The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2001 Atsushi Onoe
    5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 /*
   33  * IEEE 802.11 generic handler
   34  */
   35 #include "opt_wlan.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/kernel.h>
   40 #include <sys/malloc.h>
   41 #include <sys/socket.h>
   42 #include <sys/sbuf.h>
   43 
   44 #include <machine/stdarg.h>
   45 
   46 #include <net/if.h>
   47 #include <net/if_var.h>
   48 #include <net/if_dl.h>
   49 #include <net/if_media.h>
   50 #include <net/if_types.h>
   51 #include <net/ethernet.h>
   52 
   53 #include <net80211/ieee80211_var.h>
   54 #include <net80211/ieee80211_regdomain.h>
   55 #ifdef IEEE80211_SUPPORT_SUPERG
   56 #include <net80211/ieee80211_superg.h>
   57 #endif
   58 #include <net80211/ieee80211_ratectl.h>
   59 #include <net80211/ieee80211_vht.h>
   60 
   61 #include <net/bpf.h>
   62 
   63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
   64         [IEEE80211_MODE_AUTO]     = "auto",
   65         [IEEE80211_MODE_11A]      = "11a",
   66         [IEEE80211_MODE_11B]      = "11b",
   67         [IEEE80211_MODE_11G]      = "11g",
   68         [IEEE80211_MODE_FH]       = "FH",
   69         [IEEE80211_MODE_TURBO_A]  = "turboA",
   70         [IEEE80211_MODE_TURBO_G]  = "turboG",
   71         [IEEE80211_MODE_STURBO_A] = "sturboA",
   72         [IEEE80211_MODE_HALF]     = "half",
   73         [IEEE80211_MODE_QUARTER]  = "quarter",
   74         [IEEE80211_MODE_11NA]     = "11na",
   75         [IEEE80211_MODE_11NG]     = "11ng",
   76         [IEEE80211_MODE_VHT_2GHZ]         = "11acg",
   77         [IEEE80211_MODE_VHT_5GHZ]         = "11ac",
   78 };
   79 /* map ieee80211_opmode to the corresponding capability bit */
   80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
   81         [IEEE80211_M_IBSS]      = IEEE80211_C_IBSS,
   82         [IEEE80211_M_WDS]       = IEEE80211_C_WDS,
   83         [IEEE80211_M_STA]       = IEEE80211_C_STA,
   84         [IEEE80211_M_AHDEMO]    = IEEE80211_C_AHDEMO,
   85         [IEEE80211_M_HOSTAP]    = IEEE80211_C_HOSTAP,
   86         [IEEE80211_M_MONITOR]   = IEEE80211_C_MONITOR,
   87 #ifdef IEEE80211_SUPPORT_MESH
   88         [IEEE80211_M_MBSS]      = IEEE80211_C_MBSS,
   89 #endif
   90 };
   91 
   92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
   93         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   94 
   95 static  void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
   96 static  void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
   97 static  void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
   98 static  void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
   99 static  int ieee80211_media_setup(struct ieee80211com *ic,
  100                 struct ifmedia *media, int caps, int addsta,
  101                 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
  102 static  int media_status(enum ieee80211_opmode,
  103                 const struct ieee80211_channel *);
  104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
  105 
  106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
  107 
  108 /*
  109  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
  110  */
  111 #define B(r)    ((r) | IEEE80211_RATE_BASIC)
  112 static const struct ieee80211_rateset ieee80211_rateset_11a =
  113         { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
  114 static const struct ieee80211_rateset ieee80211_rateset_half =
  115         { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
  116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
  117         { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
  118 static const struct ieee80211_rateset ieee80211_rateset_11b =
  119         { 4, { B(2), B(4), B(11), B(22) } };
  120 /* NB: OFDM rates are handled specially based on mode */
  121 static const struct ieee80211_rateset ieee80211_rateset_11g =
  122         { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
  123 #undef B
  124 
  125 static int set_vht_extchan(struct ieee80211_channel *c);
  126 
  127 /*
  128  * Fill in 802.11 available channel set, mark
  129  * all available channels as active, and pick
  130  * a default channel if not already specified.
  131  */
  132 void
  133 ieee80211_chan_init(struct ieee80211com *ic)
  134 {
  135 #define DEFAULTRATES(m, def) do { \
  136         if (ic->ic_sup_rates[m].rs_nrates == 0) \
  137                 ic->ic_sup_rates[m] = def; \
  138 } while (0)
  139         struct ieee80211_channel *c;
  140         int i;
  141 
  142         KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
  143                 ("invalid number of channels specified: %u", ic->ic_nchans));
  144         memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
  145         memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
  146         setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
  147         for (i = 0; i < ic->ic_nchans; i++) {
  148                 c = &ic->ic_channels[i];
  149                 KASSERT(c->ic_flags != 0, ("channel with no flags"));
  150                 /*
  151                  * Help drivers that work only with frequencies by filling
  152                  * in IEEE channel #'s if not already calculated.  Note this
  153                  * mimics similar work done in ieee80211_setregdomain when
  154                  * changing regulatory state.
  155                  */
  156                 if (c->ic_ieee == 0)
  157                         c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
  158 
  159                 /*
  160                  * Setup the HT40/VHT40 upper/lower bits.
  161                  * The VHT80/... math is done elsewhere.
  162                  */
  163                 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
  164                         c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
  165                             (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
  166                             c->ic_flags);
  167 
  168                 /* Update VHT math */
  169                 /*
  170                  * XXX VHT again, note that this assumes VHT80/... channels
  171                  * are legit already.
  172                  */
  173                 set_vht_extchan(c);
  174 
  175                 /* default max tx power to max regulatory */
  176                 if (c->ic_maxpower == 0)
  177                         c->ic_maxpower = 2*c->ic_maxregpower;
  178                 setbit(ic->ic_chan_avail, c->ic_ieee);
  179                 /*
  180                  * Identify mode capabilities.
