The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net/zlib.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * This file is derived from various .h and .c files from the zlib-1.0.4
    3  * distribution by Jean-loup Gailly and Mark Adler, with some additions
    4  * by Paul Mackerras to aid in implementing Deflate compression and
    5  * decompression for PPP packets.  See zlib.h for conditions of
    6  * distribution and use.
    7  *
    8  * Changes that have been made include:
    9  * - added Z_PACKET_FLUSH (see zlib.h for details)
   10  * - added inflateIncomp and deflateOutputPending
   11  * - allow strm->next_out to be NULL, meaning discard the output
   12  *
   13  * $FreeBSD$
   14  */
   15 
   16 /* 
   17  *  ==FILEVERSION 971210==
   18  *
   19  * This marker is used by the Linux installation script to determine
   20  * whether an up-to-date version of this file is already installed.
   21  */
   22 
   23 #define NO_DUMMY_DECL
   24 #define NO_ZCFUNCS
   25 #define MY_ZCALLOC
   26 
   27 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
   28 #define inflate inflate_ppp     /* FreeBSD already has an inflate :-( */
   29 #endif
   30 
   31 
   32 /* +++ zutil.h */
   33 /* zutil.h -- internal interface and configuration of the compression library
   34  * Copyright (C) 1995-1996 Jean-loup Gailly.
   35  * For conditions of distribution and use, see copyright notice in zlib.h
   36  */
   37 
   38 /* WARNING: this file should *not* be used by applications. It is
   39    part of the implementation of the compression library and is
   40    subject to change. Applications should only use zlib.h.
   41  */
   42 
   43 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
   44 
   45 #ifndef _Z_UTIL_H
   46 #define _Z_UTIL_H
   47 
   48 #ifdef KERNEL
   49 #include <net/zlib.h>
   50 #else
   51 #include "zlib.h"
   52 #endif
   53 
   54 #if defined(KERNEL) || defined(_KERNEL)
   55 /* Assume this is a *BSD or SVR4 kernel */
   56 #include <sys/types.h>
   57 #include <sys/time.h>
   58 #include <sys/systm.h>
   59 #  define HAVE_MEMCPY
   60 #  define memcpy(d, s, n)       bcopy((s), (d), (n))
   61 #  define memset(d, v, n)       bzero((d), (n))
   62 #  define memcmp                bcmp
   63 
   64 #else
   65 #if defined(__KERNEL__)
   66 /* Assume this is a Linux kernel */
   67 #include <linux/string.h>
   68 #define HAVE_MEMCPY
   69 
   70 #else /* not kernel */
   71 
   72 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
   73 #   include <stddef.h>
   74 #   include <errno.h>
   75 #else
   76     extern int errno;
   77 #endif
   78 #ifdef STDC
   79 #  include <string.h>
   80 #  include <stdlib.h>
   81 #endif
   82 #endif /* __KERNEL__ */
   83 #endif /* _KERNEL || KERNEL */
   84 
   85 #ifndef local
   86 #  define local static
   87 #endif
   88 /* compile with -Dlocal if your debugger can't find static symbols */
   89 
   90 typedef unsigned char  uch;
   91 typedef uch FAR uchf;
   92 typedef unsigned short ush;
   93 typedef ush FAR ushf;
   94 typedef unsigned long  ulg;
   95 
   96 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
   97 /* (size given to avoid silly warnings with Visual C++) */
   98 
   99 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
  100 
  101 #define ERR_RETURN(strm,err) \
  102   return (strm->msg = (char*)ERR_MSG(err), (err))
  103 /* To be used only when the state is known to be valid */
  104 
  105         /* common constants */
  106 
  107 #ifndef DEF_WBITS
  108 #  define DEF_WBITS MAX_WBITS
  109 #endif
  110 /* default windowBits for decompression. MAX_WBITS is for compression only */
  111 
  112 #if MAX_MEM_LEVEL >= 8
  113 #  define DEF_MEM_LEVEL 8
  114 #else
  115 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
  116 #endif
  117 /* default memLevel */
  118 
  119 #define STORED_BLOCK 0
  120 #define STATIC_TREES 1
  121 #define DYN_TREES    2
  122 /* The three kinds of block type */
  123 
  124 #define MIN_MATCH  3
  125 #define MAX_MATCH  258
  126 /* The minimum and maximum match lengths */
  127 
  128 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
  129 
  130         /* target dependencies */
  131 
  132 #ifdef MSDOS
  133 #  define OS_CODE  0x00
  134 #  ifdef __TURBOC__
  135 #    include <alloc.h>
  136 #  else /* MSC or DJGPP */
  137 #    include <malloc.h>
  138 #  endif
  139 #endif
  140 
  141 #ifdef OS2
  142 #  define OS_CODE  0x06
  143 #endif
  144 
  145 #ifdef WIN32 /* Window 95 & Windows NT */
  146 #  define OS_CODE  0x0b
  147 #endif
  148 
  149 #if defined(VAXC) || defined(VMS)
  150 #  define OS_CODE  0x02
  151 #  define FOPEN(name, mode) \
  152      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
  153 #endif
  154 
  155 #ifdef AMIGA
  156 #  define OS_CODE  0x01
  157 #endif
  158 
  159 #if defined(ATARI) || defined(atarist)
  160 #  define OS_CODE  0x05
  161 #endif
  162 
  163 #ifdef MACOS
  164 #  define OS_CODE  0x07
  165 #endif
  166 
  167 #ifdef __50SERIES /* Prime/PRIMOS */
  168 #  define OS_CODE  0x0F
  169 #endif
  170 
  171 #ifdef TOPS20
  172 #  define OS_CODE  0x0a
  173 #endif
  174 
  175 #if defined(_BEOS_) || defined(RISCOS)
  176 #  define fdopen(fd,mode) NULL /* No fdopen() */
  177 #endif
  178 
  179         /* Common defaults */
  180 
  181 #ifndef OS_CODE
  182 #  define OS_CODE  0x03  /* assume Unix */
  183 #endif
  184 
  185 #ifndef FOPEN
  186 #  define FOPEN(name, mode) fopen((name), (mode))
  187 #endif
  188 
  189          /* functions */
  190 
  191 #ifdef HAVE_STRERROR
  192    extern char *strerror OF((int));
  193 #  define zstrerror(errnum) strerror(errnum)
  194 #else
  195 #  define zstrerror(errnum) ""
  196 #endif
  197 
  198 #if defined(pyr)
  199 #  define NO_MEMCPY
  200 #endif
  201 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
  202  /* Use our own functions for small and medium model with MSC <= 5.0.
  203   * You may have to use the same strategy for Borland C (untested).
  204   */
  205 #  define NO_MEMCPY
  206 #endif
  207 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
  208 #  define HAVE_MEMCPY
  209 #endif
  210 #ifdef HAVE_MEMCPY
  211 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
  212 #    define zmemcpy _fmemcpy
  213 #    define zmemcmp _fmemcmp
  214 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
  215 #  else
  216 #    define zmemcpy memcpy
  217 #    define zmemcmp memcmp
  218 #    define zmemzero(dest, len) memset(dest, 0, len)
  219 #  endif
  220 #else
  221    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
  222    extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
  223    extern void zmemzero OF((Bytef* dest, uInt len));
  224 #endif
  225 
  226 /* Diagnostic functions */
  227 #ifdef DEBUG_ZLIB
  228 #  include <stdio.h>
  229 #  ifndef verbose
  230 #    define verbose 0
  231 #  endif
  232    extern void z_error    OF((char *m));
  233 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
  234 #  define Trace(x) fprintf x
  235 #  define Tracev(x) {if (verbose) fprintf x ;}
  236 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
  237 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
  238 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
  239 #else
  240 #  define Assert(cond,msg)
  241 #  define Trace(x)
  242 #  define Tracev(x)
  243 #  define Tracevv(x)
  244 #  define Tracec(c,x)
  245 #  define Tracecv(c,x)
  246 #endif
  247 
  248 
  249 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
  250 
  251 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
  252 void   zcfree  OF((voidpf opaque, voidpf ptr));
  253 
  254 #define ZALLOC(strm, items, size) \
  255            (*((strm)->zalloc))((strm)->opaque, (items), (size))
  256 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
  257 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
  258 
  259 #endif /* _Z_UTIL_H */
  260 /* --- zutil.h */
  261 
  262 /* +++ deflate.h */
  263 /* deflate.h -- internal compression state
  264  * Copyright (C) 1995-1996 Jean-loup Gailly
  265  * For conditions of distribution and use, see copyright notice in zlib.h 
  266  */
  267 
  268 /* WARNING: this file should *not* be used by applications. It is
  269    part of the implementation of the compression library and is
  270    subject to change. Applications should only use zlib.h.
  271  */
  272 
  273 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
  274 
  275 #ifndef _DEFLATE_H
  276 #define _DEFLATE_H
  277 
  278 /* #include "zutil.h" */
  279 
  280 /* ===========================================================================
  281  * Internal compression state.
  282  */
  283 
  284 #define LENGTH_CODES 29
  285 /* number of length codes, not counting the special END_BLOCK code */
  286 
  287 #define LITERALS  256
  288 /* number of literal bytes 0..255 */
  289 
  290 #define L_CODES (LITERALS+1+LENGTH_CODES)
  291 /* number of Literal or Length codes, including the END_BLOCK code */
  292 
  293 #define D_CODES   30
  294 /* number of distance codes */
  295 
  296 #define BL_CODES  19
  297 /* number of codes used to transfer the bit lengths */
  298 
  299 #define HEAP_SIZE (2*L_CODES+1)
  300 /* maximum heap size */
  301 
  302 #define MAX_BITS 15
  303 /* All codes must not exceed MAX_BITS bits */
  304 
  305 #define INIT_STATE    42
  306 #define BUSY_STATE   113
  307 #define FINISH_STATE 666
  308 /* Stream status */
  309 
  310 
  311 /* Data structure describing a single value and its code string. */
  312 typedef struct ct_data_s {
  313     union {
  314         ush  freq;       /* frequency count */
  315         ush  code;       /* bit string */
  316     } fc;
  317     union {
  318         ush  dad;        /* father node in Huffman tree */
  319         ush  len;        /* length of bit string */
  320     } dl;
  321 } FAR ct_data;
  322 
  323 #define Freq fc.freq
  324 #define Code fc.code
  325 #define Dad  dl.dad
  326 #define Len  dl.len
  327 
  328 typedef struct static_tree_desc_s  static_tree_desc;
  329 
  330 typedef struct tree_desc_s {
  331     ct_data *dyn_tree;           /* the dynamic tree */
  332     int     max_code;            /* largest code with non zero frequency */
  333     static_tree_desc *stat_desc; /* the corresponding static tree */
  334 } FAR tree_desc;
  335 
  336 typedef ush Pos;
  337 typedef Pos FAR Posf;
  338 typedef unsigned IPos;
  339 
  340 /* A Pos is an index in the character window. We use short instead of int to
  341  * save space in the various tables. IPos is used only for parameter passing.
  342  */
  343 
  344 typedef struct deflate_state {
  345     z_streamp strm;      /* pointer back to this zlib stream */
  346     int   status;        /* as the name implies */
  347     Bytef *pending_buf;  /* output still pending */
  348     ulg   pending_buf_size; /* size of pending_buf */
  349     Bytef *pending_out;  /* next pending byte to output to the stream */
  350     int   pending;       /* nb of bytes in the pending buffer */
  351     int   noheader;      /* suppress zlib header and adler32 */
  352     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
  353     Byte  method;        /* STORED (for zip only) or DEFLATED */
  354     int   last_flush;    /* value of flush param for previous deflate call */
  355 
  356                 /* used by deflate.c: */
  357 
  358     uInt  w_size;        /* LZ77 window size (32K by default) */
  359     uInt  w_bits;        /* log2(w_size)  (8..16) */
  360     uInt  w_mask;        /* w_size - 1 */
  361 
  362     Bytef *window;
  363     /* Sliding window. Input bytes are read into the second half of the window,
  364      * and move to the first half later to keep a dictionary of at least wSize
  365      * bytes. With this organization, matches are limited to a distance of
  366      * wSize-MAX_MATCH bytes, but this ensures that IO is always
  367      * performed with a length multiple of the block size. Also, it limits
  368      * the window size to 64K, which is quite useful on MSDOS.
  369      * To do: use the user input buffer as sliding window.
  370      */
  371 
  372     ulg window_size;
  373     /* Actual size of window: 2*wSize, except when the user input buffer
  374      * is directly used as sliding window.
  375      */
  376 
  377     Posf *prev;
  378     /* Link to older string with same hash index. To limit the size of this
  379      * array to 64K, this link is maintained only for the last 32K strings.
  380      * An index in this array is thus a window index modulo 32K.
  381      */
  382 
  383     Posf *head; /* Heads of the hash chains or NIL. */
  384 
  385     uInt  ins_h;          /* hash index of string to be inserted */
  386     uInt  hash_size;      /* number of elements in hash table */
  387     uInt  hash_bits;      /* log2(hash_size) */
  388     uInt  hash_mask;      /* hash_size-1 */
  389 
  390     uInt  hash_shift;
  391     /* Number of bits by which ins_h must be shifted at each input
  392      * step. It must be such that after MIN_MATCH steps, the oldest
  393      * byte no longer takes part in the hash key, that is:
  394      *   hash_shift * MIN_MATCH >= hash_bits
  395      */
  396 
  397     long block_start;
  398     /* Window position at the beginning of the current output block. Gets
  399      * negative when the window is moved backwards.
  400      */
  401 
  402     uInt match_length;           /* length of best match */
  403     IPos prev_match;             /* previous match */
  404     int match_available;         /* set if previous match exists */
  405     uInt strstart;               /* start of string to insert */
  406     uInt match_start;            /* start of matching string */
  407     uInt lookahead;              /* number of valid bytes ahead in window */
  408 
  409     uInt prev_length;
  410     /* Length of the best match at previous step. Matches not greater than this
  411      * are discarded. This is used in the lazy match evaluation.
  412      */
  413 
  414     uInt max_chain_length;
  415     /* To speed up deflation, hash chains are never searched beyond this
  416      * length.  A higher limit improves compression ratio but degrades the
  417      * speed.
  418      */
  419 
  420     uInt max_lazy_match;
  421     /* Attempt to find a better match only when the current match is strictly
  422      * smaller than this value. This mechanism is used only for compression
  423      * levels >= 4.
  424      */
  425 #   define max_insert_length  max_lazy_match
  426     /* Insert new strings in the hash table only if the match length is not
  427      * greater than this length. This saves time but degrades compression.
  428      * max_insert_length is used only for compression levels <= 3.
  429      */
  430 
  431     int level;    /* compression level (1..9) */
  432     int strategy; /* favor or force Huffman coding*/
  433 
  434     uInt good_match;
  435     /* Use a faster search when the previous match is longer than this */
  436 
  437     int nice_match; /* Stop searching when current match exceeds this */
  438 
  439                 /* used by trees.c: */
  440     /* Didn't use ct_data typedef below to supress compiler warning */
  441     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
  442     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
  443     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
  444 
  445     struct tree_desc_s l_desc;               /* desc. for literal tree */
  446     struct tree_desc_s d_desc;               /* desc. for distance tree */
  447     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
  448 
  449     ush bl_count[MAX_BITS+1];
  450     /* number of codes at each bit length for an optimal tree */
  451 
  452     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
  453     int heap_len;               /* number of elements in the heap */
  454     int heap_max;               /* element of largest frequency */
  455     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
  456      * The same heap array is used to build all trees.
  457      */
  458 
  459     uch depth[2*L_CODES+1];
  460     /* Depth of each subtree used as tie breaker for trees of equal frequency
  461      */
  462 
  463     uchf *l_buf;          /* buffer for literals or lengths */
  464 
  465     uInt  lit_bufsize;
  466     /* Size of match buffer for literals/lengths.  There are 4 reasons for
  467      * limiting lit_bufsize to 64K:
  468      *   - frequencies can be kept in 16 bit counters
  469      *   - if compression is not successful for the first block, all input
  470      *     data is still in the window so we can still emit a stored block even
  471      *     when input comes from standard input.  (This can also be done for
  472      *     all blocks if lit_bufsize is not greater than 32K.)
  473      *   - if compression is not successful for a file smaller than 64K, we can
  474      *     even emit a stored file instead of a stored block (saving 5 bytes).
  475      *     This is applicable only for zip (not gzip or zlib).
  476      *   - creating new Huffman trees less frequently may not provide fast
  477      *     adaptation to changes in the input data statistics. (Take for
  478      *     example a binary file with poorly compressible code followed by
  479      *     a highly compressible string table.) Smaller buffer sizes give
  480      *     fast adaptation but have of course the overhead of transmitting
  481      *     trees more frequently.
  482      *   - I can't count above 4
  483      */
  484 
  485     uInt last_lit;      /* running index in l_buf */
  486 
  487     ushf *d_buf;
  488     /* Buffer for distances. To simplify the code, d_buf and l_buf have
  489      * the same number of elements. To use different lengths, an extra flag
  490      * array would be necessary.
  491      */
  492 
  493     ulg opt_len;        /* bit length of current block with optimal trees */
  494     ulg static_len;     /* bit length of current block with static trees */
  495     ulg compressed_len; /* total bit length of compressed file */
  496     uInt matches;       /* number of string matches in current block */
  497     int last_eob_len;   /* bit length of EOB code for last block */
  498 
  499 #ifdef DEBUG_ZLIB
  500     ulg bits_sent;      /* bit length of the compressed data */
  501 #endif
  502 
  503     ush bi_buf;
  504     /* Output buffer. bits are inserted starting at the bottom (least
  505      * significant bits).
  506      */
  507     int bi_valid;
  508     /* Number of valid bits in bi_buf.  All bits above the last valid bit
  509      * are always zero.
  510      */
  511 
  512 } FAR deflate_state;
  513 
  514 /* Output a byte on the stream.
  515  * IN assertion: there is enough room in pending_buf.
  516  */
  517 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
  518 
  519 
  520 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
  521 /* Minimum amount of lookahead, except at the end of the input file.
  522  * See deflate.c for comments about the MIN_MATCH+1.
  523  */
  524 
  525 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
  526 /* In order to simplify the code, particularly on 16 bit machines, match
  527  * distances are limited to MAX_DIST instead of WSIZE.
  528  */
  529 
  530         /* in trees.c */
  531 void _tr_init         OF((deflate_state *s));
  532 int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
  533 ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
  534                           int eof));
  535 void _tr_align        OF((deflate_state *s));
  536 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
  537                           int eof));
  538 void _tr_stored_type_only OF((deflate_state *));
  539 
  540 #endif
  541 /* --- deflate.h */
  542 
  543 /* +++ deflate.c */
  544 /* deflate.c -- compress data using the deflation algorithm
  545  * Copyright (C) 1995-1996 Jean-loup Gailly.
  546  * For conditions of distribution and use, see copyright notice in zlib.h 
  547  */
  548 
  549 /*
  550  *  ALGORITHM
  551  *
  552  *      The "deflation" process depends on being able to identify portions
  553  *      of the input text which are identical to earlier input (within a
  554  *      sliding window trailing behind the input currently being processed).
  555  *
  556  *      The most straightforward technique turns out to be the fastest for
  557  *      most input files: try all possible matches and select the longest.
  558  *      The key feature of this algorithm is that insertions into the string
  559  *      dictionary are very simple and thus fast, and deletions are avoided
  560  *      completely. Insertions are performed at each input character, whereas
  561  *      string matches are performed only when the previous match ends. So it
  562  *      is preferable to spend more time in matches to allow very fast string
  563  *      insertions and avoid deletions. The matching algorithm for small
  564  *      strings is inspired from that of Rabin & Karp. A brute force approach
  565  *      is used to find longer strings when a small match has been found.
  566  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
  567  *      (by Leonid Broukhis).
  568  *         A previous version of this file used a more sophisticated algorithm
  569  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
  570  *      time, but has a larger average cost, uses more memory and is patented.
  571  *      However the F&G algorithm may be faster for some highly redundant
  572  *      files if the parameter max_chain_length (described below) is too large.
  573  *
  574  *  ACKNOWLEDGEMENTS
  575  *
  576  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
  577  *      I found it in 'freeze' written by Leonid Broukhis.
  578  *      Thanks to many people for bug reports and testing.
  579  *
  580  *  REFERENCES
  581  *
  582  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
  583  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
  584  *
  585  *      A description of the Rabin and Karp algorithm is given in the book
  586  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
  587  *
  588  *      Fiala,E.R., and Greene,D.H.
  589  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
  590  *
  591  */
  592 
  593 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
  594 
  595 /* #include "deflate.h" */
  596 
  597 char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
  598 /*
  599   If you use the zlib library in a product, an acknowledgment is welcome
  600   in the documentation of your product. If for some reason you cannot
  601   include such an acknowledgment, I would appreciate that you keep this
  602   copyright string in the executable of your product.
  603  */
  604 
  605 /* ===========================================================================
  606  *  Function prototypes.
  607  */
  608 typedef enum {
  609     need_more,      /* block not completed, need more input or more output */
  610     block_done,     /* block flush performed */
  611     finish_started, /* finish started, need only more output at next deflate */
  612     finish_done     /* finish done, accept no more input or output */
  613 } block_state;
  614 
  615 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
  616 /* Compression function. Returns the block state after the call. */
  617 
  618 local void fill_window    OF((deflate_state *s));
  619 local block_state deflate_stored OF((deflate_state *s, int flush));
  620 local block_state deflate_fast   OF((deflate_state *s, int flush));
  621 local block_state deflate_slow   OF((deflate_state *s, int flush));
  622 local void lm_init        OF((deflate_state *s));
  623 local void putShortMSB    OF((deflate_state *s, uInt b));
  624 local void flush_pending  OF((z_streamp strm));
  625 local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
  626 #ifdef ASMV
  627       void match_init OF((void)); /* asm code initialization */
  628       uInt longest_match  OF((deflate_state *s, IPos cur_match));
  629 #else
  630 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
  631 #endif
  632 
  633 #ifdef DEBUG_ZLIB
  634 local  void check_match OF((deflate_state *s, IPos start, IPos match,
  635                             int length));
  636 #endif
  637 
  638 /* ===========================================================================
  639  * Local data
  640  */
  641 
  642 #define NIL 0
  643 /* Tail of hash chains */
  644 
  645 #ifndef TOO_FAR
  646 #  define TOO_FAR 4096
  647 #endif
  648 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
  649 
  650 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
  651 /* Minimum amount of lookahead, except at the end of the input file.
  652  * See deflate.c for comments about the MIN_MATCH+1.
  653  */
  654 
  655 /* Values for max_lazy_match, good_match and max_chain_length, depending on
  656  * the desired pack level (0..9). The values given below have been tuned to
  657  * exclude worst case performance for pathological files. Better values may be
  658  * found for specific files.
  659  */
  660 typedef struct config_s {
  661    ush good_length; /* reduce lazy search above this match length */
  662    ush max_lazy;    /* do not perform lazy search above this match length */
  663    ush nice_length; /* quit search above this match length */
  664    ush max_chain;
  665    compress_func func;
  666 } config;
  667 
  668 local config configuration_table[10] = {
  669 /*      good lazy nice chain */
  670 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
  671 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
  672 /* 2 */ {4,    5, 16,    8, deflate_fast},
  673 /* 3 */ {4,    6, 32,   32, deflate_fast},
  674 
  675 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
  676 /* 5 */ {8,   16, 32,   32, deflate_slow},
  677 /* 6 */ {8,   16, 128, 128, deflate_slow},
  678 /* 7 */ {8,   32, 128, 256, deflate_slow},
  679 /* 8 */ {32, 128, 258, 1024, deflate_slow},
  680 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
  681 
  682 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
  683  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
  684  * meaning.
  685  */
  686 
  687 #define EQUAL 0
  688 /* result of memcmp for equal strings */
  689 
  690 #ifndef NO_DUMMY_DECL
  691 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
  692 #endif
  693 
  694 /* ===========================================================================
  695  * Update a hash value with the given input byte
  696  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
  697  *    input characters, so that a running hash key can be computed from the
  698  *    previous key instead of complete recalculation each time.
