffer;
1747 return 0;
1748 }
1749 *start = buffer + offset;
1750 len -= offset;
1751 if (len > length)
1752 len = length;
1753 if (len < 0)
1754 len = 0;
1755 return len;
1756 }
Cache object: 825e28c0e53a6c9a01d0dccfccb8b62e
|