  181                  */
  182                 if (IEEE80211_IS_CHAN_A(c))
  183                         setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
  184                 if (IEEE80211_IS_CHAN_B(c))
  185                         setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
  186                 if (IEEE80211_IS_CHAN_ANYG(c))
  187                         setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
  188                 if (IEEE80211_IS_CHAN_FHSS(c))
  189                         setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
  190                 if (IEEE80211_IS_CHAN_108A(c))
  191                         setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
  192                 if (IEEE80211_IS_CHAN_108G(c))
  193                         setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
  194                 if (IEEE80211_IS_CHAN_ST(c))
  195                         setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
  196                 if (IEEE80211_IS_CHAN_HALF(c))
  197                         setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
  198                 if (IEEE80211_IS_CHAN_QUARTER(c))
  199                         setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
  200                 if (IEEE80211_IS_CHAN_HTA(c))
  201                         setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
  202                 if (IEEE80211_IS_CHAN_HTG(c))
  203                         setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
  204                 if (IEEE80211_IS_CHAN_VHTA(c))
  205                         setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
  206                 if (IEEE80211_IS_CHAN_VHTG(c))
  207                         setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
  208         }
  209         /* initialize candidate channels to all available */
  210         memcpy(ic->ic_chan_active, ic->ic_chan_avail,
  211                 sizeof(ic->ic_chan_avail));
  212 
  213         /* sort channel table to allow lookup optimizations */
  214         ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
  215 
  216         /* invalidate any previous state */
  217         ic->ic_bsschan = IEEE80211_CHAN_ANYC;
  218         ic->ic_prevchan = NULL;
  219         ic->ic_csa_newchan = NULL;
  220         /* arbitrarily pick the first channel */
  221         ic->ic_curchan = &ic->ic_channels[0];
  222         ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
  223 
  224         /* fillin well-known rate sets if driver has not specified */
  225         DEFAULTRATES(IEEE80211_MODE_11B,         ieee80211_rateset_11b);
  226         DEFAULTRATES(IEEE80211_MODE_11G,         ieee80211_rateset_11g);
  227         DEFAULTRATES(IEEE80211_MODE_11A,         ieee80211_rateset_11a);
  228         DEFAULTRATES(IEEE80211_MODE_TURBO_A,     ieee80211_rateset_11a);
  229         DEFAULTRATES(IEEE80211_MODE_TURBO_G,     ieee80211_rateset_11g);
  230         DEFAULTRATES(IEEE80211_MODE_STURBO_A,    ieee80211_rateset_11a);
  231         DEFAULTRATES(IEEE80211_MODE_HALF,        ieee80211_rateset_half);
  232         DEFAULTRATES(IEEE80211_MODE_QUARTER,     ieee80211_rateset_quarter);
  233         DEFAULTRATES(IEEE80211_MODE_11NA,        ieee80211_rateset_11a);
  234         DEFAULTRATES(IEEE80211_MODE_11NG,        ieee80211_rateset_11g);
  235         DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,    ieee80211_rateset_11g);
  236         DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,    ieee80211_rateset_11a);
  237 
  238         /*
  239          * Setup required information to fill the mcsset field, if driver did
  240          * not. Assume a 2T2R setup for historic reasons.
  241          */
  242         if (ic->ic_rxstream == 0)
  243                 ic->ic_rxstream = 2;
  244         if (ic->ic_txstream == 0)
  245                 ic->ic_txstream = 2;
  246 
  247         ieee80211_init_suphtrates(ic);
  248 
  249         /*
  250          * Set auto mode to reset active channel state and any desired channel.
  251          */
  252         (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
  253 #undef DEFAULTRATES
  254 }
  255 
  256 static void
  257 null_update_mcast(struct ieee80211com *ic)
  258 {
  259 
  260         ic_printf(ic, "need multicast update callback\n");
  261 }
  262 
  263 static void
  264 null_update_promisc(struct ieee80211com *ic)
  265 {
  266 
  267         ic_printf(ic, "need promiscuous mode update callback\n");
  268 }
  269 
  270 static void
  271 null_update_chw(struct ieee80211com *ic)
  272 {
  273 
  274         ic_printf(ic, "%s: need callback\n", __func__);
  275 }
  276 
  277 int
  278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
  279 {
  280         va_list ap;
  281         int retval;
  282 
  283         retval = printf("%s: ", ic->ic_name);
  284         va_start(ap, fmt);
  285         retval += vprintf(fmt, ap);
  286         va_end(ap);
  287         return (retval);
  288 }
  289 
  290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
  291 static struct mtx ic_list_mtx;
  292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
  293 
  294 static int
  295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
  296 {
  297         struct ieee80211com *ic;
  298         struct sbuf sb;
  299         char *sp;
  300         int error;
  301 
  302         error = sysctl_wire_old_buffer(req, 0);
  303         if (error)
  304                 return (error);
  305         sbuf_new_for_sysctl(&sb, NULL, 8, req);
  306         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
  307         sp = "";
  308         mtx_lock(&ic_list_mtx);
  309         LIST_FOREACH(ic, &ic_head, ic_next) {
  310                 sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
  311                 sp = " ";
  312         }
  313         mtx_unlock(&ic_list_mtx);
  314         error = sbuf_finish(&sb);
  315         sbuf_delete(&sb);
  316         return (error);
  317 }
  318 
  319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
  320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  321     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
  322 
  323 /*
  324  * Attach/setup the common net80211 state.  Called by
  325  * the driver on attach to prior to creating any vap's.
  326  */
  327 void
  328 ieee80211_ifattach(struct ieee80211com *ic)
  329 {
  330 
  331         IEEE80211_LOCK_INIT(ic, ic->ic_name);
  332         IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
  333         TAILQ_INIT(&ic->ic_vaps);
  334 
  335         /* Create a taskqueue for all state changes */
  336         ic->ic_tq = taskqueue_create("ic_taskq",
  337             IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
  338             taskqueue_thread_enqueue, &ic->ic_tq);
  339         taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
  340             ic->ic_name);
  341         ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
  342         ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
  343         /*
  344          * Fill in 802.11 available channel set, mark all
  345          * available channels as active, and pick a default
  346          * channel if not already specified.
  347          */
  348         ieee80211_chan_init(ic);
  349 
  350         ic->ic_update_mcast = null_update_mcast;
  351         ic->ic_update_promisc = null_update_promisc;
  352         ic->ic_update_chw = null_update_chw;
  353 
  354         ic->ic_hash_key = arc4random();
  355         ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
  356         ic->ic_lintval = ic->ic_bintval;
  357         ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
  358 
  359         ieee80211_crypto_attach(ic);
  360         ieee80211_node_attach(ic);
  361         ieee80211_power_attach(ic);
  362         ieee80211_proto_attach(ic);
  363 #ifdef IEEE80211_SUPPORT_SUPERG
  364         ieee80211_superg_attach(ic);
  365 #endif
  366         ieee80211_ht_attach(ic);
  367         ieee80211_vht_attach(ic);
  368         ieee80211_scan_attach(ic);
  369         ieee80211_regdomain_attach(ic);
  370         ieee80211_dfs_attach(ic);
  371 
  372         ieee80211_sysctl_attach(ic);
  373 
  374         mtx_lock(&ic_list_mtx);
  375         LIST_INSERT_HEAD(&ic_head, ic, ic_next);
  376         mtx_unlock(&ic_list_mtx);
  377 }
  378 
  379 /*
  380  * Detach net80211 state on device detach.  Tear down
  381  * all vap's and reclaim all common state prior to the
  382  * device state going away.  Note we may call back into
  383  * driver; it must be prepared for this.