  699  */
  700 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
  701 
  702 
  703 /* ===========================================================================
  704  * Insert string str in the dictionary and set match_head to the previous head
  705  * of the hash chain (the most recent string with same hash key). Return
  706  * the previous length of the hash chain.
  707  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
  708  *    input characters and the first MIN_MATCH bytes of str are valid
  709  *    (except for the last MIN_MATCH-1 bytes of the input file).
  710  */
  711 #define INSERT_STRING(s, str, match_head) \
  712    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
  713     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
  714     s->head[s->ins_h] = (Pos)(str))
  715 
  716 /* ===========================================================================
  717  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
  718  * prev[] will be initialized on the fly.
  719  */
  720 #define CLEAR_HASH(s) \
  721     s->head[s->hash_size-1] = NIL; \
  722     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
  723 
  724 /* ========================================================================= */
  725 int deflateInit_(strm, level, version, stream_size)
  726     z_streamp strm;
  727     int level;
  728     const char *version;
  729     int stream_size;
  730 {
  731     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
  732                          Z_DEFAULT_STRATEGY, version, stream_size);
  733     /* To do: ignore strm->next_in if we use it as window */
  734 }
  735 
  736 /* ========================================================================= */
  737 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
  738                   version, stream_size)
  739     z_streamp strm;
  740     int  level;
  741     int  method;
  742     int  windowBits;
  743     int  memLevel;
  744     int  strategy;
  745     const char *version;
  746     int stream_size;
  747 {
  748     deflate_state *s;
  749     int noheader = 0;
  750     static char* my_version = ZLIB_VERSION;
  751 
  752     ushf *overlay;
  753     /* We overlay pending_buf and d_buf+l_buf. This works since the average
  754      * output size for (length,distance) codes is <= 24 bits.
  755      */
  756 
  757     if (version == Z_NULL || version[0] != my_version[0] ||
  758         stream_size != sizeof(z_stream)) {
  759         return Z_VERSION_ERROR;
  760     }
  761     if (strm == Z_NULL) return Z_STREAM_ERROR;
  762 
  763     strm->msg = Z_NULL;
  764 #ifndef NO_ZCFUNCS
  765     if (strm->zalloc == Z_NULL) {
  766         strm->zalloc = zcalloc;
  767         strm->opaque = (voidpf)0;
  768     }
  769     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
  770 #endif
  771 
  772     if (level == Z_DEFAULT_COMPRESSION) level = 6;
  773 
  774     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
  775         noheader = 1;
  776         windowBits = -windowBits;
  777     }
  778     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
  779         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
  780         strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
  781         return Z_STREAM_ERROR;
  782     }
  783     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
  784     if (s == Z_NULL) return Z_MEM_ERROR;
  785     strm->state = (struct internal_state FAR *)s;
  786     s->strm = strm;
  787 
  788     s->noheader = noheader;
  789     s->w_bits = windowBits;
  790     s->w_size = 1 << s->w_bits;
  791     s->w_mask = s->w_size - 1;
  792 
  793     s->hash_bits = memLevel + 7;
  794     s->hash_size = 1 << s->hash_bits;
  795     s->hash_mask = s->hash_size - 1;
  796     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
  797 
  798     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
  799     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
  800     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
  801 
  802     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
  803 
  804     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
  805     s->pending_buf = (uchf *) overlay;
  806     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
  807 
  808     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
  809         s->pending_buf == Z_NULL) {
  810         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
  811         deflateEnd (strm);
  812         return Z_MEM_ERROR;
  813     }
  814     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
  815     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
  816 
  817     s->level = level;
  818     s->strategy = strategy;
  819     s->method = (Byte)method;
  820 
  821     return deflateReset(strm);
  822 }
  823 
  824 /* ========================================================================= */
  825 int deflateSetDictionary (strm, dictionary, dictLength)
  826     z_streamp strm;
  827     const Bytef *dictionary;
  828     uInt  dictLength;
  829 {
  830     deflate_state *s;
  831     uInt length = dictLength;
  832     uInt n;
  833     IPos hash_head = 0;
  834 
  835     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
  836         return Z_STREAM_ERROR;
  837 
  838     s = (deflate_state *) strm->state;
  839     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
  840 
  841     strm->adler = adler32(strm->adler, dictionary, dictLength);
  842 
  843     if (length < MIN_MATCH) return Z_OK;
  844     if (length > MAX_DIST(s)) {
  845         length = MAX_DIST(s);
  846 #ifndef USE_DICT_HEAD
  847         dictionary += dictLength - length; /* use the tail of the dictionary */
  848 #endif
  849     }
  850     zmemcpy((charf *)s->window, dictionary, length);
  851     s->strstart = length;
  852     s->block_start = (long)length;
  853 
  854     /* Insert all strings in the hash table (except for the last two bytes).
  855      * s->lookahead stays null, so s->ins_h will be recomputed at the next
  856      * call of fill_window.
  857      */
  858     s->ins_h = s->window[0];
  859     UPDATE_HASH(s, s->ins_h, s->window[1]);
  860     for (n = 0; n <= length - MIN_MATCH; n++) {
  861         INSERT_STRING(s, n, hash_head);
  862     }
  863     if (hash_head) hash_head = 0;  /* to make compiler happy */
  864     return Z_OK;
  865 }
  866 
  867 /* ========================================================================= */
  868 int deflateReset (strm)
  869     z_streamp strm;
  870 {
  871     deflate_state *s;
  872     
  873     if (strm == Z_NULL || strm->state == Z_NULL ||
  874         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
  875 
  876     strm->total_in = strm->total_out = 0;
  877     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
  878     strm->data_type = Z_UNKNOWN;
  879 
  880     s = (deflate_state *)strm->state;
  881     s->pending = 0;
  882     s->pending_out = s->pending_buf;
  883 
  884     if (s->noheader < 0) {
  885         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
  886     }
  887     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
  888     strm->adler = 1;
  889     s->last_flush = Z_NO_FLUSH;
  890 
  891     _tr_init(s);
  892     lm_init(s);
  893 
  894     return Z_OK;
  895 }
  896 
  897 /* ========================================================================= */
  898 int deflateParams(strm, level, strategy)
  899     z_streamp strm;
  900     int level;
  901     int strategy;
  902 {
  903     deflate_state *s;
  904     compress_func func;
  905     int err = Z_OK;
  906 
  907     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  908     s = (deflate_state *) strm->state;
  909 
  910     if (level == Z_DEFAULT_COMPRESSION) {
  911         level = 6;
  912     }
  913     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
  914         return Z_STREAM_ERROR;
  915     }
  916     func = configuration_table[s->level].func;
  917 
  918     if (func != configuration_table[level].func && strm->total_in != 0) {
  919         /* Flush the last buffer: */
  920         err = deflate(strm, Z_PARTIAL_FLUSH);
  921     }
  922     if (s->level != level) {
  923         s->level = level;
  924         s->max_lazy_match   = configuration_table[level].max_lazy;
  925         s->good_match       = configuration_table[level].good_length;
  926         s->nice_match       = configuration_table[level].nice_length;
  927         s->max_chain_length = configuration_table[level].max_chain;
  928     }
  929     s->strategy = strategy;
  930     return err;
  931 }
  932 
  933 /* =========================================================================
  934  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
  935  * IN assertion: the stream state is correct and there is enough room in
  936  * pending_buf.
  937  */
  938 local void putShortMSB (s, b)
  939     deflate_state *s;
  940     uInt b;
  941 {
  942     put_byte(s, (Byte)(b >> 8));
  943     put_byte(s, (Byte)(b & 0xff));
  944 }   
  945 
  946 /* =========================================================================
  947  * Flush as much pending output as possible. All deflate() output goes
  948  * through this function so some applications may wish to modify it
  949  * to avoid allocating a large strm->next_out buffer and copying into it.
  950  * (See also read_buf()).
  951  */
  952 local void flush_pending(strm)
  953     z_streamp strm;
  954 {
  955     deflate_state *s = (deflate_state *) strm->state;
  956     unsigned len = s->pending;
  957 
  958     if (len > strm->avail_out) len = strm->avail_out;
  959     if (len == 0) return;
  960 
  961     if (strm->next_out != Z_NULL) {
  962         zmemcpy(strm->next_out, s->pending_out, len);
  963         strm->next_out += len;
  964     }
  965     s->pending_out += len;
  966     strm->total_out += len;
  967     strm->avail_out  -= len;
  968     s->pending -= len;
  969     if (s->pending == 0) {
  970         s->pending_out = s->pending_buf;
  971     }
  972 }
  973 
  974 /* ========================================================================= */
  975 int deflate (strm, flush)
  976     z_streamp strm;
  977     int flush;
  978 {
  979     int old_flush; /* value of flush param for previous deflate call */
  980     deflate_state *s;
  981 
  982     if (strm == Z_NULL || strm->state == Z_NULL ||
  983         flush > Z_FINISH || flush < 0) {
  984         return Z_STREAM_ERROR;
  985     }
  986     s = (deflate_state *) strm->state;
  987 
  988     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
  989         (s->status == FINISH_STATE && flush != Z_FINISH)) {
  990         ERR_RETURN(strm, Z_STREAM_ERROR);
  991     }
  992     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
  993 
  994     s->strm = strm; /* just in case */
  995     old_flush = s->last_flush;
  996     s->last_flush = flush;
  997 
  998     /* Write the zlib header */
  999     if (s->status == INIT_STATE) {
 1000 
 1001         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
 1002         uInt level_flags = (s->level-1) >> 1;
 1003 
 1004         if (level_flags > 3) level_flags = 3;
 1005         header |= (level_flags << 6);
 1006         if (s->strstart != 0) header |= PRESET_DICT;
 1007         header += 31 - (header % 31);
 1008 
 1009         s->status = BUSY_STATE;
 1010         putShortMSB(s, header);
 1011 
 1012         /* Save the adler32 of the preset dictionary: */
 1013         if (s->strstart != 0) {
 1014             putShortMSB(s, (uInt)(strm->adler >> 16));
 1015             putShortMSB(s, (uInt)(strm->adler & 0xffff));
 1016         }
 1017         strm->adler = 1L;
 1018     }
 1019 
 1020     /* Flush as much pending output as possible */
 1021     if (s->pending != 0) {
 1022         flush_pending(strm);
 1023         if (strm->avail_out == 0) {
 1024             /* Since avail_out is 0, deflate will be called again with
 1025              * more output space, but possibly with both pending and
 1026              * avail_in equal to zero. There won't be anything to do,
 1027              * but this is not an error situation so make sure we
 1028              * return OK instead of BUF_ERROR at next call of deflate:
 1029              */
 1030             s->last_flush = -1;
 1031             return Z_OK;
 1032         }
 1033 
 1034     /* Make sure there is something to do and avoid duplicate consecutive
 1035      * flushes. For repeated and useless calls with Z_FINISH, we keep
 1036      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
 1037      */
 1038     } else if (strm->avail_in == 0 && flush <= old_flush &&
 1039                flush != Z_FINISH) {
 1040         ERR_RETURN(strm, Z_BUF_ERROR);
 1041     }
 1042 
 1043     /* User must not provide more input after the first FINISH: */
 1044     if (s->status == FINISH_STATE && strm->avail_in != 0) {
 1045         ERR_RETURN(strm, Z_BUF_ERROR);
 1046     }
 1047 
 1048     /* Start a new block or continue the current one.
 1049      */
 1050     if (strm->avail_in != 0 || s->lookahead != 0 ||
 1051         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
 1052         block_state bstate;
 1053 
 1054         bstate = (*(configuration_table[s->level].func))(s, flush);
 1055 
 1056         if (bstate == finish_started || bstate == finish_done) {
 1057             s->status = FINISH_STATE;
 1058         }
 1059         if (bstate == need_more || bstate == finish_started) {
 1060             if (strm->avail_out == 0) {
 1061                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
 1062             }
 1063             return Z_OK;
 1064             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
 1065              * of deflate should use the same flush parameter to make sure
 1066              * that the flush is complete. So we don't have to output an
 1067              * empty block here, this will be done at next call. This also
 1068              * ensures that for a very small output buffer, we emit at most
 1069              * one empty block.
 1070              */
 1071         }
 1072         if (bstate == block_done) {
 1073             if (flush == Z_PARTIAL_FLUSH) {
 1074                 _tr_align(s);
 1075             } else if (flush == Z_PACKET_FLUSH) {
 1076                 /* Output just the 3-bit `stored' block type value,
 1077                    but not a zero length. */
 1078                 _tr_stored_type_only(s);
 1079             } else { /* FULL_FLUSH or SYNC_FLUSH */
 1080                 _tr_stored_block(s, (char*)0, 0L, 0);
 1081                 /* For a full flush, this empty block will be recognized
 1082                  * as a special marker by inflate_sync().
 1083                  */
 1084                 if (flush == Z_FULL_FLUSH) {
 1085                     CLEAR_HASH(s);             /* forget history */
 1086                 }
 1087             }
 1088             flush_pending(strm);
 1089             if (strm->avail_out == 0) {
 1090               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
 1091               return Z_OK;
 1092             }
 1093         }
 1094     }
 1095     Assert(strm->avail_out > 0, "bug2");
 1096 
 1097     if (flush != Z_FINISH) return Z_OK;
 1098     if (s->noheader) return Z_STREAM_END;
 1099 
 1100     /* Write the zlib trailer (adler32) */
 1101     putShortMSB(s, (uInt)(strm->adler >> 16));
 1102     putShortMSB(s, (uInt)(strm->adler & 0xffff));
 1103     flush_pending(strm);
 1104     /* If avail_out is zero, the application will call deflate again
 1105      * to flush the rest.
 1106      */
 1107     s->noheader = -1; /* write the trailer only once! */
 1108     return s->pending != 0 ? Z_OK : Z_STREAM_END;
 1109 }
 1110 
 1111 /* ========================================================================= */
 1112 int deflateEnd (strm)
 1113     z_streamp strm;
 1114 {
 1115     int status;
 1116     deflate_state *s;
 1117 
 1118     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
 1119     s = (deflate_state *) strm->state;
 1120 
 1121     status = s->status;
 1122     if (status != INIT_STATE && status != BUSY_STATE &&
 1123         status != FINISH_STATE) {
 1124       return Z_STREAM_ERROR;
 1125     }
 1126 
 1127     /* Deallocate in reverse order of allocations: */
 1128     TRY_FREE(strm, s->pending_buf);
 1129     TRY_FREE(strm, s->head);
 1130     TRY_FREE(strm, s->prev);
 1131     TRY_FREE(strm, s->window);
 1132 
 1133     ZFREE(strm, s);
 1134     strm->state = Z_NULL;
 1135 
 1136     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
 1137 }
 1138 
 1139 /* =========================================================================
 1140  * Copy the source state to the destination state.
 1141  */
 1142 int deflateCopy (dest, source)
 1143     z_streamp dest;
 1144     z_streamp source;
 1145 {
 1146     deflate_state *ds;
 1147     deflate_state *ss;
 1148     ushf *overlay;
 1149 
 1150     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
 1151         return Z_STREAM_ERROR;
 1152     ss = (deflate_state *) source->state;
 1153 
 1154     zmemcpy(dest, source, sizeof(*dest));
 1155 
 1156     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
 1157     if (ds == Z_NULL) return Z_MEM_ERROR;
 1158     dest->state = (struct internal_state FAR *) ds;
 1159     zmemcpy(ds, ss, sizeof(*ds));
 1160     ds->strm = dest;
 1161 
 1162     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
 1163     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
 1164     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
 1165     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
 1166     ds->pending_buf = (uchf *) overlay;
 1167 
 1168     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
 1169         ds->pending_buf == Z_NULL) {
 1170         deflateEnd (dest);
 1171         return Z_MEM_ERROR;
 1172     }
 1173     /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
 1174     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
 1175     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
 1176     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
 1177     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
 1178 
 1179     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
 1180     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
 1181     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
 1182 
 1183     ds->l_desc.dyn_tree = ds->dyn_ltree;
 1184     ds->d_desc.dyn_tree = ds->dyn_dtree;
 1185     ds->bl_desc.dyn_tree = ds->bl_tree;
 1186 
 1187     return Z_OK;
 1188 }
 1189 
 1190 /* ===========================================================================
 1191  * Return the number of bytes of output which are immediately available
 1192  * for output from the decompressor.
 1193  */
 1194 int deflateOutputPending (strm)
 1195     z_streamp strm;
 1196 {
 1197     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
 1198     
 1199     return ((deflate_state *)(strm->state))->pending;
 1200 }
 1201 
 1202 /* ===========================================================================
 1203  * Read a new buffer from the current input stream, update the adler32
 1204  * and total number of bytes read.  All deflate() input goes through
 1205  * this function so some applications may wish to modify it to avoid
 1206  * allocating a large strm->next_in buffer and copying from it.
 1207  * (See also flush_pending()).
 1208  */
 1209 local int read_buf(strm, buf, size)
 1210     z_streamp strm;
 1211     charf *buf;
 1212     unsigned size;
 1213 {
 1214     unsigned len = strm->avail_in;
 1215 
 1216     if (len > size) len = size;
 1217     if (len == 0) return 0;
 1218 
 1219     strm->avail_in  -= len;
 1220 
 1221     if (!((deflate_state *)(strm->state))->noheader) {
 1222         strm->adler = adler32(strm->adler, strm->next_in, len);
 1223     }
 1224     zmemcpy(buf, strm->next_in, len);
 1225     strm->next_in  += len;
 1226     strm->total_in += len;
 1227 
 1228     return (int)len;
 1229 }
 1230 
 1231 /* ===========================================================================
 1232  * Initialize the "longest match" routines for a new zlib stream
 1233  */
 1234 local void lm_init (s)
 1235     deflate_state *s;
 1236 {
 1237     s->window_size = (ulg)2L*s->w_size;
 1238 
 1239     CLEAR_HASH(s);
 1240 
 1241     /* Set the default configuration parameters:
 1242      */
 1243     s->max_lazy_match   = configuration_table[s->level].max_lazy;
 1244     s->good_match       = configuration_table[s->level].good_length;
 1245     s->nice_match       = configuration_table[s->level].nice_length;
 1246     s->max_chain_length = configuration_table[s->level].max_chain;
 1247 
 1248     s->strstart = 0;
 1249     s->block_start = 0L;
 1250     s->lookahead = 0;
 1251     s->match_length = s->prev_length = MIN_MATCH-1;
 1252     s->match_available = 0;
 1253     s->ins_h = 0;
 1254 #ifdef ASMV
 1255     match_init(); /* initialize the asm code */
 1256 #endif
 1257 }
 1258 
 1259 /* ===========================================================================
 1260  * Set match_start to the longest match starting at the given string and
 1261  * return its length. Matches shorter or equal to prev_length are discarded,
 1262  * in which case the result is equal to prev_length and match_start is
 1263  * garbage.
 1264  * IN assertions: cur_match is the head of the hash chain for the current
 1265  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 1266  * OUT assertion: the match length is not greater than s->lookahead.
 1267  */
 1268 #ifndef ASMV
 1269 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
 1270  * match.S. The code will be functionally equivalent.
 1271  */
 1272 local uInt longest_match(s, cur_match)
 1273     deflate_state *s;
 1274     IPos cur_match;                             /* current match */
 1275 {
 1276     unsigned chain_length = s->max_chain_length;/* max hash chain length */
 1277     register Bytef *scan = s->window + s->strstart; /* current string */
 1278     register Bytef *match;                       /* matched string */
 1279     register int len;                           /* length of current match */
 1280     int best_len = s->prev_length;              /* best match length so far */
 1281     int nice_match = s->nice_match;             /* stop if match long enough */
 1282     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
 1283         s->strstart - (IPos)MAX_DIST(s) : NIL;
 1284     /* Stop when cur_match becomes <= limit. To simplify the code,
 1285      * we prevent matches with the string of window index 0.
 1286      */
 1287     Posf *prev = s->prev;
 1288     uInt wmask = s->w_mask;
 1289 
 1290 #ifdef UNALIGNED_OK
 1291     /* Compare two bytes at a time. Note: this is not always beneficial.
 1292      * Try with and without -DUNALIGNED_OK to check.
 1293      */
 1294     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
 1295     register ush scan_start = *(ushf*)scan;
 1296     register ush scan_end   = *(ushf*)(scan+best_len-1);
 1297 #else
 1298     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 1299     register Byte scan_end1  = scan[best_len-1];
 1300     register Byte scan_end   = scan[best_len];
 1301 #endif
 1302 
 1303     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 1304      * It is easy to get rid of this optimization if necessary.
 1305      */
 1306     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 1307 
 1308     /* Do not waste too much time if we already have a good match: */
 1309     if (s->prev_length >= s->good_match) {
 1310         chain_length >>= 2;
 1311     }
 1312     /* Do not look for matches beyond the end of the input. This is necessary
 1313      * to make deflate deterministic.
 1314      */
 1315     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
 1316 
 1317     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 1318 
 1319     do {
 1320         Assert(cur_match < s->strstart, "no future");
 1321         match = s->window + cur_match;
 1322 
 1323         /* Skip to next match if the match length cannot increase
 1324          * or if the match length is less than 2:
 1325          */
 1326 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
 1327         /* This code assumes sizeof(unsigned short) == 2. Do not use
 1328          * UNALIGNED_OK if your compiler uses a different size.
 1329          */
 1330         if (*(ushf*)(match+best_len-1) != scan_end ||
 1331             *(ushf*)match != scan_start) continue;
 1332 
 1333         /* It is not necessary to compare scan[2] and match[2] since they are
 1334          * always equal when the other bytes match, given that the hash keys
 1335          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
 1336          * strstart+3, +5, ... up to strstart+257. We check for insufficient
 1337          * lookahead only every 4th comparison; the 128th check will be made
 1338          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
 1339          * necessary to put more guard bytes at the end of the window, or
 1340          * to check more often for insufficient lookahead.
 1341          */
 1342         Assert(scan[2] == match[2], "scan[2]?");
 1343         scan++, match++;
 1344         do {
 1345         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1346                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1347                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1348                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1349                  scan < strend);
 1350         /* The funny "do {}" generates better code on most compilers */
 1351 
 1352         /* Here, scan <= window+strstart+257 */
 1353         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 1354         if (*scan == *match) scan++;
 1355 
 1356         len = (MAX_MATCH - 1) - (int)(strend-scan);
 1357         scan = strend - (MAX_MATCH-1);
 1358 
 1359 #else /* UNALIGNED_OK */
 1360 
 1361         if (match[best_len]   != scan_end  ||
 1362             match[best_len-1] != scan_end1 ||
 1363             *match            != *scan     ||
 1364             *++match          != scan[1])      continue;
 1365 
 1366         /* The check at best_len-1 can be removed because it will be made
 1367          * again later. (This heuristic is not always a win.)
 1368          * It is not necessary to compare scan[2] and match[2] since they
 1369          * are always equal when the other bytes match, given that
 1370          * the hash keys are equal and that HASH_BITS >= 8.
 1371          */
 1372         scan += 2, match++;
 1373         Assert(*scan == *match, "match[2]?");
 1374 
 1375         /* We check for insufficient lookahead only every 8th comparison;
 1376          * the 256th check will be made at strstart+258.
 1377          */
 1378         do {
 1379         } while (*++scan == *++match && *++scan == *++match &&
 1380                  *++scan == *++match && *++scan == *++match &&
 1381                  *++scan == *++match && *++scan == *++match &&
 1382                  *++scan == *++match && *++scan == *++match &&
 1383                  scan < strend);
 1384 
 1385         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 1386 
 1387         len = MAX_MATCH - (int)(strend - scan);
 1388         scan = strend - MAX_MATCH;
 1389 
 1390 #endif /* UNALIGNED_OK */
 1391 
 1392         if (len > best_len) {
 1393             s->match_start = cur_match;
 1394             best_len = len;
 1395             if (len >= nice_match) break;
 1396 #ifdef UNALIGNED_OK
 1397             scan_end = *(ushf*)(scan+best_len-1);
 1398 #else
 1399             scan_end1  = scan[best_len-1];
 1400             scan_end   = scan[best_len];
 1401 #endif
 1402         }
 1403     } while ((cur_match = prev[cur_match & wmask]) > limit
 1404              && --chain_length != 0);
 1405 
 1406     if ((uInt)best_len <= s->lookahead) return best_len;
 1407     return s->lookahead;
 1408 }
 1409 #endif /* ASMV */
 1410 
 1411 #ifdef DEBUG_ZLIB
 1412 /* ===========================================================================
 1413  * Check that the match at match_start is indeed a match.