  384  */
  385 void
  386 ieee80211_ifdetach(struct ieee80211com *ic)
  387 {
  388         struct ieee80211vap *vap;
  389 
  390         /*
  391          * We use this as an indicator that ifattach never had a chance to be
  392          * called, e.g. early driver attach failed and ifdetach was called
  393          * during subsequent detach.  Never fear, for we have nothing to do
  394          * here.
  395          */
  396         if (ic->ic_tq == NULL)
  397                 return;
  398 
  399         mtx_lock(&ic_list_mtx);
  400         LIST_REMOVE(ic, ic_next);
  401         mtx_unlock(&ic_list_mtx);
  402 
  403         taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
  404 
  405         /*
  406          * The VAP is responsible for setting and clearing
  407          * the VIMAGE context.
  408          */
  409         while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
  410                 ieee80211_com_vdetach(vap);
  411                 ieee80211_vap_destroy(vap);
  412         }
  413         ieee80211_waitfor_parent(ic);
  414 
  415         ieee80211_sysctl_detach(ic);
  416         ieee80211_dfs_detach(ic);
  417         ieee80211_regdomain_detach(ic);
  418         ieee80211_scan_detach(ic);
  419 #ifdef IEEE80211_SUPPORT_SUPERG
  420         ieee80211_superg_detach(ic);
  421 #endif
  422         ieee80211_vht_detach(ic);
  423         ieee80211_ht_detach(ic);
  424         /* NB: must be called before ieee80211_node_detach */
  425         ieee80211_proto_detach(ic);
  426         ieee80211_crypto_detach(ic);
  427         ieee80211_power_detach(ic);
  428         ieee80211_node_detach(ic);
  429 
  430         counter_u64_free(ic->ic_ierrors);
  431         counter_u64_free(ic->ic_oerrors);
  432 
  433         taskqueue_free(ic->ic_tq);
  434         IEEE80211_TX_LOCK_DESTROY(ic);
  435         IEEE80211_LOCK_DESTROY(ic);
  436 }
  437 
  438 struct ieee80211com *
  439 ieee80211_find_com(const char *name)
  440 {
  441         struct ieee80211com *ic;
  442 
  443         mtx_lock(&ic_list_mtx);
  444         LIST_FOREACH(ic, &ic_head, ic_next)
  445                 if (strcmp(ic->ic_name, name) == 0)
  446                         break;
  447         mtx_unlock(&ic_list_mtx);
  448 
  449         return (ic);
  450 }
  451 
  452 void
  453 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
  454 {
  455         struct ieee80211com *ic;
  456 
  457         mtx_lock(&ic_list_mtx);
  458         LIST_FOREACH(ic, &ic_head, ic_next)
  459                 (*f)(arg, ic);
  460         mtx_unlock(&ic_list_mtx);
  461 }
  462 
  463 /*
  464  * Default reset method for use with the ioctl support.  This
  465  * method is invoked after any state change in the 802.11
  466  * layer that should be propagated to the hardware but not
  467  * require re-initialization of the 802.11 state machine (e.g
  468  * rescanning for an ap).  We always return ENETRESET which
  469  * should cause the driver to re-initialize the device. Drivers
  470  * can override this method to implement more optimized support.
  471  */
  472 static int
  473 default_reset(struct ieee80211vap *vap, u_long cmd)
  474 {
  475         return ENETRESET;
  476 }
  477 
  478 /*
  479  * Default for updating the VAP default TX key index.
  480  *
  481  * Drivers that support TX offload as well as hardware encryption offload
  482  * may need to be informed of key index changes separate from the key
  483  * update.
  484  */
  485 static void
  486 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
  487 {
  488 
  489         /* XXX assert validity */
  490         /* XXX assert we're in a key update block */
  491         vap->iv_def_txkey = kid;
  492 }
  493 
  494 /*
  495  * Add underlying device errors to vap errors.
  496  */
  497 static uint64_t
  498 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
  499 {
  500         struct ieee80211vap *vap = ifp->if_softc;
  501         struct ieee80211com *ic = vap->iv_ic;
  502         uint64_t rv;
  503 
  504         rv = if_get_counter_default(ifp, cnt);
  505         switch (cnt) {
  506         case IFCOUNTER_OERRORS:
  507                 rv += counter_u64_fetch(ic->ic_oerrors);
  508                 break;
  509         case IFCOUNTER_IERRORS:
  510                 rv += counter_u64_fetch(ic->ic_ierrors);
  511                 break;
  512         default:
  513                 break;
  514         }
  515 
  516         return (rv);
  517 }
  518 
  519 /*
  520  * Prepare a vap for use.  Drivers use this call to
  521  * setup net80211 state in new vap's prior attaching
  522  * them with ieee80211_vap_attach (below).
  523  */
  524 int
  525 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
  526     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
  527     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
  528 {
  529         struct ifnet *ifp;
  530 
  531         ifp = if_alloc(IFT_ETHER);
  532         if (ifp == NULL) {
  533                 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
  534                 return ENOMEM;
  535         }
  536         if_initname(ifp, name, unit);
  537         ifp->if_softc = vap;                    /* back pointer */
  538         ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
  539         ifp->if_transmit = ieee80211_vap_transmit;
  540         ifp->if_qflush = ieee80211_vap_qflush;
  541         ifp->if_ioctl = ieee80211_ioctl;
  542         ifp->if_init = ieee80211_init;
  543         ifp->if_get_counter = ieee80211_get_counter;
  544 
  545         vap->iv_ifp = ifp;
  546         vap->iv_ic = ic;
  547         vap->iv_flags = ic->ic_flags;           /* propagate common flags */
  548         vap->iv_flags_ext = ic->ic_flags_ext;
  549         vap->iv_flags_ven = ic->ic_flags_ven;
  550         vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
  551 
  552         /* 11n capabilities - XXX methodize */
  553         vap->iv_htcaps = ic->ic_htcaps;
  554         vap->iv_htextcaps = ic->ic_htextcaps;
  555 
  556         /* 11ac capabilities - XXX methodize */
  557         vap->iv_vhtcaps = ic->ic_vhtcaps;
  558         vap->iv_vhtextcaps = ic->ic_vhtextcaps;
  559 
  560         vap->iv_opmode = opmode;
  561         vap->iv_caps |= ieee80211_opcap[opmode];
  562         IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
  563         switch (opmode) {
  564         case IEEE80211_M_WDS:
  565                 /*
  566                  * WDS links must specify the bssid of the far end.
  567                  * For legacy operation this is a static relationship.
  568                  * For non-legacy operation the station must associate
  569                  * and be authorized to pass traffic.  Plumbing the
  570                  * vap to the proper node happens when the vap
  571                  * transitions to RUN state.
  572                  */
  573                 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
  574                 vap->iv_flags |= IEEE80211_F_DESBSSID;
  575                 if (flags & IEEE80211_CLONE_WDSLEGACY)
  576                         vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
  577                 break;
  578 #ifdef IEEE80211_SUPPORT_TDMA
  579         case IEEE80211_M_AHDEMO:
  580                 if (flags & IEEE80211_CLONE_TDMA) {
  581                         /* NB: checked before clone operation allowed */
  582                         KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
  583                             ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
  584                         /*
  585                          * Propagate TDMA capability to mark vap; this
  586                          * cannot be removed and is used to distinguish
  587                          * regular ahdemo operation from ahdemo+tdma.
  588                          */
  589                         vap->iv_caps |= IEEE80211_C_TDMA;
  590                 }
  591                 break;
  592 #endif
  593         default:
  594                 break;
  595         }
  596         /* auto-enable s/w beacon miss support */
  597         if (flags & IEEE80211_CLONE_NOBEACONS)
  598                 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
  599         /* auto-generated or user supplied MAC address */
  600         if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
  601                 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
  602         /*
  603          * Enable various functionality by default if we're
  604          * capable; the driver can override us if it knows better.
  605          */
  606         if (vap->iv_caps & IEEE80211_C_WME)
  607                 vap->iv_flags |= IEEE80211_F_WME;
  608         if (vap->iv_caps & IEEE80211_C_BURST)
  609                 vap->iv_flags |= IEEE80211_F_BURST;
  610         /* NB: bg scanning only makes sense for station mode right now */
  611         if (vap->iv_opmode == IEEE80211_M_STA &&
  612             (vap->iv_caps & IEEE80211_C_BGSCAN))
  613                 vap->iv_flags |= IEEE80211_F_BGSCAN;
  614         vap->iv_flags |= IEEE80211_F_DOTH;      /* XXX no cap, just ena */
  615         /* NB: DFS support only makes sense for ap mode right now */
  616         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
  617             (vap->iv_caps & IEEE80211_C_DFS))
  618                 vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
  619         /* NB: only flip on U-APSD for hostap/sta for now */
  620         if ((vap->iv_opmode == IEEE80211_M_STA)
  621             || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
  622                 if (vap->iv_caps & IEEE80211_C_UAPSD)
  623                         vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
  624         }
  625 
  626         vap->iv_des_chan = IEEE80211_CHAN_ANYC;         /* any channel is ok */
  627         vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
  628         vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
  629         /*
  630          * Install a default reset method for the ioctl support;
  631          * the driver can override this.
  632          */
  633         vap->iv_reset = default_reset;
  634 
  635         /*
  636          * Install a default crypto key update method, the driver
  637          * can override this.
  638          */
  639         vap->iv_update_deftxkey = default_update_deftxkey;
  640 
  641         ieee80211_sysctl_vattach(vap);
  642         ieee80211_crypto_vattach(vap);
  643         ieee80211_node_vattach(vap);
  644         ieee80211_power_vattach(vap);
  645         ieee80211_proto_vattach(vap);
  646 #ifdef IEEE80211_SUPPORT_SUPERG
  647         ieee80211_superg_vattach(vap);
  648 #endif
  649         ieee80211_ht_vattach(vap);
  650         ieee80211_vht_vattach(vap);
  651         ieee80211_scan_vattach(vap);
  652         ieee80211_regdomain_vattach(vap);
  653         ieee80211_radiotap_vattach(vap);
  654         ieee80211_vap_reset_erp(vap);
  655         ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
  656 
  657         return 0;
  658 }
  659 
  660 /*
  661  * Activate a vap.  State should have been prepared with a
  662  * call to ieee80211_vap_setup and by the driver.  On return
  663  * from this call the vap is ready for use.
  664  */
  665 int
  666 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
  667     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
  668 {
  669         struct ifnet *ifp = vap->iv_ifp;
  670         struct ieee80211com *ic = vap->iv_ic;
  671         struct ifmediareq imr;
  672         int maxrate;
  673 
  674         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
  675             "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
  676             __func__, ieee80211_opmode_name[vap->iv_opmode],
  677             ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
  678 
  679         /*
  680          * Do late attach work that cannot happen until after
  681          * the driver has had a chance to override defaults.
  682          */
  683         ieee80211_node_latevattach(vap);
  684         ieee80211_power_latevattach(vap);
  685 
  686         maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
  687             vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
  688         ieee80211_media_status(ifp, &imr);
  689         /* NB: strip explicit mode; we're actually in autoselect */
  690         ifmedia_set(&vap->iv_media,
  691             imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
  692         if (maxrate)
  693                 ifp->if_baudrate = IF_Mbps(maxrate);
  694 
  695         ether_ifattach(ifp, macaddr);
  696         IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
  697         /* hook output method setup by ether_ifattach */
  698         vap->iv_output = ifp->if_output;
  699         ifp->if_output = ieee80211_output;
  700         /* NB: if_mtu set by ether_ifattach to ETHERMTU */
  701 
  702         IEEE80211_LOCK(ic);
  703         TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
  704         ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
  705 #ifdef IEEE80211_SUPPORT_SUPERG
  706         ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
  707 #endif
  708         ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
  709         ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
  710         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
  711         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
  712 
  713         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
  714         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
  715         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
  716         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
  717         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
  718         IEEE80211_UNLOCK(ic);
  719 
  720         return 1;
  721 }
  722 
  723 /*
  724  * Tear down vap state and reclaim the ifnet.
  725  * The driver is assumed to have prepared for
  726  * this; e.g. by turning off interrupts for the
  727  * underlying device.
  728  */
  729 void
  730 ieee80211_vap_detach(struct ieee80211vap *vap)
  731 {
  732         struct ieee80211com *ic = vap->iv_ic;
  733         struct ifnet *ifp = vap->iv_ifp;
  734 
  735         CURVNET_SET(ifp->if_vnet);
  736 
  737         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
  738             __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
  739 
  740         /* NB: bpfdetach is called by ether_ifdetach and claims all taps */
  741         ether_ifdetach(ifp);
  742 
  743         ieee80211_stop(vap);
  744 
  745         /*
  746          * Flush any deferred vap tasks.