 1414  */
 1415 local void check_match(s, start, match, length)
 1416     deflate_state *s;
 1417     IPos start, match;
 1418     int length;
 1419 {
 1420     /* check that the match is indeed a match */
 1421     if (zmemcmp((charf *)s->window + match,
 1422                 (charf *)s->window + start, length) != EQUAL) {
 1423         fprintf(stderr, " start %u, match %u, length %d\n",
 1424                 start, match, length);
 1425         do {
 1426             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
 1427         } while (--length != 0);
 1428         z_error("invalid match");
 1429     }
 1430     if (z_verbose > 1) {
 1431         fprintf(stderr,"\\[%d,%d]", start-match, length);
 1432         do { putc(s->window[start++], stderr); } while (--length != 0);
 1433     }
 1434 }
 1435 #else
 1436 #  define check_match(s, start, match, length)
 1437 #endif
 1438 
 1439 /* ===========================================================================
 1440  * Fill the window when the lookahead becomes insufficient.
 1441  * Updates strstart and lookahead.
 1442  *
 1443  * IN assertion: lookahead < MIN_LOOKAHEAD
 1444  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 1445  *    At least one byte has been read, or avail_in == 0; reads are
 1446  *    performed for at least two bytes (required for the zip translate_eol
 1447  *    option -- not supported here).
 1448  */
 1449 local void fill_window(s)
 1450     deflate_state *s;
 1451 {
 1452     register unsigned n, m;
 1453     register Posf *p;
 1454     unsigned more;    /* Amount of free space at the end of the window. */
 1455     uInt wsize = s->w_size;
 1456 
 1457     do {
 1458         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
 1459 
 1460         /* Deal with !@#$% 64K limit: */
 1461         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
 1462             more = wsize;
 1463 
 1464         } else if (more == (unsigned)(-1)) {
 1465             /* Very unlikely, but possible on 16 bit machine if strstart == 0
 1466              * and lookahead == 1 (input done one byte at time)
 1467              */
 1468             more--;
 1469 
 1470         /* If the window is almost full and there is insufficient lookahead,
 1471          * move the upper half to the lower one to make room in the upper half.
 1472          */
 1473         } else if (s->strstart >= wsize+MAX_DIST(s)) {
 1474 
 1475             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
 1476                    (unsigned)wsize);
 1477             s->match_start -= wsize;
 1478             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
 1479             s->block_start -= (long) wsize;
 1480 
 1481             /* Slide the hash table (could be avoided with 32 bit values
 1482                at the expense of memory usage). We slide even when level == 0
 1483                to keep the hash table consistent if we switch back to level > 0
 1484                later. (Using level 0 permanently is not an optimal usage of
 1485                zlib, so we don't care about this pathological case.)
 1486              */
 1487             n = s->hash_size;
 1488             p = &s->head[n];
 1489             do {
 1490                 m = *--p;
 1491                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
 1492             } while (--n);
 1493 
 1494             n = wsize;
 1495             p = &s->prev[n];
 1496             do {
 1497                 m = *--p;
 1498                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
 1499                 /* If n is not on any hash chain, prev[n] is garbage but
 1500                  * its value will never be used.
 1501                  */
 1502             } while (--n);
 1503             more += wsize;
 1504         }
 1505         if (s->strm->avail_in == 0) return;
 1506 
 1507         /* If there was no sliding:
 1508          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 1509          *    more == window_size - lookahead - strstart
 1510          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 1511          * => more >= window_size - 2*WSIZE + 2
 1512          * In the BIG_MEM or MMAP case (not yet supported),
 1513          *   window_size == input_size + MIN_LOOKAHEAD  &&
 1514          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 1515          * Otherwise, window_size == 2*WSIZE so more >= 2.
 1516          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 1517          */
 1518         Assert(more >= 2, "more < 2");
 1519 
 1520         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
 1521                      more);
 1522         s->lookahead += n;
 1523 
 1524         /* Initialize the hash value now that we have some input: */
 1525         if (s->lookahead >= MIN_MATCH) {
 1526             s->ins_h = s->window[s->strstart];
 1527             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
 1528 #if MIN_MATCH != 3
 1529             Call UPDATE_HASH() MIN_MATCH-3 more times
 1530 #endif
 1531         }
 1532         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 1533          * but this is not important since only literal bytes will be emitted.
 1534          */
 1535 
 1536     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
 1537 }
 1538 
 1539 /* ===========================================================================
 1540  * Flush the current block, with given end-of-file flag.
 1541  * IN assertion: strstart is set to the end of the current match.
 1542  */
 1543 #define FLUSH_BLOCK_ONLY(s, eof) { \
 1544    _tr_flush_block(s, (s->block_start >= 0L ? \
 1545                    (charf *)&s->window[(unsigned)s->block_start] : \
 1546                    (charf *)Z_NULL), \
 1547                 (ulg)((long)s->strstart - s->block_start), \
 1548                 (eof)); \
 1549    s->block_start = s->strstart; \
 1550    flush_pending(s->strm); \
 1551    Tracev((stderr,"[FLUSH]")); \
 1552 }
 1553 
 1554 /* Same but force premature exit if necessary. */
 1555 #define FLUSH_BLOCK(s, eof) { \
 1556    FLUSH_BLOCK_ONLY(s, eof); \
 1557    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
 1558 }
 1559 
 1560 /* ===========================================================================
 1561  * Copy without compression as much as possible from the input stream, return
 1562  * the current block state.
 1563  * This function does not insert new strings in the dictionary since
 1564  * uncompressible data is probably not useful. This function is used
 1565  * only for the level=0 compression option.
 1566  * NOTE: this function should be optimized to avoid extra copying from
 1567  * window to pending_buf.
 1568  */
 1569 local block_state deflate_stored(s, flush)
 1570     deflate_state *s;
 1571     int flush;
 1572 {
 1573     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
 1574      * to pending_buf_size, and each stored block has a 5 byte header:
 1575      */
 1576     ulg max_block_size = 0xffff;
 1577     ulg max_start;
 1578 
 1579     if (max_block_size > s->pending_buf_size - 5) {
 1580         max_block_size = s->pending_buf_size - 5;
 1581     }
 1582 
 1583     /* Copy as much as possible from input to output: */
 1584     for (;;) {
 1585         /* Fill the window as much as possible: */
 1586         if (s->lookahead <= 1) {
 1587 
 1588             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
 1589                    s->block_start >= (long)s->w_size, "slide too late");
 1590 
 1591             fill_window(s);
 1592             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
 1593 
 1594             if (s->lookahead == 0) break; /* flush the current block */
 1595         }
 1596         Assert(s->block_start >= 0L, "block gone");
 1597 
 1598         s->strstart += s->lookahead;
 1599         s->lookahead = 0;
 1600 
 1601         /* Emit a stored block if pending_buf will be full: */
 1602         max_start = s->block_start + max_block_size;
 1603         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
 1604             /* strstart == 0 is possible when wraparound on 16-bit machine */
 1605             s->lookahead = (uInt)(s->strstart - max_start);
 1606             s->strstart = (uInt)max_start;
 1607             FLUSH_BLOCK(s, 0);
 1608         }
 1609         /* Flush if we may have to slide, otherwise block_start may become
 1610          * negative and the data will be gone:
 1611          */
 1612         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
 1613             FLUSH_BLOCK(s, 0);
 1614         }
 1615     }
 1616     FLUSH_BLOCK(s, flush == Z_FINISH);
 1617     return flush == Z_FINISH ? finish_done : block_done;
 1618 }
 1619 
 1620 /* ===========================================================================
 1621  * Compress as much as possible from the input stream, return the current
 1622  * block state.
 1623  * This function does not perform lazy evaluation of matches and inserts
 1624  * new strings in the dictionary only for unmatched strings or for short
 1625  * matches. It is used only for the fast compression options.
 1626  */
 1627 local block_state deflate_fast(s, flush)
 1628     deflate_state *s;
 1629     int flush;
 1630 {
 1631     IPos hash_head = NIL; /* head of the hash chain */
 1632     int bflush;           /* set if current block must be flushed */
 1633 
 1634     for (;;) {
 1635         /* Make sure that we always have enough lookahead, except
 1636          * at the end of the input file. We need MAX_MATCH bytes
 1637          * for the next match, plus MIN_MATCH bytes to insert the
 1638          * string following the next match.
 1639          */
 1640         if (s->lookahead < MIN_LOOKAHEAD) {
 1641             fill_window(s);
 1642             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 1643                 return need_more;
 1644             }
 1645             if (s->lookahead == 0) break; /* flush the current block */
 1646         }
 1647 
 1648         /* Insert the string window[strstart .. strstart+2] in the
 1649          * dictionary, and set hash_head to the head of the hash chain:
 1650          */
 1651         if (s->lookahead >= MIN_MATCH) {
 1652             INSERT_STRING(s, s->strstart, hash_head);
 1653         }
 1654 
 1655         /* Find the longest match, discarding those <= prev_length.
 1656          * At this point we have always match_length < MIN_MATCH
 1657          */
 1658         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
 1659             /* To simplify the code, we prevent matches with the string
 1660              * of window index 0 (in particular we have to avoid a match
 1661              * of the string with itself at the start of the input file).
 1662              */
 1663             if (s->strategy != Z_HUFFMAN_ONLY) {
 1664                 s->match_length = longest_match (s, hash_head);
 1665             }
 1666             /* longest_match() sets match_start */
 1667         }
 1668         if (s->match_length >= MIN_MATCH) {
 1669             check_match(s, s->strstart, s->match_start, s->match_length);
 1670 
 1671             bflush = _tr_tally(s, s->strstart - s->match_start,
 1672                                s->match_length - MIN_MATCH);
 1673 
 1674             s->lookahead -= s->match_length;
 1675 
 1676             /* Insert new strings in the hash table only if the match length
 1677              * is not too large. This saves time but degrades compression.
 1678              */
 1679             if (s->match_length <= s->max_insert_length &&
 1680                 s->lookahead >= MIN_MATCH) {
 1681                 s->match_length--; /* string at strstart already in hash table */
 1682                 do {
 1683                     s->strstart++;
 1684                     INSERT_STRING(s, s->strstart, hash_head);
 1685                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 1686                      * always MIN_MATCH bytes ahead.
 1687                      */
 1688                 } while (--s->match_length != 0);
 1689                 s->strstart++; 
 1690             } else {
 1691                 s->strstart += s->match_length;
 1692                 s->match_length = 0;
 1693                 s->ins_h = s->window[s->strstart];
 1694                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
 1695 #if MIN_MATCH != 3
 1696                 Call UPDATE_HASH() MIN_MATCH-3 more times
 1697 #endif
 1698                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 1699                  * matter since it will be recomputed at next deflate call.
 1700                  */
 1701             }
 1702         } else {
 1703             /* No match, output a literal byte */
 1704             Tracevv((stderr,"%c", s->window[s->strstart]));
 1705             bflush = _tr_tally (s, 0, s->window[s->strstart]);
 1706             s->lookahead--;
 1707             s->strstart++; 
 1708         }
 1709         if (bflush) FLUSH_BLOCK(s, 0);
 1710     }
 1711     FLUSH_BLOCK(s, flush == Z_FINISH);
 1712     return flush == Z_FINISH ? finish_done : block_done;
 1713 }
 1714 
 1715 /* ===========================================================================
 1716  * Same as above, but achieves better compression. We use a lazy
 1717  * evaluation for matches: a match is finally adopted only if there is
 1718  * no better match at the next window position.
 1719  */
 1720 local block_state deflate_slow(s, flush)
 1721     deflate_state *s;
 1722     int flush;
 1723 {
 1724     IPos hash_head = NIL;    /* head of hash chain */
 1725     int bflush;              /* set if current block must be flushed */
 1726 
 1727     /* Process the input block. */
 1728     for (;;) {
 1729         /* Make sure that we always have enough lookahead, except
 1730          * at the end of the input file. We need MAX_MATCH bytes
 1731          * for the next match, plus MIN_MATCH bytes to insert the
 1732          * string following the next match.
 1733          */
 1734         if (s->lookahead < MIN_LOOKAHEAD) {
 1735             fill_window(s);
 1736             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 1737                 return need_more;
 1738             }
 1739             if (s->lookahead == 0) break; /* flush the current block */
 1740         }
 1741 
 1742         /* Insert the string window[strstart .. strstart+2] in the
 1743          * dictionary, and set hash_head to the head of the hash chain:
 1744          */
 1745         if (s->lookahead >= MIN_MATCH) {
 1746             INSERT_STRING(s, s->strstart, hash_head);
 1747         }
 1748 
 1749         /* Find the longest match, discarding those <= prev_length.
 1750          */
 1751         s->prev_length = s->match_length, s->prev_match = s->match_start;
 1752         s->match_length = MIN_MATCH-1;
 1753 
 1754         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
 1755             s->strstart - hash_head <= MAX_DIST(s)) {
 1756             /* To simplify the code, we prevent matches with the string
 1757              * of window index 0 (in particular we have to avoid a match
 1758              * of the string with itself at the start of the input file).
 1759              */
 1760             if (s->strategy != Z_HUFFMAN_ONLY) {
 1761                 s->match_length = longest_match (s, hash_head);
 1762             }
 1763             /* longest_match() sets match_start */
 1764 
 1765             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
 1766                  (s->match_length == MIN_MATCH &&
 1767                   s->strstart - s->match_start > TOO_FAR))) {
 1768 
 1769                 /* If prev_match is also MIN_MATCH, match_start is garbage
 1770                  * but we will ignore the current match anyway.
 1771                  */
 1772                 s->match_length = MIN_MATCH-1;
 1773             }
 1774         }
 1775         /* If there was a match at the previous step and the current
 1776          * match is not better, output the previous match:
 1777          */
 1778         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
 1779             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
 1780             /* Do not insert strings in hash table beyond this. */
 1781 
 1782             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
 1783 
 1784             bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
 1785                                s->prev_length - MIN_MATCH);
 1786 
 1787             /* Insert in hash table all strings up to the end of the match.
 1788              * strstart-1 and strstart are already inserted. If there is not
 1789              * enough lookahead, the last two strings are not inserted in
 1790              * the hash table.
 1791              */
 1792             s->lookahead -= s->prev_length-1;
 1793             s->prev_length -= 2;
 1794             do {
 1795                 if (++s->strstart <= max_insert) {
 1796                     INSERT_STRING(s, s->strstart, hash_head);
 1797                 }
 1798             } while (--s->prev_length != 0);
 1799             s->match_available = 0;
 1800             s->match_length = MIN_MATCH-1;
 1801             s->strstart++;
 1802 
 1803             if (bflush) FLUSH_BLOCK(s, 0);
 1804 
 1805         } else if (s->match_available) {
 1806             /* If there was no match at the previous position, output a
 1807              * single literal. If there was a match but the current match
 1808              * is longer, truncate the previous match to a single literal.
 1809              */
 1810             Tracevv((stderr,"%c", s->window[s->strstart-1]));
 1811             if (_tr_tally (s, 0, s->window[s->strstart-1])) {
 1812                 FLUSH_BLOCK_ONLY(s, 0);
 1813             }
 1814             s->strstart++;
 1815             s->lookahead--;
 1816             if (s->strm->avail_out == 0) return need_more;
 1817         } else {
 1818             /* There is no previous match to compare with, wait for
 1819              * the next step to decide.
 1820              */
 1821             s->match_available = 1;
 1822             s->strstart++;
 1823             s->lookahead--;
 1824         }
 1825     }
 1826     Assert (flush != Z_NO_FLUSH, "no flush?");
 1827     if (s->match_available) {
 1828         Tracevv((stderr,"%c", s->window[s->strstart-1]));
 1829         _tr_tally (s, 0, s->window[s->strstart-1]);
 1830         s->match_available = 0;
 1831     }
 1832     FLUSH_BLOCK(s, flush == Z_FINISH);
 1833     return flush == Z_FINISH ? finish_done : block_done;
 1834 }
 1835 /* --- deflate.c */
 1836 
 1837 /* +++ trees.c */
 1838 /* trees.c -- output deflated data using Huffman coding
 1839  * Copyright (C) 1995-1996 Jean-loup Gailly
 1840  * For conditions of distribution and use, see copyright notice in zlib.h 
 1841  */
 1842 
 1843 /*
 1844  *  ALGORITHM
 1845  *
 1846  *      The "deflation" process uses several Huffman trees. The more
 1847  *      common source values are represented by shorter bit sequences.
 1848  *
 1849  *      Each code tree is stored in a compressed form which is itself
 1850  * a Huffman encoding of the lengths of all the code strings (in
 1851  * ascending order by source values).  The actual code strings are
 1852  * reconstructed from the lengths in the inflate process, as described
 1853  * in the deflate specification.
 1854  *
 1855  *  REFERENCES
 1856  *
 1857  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
 1858  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
 1859  *
 1860  *      Storer, James A.
 1861  *          Data Compression:  Methods and Theory, pp. 49-50.
 1862  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 1863  *
 1864  *      Sedgewick, R.
 1865  *          Algorithms, p290.
 1866  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 1867  */
 1868 
 1869 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
 1870 
 1871 /* #include "deflate.h" */
 1872 
 1873 #ifdef DEBUG_ZLIB
 1874 #  include <ctype.h>
 1875 #endif
 1876 
 1877 /* ===========================================================================
 1878  * Constants
 1879  */
 1880 
 1881 #define MAX_BL_BITS 7
 1882 /* Bit length codes must not exceed MAX_BL_BITS bits */
 1883 
 1884 #define END_BLOCK 256
 1885 /* end of block literal code */
 1886 
 1887 #define REP_3_6      16
 1888 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
 1889 
 1890 #define REPZ_3_10    17
 1891 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
 1892 
 1893 #define REPZ_11_138  18
 1894 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
 1895 
 1896 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
 1897    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
 1898 
 1899 local int extra_dbits[D_CODES] /* extra bits for each distance code */
 1900    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
 1901 
 1902 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
 1903    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
 1904 
 1905 local uch bl_order[BL_CODES]
 1906    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
 1907 /* The lengths of the bit length codes are sent in order of decreasing
 1908  * probability, to avoid transmitting the lengths for unused bit length codes.
 1909  */
 1910 
 1911 #define Buf_size (8 * 2*sizeof(char))
 1912 /* Number of bits used within bi_buf. (bi_buf might be implemented on
 1913  * more than 16 bits on some systems.)
 1914  */
 1915 
 1916 /* ===========================================================================
 1917  * Local data. These are initialized only once.
 1918  */
 1919 
 1920 local ct_data static_ltree[L_CODES+2];
 1921 /* The static literal tree. Since the bit lengths are imposed, there is no
 1922  * need for the L_CODES extra codes used during heap construction. However
 1923  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 1924  * below).
 1925  */
 1926 
 1927 local ct_data static_dtree[D_CODES];
 1928 /* The static distance tree. (Actually a trivial tree since all codes use
 1929  * 5 bits.)
 1930  */
 1931 
 1932 local uch dist_code[512];
 1933 /* distance codes. The first 256 values correspond to the distances
 1934  * 3 .. 258, the last 256 values correspond to the top 8 bits of
 1935  * the 15 bit distances.
 1936  */
 1937 
 1938 local uch length_code[MAX_MATCH-MIN_MATCH+1];
 1939 /* length code for each normalized match length (0 == MIN_MATCH) */
 1940 
 1941 local int base_length[LENGTH_CODES];
 1942 /* First normalized length for each code (0 = MIN_MATCH) */
 1943 
 1944 local int base_dist[D_CODES];
 1945 /* First normalized distance for each code (0 = distance of 1) */
 1946 
 1947 struct static_tree_desc_s {
 1948     ct_data *static_tree;        /* static tree or NULL */
 1949     intf    *extra_bits;         /* extra bits for each code or NULL */
 1950     int     extra_base;          /* base index for extra_bits */
 1951     int     elems;               /* max number of elements in the tree */
 1952     int     max_length;          /* max bit length for the codes */
 1953 };
 1954 
 1955 local static_tree_desc  static_l_desc =
 1956 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
 1957 
 1958 local static_tree_desc  static_d_desc =
 1959 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
 1960 
 1961 local static_tree_desc  static_bl_desc =
 1962 {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
 1963 
 1964 /* ===========================================================================
 1965  * Local (static) routines in this file.
 1966  */
 1967 
 1968 local void tr_static_init OF((void));
 1969 local void init_block     OF((deflate_state *s));
 1970 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
 1971 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
 1972 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
 1973 local void build_tree     OF((deflate_state *s, tree_desc *desc));
 1974 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 1975 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
 1976 local int  build_bl_tree  OF((deflate_state *s));
 1977 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
 1978                               int blcodes));
 1979 local void compress_block OF((deflate_state *s, ct_data *ltree,
 1980                               ct_data *dtree));
 1981 local void set_data_type  OF((deflate_state *s));
 1982 local unsigned bi_reverse OF((unsigned value, int length));
 1983 local void bi_windup      OF((deflate_state *s));
 1984 local void bi_flush       OF((deflate_state *s));
 1985 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
 1986                               int header));
 1987 
 1988 #ifndef DEBUG_ZLIB
 1989 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
 1990    /* Send a code of the given tree. c and tree must not have side effects */
 1991 
 1992 #else /* DEBUG_ZLIB */
 1993 #  define send_code(s, c, tree) \
 1994      { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
 1995        send_bits(s, tree[c].Code, tree[c].Len); }
 1996 #endif
 1997 
 1998 #define d_code(dist) \
 1999    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
 2000 /* Mapping from a distance to a distance code. dist is the distance - 1 and
 2001  * must not have side effects. dist_code[256] and dist_code[257] are never
 2002  * used.
 2003  */
 2004 
 2005 /* ===========================================================================
 2006  * Output a short LSB first on the stream.
 2007  * IN assertion: there is enough room in pendingBuf.
 2008  */
 2009 #define put_short(s, w) { \
 2010     put_byte(s, (uch)((w) & 0xff)); \
 2011     put_byte(s, (uch)((ush)(w) >> 8)); \
 2012 }
 2013 
 2014 /* ===========================================================================
 2015  * Send a value on a given number of bits.
 2016  * IN assertion: length <= 16 and value fits in length bits.
 2017  */
 2018 #ifdef DEBUG_ZLIB
 2019 local void send_bits      OF((deflate_state *s, int value, int length));
 2020 
 2021 local void send_bits(s, value, length)
 2022     deflate_state *s;
 2023     int value;  /* value to send */
 2024     int length; /* number of bits */
 2025 {
 2026     Tracevv((stderr," l %2d v %4x ", length, value));
 2027     Assert(length > 0 && length <= 15, "invalid length");
 2028     s->bits_sent += (ulg)length;
 2029 
 2030     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 2031      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 2032      * unused bits in value.
 2033      */
 2034     if (s->bi_valid > (int)Buf_size - length) {
 2035         s->bi_buf |= (value << s->bi_valid);
 2036         put_short(s, s->bi_buf);
 2037         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
 2038         s->bi_valid += length - Buf_size;
 2039     } else {
 2040         s->bi_buf |= value << s->bi_valid;
 2041         s->bi_valid += length;
 2042     }
 2043 }
 2044 #else /* !DEBUG_ZLIB */
 2045 
 2046 #define send_bits(s, value, length) \
 2047 { int len = length;\
 2048   if (s->bi_valid > (int)Buf_size - len) {\
 2049     int val = value;\
 2050     s->bi_buf |= (val << s->bi_valid);\
 2051     put_short(s, s->bi_buf);\
 2052     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
 2053     s->bi_valid += len - Buf_size;\
 2054   } else {\
 2055     s->bi_buf |= (value) << s->bi_valid;\
 2056     s->bi_valid += len;\
 2057   }\
 2058 }
 2059 #endif /* DEBUG_ZLIB */
 2060 
 2061 
 2062 #define MAX(a,b) (a >= b ? a : b)
 2063 /* the arguments must not have side effects */
 2064 
 2065 /* ===========================================================================
 2066  * Initialize the various 'constant' tables. In a multi-threaded environment,
 2067  * this function may be called by two threads concurrently, but this is
 2068  * harmless since both invocations do exactly the same thing.