  747          */
  748         ieee80211_draintask(ic, &vap->iv_nstate_task);
  749         ieee80211_draintask(ic, &vap->iv_swbmiss_task);
  750         ieee80211_draintask(ic, &vap->iv_wme_task);
  751         ieee80211_draintask(ic, &ic->ic_parent_task);
  752 
  753         /* XXX band-aid until ifnet handles this for us */
  754         taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
  755 
  756         IEEE80211_LOCK(ic);
  757         KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
  758         TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
  759         ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
  760 #ifdef IEEE80211_SUPPORT_SUPERG
  761         ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
  762 #endif
  763         ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
  764         ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
  765         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
  766         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
  767 
  768         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
  769         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
  770         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
  771         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
  772         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
  773 
  774         /* NB: this handles the bpfdetach done below */
  775         ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
  776         if (vap->iv_ifflags & IFF_PROMISC)
  777                 ieee80211_promisc(vap, false);
  778         if (vap->iv_ifflags & IFF_ALLMULTI)
  779                 ieee80211_allmulti(vap, false);
  780         IEEE80211_UNLOCK(ic);
  781 
  782         ifmedia_removeall(&vap->iv_media);
  783 
  784         ieee80211_radiotap_vdetach(vap);
  785         ieee80211_regdomain_vdetach(vap);
  786         ieee80211_scan_vdetach(vap);
  787 #ifdef IEEE80211_SUPPORT_SUPERG
  788         ieee80211_superg_vdetach(vap);
  789 #endif
  790         ieee80211_vht_vdetach(vap);
  791         ieee80211_ht_vdetach(vap);
  792         /* NB: must be before ieee80211_node_vdetach */
  793         ieee80211_proto_vdetach(vap);
  794         ieee80211_crypto_vdetach(vap);
  795         ieee80211_power_vdetach(vap);
  796         ieee80211_node_vdetach(vap);
  797         ieee80211_sysctl_vdetach(vap);
  798 
  799         if_free(ifp);
  800 
  801         CURVNET_RESTORE();
  802 }
  803 
  804 /*
  805  * Count number of vaps in promisc, and issue promisc on
  806  * parent respectively.
  807  */
  808 void
  809 ieee80211_promisc(struct ieee80211vap *vap, bool on)
  810 {
  811         struct ieee80211com *ic = vap->iv_ic;
  812 
  813         IEEE80211_LOCK_ASSERT(ic);
  814 
  815         if (on) {
  816                 if (++ic->ic_promisc == 1)
  817                         ieee80211_runtask(ic, &ic->ic_promisc_task);
  818         } else {
  819                 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
  820                     __func__, ic));
  821                 if (--ic->ic_promisc == 0)
  822                         ieee80211_runtask(ic, &ic->ic_promisc_task);
  823         }
  824 }
  825 
  826 /*
  827  * Count number of vaps in allmulti, and issue allmulti on
  828  * parent respectively.
  829  */
  830 void
  831 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
  832 {
  833         struct ieee80211com *ic = vap->iv_ic;
  834 
  835         IEEE80211_LOCK_ASSERT(ic);
  836 
  837         if (on) {
  838                 if (++ic->ic_allmulti == 1)
  839                         ieee80211_runtask(ic, &ic->ic_mcast_task);
  840         } else {
  841                 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
  842                     __func__, ic));
  843                 if (--ic->ic_allmulti == 0)
  844                         ieee80211_runtask(ic, &ic->ic_mcast_task);
  845         }
  846 }
  847 
  848 /*
  849  * Synchronize flag bit state in the com structure
  850  * according to the state of all vap's.  This is used,
  851  * for example, to handle state changes via ioctls.
  852  */
  853 static void
  854 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
  855 {
  856         struct ieee80211vap *vap;
  857         int bit;
  858 
  859         IEEE80211_LOCK_ASSERT(ic);
  860 
  861         bit = 0;
  862         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  863                 if (vap->iv_flags & flag) {
  864                         bit = 1;
  865                         break;
  866                 }
  867         if (bit)
  868                 ic->ic_flags |= flag;
  869         else
  870                 ic->ic_flags &= ~flag;
  871 }
  872 
  873 void
  874 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
  875 {
  876         struct ieee80211com *ic = vap->iv_ic;
  877 
  878         IEEE80211_LOCK(ic);
  879         if (flag < 0) {
  880                 flag = -flag;
  881                 vap->iv_flags &= ~flag;
  882         } else
  883                 vap->iv_flags |= flag;
  884         ieee80211_syncflag_locked(ic, flag);
  885         IEEE80211_UNLOCK(ic);
  886 }
  887 
  888 /*
  889  * Synchronize flags_ht bit state in the com structure
  890  * according to the state of all vap's.  This is used,
  891  * for example, to handle state changes via ioctls.
  892  */
  893 static void
  894 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
  895 {
  896         struct ieee80211vap *vap;
  897         int bit;
  898 
  899         IEEE80211_LOCK_ASSERT(ic);
  900 
  901         bit = 0;
  902         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  903                 if (vap->iv_flags_ht & flag) {
  904                         bit = 1;
  905                         break;
  906                 }
  907         if (bit)
  908                 ic->ic_flags_ht |= flag;
  909         else
  910                 ic->ic_flags_ht &= ~flag;
  911 }
  912 
  913 void
  914 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
  915 {
  916         struct ieee80211com *ic = vap->iv_ic;
  917 
  918         IEEE80211_LOCK(ic);
  919         if (flag < 0) {
  920                 flag = -flag;
  921                 vap->iv_flags_ht &= ~flag;
  922         } else
  923                 vap->iv_flags_ht |= flag;
  924         ieee80211_syncflag_ht_locked(ic, flag);
  925         IEEE80211_UNLOCK(ic);
  926 }
  927 
  928 /*
  929  * Synchronize flags_vht bit state in the com structure
  930  * according to the state of all vap's.  This is used,
  931  * for example, to handle state changes via ioctls.
  932  */
  933 static void
  934 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
  935 {
  936         struct ieee80211vap *vap;
  937         int bit;
  938 
  939         IEEE80211_LOCK_ASSERT(ic);
  940 
  941         bit = 0;
  942         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  943                 if (vap->iv_flags_vht & flag) {
  944                         bit = 1;
  945                         break;
  946                 }
  947         if (bit)
  948                 ic->ic_flags_vht |= flag;
  949         else
  950                 ic->ic_flags_vht &= ~flag;
  951 }
  952 
  953 void
  954 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
  955 {
  956         struct ieee80211com *ic = vap->iv_ic;
  957 
  958         IEEE80211_LOCK(ic);
  959         if (flag < 0) {
  960                 flag = -flag;
  961                 vap->iv_flags_vht &= ~flag;
  962         } else
  963                 vap->iv_flags_vht |= flag;
  964         ieee80211_syncflag_vht_locked(ic, flag);
  965         IEEE80211_UNLOCK(ic);
  966 }
  967 
  968 /*
  969  * Synchronize flags_ext bit state in the com structure
  970  * according to the state of all vap's.  This is used,
  971  * for example, to handle state changes via ioctls.