 2069  */
 2070 local void tr_static_init()
 2071 {
 2072     static int static_init_done = 0;
 2073     int n;        /* iterates over tree elements */
 2074     int bits;     /* bit counter */
 2075     int length;   /* length value */
 2076     int code;     /* code value */
 2077     int dist;     /* distance index */
 2078     ush bl_count[MAX_BITS+1];
 2079     /* number of codes at each bit length for an optimal tree */
 2080 
 2081     if (static_init_done) return;
 2082 
 2083     /* Initialize the mapping length (0..255) -> length code (0..28) */
 2084     length = 0;
 2085     for (code = 0; code < LENGTH_CODES-1; code++) {
 2086         base_length[code] = length;
 2087         for (n = 0; n < (1<<extra_lbits[code]); n++) {
 2088             length_code[length++] = (uch)code;
 2089         }
 2090     }
 2091     Assert (length == 256, "tr_static_init: length != 256");
 2092     /* Note that the length 255 (match length 258) can be represented
 2093      * in two different ways: code 284 + 5 bits or code 285, so we
 2094      * overwrite length_code[255] to use the best encoding:
 2095      */
 2096     length_code[length-1] = (uch)code;
 2097 
 2098     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 2099     dist = 0;
 2100     for (code = 0 ; code < 16; code++) {
 2101         base_dist[code] = dist;
 2102         for (n = 0; n < (1<<extra_dbits[code]); n++) {
 2103             dist_code[dist++] = (uch)code;
 2104         }
 2105     }
 2106     Assert (dist == 256, "tr_static_init: dist != 256");
 2107     dist >>= 7; /* from now on, all distances are divided by 128 */
 2108     for ( ; code < D_CODES; code++) {
 2109         base_dist[code] = dist << 7;
 2110         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
 2111             dist_code[256 + dist++] = (uch)code;
 2112         }
 2113     }
 2114     Assert (dist == 256, "tr_static_init: 256+dist != 512");
 2115 
 2116     /* Construct the codes of the static literal tree */
 2117     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
 2118     n = 0;
 2119     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
 2120     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
 2121     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
 2122     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
 2123     /* Codes 286 and 287 do not exist, but we must include them in the
 2124      * tree construction to get a canonical Huffman tree (longest code
 2125      * all ones)
 2126      */
 2127     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
 2128 
 2129     /* The static distance tree is trivial: */
 2130     for (n = 0; n < D_CODES; n++) {
 2131         static_dtree[n].Len = 5;
 2132         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
 2133     }
 2134     static_init_done = 1;
 2135 }
 2136 
 2137 /* ===========================================================================
 2138  * Initialize the tree data structures for a new zlib stream.
 2139  */
 2140 void _tr_init(s)
 2141     deflate_state *s;
 2142 {
 2143     tr_static_init();
 2144 
 2145     s->compressed_len = 0L;
 2146 
 2147     s->l_desc.dyn_tree = s->dyn_ltree;
 2148     s->l_desc.stat_desc = &static_l_desc;
 2149 
 2150     s->d_desc.dyn_tree = s->dyn_dtree;
 2151     s->d_desc.stat_desc = &static_d_desc;
 2152 
 2153     s->bl_desc.dyn_tree = s->bl_tree;
 2154     s->bl_desc.stat_desc = &static_bl_desc;
 2155 
 2156     s->bi_buf = 0;
 2157     s->bi_valid = 0;
 2158     s->last_eob_len = 8; /* enough lookahead for inflate */
 2159 #ifdef DEBUG_ZLIB
 2160     s->bits_sent = 0L;
 2161 #endif
 2162 
 2163     /* Initialize the first block of the first file: */
 2164     init_block(s);
 2165 }
 2166 
 2167 /* ===========================================================================
 2168  * Initialize a new block.
 2169  */
 2170 local void init_block(s)
 2171     deflate_state *s;
 2172 {
 2173     int n; /* iterates over tree elements */
 2174 
 2175     /* Initialize the trees. */
 2176     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
 2177     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
 2178     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
 2179 
 2180     s->dyn_ltree[END_BLOCK].Freq = 1;
 2181     s->opt_len = s->static_len = 0L;
 2182     s->last_lit = s->matches = 0;
 2183 }
 2184 
 2185 #define SMALLEST 1
 2186 /* Index within the heap array of least frequent node in the Huffman tree */
 2187 
 2188 
 2189 /* ===========================================================================
 2190  * Remove the smallest element from the heap and recreate the heap with
 2191  * one less element. Updates heap and heap_len.
 2192  */
 2193 #define pqremove(s, tree, top) \
 2194 {\
 2195     top = s->heap[SMALLEST]; \
 2196     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
 2197     pqdownheap(s, tree, SMALLEST); \
 2198 }
 2199 
 2200 /* ===========================================================================
 2201  * Compares to subtrees, using the tree depth as tie breaker when
 2202  * the subtrees have equal frequency. This minimizes the worst case length.
 2203  */
 2204 #define smaller(tree, n, m, depth) \
 2205    (tree[n].Freq < tree[m].Freq || \
 2206    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
 2207 
 2208 /* ===========================================================================
 2209  * Restore the heap property by moving down the tree starting at node k,
 2210  * exchanging a node with the smallest of its two sons if necessary, stopping
 2211  * when the heap property is re-established (each father smaller than its
 2212  * two sons).
 2213  */
 2214 local void pqdownheap(s, tree, k)
 2215     deflate_state *s;
 2216     ct_data *tree;  /* the tree to restore */
 2217     int k;               /* node to move down */
 2218 {
 2219     int v = s->heap[k];
 2220     int j = k << 1;  /* left son of k */
 2221     while (j <= s->heap_len) {
 2222         /* Set j to the smallest of the two sons: */
 2223         if (j < s->heap_len &&
 2224             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
 2225             j++;
 2226         }
 2227         /* Exit if v is smaller than both sons */
 2228         if (smaller(tree, v, s->heap[j], s->depth)) break;
 2229 
 2230         /* Exchange v with the smallest son */
 2231         s->heap[k] = s->heap[j];  k = j;
 2232 
 2233         /* And continue down the tree, setting j to the left son of k */
 2234         j <<= 1;
 2235     }
 2236     s->heap[k] = v;
 2237 }
 2238 
 2239 /* ===========================================================================
 2240  * Compute the optimal bit lengths for a tree and update the total bit length
 2241  * for the current block.
 2242  * IN assertion: the fields freq and dad are set, heap[heap_max] and
 2243  *    above are the tree nodes sorted by increasing frequency.
 2244  * OUT assertions: the field len is set to the optimal bit length, the
 2245  *     array bl_count contains the frequencies for each bit length.
 2246  *     The length opt_len is updated; static_len is also updated if stree is
 2247  *     not null.
 2248  */
 2249 local void gen_bitlen(s, desc)
 2250     deflate_state *s;
 2251     tree_desc *desc;    /* the tree descriptor */
 2252 {
 2253     ct_data *tree  = desc->dyn_tree;
 2254     int max_code   = desc->max_code;
 2255     ct_data *stree = desc->stat_desc->static_tree;
 2256     intf *extra    = desc->stat_desc->extra_bits;
 2257     int base       = desc->stat_desc->extra_base;
 2258     int max_length = desc->stat_desc->max_length;
 2259     int h;              /* heap index */
 2260     int n, m;           /* iterate over the tree elements */
 2261     int bits;           /* bit length */
 2262     int xbits;          /* extra bits */
 2263     ush f;              /* frequency */
 2264     int overflow = 0;   /* number of elements with bit length too large */
 2265 
 2266     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
 2267 
 2268     /* In a first pass, compute the optimal bit lengths (which may
 2269      * overflow in the case of the bit length tree).
 2270      */
 2271     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
 2272 
 2273     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
 2274         n = s->heap[h];
 2275         bits = tree[tree[n].Dad].Len + 1;
 2276         if (bits > max_length) bits = max_length, overflow++;
 2277         tree[n].Len = (ush)bits;
 2278         /* We overwrite tree[n].Dad which is no longer needed */
 2279 
 2280         if (n > max_code) continue; /* not a leaf node */
 2281 
 2282         s->bl_count[bits]++;
 2283         xbits = 0;
 2284         if (n >= base) xbits = extra[n-base];
 2285         f = tree[n].Freq;
 2286         s->opt_len += (ulg)f * (bits + xbits);
 2287         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
 2288     }
 2289     if (overflow == 0) return;
 2290 
 2291     Trace((stderr,"\nbit length overflow\n"));
 2292     /* This happens for example on obj2 and pic of the Calgary corpus */
 2293 
 2294     /* Find the first bit length which could increase: */
 2295     do {
 2296         bits = max_length-1;
 2297         while (s->bl_count[bits] == 0) bits--;
 2298         s->bl_count[bits]--;      /* move one leaf down the tree */
 2299         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
 2300         s->bl_count[max_length]--;
 2301         /* The brother of the overflow item also moves one step up,
 2302          * but this does not affect bl_count[max_length]
 2303          */
 2304         overflow -= 2;
 2305     } while (overflow > 0);
 2306 
 2307     /* Now recompute all bit lengths, scanning in increasing frequency.
 2308      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 2309      * lengths instead of fixing only the wrong ones. This idea is taken
 2310      * from 'ar' written by Haruhiko Okumura.)
 2311      */
 2312     for (bits = max_length; bits != 0; bits--) {
 2313         n = s->bl_count[bits];
 2314         while (n != 0) {
 2315             m = s->heap[--h];
 2316             if (m > max_code) continue;
 2317             if (tree[m].Len != (unsigned) bits) {
 2318                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 2319                 s->opt_len += ((long)bits - (long)tree[m].Len)
 2320                               *(long)tree[m].Freq;
 2321                 tree[m].Len = (ush)bits;
 2322             }
 2323             n--;
 2324         }
 2325     }
 2326 }
 2327 
 2328 /* ===========================================================================
 2329  * Generate the codes for a given tree and bit counts (which need not be
 2330  * optimal).
 2331  * IN assertion: the array bl_count contains the bit length statistics for
 2332  * the given tree and the field len is set for all tree elements.
 2333  * OUT assertion: the field code is set for all tree elements of non
 2334  *     zero code length.
 2335  */
 2336 local void gen_codes (tree, max_code, bl_count)
 2337     ct_data *tree;             /* the tree to decorate */
 2338     int max_code;              /* largest code with non zero frequency */
 2339     ushf *bl_count;            /* number of codes at each bit length */
 2340 {
 2341     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
 2342     ush code = 0;              /* running code value */
 2343     int bits;                  /* bit index */
 2344     int n;                     /* code index */
 2345 
 2346     /* The distribution counts are first used to generate the code values
 2347      * without bit reversal.
 2348      */
 2349     for (bits = 1; bits <= MAX_BITS; bits++) {
 2350         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
 2351     }
 2352     /* Check that the bit counts in bl_count are consistent. The last code
 2353      * must be all ones.
 2354      */
 2355     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 2356             "inconsistent bit counts");
 2357     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 2358 
 2359     for (n = 0;  n <= max_code; n++) {
 2360         int len = tree[n].Len;
 2361         if (len == 0) continue;
 2362         /* Now reverse the bits */
 2363         tree[n].Code = bi_reverse(next_code[len]++, len);
 2364 
 2365         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 2366              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 2367     }
 2368 }
 2369 
 2370 /* ===========================================================================
 2371  * Construct one Huffman tree and assigns the code bit strings and lengths.
 2372  * Update the total bit length for the current block.
 2373  * IN assertion: the field freq is set for all tree elements.
 2374  * OUT assertions: the fields len and code are set to the optimal bit length
 2375  *     and corresponding code. The length opt_len is updated; static_len is
 2376  *     also updated if stree is not null. The field max_code is set.
 2377  */
 2378 local void build_tree(s, desc)
 2379     deflate_state *s;
 2380     tree_desc *desc; /* the tree descriptor */
 2381 {
 2382     ct_data *tree   = desc->dyn_tree;
 2383     ct_data *stree  = desc->stat_desc->static_tree;
 2384     int elems       = desc->stat_desc->elems;
 2385     int n, m;          /* iterate over heap elements */
 2386     int max_code = -1; /* largest code with non zero frequency */
 2387     int node;          /* new node being created */
 2388 
 2389     /* Construct the initial heap, with least frequent element in
 2390      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 2391      * heap[0] is not used.
 2392      */
 2393     s->heap_len = 0, s->heap_max = HEAP_SIZE;
 2394 
 2395     for (n = 0; n < elems; n++) {
 2396         if (tree[n].Freq != 0) {
 2397             s->heap[++(s->heap_len)] = max_code = n;
 2398             s->depth[n] = 0;
 2399         } else {
 2400             tree[n].Len = 0;
 2401         }
 2402     }
 2403 
 2404     /* The pkzip format requires that at least one distance code exists,
 2405      * and that at least one bit should be sent even if there is only one
 2406      * possible code. So to avoid special checks later on we force at least
 2407      * two codes of non zero frequency.
 2408      */
 2409     while (s->heap_len < 2) {
 2410         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
 2411         tree[node].Freq = 1;
 2412         s->depth[node] = 0;
 2413         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
 2414         /* node is 0 or 1 so it does not have extra bits */
 2415     }
 2416     desc->max_code = max_code;
 2417 
 2418     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 2419      * establish sub-heaps of increasing lengths:
 2420      */
 2421     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
 2422 
 2423     /* Construct the Huffman tree by repeatedly combining the least two
 2424      * frequent nodes.
 2425      */
 2426     node = elems;              /* next internal node of the tree */
 2427     do {
 2428         pqremove(s, tree, n);  /* n = node of least frequency */
 2429         m = s->heap[SMALLEST]; /* m = node of next least frequency */
 2430 
 2431         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
 2432         s->heap[--(s->heap_max)] = m;
 2433 
 2434         /* Create a new node father of n and m */
 2435         tree[node].Freq = tree[n].Freq + tree[m].Freq;
 2436         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
 2437         tree[n].Dad = tree[m].Dad = (ush)node;
 2438 #ifdef DUMP_BL_TREE
 2439         if (tree == s->bl_tree) {
 2440             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
 2441                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
 2442         }
 2443 #endif
 2444         /* and insert the new node in the heap */
 2445         s->heap[SMALLEST] = node++;
 2446         pqdownheap(s, tree, SMALLEST);
 2447 
 2448     } while (s->heap_len >= 2);
 2449 
 2450     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
 2451 
 2452     /* At this point, the fields freq and dad are set. We can now
 2453      * generate the bit lengths.
 2454      */
 2455     gen_bitlen(s, (tree_desc *)desc);
 2456 
 2457     /* The field len is now set, we can generate the bit codes */
 2458     gen_codes ((ct_data *)tree, max_code, s->bl_count);
 2459 }
 2460 
 2461 /* ===========================================================================
 2462  * Scan a literal or distance tree to determine the frequencies of the codes
 2463  * in the bit length tree.
 2464  */
 2465 local void scan_tree (s, tree, max_code)
 2466     deflate_state *s;
 2467     ct_data *tree;   /* the tree to be scanned */
 2468     int max_code;    /* and its largest code of non zero frequency */
 2469 {
 2470     int n;                     /* iterates over all tree elements */
 2471     int prevlen = -1;          /* last emitted length */
 2472     int curlen;                /* length of current code */
 2473     int nextlen = tree[0].Len; /* length of next code */
 2474     int count = 0;             /* repeat count of the current code */
 2475     int max_count = 7;         /* max repeat count */
 2476     int min_count = 4;         /* min repeat count */
 2477 
 2478     if (nextlen == 0) max_count = 138, min_count = 3;
 2479     tree[max_code+1].Len = (ush)0xffff; /* guard */
 2480 
 2481     for (n = 0; n <= max_code; n++) {
 2482         curlen = nextlen; nextlen = tree[n+1].Len;
 2483         if (++count < max_count && curlen == nextlen) {
 2484             continue;
 2485         } else if (count < min_count) {
 2486             s->bl_tree[curlen].Freq += count;
 2487         } else if (curlen != 0) {
 2488             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
 2489             s->bl_tree[REP_3_6].Freq++;
 2490         } else if (count <= 10) {
 2491             s->bl_tree[REPZ_3_10].Freq++;
 2492         } else {
 2493             s->bl_tree[REPZ_11_138].Freq++;
 2494         }
 2495         count = 0; prevlen = curlen;
 2496         if (nextlen == 0) {
 2497             max_count = 138, min_count = 3;
 2498         } else if (curlen == nextlen) {
 2499             max_count = 6, min_count = 3;
 2500         } else {
 2501             max_count = 7, min_count = 4;
 2502         }
 2503     }
 2504 }
 2505 
 2506 /* ===========================================================================
 2507  * Send a literal or distance tree in compressed form, using the codes in
 2508  * bl_tree.
 2509  */
 2510 local void send_tree (s, tree, max_code)
 2511     deflate_state *s;
 2512     ct_data *tree; /* the tree to be scanned */
 2513     int max_code;       /* and its largest code of non zero frequency */
 2514 {
 2515     int n;                     /* iterates over all tree elements */
 2516     int prevlen = -1;          /* last emitted length */
 2517     int curlen;                /* length of current code */
 2518     int nextlen = tree[0].Len; /* length of next code */
 2519     int count = 0;             /* repeat count of the current code */
 2520     int max_count = 7;         /* max repeat count */
 2521     int min_count = 4;         /* min repeat count */
 2522 
 2523     /* tree[max_code+1].Len = -1; */  /* guard already set */
 2524     if (nextlen == 0) max_count = 138, min_count = 3;
 2525 
 2526     for (n = 0; n <= max_code; n++) {
 2527         curlen = nextlen; nextlen = tree[n+1].Len;
 2528         if (++count < max_count && curlen == nextlen) {
 2529             continue;
 2530         } else if (count < min_count) {
 2531             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
 2532 
 2533         } else if (curlen != 0) {
 2534             if (curlen != prevlen) {
 2535                 send_code(s, curlen, s->bl_tree); count--;
 2536             }
 2537             Assert(count >= 3 && count <= 6, " 3_6?");
 2538             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
 2539 
 2540         } else if (count <= 10) {
 2541             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
 2542 
 2543         } else {
 2544             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
 2545         }
 2546         count = 0; prevlen = curlen;
 2547         if (nextlen == 0) {
 2548             max_count = 138, min_count = 3;
 2549         } else if (curlen == nextlen) {
 2550             max_count = 6, min_count = 3;
 2551         } else {
 2552             max_count = 7, min_count = 4;
 2553         }
 2554     }
 2555 }
 2556 
 2557 /* ===========================================================================
 2558  * Construct the Huffman tree for the bit lengths and return the index in
 2559  * bl_order of the last bit length code to send.
 2560  */
 2561 local int build_bl_tree(s)
 2562     deflate_state *s;
 2563 {
 2564     int max_blindex;  /* index of last bit length code of non zero freq */
 2565 
 2566     /* Determine the bit length frequencies for literal and distance trees */
 2567     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
 2568     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
 2569 
 2570     /* Build the bit length tree: */
 2571     build_tree(s, (tree_desc *)(&(s->bl_desc)));
 2572     /* opt_len now includes the length of the tree representations, except
 2573      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 2574      */
 2575 
 2576     /* Determine the number of bit length codes to send. The pkzip format
 2577      * requires that at least 4 bit length codes be sent. (appnote.txt says
 2578      * 3 but the actual value used is 4.)
 2579      */
 2580     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
 2581         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
 2582     }
 2583     /* Update opt_len to include the bit length tree and counts */
 2584     s->opt_len += 3*(max_blindex+1) + 5+5+4;
 2585     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 2586             s->opt_len, s->static_len));
 2587 
 2588     return max_blindex;
 2589 }
 2590 
 2591 /* ===========================================================================
 2592  * Send the header for a block using dynamic Huffman trees: the counts, the
 2593  * lengths of the bit length codes, the literal tree and the distance tree.
 2594  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 2595  */
 2596 local void send_all_trees(s, lcodes, dcodes, blcodes)
 2597     deflate_state *s;
 2598     int lcodes, dcodes, blcodes; /* number of codes for each tree */
 2599 {
 2600     int rank;                    /* index in bl_order */
 2601 
 2602     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 2603     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 2604             "too many codes");
 2605     Tracev((stderr, "\nbl counts: "));
 2606     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
 2607     send_bits(s, dcodes-1,   5);
 2608     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
 2609     for (rank = 0; rank < blcodes; rank++) {
 2610         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 2611         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
 2612     }
 2613     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 2614 
 2615     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
 2616     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 2617 
 2618     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
 2619     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 2620 }
 2621 
 2622 /* ===========================================================================
 2623  * Send a stored block
 2624  */
 2625 void _tr_stored_block(s, buf, stored_len, eof)
 2626     deflate_state *s;
 2627     charf *buf;       /* input block */
 2628     ulg stored_len;   /* length of input block */
 2629     int eof;          /* true if this is the last block for a file */
 2630 {
 2631     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
 2632     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
 2633     s->compressed_len += (stored_len + 4) << 3;
 2634 
 2635     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
 2636 }
 2637 
 2638 /* Send just the `stored block' type code without any length bytes or data.
 2639  */
 2640 void _tr_stored_type_only(s)
 2641     deflate_state *s;
 2642 {
 2643     send_bits(s, (STORED_BLOCK << 1), 3);
 2644     bi_windup(s);
 2645     s->compressed_len = (s->compressed_len + 3) & ~7L;
 2646 }
 2647 
 2648 
 2649 /* ===========================================================================
 2650  * Send one empty static block to give enough lookahead for inflate.
 2651  * This takes 10 bits, of which 7 may remain in the bit buffer.
 2652  * The current inflate code requires 9 bits of lookahead. If the
 2653  * last two codes for the previous block (real code plus EOB) were coded
 2654  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
 2655  * the last real code. In this case we send two empty static blocks instead
 2656  * of one. (There are no problems if the previous block is stored or fixed.)
 2657  * To simplify the code, we assume the worst case of last real code encoded
 2658  * on one bit only.
 2659  */
 2660 void _tr_align(s)
 2661     deflate_state *s;
 2662 {
 2663     send_bits(s, STATIC_TREES<<1, 3);
 2664     send_code(s, END_BLOCK, static_ltree);
 2665     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
 2666     bi_flush(s);
 2667     /* Of the 10 bits for the empty block, we have already sent
 2668      * (10 - bi_valid) bits. The lookahead for the last real code (before
 2669      * the EOB of the previous block) was thus at least one plus the length
 2670      * of the EOB plus what we have just sent of the empty static block.
 2671      */
 2672     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
 2673         send_bits(s, STATIC_TREES<<1, 3);
 2674         send_code(s, END_BLOCK, static_ltree);
 2675         s->compressed_len += 10L;
 2676         bi_flush(s);
 2677     }
 2678     s->last_eob_len = 7;
 2679 }
 2680 
 2681 /* ===========================================================================
 2682  * Determine the best encoding for the current block: dynamic trees, static
 2683  * trees or store, and output the encoded block to the zip file. This function
 2684  * returns the total compressed length for the file so far.
 2685  */
 2686 ulg _tr_flush_block(s, buf, stored_len, eof)
 2687     deflate_state *s;
 2688     charf *buf;       /* input block, or NULL if too old */
 2689     ulg stored_len;   /* length of input block */
 2690     int eof;          /* true if this is the last block for a file */
 2691 {
 2692     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
 2693     int max_blindex = 0;  /* index of last bit length code of non zero freq */
 2694 
 2695     /* Build the Huffman trees unless a stored block is forced */
 2696     if (s->level > 0) {
 2697 
 2698          /* Check if the file is ascii or binary */
 2699         if (s->data_type == Z_UNKNOWN) set_data_type(s);
 2700 
 2701         /* Construct the literal and distance trees */
 2702         build_tree(s, (tree_desc *)(&(s->l_desc)));
 2703         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 2704                 s->static_len));
 2705 
 2706         build_tree(s, (tree_desc *)(&(s->d_desc)));
 2707         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 2708                 s->static_len));
 2709         /* At this point, opt_len and static_len are the total bit lengths of
 2710          * the compressed block data, excluding the tree representations.
 2711          */
 2712 
 2713         /* Build the bit length tree for the above two trees, and get the index
 2714          * in bl_order of the last bit length code to send.
 2715          */
 2716         max_blindex = build_bl_tree(s);
 2717 
 2718         /* Determine the best encoding. Compute first the block length in bytes*/
 2719         opt_lenb = (s->opt_len+3+7)>>3;
 2720         static_lenb = (s->static_len+3+7)>>3;
 2721 
 2722         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 2723                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 2724                 s->last_lit));
 2725 
 2726         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
 2727 
 2728     } else {
 2729         Assert(buf != (char*)0, "lost buf");
 2730         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 2731     }
 2732 
 2733     /* If compression failed and this is the first and last block,
 2734      * and if the .zip file can be seeked (to rewrite the local header),
 2735      * the whole file is transformed into a stored file:
 2736      */
 2737 #ifdef STORED_FILE_OK
 2738 #  ifdef FORCE_STORED_FILE
 2739     if (eof && s->compressed_len == 0L) { /* force stored file */
 2740 #  else
 2741     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
 2742 #  endif
 2743         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
 2744         if (buf == (charf*)0) error ("block vanished");
 2745 
 2746         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
 2747         s->compressed_len = stored_len << 3;
 2748         s->method = STORED;
 2749     } else
 2750 #endif /* STORED_FILE_OK */
 2751 
 2752 #ifdef FORCE_STORED
 2753     if (buf != (char*)0) { /* force stored block */
 2754 #else
 2755     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
 2756                        /* 4: two words for the lengths */
 2757 #endif
 2758         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 2759          * Otherwise we can't have processed more than WSIZE input bytes since
 2760          * the last block flush, because compression would have been
 2761          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 2762          * transform a block into a stored block.
 2763          */
 2764         _tr_stored_block(s, buf, stored_len, eof);
 2765 
 2766 #ifdef FORCE_STATIC
 2767     } else if (static_lenb >= 0) { /* force static trees */
 2768 #else
 2769     } else if (static_lenb == opt_lenb) {
 2770 #endif
 2771         send_bits(s, (STATIC_TREES<<1)+eof, 3);
 2772         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
 2773         s->compressed_len += 3 + s->static_len;
 2774     } else {
 2775         send_bits(s, (DYN_TREES<<1)+eof, 3);
 2776         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
 2777                        max_blindex+1);
 2778         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
 2779         s->compressed_len += 3 + s->opt_len;
 2780     }
 2781     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 2782     init_block(s);
 2783 
 2784     if (eof) {
 2785         bi_windup(s);
 2786         s->compressed_len += 7;  /* align on byte boundary */
 2787     }
 2788     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 2789            s->compressed_len-7*eof));
 2790 
 2791     return s->compressed_len >> 3;
 2792 }
 2793 
 2794 /* ===========================================================================
 2795  * Save the match info and tally the frequency counts. Return true if
 2796  * the current block must be flushed.
 2797  */
 2798 int _tr_tally (s, dist, lc)
 2799     deflate_state *s;
 2800     unsigned dist;  /* distance of matched string */
 2801     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 2802 {
 2803     s->d_buf[s->last_lit] = (ush)dist;
 2804     s->l_buf[s->last_lit++] = (uch)lc;
 2805     if (dist == 0) {
 2806         /* lc is the unmatched char */
 2807         s->dyn_ltree[lc].Freq++;
 2808     } else {
 2809         s->matches++;
 2810         /* Here, lc is the match length - MIN_MATCH */
 2811         dist--;             /* dist = match distance - 1 */
 2812         Assert((ush)dist < (ush)MAX_DIST(s) &&
 2813                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 2814                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 2815 
 2816         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
 2817         s->dyn_dtree[d_code(dist)].Freq++;
 2818     }
 2819 
 2820     /* Try to guess if it is profitable to stop the current block here */
 2821     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
 2822         /* Compute an upper bound for the compressed length */
 2823         ulg out_length = (ulg)s->last_lit*8L;
 2824         ulg in_length = (ulg)((long)s->strstart - s->block_start);
 2825         int dcode;
 2826         for (dcode = 0; dcode < D_CODES; dcode++) {
 2827             out_length += (ulg)s->dyn_dtree[dcode].Freq *
 2828                 (5L+extra_dbits[dcode]);
 2829         }
 2830         out_length >>= 3;
 2831         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 2832                s->last_lit, in_length, out_length,
 2833                100L - out_length*100L/in_length));
 2834         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
 2835     }
 2836     return (s->last_lit == s->lit_bufsize-1);
 2837     /* We avoid equality with lit_bufsize because of wraparound at 64K
 2838      * on 16 bit machines and because stored blocks are restricted to
 2839      * 64K-1 bytes.
 2840      */
 2841 }
 2842 
 2843 /* ===========================================================================
 2844  * Send the block data compressed using the given Huffman trees
 2845  */
 2846 local void compress_block(s, ltree, dtree)
 2847     deflate_state *s;
 2848     ct_data *ltree; /* literal tree */
 2849     ct_data *dtree; /* distance tree */
 2850 {
 2851     unsigned dist;      /* distance of matched string */
 2852     int lc;             /* match length or unmatched char (if dist == 0) */
 2853     unsigned lx = 0;    /* running index in l_buf */
 2854     unsigned code;      /* the code to send */
 2855     int extra;          /* number of extra bits to send */
 2856 
 2857     if (s->last_lit != 0) do {
 2858         dist = s->d_buf[lx];
 2859         lc = s->l_buf[lx++];
 2860         if (dist == 0) {
 2861             send_code(s, lc, ltree); /* send a literal byte */
 2862             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 2863         } else {
 2864             /* Here, lc is the match length - MIN_MATCH */
 2865             code = length_code[lc];
 2866             send_code(s, code+LITERALS+1, ltree); /* send the length code */
 2867             extra = extra_lbits[code];
 2868             if (extra != 0) {
 2869                 lc -= base_length[code];
 2870                 send_bits(s, lc, extra);       /* send the extra length bits */
 2871             }
 2872             dist--; /* dist is now the match distance - 1 */
 2873             code = d_code(dist);
 2874             Assert (code < D_CODES, "bad d_code");
 2875 
 2876             send_code(s, code, dtree);       /* send the distance code */
 2877             extra = extra_dbits[code];
 2878             if (extra != 0) {
 2879                 dist -= base_dist[code];
 2880                 send_bits(s, dist, extra);   /* send the extra distance bits */
 2881             }
 2882         } /* literal or match pair ? */
 2883 
 2884         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
 2885         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
 2886 
 2887     } while (lx < s->last_lit);
 2888 
 2889     send_code(s, END_BLOCK, ltree);
 2890     s->last_eob_len = ltree[END_BLOCK].Len;
 2891 }
 2892 
 2893 /* ===========================================================================
 2894  * Set the data type to ASCII or BINARY, using a crude approximation:
 2895  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
 2896  * IN assertion: the fields freq of dyn_ltree are set and the total of all
 2897  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
 2898  */
 2899 local void set_data_type(s)
 2900     deflate_state *s;
 2901 {
 2902     int n = 0;
 2903     unsigned ascii_freq = 0;
 2904     unsigned bin_freq = 0;
 2905     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
 2906     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
 2907     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
 2908     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
 2909 }
 2910 
 2911 /* ===========================================================================
 2912  * Reverse the first len bits of a code, using straightforward code (a faster
 2913  * method would use a table)
 2914  * IN assertion: 1 <= len <= 15
 2915  */
 2916 local unsigned bi_reverse(code, len)
 2917     unsigned code; /* the value to invert */
 2918     int len;       /* its bit length */
 2919 {
 2920     register unsigned res = 0;
 2921     do {
 2922         res |= code & 1;
 2923         code >>= 1, res <<= 1;
 2924     } while (--len > 0);
 2925     return res >> 1;
 2926 }
 2927 
 2928 /* ===========================================================================
 2929  * Flush the bit buffer, keeping at most 7 bits in it.
 2930  */
 2931 local void bi_flush(s)
 2932     deflate_state *s;
 2933 {
 2934     if (s->bi_valid == 16) {
 2935         put_short(s, s->bi_buf);
 2936         s->bi_buf = 0;
 2937         s->bi_valid = 0;
 2938     } else if (s->bi_valid >= 8) {
 2939         put_byte(s, (Byte)s->bi_buf);
 2940         s->bi_buf >>= 8;
 2941         s->bi_valid -= 8;
 2942     }
 2943 }
 2944 
 2945 /* ===========================================================================
 2946  * Flush the bit buffer and align the output on a byte boundary
 2947  */
 2948 local void bi_windup(s)
 2949     deflate_state *s;
 2950 {
 2951     if (s->bi_valid > 8) {
 2952         put_short(s, s->bi_buf);
 2953     } else if (s->bi_valid > 0) {
 2954         put_byte(s, (Byte)s->bi_buf);
 2955     }
 2956     s->bi_buf = 0;
 2957     s->bi_valid = 0;
 2958 #ifdef DEBUG_ZLIB
 2959     s->bits_sent = (s->bits_sent+7) & ~7;
 2960 #endif
 2961 }
 2962 
 2963 /* ===========================================================================
 2964  * Copy a stored block, storing first the length and its
 2965  * one's complement if requested.
 2966  */
 2967 local void copy_block(s, buf, len, header)
 2968     deflate_state *s;
 2969     charf    *buf;    /* the input data */
 2970     unsigned len;     /* its length */
 2971     int      header;  /* true if block header must be written */
 2972 {
 2973     bi_windup(s);        /* align on byte boundary */
 2974     s->last_eob_len = 8; /* enough lookahead for inflate */
 2975 
 2976     if (header) {
 2977         put_short(s, (ush)len);   
 2978         put_short(s, (ush)~len);
 2979 #ifdef DEBUG_ZLIB
 2980         s->bits_sent += 2*16;
 2981 #endif
 2982     }
 2983 #ifdef DEBUG_ZLIB
 2984     s->bits_sent += (ulg)len<<3;
 2985 #endif
 2986     /* bundle up the put_byte(s, *buf++) calls */
 2987     zmemcpy(&s->pending_buf[s->pending], buf, len);
 2988     s->pending += len;
 2989 }
 2990 /* --- trees.c */
 2991 
 2992 /* +++ inflate.c */
 2993 /* inflate.c -- zlib interface to inflate modules
 2994  * Copyright (C) 1995-1996 Mark Adler
 2995  * For conditions of distribution and use, see copyright notice in zlib.h 
 2996  */
 2997 
 2998 /* #include "zutil.h" */
 2999 
 3000 /* +++ infblock.h */
 3001 /* infblock.h -- header to use infblock.c
 3002  * Copyright (C) 1995-1996 Mark Adler
 3003  * For conditions of distribution and use, see copyright notice in zlib.h 
 3004  */
 3005 
 3006 /* WARNING: this file should *not* be used by applications. It is
 3007    part of the implementation of the compression library and is
 3008    subject to change. Applications should only use zlib.h.
 3009  */
 3010 
 3011 struct inflate_blocks_state;
 3012 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
 3013 
 3014 extern inflate_blocks_statef * inflate_blocks_new OF((
 3015     z_streamp z,
 3016     check_func c,               /* check function */
 3017     uInt w));                   /* window size */
 3018 
 3019 extern int inflate_blocks OF((
 3020     inflate_blocks_statef *,
 3021     z_streamp ,
 3022     int));                      /* initial return code */
 3023 
 3024 extern void inflate_blocks_reset OF((
 3025     inflate_blocks_statef *,
 3026     z_streamp ,
 3027     uLongf *));                  /* check value on output */
 3028 
 3029 extern int inflate_blocks_free OF((
 3030     inflate_blocks_statef *,
 3031     z_streamp ,
 3032     uLongf *));                  /* check value on output */
 3033 
 3034 extern void inflate_set_dictionary OF((
 3035     inflate_blocks_statef *s,
 3036     const Bytef *d,  /* dictionary */
 3037     uInt  n));       /* dictionary length */
 3038 
 3039 extern int inflate_addhistory OF((
 3040     inflate_blocks_statef *,
 3041     z_streamp));
 3042 
 3043 extern int inflate_packet_flush OF((
 3044     inflate_blocks_statef *));
 3045 /* --- infblock.h */
 3046 
 3047 #ifndef NO_DUMMY_DECL
 3048 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
 3049 #endif
 3050 
 3051 /* inflate private state */
 3052 struct internal_state {
 3053 
 3054   /* mode */
 3055   enum {
 3056       METHOD,   /* waiting for method byte */
 3057       FLAG,     /* waiting for flag byte */
 3058       DICT4,    /* four dictionary check bytes to go */
 3059       DICT3,    /* three dictionary check bytes to go */
 3060       DICT2,    /* two dictionary check bytes to go */
 3061       DICT1,    /* one dictionary check byte to go */
 3062       DICT0,    /* waiting for inflateSetDictionary */
 3063       BLOCKS,   /* decompressing blocks */
 3064       CHECK4,   /* four check bytes to go */
 3065       CHECK3,   /* three check bytes to go */
 3066       CHECK2,   /* two check bytes to go */
 3067       CHECK1,   /* one check byte to go */
 3068       DONE,     /* finished check, done */
 3069       BAD}      /* got an error--stay here */
 3070     mode;               /* current inflate mode */
 3071 
 3072   /* mode dependent information */
 3073   union {
 3074     uInt method;        /* if FLAGS, method byte */
 3075     struct {
 3076       uLong was;                /* computed check value */
 3077       uLong need;               /* stream check value */
 3078     } check;            /* if CHECK, check values to compare */
 3079     uInt marker;        /* if BAD, inflateSync's marker bytes count */
 3080   } sub;        /* submode */
 3081 
 3082   /* mode independent information */
 3083   int  nowrap;          /* flag for no wrapper */
 3084   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
 3085   inflate_blocks_statef 
 3086     *blocks;            /* current inflate_blocks state */
 3087 
 3088 };
 3089 
 3090 
 3091 int inflateReset(z)
 3092 z_streamp z;
 3093 {
 3094   uLong c;
 3095 
 3096   if (z == Z_NULL || z->state == Z_NULL)
 3097     return Z_STREAM_ERROR;
 3098   z->total_in = z->total_out = 0;
 3099   z->msg = Z_NULL;
 3100   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
 3101   inflate_blocks_reset(z->state->blocks, z, &c);
 3102   Trace((stderr, "inflate: reset\n"));
 3103   return Z_OK;
 3104 }
 3105 
 3106 
 3107 int inflateEnd(z)
 3108 z_streamp z;
 3109 {
 3110   uLong c;
 3111 
 3112   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
 3113     return Z_STREAM_ERROR;
 3114   if (z->state->blocks != Z_NULL)
 3115     inflate_blocks_free(z->state->blocks, z, &c);
 3116   ZFREE(z, z->state);
 3117   z->state = Z_NULL;
 3118   Trace((stderr, "inflate: end\n"));
 3119   return Z_OK;
 3120 }
 3121 
 3122 
 3123 int inflateInit2_(z, w, version, stream_size)
 3124 z_streamp z;
 3125 int w;
 3126 const char *version;
 3127 int stream_size;
 3128 {
 3129   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
 3130       stream_size != sizeof(z_stream))
 3131       return Z_VERSION_ERROR;
 3132 
 3133   /* initialize state */
 3134   if (z == Z_NULL)
 3135     return Z_STREAM_ERROR;
 3136   z->msg = Z_NULL;
 3137 #ifndef NO_ZCFUNCS
 3138   if (z->zalloc == Z_NULL)
 3139   {
 3140     z->zalloc = zcalloc;
 3141     z->opaque = (voidpf)0;
 3142   }
 3143   if (z->zfree == Z_NULL) z->zfree = zcfree;
 3144 #endif
 3145   if ((z->state = (struct internal_state FAR *)
 3146        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
 3147     return Z_MEM_ERROR;
 3148   z->state->blocks = Z_NULL;
 3149 
 3150   /* handle undocumented nowrap option (no zlib header or check) */
 3151   z->state->nowrap = 0;
 3152   if (w < 0)
 3153   {
 3154     w = - w;
 3155     z->state->nowrap = 1;
 3156   }
 3157 
 3158   /* set window size */
 3159   if (w < 8 || w > 15)
 3160   {
 3161     inflateEnd(z);
 3162     return Z_STREAM_ERROR;
 3163   }
 3164   z->state->wbits = (uInt)w;
 3165 
 3166   /* create inflate_blocks state */
 3167   if ((z->state->blocks =
 3168       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
 3169       == Z_NULL)
 3170   {
 3171     inflateEnd(z);
 3172     return Z_MEM_ERROR;
 3173   }
 3174   Trace((stderr, "inflate: allocated\n"));
 3175 
 3176   /* reset state */
 3177   inflateReset(z);
 3178   return Z_OK;
 3179 }
 3180 
 3181 
 3182 int inflateInit_(z, version, stream_size)
 3183 z_streamp z;
 3184 const char *version;
 3185 int stream_size;
 3186 {
 3187   return inflateInit2_(z, DEF_WBITS, version, stream_size);
 3188 }
 3189 
 3190 
 3191 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
 3192 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
 3193 
 3194 int inflate(z, f)
 3195 z_streamp z;
 3196 int f;
 3197 {
 3198   int r;
 3199   uInt b;
 3200 
 3201   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
 3202     return Z_STREAM_ERROR;
 3203   r = Z_BUF_ERROR;
 3204   while (1) switch (z->state->mode)
 3205   {
 3206     case METHOD:
 3207       NEEDBYTE
 3208       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
 3209       {
 3210         z->state->mode = BAD;
 3211         z->msg = (char*)"unknown compression method";
 3212         z->state->sub.marker = 5;       /* can't try inflateSync */
 3213         break;
 3214       }
 3215       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
 3216       {
 3217         z->state->mode = BAD;
 3218         z->msg = (char*)"invalid window size";
 3219         z->state->sub.marker = 5;       /* can't try inflateSync */
 3220         break;
 3221       }
 3222       z->state->mode = FLAG;
 3223     case FLAG:
 3224       NEEDBYTE
 3225       b = NEXTBYTE;
 3226       if (((z->state->sub.method << 8) + b) % 31)
 3227       {
 3228         z->state->mode = BAD;
 3229         z->msg = (char*)"incorrect header check";
 3230         z->state->sub.marker = 5;       /* can't try inflateSync */
 3231         break;
 3232       }
 3233       Trace((stderr, "inflate: zlib header ok\n"));
 3234       if (!(b & PRESET_DICT))
 3235       {
 3236         z->state->mode = BLOCKS;
 3237         break;
 3238       }
 3239       z->state->mode = DICT4;
 3240     case DICT4:
 3241       NEEDBYTE
 3242       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
 3243       z->state->mode = DICT3;
 3244     case DICT3:
 3245       NEEDBYTE
 3246       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
 3247       z->state->mode = DICT2;
 3248     case DICT2:
 3249       NEEDBYTE
 3250       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
 3251       z->state->mode = DICT1;
 3252     case DICT1:
 3253       NEEDBYTE
 3254       z->state->sub.check.need += (uLong)NEXTBYTE;
 3255       z->adler = z->state->sub.check.need;
 3256       z->state->mode = DICT0;
 3257       return Z_NEED_DICT;
 3258     case DICT0:
 3259       z->state->mode = BAD;
 3260       z->msg = (char*)"need dictionary";
 3261       z->state->sub.marker = 0;       /* can try inflateSync */
 3262       return Z_STREAM_ERROR;
 3263     case BLOCKS:
 3264       r = inflate_blocks(z->state->blocks, z, r);
 3265       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
 3266           r = inflate_packet_flush(z->state->blocks);
 3267       if (r == Z_DATA_ERROR)
 3268       {
 3269         z->state->mode = BAD;
 3270         z->state->sub.marker = 0;       /* can try inflateSync */
 3271         break;
 3272       }
 3273       if (r != Z_STREAM_END)
 3274         return r;
 3275       r = Z_OK;
 3276       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
 3277       if (z->state->nowrap)
 3278       {
 3279         z->state->mode = DONE;
 3280         break;
 3281       }
 3282       z->state->mode = CHECK4;
 3283     case CHECK4:
 3284       NEEDBYTE
 3285       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
 3286       z->state->mode = CHECK3;
 3287     case CHECK3:
 3288       NEEDBYTE
 3289       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
 3290       z->state->mode = CHECK2;
 3291     case CHECK2:
 3292       NEEDBYTE
 3293       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
 3294       z->state->mode = CHECK1;
 3295     case CHECK1:
 3296       NEEDBYTE
 3297       z->state->sub.check.need += (uLong)NEXTBYTE;
 3298 
 3299       if (z->state->sub.check.was != z->state->sub.check.need)
 3300       {
 3301         z->state->mode = BAD;
 3302         z->msg = (char*)"incorrect data check";
 3303         z->state->sub.marker = 5;       /* can't try inflateSync */
 3304         break;
 3305       }
 3306       Trace((stderr, "inflate: zlib check ok\n"));
 3307       z->state->mode = DONE;
 3308     case DONE:
 3309       return Z_STREAM_END;
 3310     case BAD:
 3311       return Z_DATA_ERROR;
 3312     default:
 3313       return Z_STREAM_ERROR;
 3314   }
 3315 
 3316  empty:
 3317   if (f != Z_PACKET_FLUSH)
 3318     return r;
 3319   z->state->mode = BAD;
 3320   z->msg = (char *)"need more for packet flush";
 3321   z->state->sub.marker = 0;       /* can try inflateSync */
 3322   return Z_DATA_ERROR;
 3323 }
 3324 
 3325 
 3326 int inflateSetDictionary(z, dictionary, dictLength)
 3327 z_streamp z;
 3328 const Bytef *dictionary;
 3329 uInt  dictLength;
 3330 {
 3331   uInt length = dictLength;
 3332 
 3333   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
 3334     return Z_STREAM_ERROR;
 3335 
 3336   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
 3337   z->adler = 1L;
 3338 
 3339   if (length >= ((uInt)1<<z->state->wbits))
 3340   {
 3341     length = (1<<z->state->wbits)-1;
 3342     dictionary += dictLength - length;
 3343   }
 3344   inflate_set_dictionary(z->state->blocks, dictionary, length);
 3345   z->state->mode = BLOCKS;
 3346   return Z_OK;
 3347 }
 3348 
 3349 /*
 3350  * This subroutine adds the data at next_in/avail_in to the output history
 3351  * without performing any output.  The output buffer must be "caught up";
 3352  * i.e. no pending output (hence s->read equals s->write), and the state must
 3353  * be BLOCKS (i.e. we should be willing to see the start of a series of
 3354  * BLOCKS).  On exit, the output will also be caught up, and the checksum
 3355  * will have been updated if need be.
 3356  */
 3357 
 3358 int inflateIncomp(z)
 3359 z_stream *z;
 3360 {
 3361     if (z->state->mode != BLOCKS)
 3362         return Z_DATA_ERROR;
 3363     return inflate_addhistory(z->state->blocks, z);
 3364 }
 3365 
 3366 
 3367 int inflateSync(z)
 3368 z_streamp z;
 3369 {
 3370   uInt n;       /* number of bytes to look at */
 3371   Bytef *p;     /* pointer to bytes */
 3372   uInt m;       /* number of marker bytes found in a row */
 3373   uLong r, w;   /* temporaries to save total_in and total_out */
 3374 
 3375   /* set up */
 3376   if (z == Z_NULL || z->state == Z_NULL)
 3377     return Z_STREAM_ERROR;
 3378   if (z->state->mode != BAD)
 3379   {
 3380     z->state->mode = BAD;
 3381     z->state->sub.marker = 0;
 3382   }
 3383   if ((n = z->avail_in) == 0)
 3384     return Z_BUF_ERROR;
 3385   p = z->next_in;
 3386   m = z->state->sub.marker;
 3387 
 3388   /* search */
 3389   while (n && m < 4)
 3390   {
 3391     if (*p == (Byte)(m < 2 ? 0 : 0xff))
 3392       m++;
 3393     else if (*p)
 3394       m = 0;
 3395     else
 3396       m = 4 - m;
 3397     p++, n--;
 3398   }
 3399 
 3400   /* restore */
 3401   z->total_in += p - z->next_in;
 3402   z->next_in = p;
 3403   z->avail_in = n;
 3404   z->state->sub.marker = m;
 3405 
 3406   /* return no joy or set up to restart on a new block */
 3407   if (m != 4)
 3408     return Z_DATA_ERROR;
 3409   r = z->total_in;  w = z->total_out;
 3410   inflateReset(z);
 3411   z->total_in = r;  z->total_out = w;
 3412   z->state->mode = BLOCKS;
 3413   return Z_OK;
 3414 }
 3415 
 3416 #undef NEEDBYTE
 3417 #undef NEXTBYTE
 3418 /* --- inflate.c */
 3419 
 3420 /* +++ infblock.c */
 3421 /* infblock.c -- interpret and process block types to last block
 3422  * Copyright (C) 1995-1996 Mark Adler
 3423  * For conditions of distribution and use, see copyright notice in zlib.h 
 3424  */
 3425 
 3426 /* #include "zutil.h" */
 3427 /* #include "infblock.h" */
 3428 
 3429 /* +++ inftrees.h */
 3430 /* inftrees.h -- header to use inftrees.c
 3431  * Copyright (C) 1995-1996 Mark Adler
 3432  * For conditions of distribution and use, see copyright notice in zlib.h 
 3433  */
 3434 
 3435 /* WARNING: this file should *not* be used by applications. It is
 3436    part of the implementation of the compression library and is
 3437    subject to change. Applications should only use zlib.h.