  972  */
  973 static void
  974 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
  975 {
  976         struct ieee80211vap *vap;
  977         int bit;
  978 
  979         IEEE80211_LOCK_ASSERT(ic);
  980 
  981         bit = 0;
  982         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  983                 if (vap->iv_flags_ext & flag) {
  984                         bit = 1;
  985                         break;
  986                 }
  987         if (bit)
  988                 ic->ic_flags_ext |= flag;
  989         else
  990                 ic->ic_flags_ext &= ~flag;
  991 }
  992 
  993 void
  994 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
  995 {
  996         struct ieee80211com *ic = vap->iv_ic;
  997 
  998         IEEE80211_LOCK(ic);
  999         if (flag < 0) {
 1000                 flag = -flag;
 1001                 vap->iv_flags_ext &= ~flag;
 1002         } else
 1003                 vap->iv_flags_ext |= flag;
 1004         ieee80211_syncflag_ext_locked(ic, flag);
 1005         IEEE80211_UNLOCK(ic);
 1006 }
 1007 
 1008 static __inline int
 1009 mapgsm(u_int freq, u_int flags)
 1010 {
 1011         freq *= 10;
 1012         if (flags & IEEE80211_CHAN_QUARTER)
 1013                 freq += 5;
 1014         else if (flags & IEEE80211_CHAN_HALF)
 1015                 freq += 10;
 1016         else
 1017                 freq += 20;
 1018         /* NB: there is no 907/20 wide but leave room */
 1019         return (freq - 906*10) / 5;
 1020 }
 1021 
 1022 static __inline int
 1023 mappsb(u_int freq, u_int flags)
 1024 {
 1025         return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
 1026 }
 1027 
 1028 /*
 1029  * Convert MHz frequency to IEEE channel number.
 1030  */
 1031 int
 1032 ieee80211_mhz2ieee(u_int freq, u_int flags)
 1033 {
 1034 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
 1035         if (flags & IEEE80211_CHAN_GSM)
 1036                 return mapgsm(freq, flags);
 1037         if (flags & IEEE80211_CHAN_2GHZ) {      /* 2GHz band */
 1038                 if (freq == 2484)
 1039                         return 14;
 1040                 if (freq < 2484)
 1041                         return ((int) freq - 2407) / 5;
 1042                 else
 1043                         return 15 + ((freq - 2512) / 20);
 1044         } else if (flags & IEEE80211_CHAN_5GHZ) {       /* 5Ghz band */
 1045                 if (freq <= 5000) {
 1046                         /* XXX check regdomain? */
 1047                         if (IS_FREQ_IN_PSB(freq))
 1048                                 return mappsb(freq, flags);
 1049                         return (freq - 4000) / 5;
 1050                 } else
 1051                         return (freq - 5000) / 5;
 1052         } else {                                /* either, guess */
 1053                 if (freq == 2484)
 1054                         return 14;
 1055                 if (freq < 2484) {
 1056                         if (907 <= freq && freq <= 922)
 1057                                 return mapgsm(freq, flags);
 1058                         return ((int) freq - 2407) / 5;
 1059                 }
 1060                 if (freq < 5000) {
 1061                         if (IS_FREQ_IN_PSB(freq))
 1062                                 return mappsb(freq, flags);
 1063                         else if (freq > 4900)
 1064                                 return (freq - 4000) / 5;
 1065                         else
 1066                                 return 15 + ((freq - 2512) / 20);
 1067                 }
 1068                 return (freq - 5000) / 5;
 1069         }
 1070 #undef IS_FREQ_IN_PSB
 1071 }
 1072 
 1073 /*
 1074  * Convert channel to IEEE channel number.
 1075  */
 1076 int
 1077 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
 1078 {
 1079         if (c == NULL) {
 1080                 ic_printf(ic, "invalid channel (NULL)\n");
 1081                 return 0;               /* XXX */
 1082         }
 1083         return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
 1084 }
 1085 
 1086 /*
 1087  * Convert IEEE channel number to MHz frequency.
 1088  */
 1089 u_int
 1090 ieee80211_ieee2mhz(u_int chan, u_int flags)
 1091 {
 1092         if (flags & IEEE80211_CHAN_GSM)
 1093                 return 907 + 5 * (chan / 10);
 1094         if (flags & IEEE80211_CHAN_2GHZ) {      /* 2GHz band */
 1095                 if (chan == 14)
 1096                         return 2484;
 1097                 if (chan < 14)
 1098                         return 2407 + chan*5;
 1099                 else
 1100                         return 2512 + ((chan-15)*20);
 1101         } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
 1102                 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
 1103                         chan -= 37;
 1104                         return 4940 + chan*5 + (chan % 5 ? 2 : 0);
 1105                 }
 1106                 return 5000 + (chan*5);
 1107         } else {                                /* either, guess */
 1108                 /* XXX can't distinguish PSB+GSM channels */
 1109                 if (chan == 14)
 1110                         return 2484;
 1111                 if (chan < 14)                  /* 0-13 */
 1112                         return 2407 + chan*5;
 1113                 if (chan < 27)                  /* 15-26 */
 1114                         return 2512 + ((chan-15)*20);
 1115                 return 5000 + (chan*5);
 1116         }
 1117 }
 1118 
 1119 static __inline void
 1120 set_extchan(struct ieee80211_channel *c)
 1121 {
 1122 
 1123         /*
 1124          * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
 1125          * "the secondary channel number shall be 'N + [1,-1] * 4'
 1126          */
 1127         if (c->ic_flags & IEEE80211_CHAN_HT40U)
 1128                 c->ic_extieee = c->ic_ieee + 4;
 1129         else if (c->ic_flags & IEEE80211_CHAN_HT40D)
 1130                 c->ic_extieee = c->ic_ieee - 4;
 1131         else
 1132                 c->ic_extieee = 0;
 1133 }
 1134 
 1135 /*
 1136  * Populate the freq1/freq2 fields as appropriate for VHT channels.
 1137  *
 1138  * This for now uses a hard-coded list of 80MHz wide channels.
 1139  *
 1140  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
 1141  * wide channel we've already decided upon.
 1142  *
 1143  * For VHT80 and VHT160, there are only a small number of fixed
 1144  * 80/160MHz wide channels, so we just use those.
 1145  *
 1146  * This is all likely very very wrong - both the regulatory code
 1147  * and this code needs to ensure that all four channels are
 1148  * available and valid before the VHT80 (and eight for VHT160) channel
 1149  * is created.