 3438  */
 3439 
 3440 /* Huffman code lookup table entry--this entry is four bytes for machines
 3441    that have 16-bit pointers (e.g. PC's in the small or medium model). */
 3442 
 3443 typedef struct inflate_huft_s FAR inflate_huft;
 3444 
 3445 struct inflate_huft_s {
 3446   union {
 3447     struct {
 3448       Byte Exop;        /* number of extra bits or operation */
 3449       Byte Bits;        /* number of bits in this code or subcode */
 3450     } what;
 3451     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
 3452   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
 3453   union {
 3454     uInt Base;          /* literal, length base, or distance base */
 3455     inflate_huft *Next; /* pointer to next level of table */
 3456   } more;
 3457 };
 3458 
 3459 #ifdef DEBUG_ZLIB
 3460   extern uInt inflate_hufts;
 3461 #endif
 3462 
 3463 extern int inflate_trees_bits OF((
 3464     uIntf *,                    /* 19 code lengths */
 3465     uIntf *,                    /* bits tree desired/actual depth */
 3466     inflate_huft * FAR *,       /* bits tree result */
 3467     z_streamp ));               /* for zalloc, zfree functions */
 3468 
 3469 extern int inflate_trees_dynamic OF((
 3470     uInt,                       /* number of literal/length codes */
 3471     uInt,                       /* number of distance codes */
 3472     uIntf *,                    /* that many (total) code lengths */
 3473     uIntf *,                    /* literal desired/actual bit depth */
 3474     uIntf *,                    /* distance desired/actual bit depth */
 3475     inflate_huft * FAR *,       /* literal/length tree result */
 3476     inflate_huft * FAR *,       /* distance tree result */
 3477     z_streamp ));               /* for zalloc, zfree functions */
 3478 
 3479 extern int inflate_trees_fixed OF((
 3480     uIntf *,                    /* literal desired/actual bit depth */
 3481     uIntf *,                    /* distance desired/actual bit depth */
 3482     inflate_huft * FAR *,       /* literal/length tree result */
 3483     inflate_huft * FAR *));     /* distance tree result */
 3484 
 3485 extern int inflate_trees_free OF((
 3486     inflate_huft *,             /* tables to free */
 3487     z_streamp ));               /* for zfree function */
 3488 
 3489 /* --- inftrees.h */
 3490 
 3491 /* +++ infcodes.h */
 3492 /* infcodes.h -- header to use infcodes.c
 3493  * Copyright (C) 1995-1996 Mark Adler
 3494  * For conditions of distribution and use, see copyright notice in zlib.h 
 3495  */
 3496 
 3497 /* WARNING: this file should *not* be used by applications. It is
 3498    part of the implementation of the compression library and is
 3499    subject to change. Applications should only use zlib.h.
 3500  */
 3501 
 3502 struct inflate_codes_state;
 3503 typedef struct inflate_codes_state FAR inflate_codes_statef;
 3504 
 3505 extern inflate_codes_statef *inflate_codes_new OF((
 3506     uInt, uInt,
 3507     inflate_huft *, inflate_huft *,
 3508     z_streamp ));
 3509 
 3510 extern int inflate_codes OF((
 3511     inflate_blocks_statef *,
 3512     z_streamp ,
 3513     int));
 3514 
 3515 extern void inflate_codes_free OF((
 3516     inflate_codes_statef *,
 3517     z_streamp ));
 3518 
 3519 /* --- infcodes.h */
 3520 
 3521 /* +++ infutil.h */
 3522 /* infutil.h -- types and macros common to blocks and codes
 3523  * Copyright (C) 1995-1996 Mark Adler
 3524  * For conditions of distribution and use, see copyright notice in zlib.h 
 3525  */
 3526 
 3527 /* WARNING: this file should *not* be used by applications. It is
 3528    part of the implementation of the compression library and is
 3529    subject to change. Applications should only use zlib.h.
 3530  */
 3531 
 3532 #ifndef _INFUTIL_H
 3533 #define _INFUTIL_H
 3534 
 3535 typedef enum {
 3536       TYPE,     /* get type bits (3, including end bit) */
 3537       LENS,     /* get lengths for stored */
 3538       STORED,   /* processing stored block */
 3539       TABLE,    /* get table lengths */
 3540       BTREE,    /* get bit lengths tree for a dynamic block */
 3541       DTREE,    /* get length, distance trees for a dynamic block */
 3542       CODES,    /* processing fixed or dynamic block */
 3543       DRY,      /* output remaining window bytes */
 3544       DONEB,    /* finished last block, done */
 3545       BADB}     /* got a data error--stuck here */
 3546 inflate_block_mode;
 3547 
 3548 /* inflate blocks semi-private state */
 3549 struct inflate_blocks_state {
 3550 
 3551   /* mode */
 3552   inflate_block_mode  mode;     /* current inflate_block mode */
 3553 
 3554   /* mode dependent information */
 3555   union {
 3556     uInt left;          /* if STORED, bytes left to copy */
 3557     struct {
 3558       uInt table;               /* table lengths (14 bits) */
 3559       uInt index;               /* index into blens (or border) */
 3560       uIntf *blens;             /* bit lengths of codes */
 3561       uInt bb;                  /* bit length tree depth */
 3562       inflate_huft *tb;         /* bit length decoding tree */
 3563     } trees;            /* if DTREE, decoding info for trees */
 3564     struct {
 3565       inflate_huft *tl;
 3566       inflate_huft *td;         /* trees to free */
 3567       inflate_codes_statef 
 3568          *codes;
 3569     } decode;           /* if CODES, current state */
 3570   } sub;                /* submode */
 3571   uInt last;            /* true if this block is the last block */
 3572 
 3573   /* mode independent information */
 3574   uInt bitk;            /* bits in bit buffer */
 3575   uLong bitb;           /* bit buffer */
 3576   Bytef *window;        /* sliding window */
 3577   Bytef *end;           /* one byte after sliding window */
 3578   Bytef *read;          /* window read pointer */
 3579   Bytef *write;         /* window write pointer */
 3580   check_func checkfn;   /* check function */
 3581   uLong check;          /* check on output */
 3582 
 3583 };
 3584 
 3585 
 3586 /* defines for inflate input/output */
 3587 /*   update pointers and return */
 3588 #define UPDBITS {s->bitb=b;s->bitk=k;}
 3589 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
 3590 #define UPDOUT {s->write=q;}
 3591 #define UPDATE {UPDBITS UPDIN UPDOUT}
 3592 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
 3593 /*   get bytes and bits */
 3594 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
 3595 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
 3596 #define NEXTBYTE (n--,*p++)
 3597 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
 3598 #define DUMPBITS(j) {b>>=(j);k-=(j);}
 3599 /*   output bytes */
 3600 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
 3601 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
 3602 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
 3603 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
 3604 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
 3605 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
 3606 /*   load local pointers */
 3607 #define LOAD {LOADIN LOADOUT}
 3608 
 3609 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
 3610 extern uInt inflate_mask[17];
 3611 
 3612 /* copy as much as possible from the sliding window to the output area */
 3613 extern int inflate_flush OF((
 3614     inflate_blocks_statef *,
 3615     z_streamp ,
 3616     int));
 3617 
 3618 #ifndef NO_DUMMY_DECL
 3619 struct internal_state      {int dummy;}; /* for buggy compilers */
 3620 #endif
 3621 
 3622 #endif
 3623 /* --- infutil.h */
 3624 
 3625 #ifndef NO_DUMMY_DECL
 3626 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
 3627 #endif
 3628 
 3629 /* Table for deflate from PKZIP's appnote.txt. */
 3630 local const uInt border[] = { /* Order of the bit length code lengths */
 3631         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
 3632 
 3633 /*
 3634    Notes beyond the 1.93a appnote.txt:
 3635 
 3636    1. Distance pointers never point before the beginning of the output
 3637       stream.
 3638    2. Distance pointers can point back across blocks, up to 32k away.
 3639    3. There is an implied maximum of 7 bits for the bit length table and
 3640       15 bits for the actual data.
 3641    4. If only one code exists, then it is encoded using one bit.  (Zero
 3642       would be more efficient, but perhaps a little confusing.)  If two
 3643       codes exist, they are coded using one bit each (0 and 1).
 3644    5. There is no way of sending zero distance codes--a dummy must be
 3645       sent if there are none.  (History: a pre 2.0 version of PKZIP would
 3646       store blocks with no distance codes, but this was discovered to be
 3647       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
 3648       zero distance codes, which is sent as one code of zero bits in
 3649       length.
 3650    6. There are up to 286 literal/length codes.  Code 256 represents the
 3651       end-of-block.  Note however that the static length tree defines
 3652       288 codes just to fill out the Huffman codes.  Codes 286 and 287
 3653       cannot be used though, since there is no length base or extra bits
 3654       defined for them.  Similarily, there are up to 30 distance codes.
 3655       However, static trees define 32 codes (all 5 bits) to fill out the
 3656       Huffman codes, but the last two had better not show up in the data.
 3657    7. Unzip can check dynamic Huffman blocks for complete code sets.
 3658       The exception is that a single code would not be complete (see #4).
 3659    8. The five bits following the block type is really the number of
 3660       literal codes sent minus 257.
 3661    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
 3662       (1+6+6).  Therefore, to output three times the length, you output
 3663       three codes (1+1+1), whereas to output four times the same length,
 3664       you only need two codes (1+3).  Hmm.
 3665   10. In the tree reconstruction algorithm, Code = Code + Increment
 3666       only if BitLength(i) is not zero.  (Pretty obvious.)
 3667   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
 3668   12. Note: length code 284 can represent 227-258, but length code 285
 3669       really is 258.  The last length deserves its own, short code
 3670       since it gets used a lot in very redundant files.  The length
 3671       258 is special since 258 - 3 (the min match length) is 255.
 3672   13. The literal/length and distance code bit lengths are read as a
 3673       single stream of lengths.  It is possible (and advantageous) for
 3674       a repeat code (16, 17, or 18) to go across the boundary between
 3675       the two sets of lengths.
 3676  */
 3677 
 3678 
 3679 void inflate_blocks_reset(s, z, c)
 3680 inflate_blocks_statef *s;
 3681 z_streamp z;
 3682 uLongf *c;
 3683 {
 3684   if (s->checkfn != Z_NULL)
 3685     *c = s->check;
 3686   if (s->mode == BTREE || s->mode == DTREE)
 3687     ZFREE(z, s->sub.trees.blens);
 3688   if (s->mode == CODES)
 3689   {
 3690     inflate_codes_free(s->sub.decode.codes, z);
 3691     inflate_trees_free(s->sub.decode.td, z);
 3692     inflate_trees_free(s->sub.decode.tl, z);
 3693   }
 3694   s->mode = TYPE;
 3695   s->bitk = 0;
 3696   s->bitb = 0;
 3697   s->read = s->write = s->window;
 3698   if (s->checkfn != Z_NULL)
 3699     z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
 3700   Trace((stderr, "inflate:   blocks reset\n"));
 3701 }
 3702 
 3703 
 3704 inflate_blocks_statef *inflate_blocks_new(z, c, w)
 3705 z_streamp z;
 3706 check_func c;
 3707 uInt w;
 3708 {
 3709   inflate_blocks_statef *s;
 3710 
 3711   if ((s = (inflate_blocks_statef *)ZALLOC
 3712        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
 3713     return s;
 3714   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
 3715   {
 3716     ZFREE(z, s);
 3717     return Z_NULL;
 3718   }
 3719   s->end = s->window + w;
 3720   s->checkfn = c;
 3721   s->mode = TYPE;
 3722   Trace((stderr, "inflate:   blocks allocated\n"));
 3723   inflate_blocks_reset(s, z, &s->check);
 3724   return s;
 3725 }
 3726 
 3727 
 3728 #ifdef DEBUG_ZLIB
 3729   extern uInt inflate_hufts;
 3730 #endif
 3731 int inflate_blocks(s, z, r)
 3732 inflate_blocks_statef *s;
 3733 z_streamp z;
 3734 int r;
 3735 {
 3736   uInt t;               /* temporary storage */
 3737   uLong b;              /* bit buffer */
 3738   uInt k;               /* bits in bit buffer */
 3739   Bytef *p;             /* input data pointer */
 3740   uInt n;               /* bytes available there */
 3741   Bytef *q;             /* output window write pointer */
 3742   uInt m;               /* bytes to end of window or read pointer */
 3743 
 3744   /* copy input/output information to locals (UPDATE macro restores) */
 3745   LOAD
 3746 
 3747   /* process input based on current state */
 3748   while (1) switch (s->mode)
 3749   {
 3750     case TYPE:
 3751       NEEDBITS(3)
 3752       t = (uInt)b & 7;
 3753       s->last = t & 1;
 3754       switch (t >> 1)
 3755       {
 3756         case 0:                         /* stored */
 3757           Trace((stderr, "inflate:     stored block%s\n",
 3758                  s->last ? " (last)" : ""));
 3759           DUMPBITS(3)
 3760           t = k & 7;                    /* go to byte boundary */
 3761           DUMPBITS(t)
 3762           s->mode = LENS;               /* get length of stored block */
 3763           break;
 3764         case 1:                         /* fixed */
 3765           Trace((stderr, "inflate:     fixed codes block%s\n",
 3766                  s->last ? " (last)" : ""));
 3767           {
 3768             uInt bl, bd;
 3769             inflate_huft *tl, *td;
 3770 
 3771             inflate_trees_fixed(&bl, &bd, &tl, &td);
 3772             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
 3773             if (s->sub.decode.codes == Z_NULL)
 3774             {
 3775               r = Z_MEM_ERROR;
 3776               LEAVE
 3777             }
 3778             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
 3779             s->sub.decode.td = Z_NULL;
 3780           }
 3781           DUMPBITS(3)
 3782           s->mode = CODES;
 3783           break;
 3784         case 2:                         /* dynamic */
 3785           Trace((stderr, "inflate:     dynamic codes block%s\n",
 3786                  s->last ? " (last)" : ""));
 3787           DUMPBITS(3)
 3788           s->mode = TABLE;
 3789           break;
 3790         case 3:                         /* illegal */
 3791           DUMPBITS(3)
 3792           s->mode = BADB;
 3793           z->msg = (char*)"invalid block type";
 3794           r = Z_DATA_ERROR;
 3795           LEAVE
 3796       }
 3797       break;
 3798     case LENS:
 3799       NEEDBITS(32)
 3800       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
 3801       {
 3802         s->mode = BADB;
 3803         z->msg = (char*)"invalid stored block lengths";
 3804         r = Z_DATA_ERROR;
 3805         LEAVE
 3806       }
 3807       s->sub.left = (uInt)b & 0xffff;
 3808       b = k = 0;                      /* dump bits */
 3809       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
 3810       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
 3811       break;
 3812     case STORED:
 3813       if (n == 0)
 3814         LEAVE
 3815       NEEDOUT
 3816       t = s->sub.left;
 3817       if (t > n) t = n;
 3818       if (t > m) t = m;
 3819       zmemcpy(q, p, t);
 3820       p += t;  n -= t;
 3821       q += t;  m -= t;
 3822       if ((s->sub.left -= t) != 0)
 3823         break;
 3824       Tracev((stderr, "inflate:       stored end, %lu total out\n",
 3825               z->total_out + (q >= s->read ? q - s->read :
 3826               (s->end - s->read) + (q - s->window))));
 3827       s->mode = s->last ? DRY : TYPE;
 3828       break;
 3829     case TABLE:
 3830       NEEDBITS(14)
 3831       s->sub.trees.table = t = (uInt)b & 0x3fff;
 3832 #ifndef PKZIP_BUG_WORKAROUND
 3833       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
 3834       {
 3835         s->mode = BADB;
 3836         z->msg = (char*)"too many length or distance symbols";
 3837         r = Z_DATA_ERROR;
 3838         LEAVE
 3839       }
 3840 #endif
 3841       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
 3842       if (t < 19)
 3843         t = 19;
 3844       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
 3845       {
 3846         r = Z_MEM_ERROR;
 3847         LEAVE
 3848       }
 3849       DUMPBITS(14)
 3850       s->sub.trees.index = 0;
 3851       Tracev((stderr, "inflate:       table sizes ok\n"));
 3852       s->mode = BTREE;
 3853     case BTREE:
 3854       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
 3855       {
 3856         NEEDBITS(3)
 3857         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
 3858         DUMPBITS(3)
 3859       }
 3860       while (s->sub.trees.index < 19)
 3861         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
 3862       s->sub.trees.bb = 7;
 3863       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
 3864                              &s->sub.trees.tb, z);
 3865       if (t != Z_OK)
 3866       {
 3867         ZFREE(z, s->sub.trees.blens);
 3868         r = t;
 3869         if (r == Z_DATA_ERROR)
 3870           s->mode = BADB;
 3871         LEAVE
 3872       }
 3873       s->sub.trees.index = 0;
 3874       Tracev((stderr, "inflate:       bits tree ok\n"));
 3875       s->mode = DTREE;
 3876     case DTREE:
 3877       while (t = s->sub.trees.table,
 3878              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
 3879       {
 3880         inflate_huft *h;
 3881         uInt i, j, c;
 3882 
 3883         t = s->sub.trees.bb;
 3884         NEEDBITS(t)
 3885         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
 3886         t = h->word.what.Bits;
 3887         c = h->more.Base;
 3888         if (c < 16)
 3889         {
 3890           DUMPBITS(t)
 3891           s->sub.trees.blens[s->sub.trees.index++] = c;
 3892         }
 3893         else /* c == 16..18 */
 3894         {
 3895           i = c == 18 ? 7 : c - 14;
 3896           j = c == 18 ? 11 : 3;
 3897           NEEDBITS(t + i)
 3898           DUMPBITS(t)
 3899           j += (uInt)b & inflate_mask[i];
 3900           DUMPBITS(i)
 3901           i = s->sub.trees.index;
 3902           t = s->sub.trees.table;
 3903           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
 3904               (c == 16 && i < 1))
 3905           {
 3906             inflate_trees_free(s->sub.trees.tb, z);
 3907             ZFREE(z, s->sub.trees.blens);
 3908             s->mode = BADB;
 3909             z->msg = (char*)"invalid bit length repeat";
 3910             r = Z_DATA_ERROR;
 3911             LEAVE
 3912           }
 3913           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
 3914           do {
 3915             s->sub.trees.blens[i++] = c;
 3916           } while (--j);
 3917           s->sub.trees.index = i;
 3918         }
 3919       }
 3920       inflate_trees_free(s->sub.trees.tb, z);
 3921       s->sub.trees.tb = Z_NULL;
 3922       {
 3923         uInt bl, bd;
 3924         inflate_huft *tl, *td;
 3925         inflate_codes_statef *c;
 3926 
 3927         bl = 9;         /* must be <= 9 for lookahead assumptions */
 3928         bd = 6;         /* must be <= 9 for lookahead assumptions */
 3929         t = s->sub.trees.table;
 3930 #ifdef DEBUG_ZLIB
 3931       inflate_hufts = 0;
 3932 #endif
 3933         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
 3934                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
 3935         ZFREE(z, s->sub.trees.blens);
 3936         if (t != Z_OK)
 3937         {
 3938           if (t == (uInt)Z_DATA_ERROR)
 3939             s->mode = BADB;
 3940           r = t;
 3941           LEAVE
 3942         }
 3943         Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
 3944               inflate_hufts, sizeof(inflate_huft)));
 3945         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
 3946         {
 3947           inflate_trees_free(td, z);
 3948           inflate_trees_free(tl, z);
 3949           r = Z_MEM_ERROR;
 3950           LEAVE
 3951         }
 3952         s->sub.decode.codes = c;
 3953         s->sub.decode.tl = tl;
 3954         s->sub.decode.td = td;
 3955       }
 3956       s->mode = CODES;
 3957     case CODES:
 3958       UPDATE
 3959       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
 3960         return inflate_flush(s, z, r);
 3961       r = Z_OK;
 3962       inflate_codes_free(s->sub.decode.codes, z);
 3963       inflate_trees_free(s->sub.decode.td, z);
 3964       inflate_trees_free(s->sub.decode.tl, z);
 3965       LOAD
 3966       Tracev((stderr, "inflate:       codes end, %lu total out\n",
 3967               z->total_out + (q >= s->read ? q - s->read :
 3968               (s->end - s->read) + (q - s->window))));
 3969       if (!s->last)
 3970       {
 3971         s->mode = TYPE;
 3972         break;
 3973       }
 3974       if (k > 7)              /* return unused byte, if any */
 3975       {
 3976         Assert(k < 16, "inflate_codes grabbed too many bytes")
 3977         k -= 8;
 3978         n++;
 3979         p--;                    /* can always return one */
 3980       }
 3981       s->mode = DRY;
 3982     case DRY:
 3983       FLUSH
 3984       if (s->read != s->write)
 3985         LEAVE
 3986       s->mode = DONEB;
 3987     case DONEB:
 3988       r = Z_STREAM_END;
 3989       LEAVE
 3990     case BADB:
 3991       r = Z_DATA_ERROR;
 3992       LEAVE
 3993     default:
 3994       r = Z_STREAM_ERROR;
 3995       LEAVE
 3996   }
 3997 }
 3998 
 3999 
 4000 int inflate_blocks_free(s, z, c)
 4001 inflate_blocks_statef *s;
 4002 z_streamp z;
 4003 uLongf *c;
 4004 {
 4005   inflate_blocks_reset(s, z, c);
 4006   ZFREE(z, s->window);
 4007   ZFREE(z, s);
 4008   Trace((stderr, "inflate:   blocks freed\n"));
 4009   return Z_OK;
 4010 }
 4011 
 4012 
 4013 void inflate_set_dictionary(s, d, n)
 4014 inflate_blocks_statef *s;
 4015 const Bytef *d;
 4016 uInt  n;
 4017 {
 4018   zmemcpy((charf *)s->window, d, n);
 4019   s->read = s->write = s->window + n;
 4020 }
 4021 
 4022 /*
 4023  * This subroutine adds the data at next_in/avail_in to the output history
 4024  * without performing any output.  The output buffer must be "caught up";
 4025  * i.e. no pending output (hence s->read equals s->write), and the state must
 4026  * be BLOCKS (i.e. we should be willing to see the start of a series of
 4027  * BLOCKS).  On exit, the output will also be caught up, and the checksum
 4028  * will have been updated if need be.
 4029  */
 4030 int inflate_addhistory(s, z)
 4031 inflate_blocks_statef *s;
 4032 z_stream *z;
 4033 {
 4034     uLong b;              /* bit buffer */  /* NOT USED HERE */
 4035     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
 4036     uInt t;               /* temporary storage */
 4037     Bytef *p;             /* input data pointer */
 4038     uInt n;               /* bytes available there */
 4039     Bytef *q;             /* output window write pointer */
 4040     uInt m;               /* bytes to end of window or read pointer */
 4041 
 4042     if (s->read != s->write)
 4043         return Z_STREAM_ERROR;
 4044     if (s->mode != TYPE)
 4045         return Z_DATA_ERROR;
 4046 
 4047     /* we're ready to rock */
 4048     LOAD
 4049     /* while there is input ready, copy to output buffer, moving
 4050      * pointers as needed.