 1150  */
 1151 
 1152 struct vht_chan_range {
 1153         uint16_t freq_start;
 1154         uint16_t freq_end;
 1155 };
 1156 
 1157 struct vht_chan_range vht80_chan_ranges[] = {
 1158         { 5170, 5250 },
 1159         { 5250, 5330 },
 1160         { 5490, 5570 },
 1161         { 5570, 5650 },
 1162         { 5650, 5730 },
 1163         { 5735, 5815 },
 1164         { 0, 0 }
 1165 };
 1166 
 1167 struct vht_chan_range vht160_chan_ranges[] = {
 1168         { 5170, 5330 },
 1169         { 5490, 5650 },
 1170         { 0, 0 }
 1171 };
 1172 
 1173 static int
 1174 set_vht_extchan(struct ieee80211_channel *c)
 1175 {
 1176         int i;
 1177 
 1178         if (! IEEE80211_IS_CHAN_VHT(c))
 1179                 return (0);
 1180 
 1181         if (IEEE80211_IS_CHAN_VHT80P80(c)) {
 1182                 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
 1183                     __func__, c->ic_ieee, c->ic_flags);
 1184         }
 1185 
 1186         if (IEEE80211_IS_CHAN_VHT160(c)) {
 1187                 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
 1188                         if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
 1189                             c->ic_freq < vht160_chan_ranges[i].freq_end) {
 1190                                 int midpoint;
 1191 
 1192                                 midpoint = vht160_chan_ranges[i].freq_start + 80;
 1193                                 c->ic_vht_ch_freq1 =
 1194                                     ieee80211_mhz2ieee(midpoint, c->ic_flags);
 1195                                 c->ic_vht_ch_freq2 = 0;
 1196 #if 0
 1197                                 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
 1198                                     __func__, c->ic_ieee, c->ic_freq, midpoint,
 1199                                     c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
 1200 #endif
 1201                                 return (1);
 1202                         }
 1203                 }
 1204                 return (0);
 1205         }
 1206 
 1207         if (IEEE80211_IS_CHAN_VHT80(c)) {
 1208                 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
 1209                         if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
 1210                             c->ic_freq < vht80_chan_ranges[i].freq_end) {
 1211                                 int midpoint;
 1212 
 1213                                 midpoint = vht80_chan_ranges[i].freq_start + 40;
 1214                                 c->ic_vht_ch_freq1 =
 1215                                     ieee80211_mhz2ieee(midpoint, c->ic_flags);
 1216                                 c->ic_vht_ch_freq2 = 0;
 1217 #if 0
 1218                                 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
 1219                                     __func__, c->ic_ieee, c->ic_freq, midpoint,
 1220                                     c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
 1221 #endif
 1222                                 return (1);
 1223                         }
 1224                 }
 1225                 return (0);
 1226         }
 1227 
 1228         if (IEEE80211_IS_CHAN_VHT40(c)) {
 1229                 if (IEEE80211_IS_CHAN_HT40U(c))
 1230                         c->ic_vht_ch_freq1 = c->ic_ieee + 2;
 1231                 else if (IEEE80211_IS_CHAN_HT40D(c))
 1232                         c->ic_vht_ch_freq1 = c->ic_ieee - 2;
 1233                 else
 1234                         return (0);
 1235                 return (1);
 1236         }
 1237 
 1238         if (IEEE80211_IS_CHAN_VHT20(c)) {
 1239                 c->ic_vht_ch_freq1 = c->ic_ieee;
 1240                 return (1);
 1241         }
 1242 
 1243         printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
 1244             __func__, c->ic_ieee, c->ic_flags);
 1245 
 1246         return (0);
 1247 }
 1248 
 1249 /*
 1250  * Return whether the current channel could possibly be a part of
 1251  * a VHT80/VHT160 channel.
 1252  *
 1253  * This doesn't check that the whole range is in the allowed list
 1254  * according to regulatory.
 1255  */
 1256 static bool
 1257 is_vht160_valid_freq(uint16_t freq)
 1258 {
 1259         int i;
 1260 
 1261         for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
 1262                 if (freq >= vht160_chan_ranges[i].freq_start &&
 1263                     freq < vht160_chan_ranges[i].freq_end)
 1264                         return (true);
 1265         }
 1266         return (false);
 1267 }
 1268 
 1269 static int
 1270 is_vht80_valid_freq(uint16_t freq)
 1271 {
 1272         int i;
 1273         for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
 1274                 if (freq >= vht80_chan_ranges[i].freq_start &&
 1275                     freq < vht80_chan_ranges[i].freq_end)
 1276                         return (1);
 1277         }
 1278         return (0);
 1279 }
 1280 
 1281 static int
 1282 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1283     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
 1284 {
 1285         struct ieee80211_channel *c;
 1286 
 1287         if (*nchans >= maxchans)
 1288                 return (ENOBUFS);
 1289 
 1290 #if 0
 1291         printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
 1292             __func__, *nchans, maxchans, ieee, freq, flags);
 1293 #endif
 1294 
 1295         c = &chans[(*nchans)++];
 1296         c->ic_ieee = ieee;
 1297         c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
 1298         c->ic_maxregpower = maxregpower;
 1299         c->ic_maxpower = 2 * maxregpower;
 1300         c->ic_flags = flags;
 1301         c->ic_vht_ch_freq1 = 0;
 1302         c->ic_vht_ch_freq2 = 0;
 1303         set_extchan(c);
 1304         set_vht_extchan(c);
 1305 
 1306         return (0);
 1307 }
 1308 
 1309 static int
 1310 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1311     uint32_t flags)
 1312 {
 1313         struct ieee80211_channel *c;
 1314 
 1315         KASSERT(*nchans > 0, ("channel list is empty\n"));
 1316 
 1317         if (*nchans >= maxchans)
 1318                 return (ENOBUFS);
 1319 
 1320 #if 0
 1321         printf("%s: %d of %d: flags=0x%08x\n",
 1322             __func__, *nchans, maxchans, flags);
 1323 #endif
 1324 
 1325         c = &chans[(*nchans)++];
 1326         c[0] = c[-1];
 1327         c->ic_flags = flags;
 1328         c->ic_vht_ch_freq1 = 0;
 1329         c->ic_vht_ch_freq2 = 0;
 1330         set_extchan(c);
 1331         set_vht_extchan(c);
 1332 
 1333         return (0);
 1334 }
 1335 
 1336 /*
 1337  * XXX VHT-2GHz
 1338  */
 1339 static void
 1340 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
 1341 {
 1342         int nmodes;
 1343 
 1344         nmodes = 0;
 1345         if (isset(bands, IEEE80211_MODE_11B))
 1346                 flags[nmodes++] = IEEE80211_CHAN_B;
 1347         if (isset(bands, IEEE80211_MODE_11G))
 1348                 flags[nmodes++] = IEEE80211_CHAN_G;
 1349         if (isset(bands, IEEE80211_MODE_11NG))
 1350                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
 1351         if (cbw_flags & NET80211_CBW_FLAG_HT40) {
 1352                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
 1353                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
 1354         }
 1355         flags[nmodes] = 0;
 1356 }
 1357 
 1358 static void
 1359 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
 1360 {
 1361         int nmodes;
 1362 
 1363         /*
 1364          * The addchan_list() function seems to expect the flags array to
 1365          * be in channel width order, so the VHT bits are interspersed
 1366          * as appropriate to maintain said order.