 4051      */
 4052     while (n) {
 4053         t = n;  /* how many to do */
 4054         /* is there room until end of buffer? */
 4055         if (t > m) t = m;
 4056         /* update check information */
 4057         if (s->checkfn != Z_NULL)
 4058             s->check = (*s->checkfn)(s->check, q, t);
 4059         zmemcpy(q, p, t);
 4060         q += t;
 4061         p += t;
 4062         n -= t;
 4063         z->total_out += t;
 4064         s->read = q;    /* drag read pointer forward */
 4065 /*      WWRAP  */       /* expand WWRAP macro by hand to handle s->read */
 4066         if (q == s->end) {
 4067             s->read = q = s->window;
 4068             m = WAVAIL;
 4069         }
 4070     }
 4071     UPDATE
 4072     return Z_OK;
 4073 }
 4074 
 4075 
 4076 /*
 4077  * At the end of a Deflate-compressed PPP packet, we expect to have seen
 4078  * a `stored' block type value but not the (zero) length bytes.
 4079  */
 4080 int inflate_packet_flush(s)
 4081     inflate_blocks_statef *s;
 4082 {
 4083     if (s->mode != LENS)
 4084         return Z_DATA_ERROR;
 4085     s->mode = TYPE;
 4086     return Z_OK;
 4087 }
 4088 /* --- infblock.c */
 4089 
 4090 /* +++ inftrees.c */
 4091 /* inftrees.c -- generate Huffman trees for efficient decoding
 4092  * Copyright (C) 1995-1996 Mark Adler
 4093  * For conditions of distribution and use, see copyright notice in zlib.h 
 4094  */
 4095 
 4096 /* #include "zutil.h" */
 4097 /* #include "inftrees.h" */
 4098 
 4099 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
 4100 /*
 4101   If you use the zlib library in a product, an acknowledgment is welcome
 4102   in the documentation of your product. If for some reason you cannot
 4103   include such an acknowledgment, I would appreciate that you keep this
 4104   copyright string in the executable of your product.
 4105  */
 4106 
 4107 #ifndef NO_DUMMY_DECL
 4108 struct internal_state  {int dummy;}; /* for buggy compilers */
 4109 #endif
 4110 
 4111 /* simplify the use of the inflate_huft type with some defines */
 4112 #define base more.Base
 4113 #define next more.Next
 4114 #define exop word.what.Exop
 4115 #define bits word.what.Bits
 4116 
 4117 
 4118 local int huft_build OF((
 4119     uIntf *,            /* code lengths in bits */
 4120     uInt,               /* number of codes */
 4121     uInt,               /* number of "simple" codes */
 4122     const uIntf *,      /* list of base values for non-simple codes */
 4123     const uIntf *,      /* list of extra bits for non-simple codes */
 4124     inflate_huft * FAR*,/* result: starting table */
 4125     uIntf *,            /* maximum lookup bits (returns actual) */
 4126     z_streamp ));       /* for zalloc function */
 4127 
 4128 local voidpf falloc OF((
 4129     voidpf,             /* opaque pointer (not used) */
 4130     uInt,               /* number of items */
 4131     uInt));             /* size of item */
 4132 
 4133 /* Tables for deflate from PKZIP's appnote.txt. */
 4134 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
 4135         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
 4136         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
 4137         /* see note #13 above about 258 */
 4138 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
 4139         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
 4140         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
 4141 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
 4142         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
 4143         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
 4144         8193, 12289, 16385, 24577};
 4145 local const uInt cpdext[30] = { /* Extra bits for distance codes */
 4146         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
 4147         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
 4148         12, 12, 13, 13};
 4149 
 4150 /*
 4151    Huffman code decoding is performed using a multi-level table lookup.
 4152    The fastest way to decode is to simply build a lookup table whose
 4153    size is determined by the longest code.  However, the time it takes
 4154    to build this table can also be a factor if the data being decoded
 4155    is not very long.  The most common codes are necessarily the
 4156    shortest codes, so those codes dominate the decoding time, and hence
 4157    the speed.  The idea is you can have a shorter table that decodes the
 4158    shorter, more probable codes, and then point to subsidiary tables for
 4159    the longer codes.  The time it costs to decode the longer codes is
 4160    then traded against the time it takes to make longer tables.
 4161 
 4162    This results of this trade are in the variables lbits and dbits
 4163    below.  lbits is the number of bits the first level table for literal/
 4164    length codes can decode in one step, and dbits is the same thing for
 4165    the distance codes.  Subsequent tables are also less than or equal to
 4166    those sizes.  These values may be adjusted either when all of the
 4167    codes are shorter than that, in which case the longest code length in
 4168    bits is used, or when the shortest code is *longer* than the requested
 4169    table size, in which case the length of the shortest code in bits is
 4170    used.
 4171 
 4172    There are two different values for the two tables, since they code a
 4173    different number of possibilities each.  The literal/length table
 4174    codes 286 possible values, or in a flat code, a little over eight
 4175    bits.  The distance table codes 30 possible values, or a little less
 4176    than five bits, flat.  The optimum values for speed end up being
 4177    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
 4178    The optimum values may differ though from machine to machine, and
 4179    possibly even between compilers.  Your mileage may vary.
 4180  */
 4181 
 4182 
 4183 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
 4184 #define BMAX 15         /* maximum bit length of any code */
 4185 #define N_MAX 288       /* maximum number of codes in any set */
 4186 
 4187 #ifdef DEBUG_ZLIB
 4188   uInt inflate_hufts;
 4189 #endif
 4190 
 4191 local int huft_build(b, n, s, d, e, t, m, zs)
 4192 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
 4193 uInt n;                 /* number of codes (assumed <= N_MAX) */
 4194 uInt s;                 /* number of simple-valued codes (0..s-1) */
 4195 const uIntf *d;         /* list of base values for non-simple codes */
 4196 const uIntf *e;         /* list of extra bits for non-simple codes */
 4197 inflate_huft * FAR *t;  /* result: starting table */
 4198 uIntf *m;               /* maximum lookup bits, returns actual */
 4199 z_streamp zs;           /* for zalloc function */
 4200 /* Given a list of code lengths and a maximum table size, make a set of
 4201    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
 4202    if the given code set is incomplete (the tables are still built in this
 4203    case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
 4204    lengths), or Z_MEM_ERROR if not enough memory. */
 4205 {
 4206 
 4207   uInt a;                       /* counter for codes of length k */
 4208   uInt c[BMAX+1];               /* bit length count table */
 4209   uInt f;                       /* i repeats in table every f entries */
 4210   int g;                        /* maximum code length */
 4211   int h;                        /* table level */
 4212   register uInt i;              /* counter, current code */
 4213   register uInt j;              /* counter */
 4214   register int k;               /* number of bits in current code */
 4215   int l;                        /* bits per table (returned in m) */
 4216   register uIntf *p;            /* pointer into c[], b[], or v[] */
 4217   inflate_huft *q;              /* points to current table */
 4218   struct inflate_huft_s r;      /* table entry for structure assignment */
 4219   inflate_huft *u[BMAX];        /* table stack */
 4220   uInt v[N_MAX];                /* values in order of bit length */
 4221   register int w;               /* bits before this table == (l * h) */
 4222   uInt x[BMAX+1];               /* bit offsets, then code stack */
 4223   uIntf *xp;                    /* pointer into x */
 4224   int y;                        /* number of dummy codes added */
 4225   uInt z;                       /* number of entries in current table */
 4226 
 4227 
 4228   /* Generate counts for each bit length */
 4229   p = c;
 4230 #define C0 *p++ = 0;
 4231 #define C2 C0 C0 C0 C0
 4232 #define C4 C2 C2 C2 C2
 4233   C4                            /* clear c[]--assume BMAX+1 is 16 */
 4234   p = b;  i = n;
 4235   do {
 4236     c[*p++]++;                  /* assume all entries <= BMAX */
 4237   } while (--i);
 4238   if (c[0] == n)                /* null input--all zero length codes */
 4239   {
 4240     *t = (inflate_huft *)Z_NULL;
 4241     *m = 0;
 4242     return Z_OK;
 4243   }
 4244 
 4245 
 4246   /* Find minimum and maximum length, bound *m by those */
 4247   l = *m;
 4248   for (j = 1; j <= BMAX; j++)
 4249     if (c[j])
 4250       break;
 4251   k = j;                        /* minimum code length */
 4252   if ((uInt)l < j)
 4253     l = j;
 4254   for (i = BMAX; i; i--)
 4255     if (c[i])
 4256       break;
 4257   g = i;                        /* maximum code length */
 4258   if ((uInt)l > i)
 4259     l = i;
 4260   *m = l;
 4261 
 4262 
 4263   /* Adjust last length count to fill out codes, if needed */
 4264   for (y = 1 << j; j < i; j++, y <<= 1)
 4265     if ((y -= c[j]) < 0)
 4266       return Z_DATA_ERROR;
 4267   if ((y -= c[i]) < 0)
 4268     return Z_DATA_ERROR;
 4269   c[i] += y;
 4270 
 4271 
 4272   /* Generate starting offsets into the value table for each length */
 4273   x[1] = j = 0;
 4274   p = c + 1;  xp = x + 2;
 4275   while (--i) {                 /* note that i == g from above */
 4276     *xp++ = (j += *p++);
 4277   }
 4278 
 4279 
 4280   /* Make a table of values in order of bit lengths */
 4281   p = b;  i = 0;
 4282   do {
 4283     if ((j = *p++) != 0)
 4284       v[x[j]++] = i;
 4285   } while (++i < n);
 4286   n = x[g];                   /* set n to length of v */
 4287 
 4288 
 4289   /* Generate the Huffman codes and for each, make the table entries */
 4290   x[0] = i = 0;                 /* first Huffman code is zero */
 4291   p = v;                        /* grab values in bit order */
 4292   h = -1;                       /* no tables yet--level -1 */
 4293   w = -l;                       /* bits decoded == (l * h) */
 4294   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
 4295   q = (inflate_huft *)Z_NULL;   /* ditto */
 4296   z = 0;                        /* ditto */
 4297 
 4298   /* go through the bit lengths (k already is bits in shortest code) */
 4299   for (; k <= g; k++)
 4300   {
 4301     a = c[k];
 4302     while (a--)
 4303     {
 4304       /* here i is the Huffman code of length k bits for value *p */
 4305       /* make tables up to required level */
 4306       while (k > w + l)
 4307       {
 4308         h++;
 4309         w += l;                 /* previous table always l bits */
 4310 
 4311         /* compute minimum size table less than or equal to l bits */
 4312         z = g - w;
 4313         z = z > (uInt)l ? l : z;        /* table size upper limit */
 4314         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
 4315         {                       /* too few codes for k-w bit table */
 4316           f -= a + 1;           /* deduct codes from patterns left */
 4317           xp = c + k;
 4318           if (j < z)
 4319             while (++j < z)     /* try smaller tables up to z bits */
 4320             {
 4321               if ((f <<= 1) <= *++xp)
 4322                 break;          /* enough codes to use up j bits */
 4323               f -= *xp;         /* else deduct codes from patterns */
 4324             }
 4325         }
 4326         z = 1 << j;             /* table entries for j-bit table */
 4327 
 4328         /* allocate and link in new table */
 4329         if ((q = (inflate_huft *)ZALLOC
 4330              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
 4331         {
 4332           if (h)
 4333             inflate_trees_free(u[0], zs);
 4334           return Z_MEM_ERROR;   /* not enough memory */
 4335         }
 4336 #ifdef DEBUG_ZLIB
 4337         inflate_hufts += z + 1;
 4338 #endif
 4339         *t = q + 1;             /* link to list for huft_free() */
 4340         *(t = &(q->next)) = Z_NULL;
 4341         u[h] = ++q;             /* table starts after link */
 4342 
 4343         /* connect to last table, if there is one */
 4344         if (h)
 4345         {
 4346           x[h] = i;             /* save pattern for backing up */
 4347           r.bits = (Byte)l;     /* bits to dump before this table */
 4348           r.exop = (Byte)j;     /* bits in this table */
 4349           r.next = q;           /* pointer to this table */
 4350           j = i >> (w - l);     /* (get around Turbo C bug) */
 4351           u[h-1][j] = r;        /* connect to last table */
 4352         }
 4353       }
 4354 
 4355       /* set up table entry in r */
 4356       r.bits = (Byte)(k - w);
 4357       if (p >= v + n)
 4358         r.exop = 128 + 64;      /* out of values--invalid code */
 4359       else if (*p < s)
 4360       {
 4361         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
 4362         r.base = *p++;          /* simple code is just the value */
 4363       }
 4364       else
 4365       {
 4366         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
 4367         r.base = d[*p++ - s];
 4368       }
 4369 
 4370       /* fill code-like entries with r */
 4371       f = 1 << (k - w);
 4372       for (j = i >> w; j < z; j += f)
 4373         q[j] = r;
 4374 
 4375       /* backwards increment the k-bit code i */
 4376       for (j = 1 << (k - 1); i & j; j >>= 1)
 4377         i ^= j;
 4378       i ^= j;
 4379 
 4380       /* backup over finished tables */
 4381       while ((i & ((1 << w) - 1)) != x[h])
 4382       {
 4383         h--;                    /* don't need to update q */
 4384         w -= l;
 4385       }
 4386     }
 4387   }
 4388 
 4389 
 4390   /* Return Z_BUF_ERROR if we were given an incomplete table */
 4391   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
 4392 }
 4393 
 4394 
 4395 int inflate_trees_bits(c, bb, tb, z)
 4396 uIntf *c;               /* 19 code lengths */
 4397 uIntf *bb;              /* bits tree desired/actual depth */
 4398 inflate_huft * FAR *tb; /* bits tree result */
 4399 z_streamp z;            /* for zfree function */
 4400 {
 4401   int r;
 4402 
 4403   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
 4404   if (r == Z_DATA_ERROR)
 4405     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
 4406   else if (r == Z_BUF_ERROR || *bb == 0)
 4407   {
 4408     inflate_trees_free(*tb, z);
 4409     z->msg = (char*)"incomplete dynamic bit lengths tree";
 4410     r = Z_DATA_ERROR;
 4411   }
 4412   return r;
 4413 }
 4414 
 4415 
 4416 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
 4417 uInt nl;                /* number of literal/length codes */
 4418 uInt nd;                /* number of distance codes */
 4419 uIntf *c;               /* that many (total) code lengths */
 4420 uIntf *bl;              /* literal desired/actual bit depth */
 4421 uIntf *bd;              /* distance desired/actual bit depth */
 4422 inflate_huft * FAR *tl; /* literal/length tree result */
 4423 inflate_huft * FAR *td; /* distance tree result */
 4424 z_streamp z;            /* for zfree function */
 4425 {
 4426   int r;
 4427 
 4428   /* build literal/length tree */
 4429   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
 4430   if (r != Z_OK || *bl == 0)
 4431   {
 4432     if (r == Z_DATA_ERROR)
 4433       z->msg = (char*)"oversubscribed literal/length tree";
 4434     else if (r != Z_MEM_ERROR)
 4435     {
 4436       inflate_trees_free(*tl, z);
 4437       z->msg = (char*)"incomplete literal/length tree";
 4438       r = Z_DATA_ERROR;
 4439     }
 4440     return r;
 4441   }
 4442 
 4443   /* build distance tree */
 4444   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
 4445   if (r != Z_OK || (*bd == 0 && nl > 257))
 4446   {
 4447     if (r == Z_DATA_ERROR)
 4448       z->msg = (char*)"oversubscribed distance tree";
 4449     else if (r == Z_BUF_ERROR) {
 4450 #ifdef PKZIP_BUG_WORKAROUND
 4451       r = Z_OK;
 4452     }
 4453 #else
 4454       inflate_trees_free(*td, z);
 4455       z->msg = (char*)"incomplete distance tree";
 4456       r = Z_DATA_ERROR;
 4457     }
 4458     else if (r != Z_MEM_ERROR)
 4459     {
 4460       z->msg = (char*)"empty distance tree with lengths";
 4461       r = Z_DATA_ERROR;
 4462     }
 4463     inflate_trees_free(*tl, z);
 4464     return r;
 4465 #endif
 4466   }
 4467 
 4468   /* done */
 4469   return Z_OK;
 4470 }
 4471 
 4472 
 4473 /* build fixed tables only once--keep them here */
 4474 local int fixed_built = 0;
 4475 #define FIXEDH 530      /* number of hufts used by fixed tables */
 4476 local inflate_huft fixed_mem[FIXEDH];
 4477 local uInt fixed_bl;
 4478 local uInt fixed_bd;
 4479 local inflate_huft *fixed_tl;
 4480 local inflate_huft *fixed_td;
 4481 
 4482 
 4483 local voidpf falloc(q, n, s)
 4484 voidpf q;       /* opaque pointer */
 4485 uInt n;         /* number of items */
 4486 uInt s;         /* size of item */
 4487 {
 4488   Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
 4489          "inflate_trees falloc overflow");
 4490   *(intf *)q -= n+s-s; /* s-s to avoid warning */
 4491   return (voidpf)(fixed_mem + *(intf *)q);
 4492 }
 4493 
 4494 
 4495 int inflate_trees_fixed(bl, bd, tl, td)
 4496 uIntf *bl;               /* literal desired/actual bit depth */
 4497 uIntf *bd;               /* distance desired/actual bit depth */
 4498 inflate_huft * FAR *tl;  /* literal/length tree result */
 4499 inflate_huft * FAR *td;  /* distance tree result */
 4500 {
 4501   /* build fixed tables if not already (multiple overlapped executions ok) */
 4502   if (!fixed_built)
 4503   {
 4504     int k;              /* temporary variable */
 4505     unsigned c[288];    /* length list for huft_build */
 4506     z_stream z;         /* for falloc function */
 4507     int f = FIXEDH;     /* number of hufts left in fixed_mem */
 4508 
 4509     /* set up fake z_stream for memory routines */
 4510     z.zalloc = falloc;
 4511     z.zfree = Z_NULL;
 4512     z.opaque = (voidpf)&f;
 4513 
 4514     /* literal table */
 4515     for (k = 0; k < 144; k++)
 4516       c[k] = 8;
 4517     for (; k < 256; k++)
 4518       c[k] = 9;
 4519     for (; k < 280; k++)
 4520       c[k] = 7;
 4521     for (; k < 288; k++)
 4522       c[k] = 8;
 4523     fixed_bl = 7;
 4524     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
 4525 
 4526     /* distance table */
 4527     for (k = 0; k < 30; k++)
 4528       c[k] = 5;
 4529     fixed_bd = 5;
 4530     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
 4531 
 4532     /* done */
 4533     Assert(f == 0, "invalid build of fixed tables");
 4534     fixed_built = 1;
 4535   }
 4536   *bl = fixed_bl;
 4537   *bd = fixed_bd;
 4538   *tl = fixed_tl;
 4539   *td = fixed_td;
 4540   return Z_OK;
 4541 }
 4542 
 4543 
 4544 int inflate_trees_free(t, z)
 4545 inflate_huft *t;        /* table to free */
 4546 z_streamp z;            /* for zfree function */
 4547 /* Free the malloc'ed tables built by huft_build(), which makes a linked
 4548    list of the tables it made, with the links in a dummy first entry of
 4549    each table. */
 4550 {
 4551   register inflate_huft *p, *q, *r;
 4552 
 4553   /* Reverse linked list */
 4554   p = Z_NULL;
 4555   q = t;
 4556   while (q != Z_NULL)
 4557   {
 4558     r = (q - 1)->next;
 4559     (q - 1)->next = p;
 4560     p = q;
 4561     q = r;
 4562   }
 4563   /* Go through linked list, freeing from the malloced (t[-1]) address. */
 4564   while (p != Z_NULL)
 4565   {
 4566     q = (--p)->next;
 4567     ZFREE(z,p);
 4568     p = q;
 4569   } 
 4570   return Z_OK;
 4571 }
 4572 /* --- inftrees.c */
 4573 
 4574 /* +++ infcodes.c */
 4575 /* infcodes.c -- process literals and length/distance pairs
 4576  * Copyright (C) 1995-1996 Mark Adler
 4577  * For conditions of distribution and use, see copyright notice in zlib.h 
 4578  */
 4579 
 4580 /* #include "zutil.h" */
 4581 /* #include "inftrees.h" */
 4582 /* #include "infblock.h" */
 4583 /* #include "infcodes.h" */
 4584 /* #include "infutil.h" */
 4585 
 4586 /* +++ inffast.h */
 4587 /* inffast.h -- header to use inffast.c
 4588  * Copyright (C) 1995-1996 Mark Adler
 4589  * For conditions of distribution and use, see copyright notice in zlib.h 
 4590  */
 4591 
 4592 /* WARNING: this file should *not* be used by applications. It is
 4593    part of the implementation of the compression library and is
 4594    subject to change. Applications should only use zlib.h.
 4595  */
 4596 
 4597 extern int inflate_fast OF((
 4598     uInt,
 4599     uInt,
 4600     inflate_huft *,
 4601     inflate_huft *,
 4602     inflate_blocks_statef *,
 4603     z_streamp ));
 4604 /* --- inffast.h */
 4605 
 4606 /* simplify the use of the inflate_huft type with some defines */
 4607 #define base more.Base
 4608 #define next more.Next
 4609 #define exop word.what.Exop
 4610 #define bits word.what.Bits
 4611 
 4612 /* inflate codes private state */
 4613 struct inflate_codes_state {
 4614 
 4615   /* mode */
 4616   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
 4617       START,    /* x: set up for LEN */
 4618       LEN,      /* i: get length/literal/eob next */
 4619       LENEXT,   /* i: getting length extra (have base) */
 4620       DIST,     /* i: get distance next */
 4621       DISTEXT,  /* i: getting distance extra */
 4622       COPY,     /* o: copying bytes in window, waiting for space */
 4623       LIT,      /* o: got literal, waiting for output space */
 4624       WASH,     /* o: got eob, possibly still output waiting */
 4625       END,      /* x: got eob and all data flushed */
 4626       BADCODE}  /* x: got error */
 4627     mode;               /* current inflate_codes mode */
 4628 
 4629   /* mode dependent information */
 4630   uInt len;
 4631   union {
 4632     struct {
 4633       inflate_huft *tree;       /* pointer into tree */
 4634       uInt need;                /* bits needed */
 4635     } code;             /* if LEN or DIST, where in tree */
 4636     uInt lit;           /* if LIT, literal */
 4637     struct {
 4638       uInt get;                 /* bits to get for extra */
 4639       uInt dist;                /* distance back to copy from */
 4640     } copy;             /* if EXT or COPY, where and how much */
 4641   } sub;                /* submode */
 4642 
 4643   /* mode independent information */
 4644   Byte lbits;           /* ltree bits decoded per branch */
 4645   Byte dbits;           /* dtree bits decoder per branch */
 4646   inflate_huft *ltree;          /* literal/length/eob tree */
 4647   inflate_huft *dtree;          /* distance tree */
 4648 
 4649 };
 4650 
 4651 
 4652 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
 4653 uInt bl, bd;
 4654 inflate_huft *tl;
 4655 inflate_huft *td; /* need separate declaration for Borland C++ */
 4656 z_streamp z;
 4657 {
 4658   inflate_codes_statef *c;
 4659 
 4660   if ((c = (inflate_codes_statef *)
 4661        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
 4662   {
 4663     c->mode = START;
 4664     c->lbits = (Byte)bl;
 4665     c->dbits = (Byte)bd;
 4666     c->ltree = tl;
 4667     c->dtree = td;
 4668     Tracev((stderr, "inflate:       codes new\n"));
 4669   }
 4670   return c;
 4671 }
 4672 
 4673 
 4674 int inflate_codes(s, z, r)
 4675 inflate_blocks_statef *s;
 4676 z_streamp z;
 4677 int r;
 4678 {
 4679   uInt j;               /* temporary storage */
 4680   inflate_huft *t;      /* temporary pointer */
 4681   uInt e;               /* extra bits or operation */
 4682   uLong b;              /* bit buffer */
 4683   uInt k;               /* bits in bit buffer */
 4684   Bytef *p;             /* input data pointer */
 4685   uInt n;               /* bytes available there */
 4686   Bytef *q;             /* output window write pointer */
 4687   uInt m;               /* bytes to end of window or read pointer */
 4688   Bytef *f;             /* pointer to copy strings from */
 4689   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
 4690 
 4691   /* copy input/output information to locals (UPDATE macro restores) */
 4692   LOAD
 4693 
 4694   /* process input and output based on current state */
 4695   while (1) switch (c->mode)
 4696   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
 4697     case START:         /* x: set up for LEN */
 4698 #ifndef SLOW
 4699       if (m >= 258 && n >= 10)
 4700       {
 4701         UPDATE
 4702         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
 4703         LOAD
 4704         if (r != Z_OK)
 4705         {
 4706           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
 4707           break;
 4708         }
 4709       }
 4710 #endif /* !SLOW */
 4711       c->sub.code.need = c->lbits;
 4712       c->sub.code.tree = c->ltree;
 4713       c->mode = LEN;
 4714     case LEN:           /* i: get length/literal/eob next */
 4715       j = c->sub.code.need;
 4716       NEEDBITS(j)
 4717       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
 4718       DUMPBITS(t->bits)
 4719       e = (uInt)(t->exop);
 4720       if (e == 0)               /* literal */
 4721       {
 4722         c->sub.lit = t->base;
 4723         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
 4724                  "inflate:         literal '%c'\n" :
 4725                  "inflate:         literal 0x%02x\n", t->base));
 4726         c->mode = LIT;
 4727         break;
 4728       }
 4729       if (e & 16)               /* length */
 4730       {
 4731         c->sub.copy.get = e & 15;
 4732         c->len = t->base;
 4733         c->mode = LENEXT;
 4734         break;
 4735       }
 4736       if ((e & 64) == 0)        /* next table */
 4737       {
 4738         c->sub.code.need = e;
 4739         c->sub.code.tree = t->next;
 4740         break;
 4741       }
 4742       if (e & 32)               /* end of block */
 4743       {
 4744         Tracevv((stderr, "inflate:         end of block\n"));
 4745         c->mode = WASH;
 4746         break;
 4747       }
 4748       c->mode = BADCODE;        /* invalid code */
 4749       z->msg = (char*)"invalid literal/length code";
 4750       r = Z_DATA_ERROR;
 4751       LEAVE
 4752     case LENEXT:        /* i: getting length extra (have base) */
 4753       j = c->sub.copy.get;
 4754       NEEDBITS(j)
 4755       c->len += (uInt)b & inflate_mask[j];
 4756       DUMPBITS(j)
 4757       c->sub.code.need = c->dbits;
 4758       c->sub.code.tree = c->dtree;
 4759       Tracevv((stderr, "inflate:         length %u\n", c->len));
 4760       c->mode = DIST;
 4761     case DIST:          /* i: get distance next */
 4762       j = c->sub.code.need;
 4763       NEEDBITS(j)
 4764       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
 4765       DUMPBITS(t->bits)
 4766       e = (uInt)(t->exop);
 4767       if (e & 16)               /* distance */
 4768       {
 4769         c->sub.copy.get = e & 15;
 4770         c->sub.copy.dist = t->base;
 4771         c->mode = DISTEXT;
 4772         break;
 4773       }
 4774       if ((e & 64) == 0)        /* next table */
 4775       {
 4776         c->sub.code.need = e;
 4777         c->sub.code.tree = t->next;
 4778         break;
 4779       }
 4780       c->mode = BADCODE;        /* invalid code */
 4781       z->msg = (char*)"invalid distance code";
 4782       r = Z_DATA_ERROR;
 4783       LEAVE
 4784     case DISTEXT:       /* i: getting distance extra */
 4785       j = c->sub.copy.get;
 4786       NEEDBITS(j)
 4787       c->sub.copy.dist += (uInt)b & inflate_mask[j];
 4788       DUMPBITS(j)
 4789       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
 4790       c->mode = COPY;
 4791     case COPY:          /* o: copying bytes in window, waiting for space */
 4792 #ifndef __TURBOC__ /* Turbo C bug for following expression */
 4793       f = (uInt)(q - s->window) < c->sub.copy.dist ?
 4794           s->end - (c->sub.copy.dist - (q - s->window)) :
 4795           q - c->sub.copy.dist;
 4796 #else
 4797       f = q - c->sub.copy.dist;
 4798       if ((uInt)(q - s->window) < c->sub.copy.dist)
 4799         f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
 4800 #endif
 4801       while (c->len)
 4802       {
 4803         NEEDOUT
 4804         OUTBYTE(*f++)
 4805         if (f == s->end)
 4806           f = s->window;
 4807         c->len--;
 4808       }
 4809       c->mode = START;
 4810       break;
 4811     case LIT:           /* o: got literal, waiting for output space */
 4812       NEEDOUT
 4813       OUTBYTE(c->sub.lit)
 4814       c->mode = START;
 4815       break;
 4816     case WASH:          /* o: got eob, possibly more output */
 4817       FLUSH
 4818       if (s->read != s->write)
 4819         LEAVE
 4820       c->mode = END;
 4821     case END:
 4822       r = Z_STREAM_END;
 4823       LEAVE
 4824     case BADCODE:       /* x: got error */
 4825       r = Z_DATA_ERROR;
 4826       LEAVE
 4827     default:
 4828       r = Z_STREAM_ERROR;
 4829       LEAVE
 4830   }
 4831 }
 4832 
 4833 
 4834 void inflate_codes_free(c, z)
 4835 inflate_codes_statef *c;
 4836 z_streamp z;
 4837 {
 4838   ZFREE(z, c);
 4839   Tracev((stderr, "inflate:       codes free\n"));
 4840 }
 4841 /* --- infcodes.c */
 4842 
 4843 /* +++ infutil.c */
 4844 /* inflate_util.c -- data and routines common to blocks and codes
 4845  * Copyright (C) 1995-1996 Mark Adler
 4846  * For conditions of distribution and use, see copyright notice in zlib.h 
 4847  */
 4848 
 4849 /* #include "zutil.h" */
 4850 /* #include "infblock.h" */
 4851 /* #include "inftrees.h" */
 4852 /* #include "infcodes.h" */
 4853 /* #include "infutil.h" */
 4854 
 4855 #ifndef NO_DUMMY_DECL
 4856 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
 4857 #endif
 4858 
 4859 /* And'ing with mask[n] masks the lower n bits */
 4860 uInt inflate_mask[17] = {
 4861     0x0000,
 4862     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
 4863     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
 4864 };
 4865 
 4866 
 4867 /* copy as much as possible from the sliding window to the output area */
 4868 int inflate_flush(s, z, r)
 4869 inflate_blocks_statef *s;
 4870 z_streamp z;
 4871 int r;
 4872 {
 4873   uInt n;
 4874   Bytef *p;
 4875   Bytef *q;
 4876 
 4877   /* local copies of source and destination pointers */
 4878   p = z->next_out;
 4879   q = s->read;
 4880 
 4881   /* compute number of bytes to copy as far as end of window */
 4882   n = (uInt)((q <= s->write ? s->write : s->end) - q);
 4883   if (n > z->avail_out) n = z->avail_out;
 4884   if (n && r == Z_BUF_ERROR) r = Z_OK;
 4885 
 4886   /* update counters */
 4887   z->avail_out -= n;
 4888   z->total_out += n;
 4889 
 4890   /* update check information */
 4891   if (s->checkfn != Z_NULL)
 4892     z->adler = s->check = (*s->checkfn)(s->check, q, n);
 4893 
 4894   /* copy as far as end of window */
 4895   if (p != Z_NULL) {
 4896     zmemcpy(p, q, n);
 4897     p += n;
 4898   }
 4899   q += n;
 4900 
 4901   /* see if more to copy at beginning of window */
 4902   if (q == s->end)
 4903   {
 4904     /* wrap pointers */
 4905     q = s->window;
 4906     if (s->write == s->end)
 4907       s->write = s->window;
 4908 
 4909     /* compute bytes to copy */
 4910     n = (uInt)(s->write - q);
 4911     if (n > z->avail_out) n = z->avail_out;
 4912     if (n && r == Z_BUF_ERROR) r = Z_OK;
 4913 
 4914     /* update counters */
 4915     z->avail_out -= n;
 4916     z->total_out += n;
 4917 
 4918     /* update check information */
 4919     if (s->checkfn != Z_NULL)
 4920       z->adler = s->check = (*s->checkfn)(s->check, q, n);
 4921 
 4922     /* copy */
 4923     if (p != Z_NULL) {
 4924       zmemcpy(p, q, n);
 4925       p += n;
 4926     }
 4927     q += n;
 4928   }
 4929 
 4930   /* update pointers */
 4931   z->next_out = p;
 4932   s->read = q;
 4933 
 4934   /* done */
 4935   return r;
 4936 }
 4937 /* --- infutil.c */
 4938 
 4939 /* +++ inffast.c */
 4940 /* inffast.c -- process literals and length/distance pairs fast
 4941  * Copyright (C) 1995-1996 Mark Adler
 4942  * For conditions of distribution and use, see copyright notice in zlib.h 
 4943  */
 4944 
 4945 /* #include "zutil.h" */
 4946 /* #include "inftrees.h" */
 4947 /* #include "infblock.h" */
 4948 /* #include "infcodes.h" */
 4949 /* #include "infutil.h" */
 4950 /* #include "inffast.h" */
 4951 
 4952 #ifndef NO_DUMMY_DECL
 4953 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
 4954 #endif
 4955 
 4956 /* simplify the use of the inflate_huft type with some defines */
 4957 #define base more.Base
 4958 #define next more.Next
 4959 #define exop word.what.Exop
 4960 #define bits word.what.Bits
 4961 
 4962 /* macros for bit input with no checking and for returning unused bytes */
 4963 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
 4964 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
 4965 
 4966 /* Called with number of bytes left to write in window at least 258
 4967    (the maximum string length) and number of input bytes available
 4968    at least ten.  The ten bytes are six bytes for the longest length/
 4969    distance pair plus four bytes for overloading the bit buffer. */
 4970 
 4971 int inflate_fast(bl, bd, tl, td, s, z)
 4972 uInt bl, bd;
 4973 inflate_huft *tl;
 4974 inflate_huft *td; /* need separate declaration for Borland C++ */
 4975 inflate_blocks_statef *s;
 4976 z_streamp z;
 4977 {
 4978   inflate_huft *t;      /* temporary pointer */
 4979   uInt e;               /* extra bits or operation */
 4980   uLong b;              /* bit buffer */
 4981   uInt k;               /* bits in bit buffer */
 4982   Bytef *p;             /* input data pointer */
 4983   uInt n;               /* bytes available there */
 4984   Bytef *q;             /* output window write pointer */
 4985   uInt m;               /* bytes to end of window or read pointer */
 4986   uInt ml;              /* mask for literal/length tree */
 4987   uInt md;              /* mask for distance tree */
 4988   uInt c;               /* bytes to copy */
 4989   uInt d;               /* distance back to copy from */
 4990   Bytef *r;             /* copy source pointer */
 4991 
 4992   /* load input, output, bit values */
 4993   LOAD
 4994 
 4995   /* initialize masks */
 4996   ml = inflate_mask[bl];
 4997   md = inflate_mask[bd];
 4998 
 4999   /* do until not enough input or output space for fast loop */
 5000   do {                          /* assume called with m >= 258 && n >= 10 */
 5001     /* get literal/length code */
 5002     GRABBITS(20)                /* max bits for literal/length code */
 5003     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
 5004     {
 5005       DUMPBITS(t->bits)
 5006       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
 5007                 "inflate:         * literal '%c'\n" :
 5008                 "inflate:         * literal 0x%02x\n", t->base));
 5009       *q++ = (Byte)t->base;
 5010       m--;
 5011       continue;
 5012     }
 5013     do {
 5014       DUMPBITS(t->bits)
 5015       if (e & 16)
 5016       {
 5017         /* get extra bits for length */
 5018         e &= 15;
 5019         c = t->base + ((uInt)b & inflate_mask[e]);
 5020         DUMPBITS(e)
 5021         Tracevv((stderr, "inflate:         * length %u\n", c));
 5022 
 5023         /* decode distance base of block to copy */
 5024         GRABBITS(15);           /* max bits for distance code */
 5025         e = (t = td + ((uInt)b & md))->exop;
 5026         do {
 5027           DUMPBITS(t->bits)
 5028           if (e & 16)
 5029           {
 5030             /* get extra bits to add to distance base */
 5031             e &= 15;
 5032             GRABBITS(e)         /* get extra bits (up to 13) */
 5033             d = t->base + ((uInt)b & inflate_mask[e]);
 5034             DUMPBITS(e)
 5035             Tracevv((stderr, "inflate:         * distance %u\n", d));
 5036 
 5037             /* do the copy */
 5038             m -= c;
 5039             if ((uInt)(q - s->window) >= d)     /* offset before dest */
 5040             {                                   /*  just copy */
 5041               r = q - d;
 5042               *q++ = *r++;  c--;        /* minimum count is three, */
 5043               *q++ = *r++;  c--;        /*  so unroll loop a little */
 5044             }
 5045             else                        /* else offset after destination */
 5046             {
 5047               e = d - (uInt)(q - s->window); /* bytes from offset to end */
 5048               r = s->end - e;           /* pointer to offset */
 5049               if (c > e)                /* if source crosses, */
 5050               {
 5051                 c -= e;                 /* copy to end of window */
 5052                 do {
 5053                   *q++ = *r++;
 5054                 } while (--e);
 5055                 r = s->window;          /* copy rest from start of window */
 5056               }
 5057             }
 5058             do {                        /* copy all or what's left */
 5059               *q++ = *r++;
 5060             } while (--c);
 5061             break;
 5062           }
 5063           else if ((e & 64) == 0)
 5064             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
 5065           else
 5066           {
 5067             z->msg = (char*)"invalid distance code";
 5068             UNGRAB
 5069             UPDATE
 5070             return Z_DATA_ERROR;
 5071           }
 5072         } while (1);
 5073         break;
 5074       }
 5075       if ((e & 64) == 0)
 5076       {
 5077         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
 5078         {
 5079           DUMPBITS(t->bits)
 5080           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
 5081                     "inflate:         * literal '%c'\n" :
 5082                     "inflate:         * literal 0x%02x\n", t->base));
 5083           *q++ = (Byte)t->base;
 5084           m--;
 5085           break;
 5086         }
 5087       }
 5088       else if (e & 32)
 5089       {
 5090         Tracevv((stderr, "inflate:         * end of block\n"));
 5091         UNGRAB
 5092         UPDATE
 5093         return Z_STREAM_END;
 5094       }
 5095       else
 5096       {
 5097         z->msg = (char*)"invalid literal/length code";
 5098         UNGRAB
 5099         UPDATE
 5100         return Z_DATA_ERROR;
 5101       }
 5102     } while (1);
 5103   } while (m >= 258 && n >= 10);
 5104 
 5105   /* not enough input or output--restore pointers and return */
 5106   UNGRAB
 5107   UPDATE
 5108   return Z_OK;
 5109 }
 5110 /* --- inffast.c */
 5111 
 5112 /* +++ zutil.c */
 5113 /* zutil.c -- target dependent utility functions for the compression library
 5114  * Copyright (C) 1995-1996 Jean-loup Gailly.
 5115  * For conditions of distribution and use, see copyright notice in zlib.h 
 5116  */
 5117 
 5118 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
 5119 
 5120 #ifdef DEBUG_ZLIB
 5121 #include <stdio.h>
 5122 #endif
 5123 
 5124 /* #include "zutil.h" */
 5125 
 5126 #ifndef NO_DUMMY_DECL
 5127 struct internal_state      {int dummy;}; /* for buggy compilers */
 5128 #endif
 5129 
 5130 #ifndef STDC
 5131 extern void exit OF((int));
 5132 #endif
 5133 
 5134 static const char *z_errmsg[10] = {
 5135 "need dictionary",     /* Z_NEED_DICT       2  */
 5136 "stream end",          /* Z_STREAM_END      1  */
 5137 "",                    /* Z_OK              0  */
 5138 "file error",          /* Z_ERRNO         (-1) */
 5139 "stream error",        /* Z_STREAM_ERROR  (-2) */
 5140 "data error",          /* Z_DATA_ERROR    (-3) */
 5141 "insufficient memory", /* Z_MEM_ERROR     (-4) */
 5142 "buffer error",        /* Z_BUF_ERROR     (-5) */
 5143 "incompatible version",/* Z_VERSION_ERROR (-6) */
 5144 ""};
 5145 
 5146 
 5147 const char *zlibVersion()
 5148 {
 5149     return ZLIB_VERSION;
 5150 }
 5151 
 5152 #ifdef DEBUG_ZLIB
 5153 void z_error (m)
 5154     char *m;
 5155 {
 5156     fprintf(stderr, "%s\n", m);
 5157     exit(1);
 5158 }
 5159 #endif
 5160 
 5161 #ifndef HAVE_MEMCPY
 5162 
 5163 void zmemcpy(dest, source, len)
 5164     Bytef* dest;
 5165     Bytef* source;
 5166     uInt  len;
 5167 {
 5168     if (len == 0) return;
 5169     do {
 5170         *dest++ = *source++; /* ??? to be unrolled */
 5171     } while (--len != 0);
 5172 }
 5173 
 5174 int zmemcmp(s1, s2, len)
 5175     Bytef* s1;
 5176     Bytef* s2;
 5177     uInt  len;
 5178 {
 5179     uInt j;
 5180 
 5181     for (j = 0; j < len; j++) {
 5182         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
 5183     }
 5184     return 0;
 5185 }
 5186 
 5187 void zmemzero(dest, len)
 5188     Bytef* dest;
 5189     uInt  len;
 5190 {
 5191     if (len == 0) return;
 5192     do {
 5193         *dest++ = 0;  /* ??? to be unrolled */
 5194     } while (--len != 0);
 5195 }
 5196 #endif
 5197 
 5198 #ifdef __TURBOC__
 5199 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
 5200 /* Small and medium model in Turbo C are for now limited to near allocation
 5201  * with reduced MAX_WBITS and MAX_MEM_LEVEL
 5202  */
 5203 #  define MY_ZCALLOC
 5204 
 5205 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
 5206  * and farmalloc(64K) returns a pointer with an offset of 8, so we
 5207  * must fix the pointer. Warning: the pointer must be put back to its
 5208  * original form in order to free it, use zcfree().
 5209  */
 5210 
 5211 #define MAX_PTR 10
 5212 /* 10*64K = 640K */
 5213 
 5214 local int next_ptr = 0;
 5215 
 5216 typedef struct ptr_table_s {
 5217     voidpf org_ptr;
 5218     voidpf new_ptr;
 5219 } ptr_table;
 5220 
 5221 local ptr_table table[MAX_PTR];
 5222 /* This table is used to remember the original form of pointers
 5223  * to large buffers (64K). Such pointers are normalized with a zero offset.
 5224  * Since MSDOS is not a preemptive multitasking OS, this table is not
 5225  * protected from concurrent access. This hack doesn't work anyway on
 5226  * a protected system like OS/2. Use Microsoft C instead.
 5227  */
 5228 
 5229 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
 5230 {
 5231     voidpf buf = opaque; /* just to make some compilers happy */
 5232     ulg bsize = (ulg)items*size;
 5233 
 5234     /* If we allocate less than 65520 bytes, we assume that farmalloc
 5235      * will return a usable pointer which doesn't have to be normalized.
 5236      */
 5237     if (bsize < 65520L) {
 5238         buf = farmalloc(bsize);
 5239         if (*(ush*)&buf != 0) return buf;
 5240     } else {
 5241         buf = farmalloc(bsize + 16L);
 5242     }
 5243     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
 5244     table[next_ptr].org_ptr = buf;
 5245 
 5246     /* Normalize the pointer to seg:0 */
 5247     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
 5248     *(ush*)&buf = 0;
 5249     table[next_ptr++].new_ptr = buf;
 5250     return buf;
 5251 }
 5252 
 5253 void  zcfree (voidpf opaque, voidpf ptr)
 5254 {
 5255     int n;
 5256     if (*(ush*)&ptr != 0) { /* object < 64K */
 5257         farfree(ptr);
 5258         return;
 5259     }
 5260     /* Find the original pointer */
 5261     for (n = 0; n < next_ptr; n++) {
 5262         if (ptr != table[n].new_ptr) continue;
 5263 
 5264         farfree(table[n].org_ptr);
 5265         while (++n < next_ptr) {
 5266             table[n-1] = table[n];
 5267         }
 5268         next_ptr--;
 5269         return;
 5270     }
 5271     ptr = opaque; /* just to make some compilers happy */
 5272     Assert(0, "zcfree: ptr not found");
 5273 }
 5274 #endif
 5275 #endif /* __TURBOC__ */
 5276 
 5277 
 5278 #if defined(M_I86) && !defined(__32BIT__)
 5279 /* Microsoft C in 16-bit mode */
 5280 
 5281 #  define MY_ZCALLOC
 5282 
 5283 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
 5284 #  define _halloc  halloc
 5285 #  define _hfree   hfree
 5286 #endif
 5287 
 5288 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
 5289 {
 5290     if (opaque) opaque = 0; /* to make compiler happy */
 5291     return _halloc((long)items, size);
 5292 }
 5293 
 5294 void  zcfree (voidpf opaque, voidpf ptr)
 5295 {
 5296     if (opaque) opaque = 0; /* to make compiler happy */
 5297     _hfree(ptr);
 5298 }
 5299 
 5300 #endif /* MSC */
 5301 
 5302 
 5303 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
 5304 
 5305 #ifndef STDC
 5306 extern voidp  calloc OF((uInt items, uInt size));
 5307 extern void   free   OF((voidpf ptr));
 5308 #endif
 5309 
 5310 voidpf zcalloc (opaque, items, size)
 5311     voidpf opaque;
 5312     unsigned items;
 5313     unsigned size;
 5314 {
 5315     if (opaque) items += size - size; /* make compiler happy */
 5316     return (voidpf)calloc(items, size);
 5317 }
 5318 
 5319 void  zcfree (opaque, ptr)
 5320     voidpf opaque;
 5321     voidpf ptr;
 5322 {
 5323     free(ptr);
 5324     if (opaque) return; /* make compiler happy */
 5325 }
 5326 
 5327 #endif /* MY_ZCALLOC */
 5328 /* --- zutil.c */
 5329 
 5330 /* +++ adler32.c */
 5331 /* adler32.c -- compute the Adler-32 checksum of a data stream
 5332  * Copyright (C) 1995-1996 Mark Adler
 5333  * For conditions of distribution and use, see copyright notice in zlib.h 
 5334  */
 5335 
 5336 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
 5337 
 5338 /* #include "zlib.h" */
 5339 
 5340 #define BASE 65521L /* largest prime smaller than 65536 */
 5341 #define NMAX 5552
 5342 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
 5343 
 5344 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
 5345 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
 5346 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
 5347 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
 5348 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
 5349 
 5350 /* ========================================================================= */
 5351 uLong adler32(adler, buf, len)
 5352     uLong adler;
 5353     const Bytef *buf;
 5354     uInt len;
 5355 {
 5356     unsigned long s1 = adler & 0xffff;
 5357     unsigned long s2 = (adler >> 16) & 0xffff;
 5358     int k;
 5359 
 5360     if (buf == Z_NULL) return 1L;
 5361 
 5362     while (len > 0) {
 5363         k = len < NMAX ? len : NMAX;
 5364         len -= k;
 5365         while (k >= 16) {
 5366             DO16(buf);
 5367             buf += 16;
 5368             k -= 16;
 5369         }
 5370         if (k != 0) do {
 5371             s1 += *buf++;
 5372             s2 += s1;
 5373         } while (--k);
 5374         s1 %= BASE;
 5375         s2 %= BASE;
 5376     }
 5377     return (s2 << 16) | s1;
 5378 }
 5379 /* --- adler32.c */

Cache object: 4eade823aea0130577770537459652f9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.