 1367          *
 1368          * It also assumes HT40U is before HT40D.
 1369          */
 1370         nmodes = 0;
 1371 
 1372         /* 20MHz */
 1373         if (isset(bands, IEEE80211_MODE_11A))
 1374                 flags[nmodes++] = IEEE80211_CHAN_A;
 1375         if (isset(bands, IEEE80211_MODE_11NA))
 1376                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
 1377         if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1378                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
 1379                     IEEE80211_CHAN_VHT20;
 1380         }
 1381 
 1382         /* 40MHz */
 1383         if (cbw_flags & NET80211_CBW_FLAG_HT40)
 1384                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
 1385         if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
 1386             isset(bands, IEEE80211_MODE_VHT_5GHZ))
 1387                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
 1388                     IEEE80211_CHAN_VHT40U;
 1389         if (cbw_flags & NET80211_CBW_FLAG_HT40)
 1390                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
 1391         if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
 1392             isset(bands, IEEE80211_MODE_VHT_5GHZ))
 1393                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
 1394                     IEEE80211_CHAN_VHT40D;
 1395 
 1396         /* 80MHz */
 1397         if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
 1398             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1399                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
 1400                     IEEE80211_CHAN_VHT80;
 1401                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
 1402                     IEEE80211_CHAN_VHT80;
 1403         }
 1404 
 1405         /* VHT160 */
 1406         if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
 1407             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1408                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
 1409                     IEEE80211_CHAN_VHT160;
 1410                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
 1411                     IEEE80211_CHAN_VHT160;
 1412         }
 1413 
 1414         /* VHT80+80 */
 1415         if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
 1416             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1417                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
 1418                     IEEE80211_CHAN_VHT80P80;
 1419                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
 1420                     IEEE80211_CHAN_VHT80P80;
 1421         }
 1422 
 1423         flags[nmodes] = 0;
 1424 }
 1425 
 1426 static void
 1427 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
 1428 {
 1429 
 1430         flags[0] = 0;
 1431         if (isset(bands, IEEE80211_MODE_11A) ||
 1432             isset(bands, IEEE80211_MODE_11NA) ||
 1433             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1434                 if (isset(bands, IEEE80211_MODE_11B) ||
 1435                     isset(bands, IEEE80211_MODE_11G) ||
 1436                     isset(bands, IEEE80211_MODE_11NG) ||
 1437                     isset(bands, IEEE80211_MODE_VHT_2GHZ))
 1438                         return;
 1439 
 1440                 getflags_5ghz(bands, flags, cbw_flags);
 1441         } else
 1442                 getflags_2ghz(bands, flags, cbw_flags);
 1443 }
 1444 
 1445 /*
 1446  * Add one 20 MHz channel into specified channel list.
 1447  * You MUST NOT mix bands when calling this.  It will not add 5ghz
 1448  * channels if you have any B/G/N band bit set.
 1449  * The _cbw() variant does also support HT40/VHT80/160/80+80.
 1450  */
 1451 int
 1452 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
 1453     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
 1454     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
 1455 {
 1456         uint32_t flags[IEEE80211_MODE_MAX];
 1457         int i, error;
 1458 
 1459         getflags(bands, flags, cbw_flags);
 1460         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1461 
 1462         error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
 1463             flags[0] | chan_flags);
 1464         for (i = 1; flags[i] != 0 && error == 0; i++) {
 1465                 error = copychan_prev(chans, maxchans, nchans,
 1466                     flags[i] | chan_flags);
 1467         }
 1468 
 1469         return (error);
 1470 }
 1471 
 1472 int
 1473 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
 1474     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
 1475     uint32_t chan_flags, const uint8_t bands[])
 1476 {
 1477 
 1478         return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
 1479             maxregpower, chan_flags, bands, 0));
 1480 }
 1481 
 1482 static struct ieee80211_channel *
 1483 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
 1484     uint32_t flags)
 1485 {
 1486         struct ieee80211_channel *c;
 1487         int i;
 1488 
 1489         flags &= IEEE80211_CHAN_ALLTURBO;
 1490         /* brute force search */
 1491         for (i = 0; i < nchans; i++) {
 1492                 c = &chans[i];
 1493                 if (c->ic_freq == freq &&
 1494                     (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1495                         return c;
 1496         }
 1497         return NULL;
 1498 }
 1499 
 1500 /*
 1501  * Add 40 MHz channel pair into specified channel list.
 1502  */
 1503 /* XXX VHT */
 1504 int
 1505 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
 1506     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
 1507 {
 1508         struct ieee80211_channel *cent, *extc;
 1509         uint16_t freq;
 1510         int error;
 1511 
 1512         freq = ieee80211_ieee2mhz(ieee, flags);
 1513 
 1514         /*
 1515          * Each entry defines an HT40 channel pair; find the
 1516          * center channel, then the extension channel above.
 1517          */
 1518         flags |= IEEE80211_CHAN_HT20;
 1519         cent = findchannel(chans, *nchans, freq, flags);
 1520         if (cent == NULL)
 1521                 return (EINVAL);
 1522 
 1523         extc = findchannel(chans, *nchans, freq + 20, flags);
 1524         if (extc == NULL)
 1525                 return (ENOENT);
 1526 
 1527         flags &= ~IEEE80211_CHAN_HT;
 1528         error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
 1529             maxregpower, flags | IEEE80211_CHAN_HT40U);
 1530         if (error != 0)
 1531                 return (error);
 1532 
 1533         error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
 1534             maxregpower, flags | IEEE80211_CHAN_HT40D);
 1535 
 1536         return (error);
 1537 }
 1538 
 1539 /*
 1540  * Fetch the center frequency for the primary channel.
 1541  */
 1542 uint32_t
 1543 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
 1544 {
 1545 
 1546         return (c->ic_freq);
 1547 }
 1548 
 1549 /*
 1550  * Fetch the center frequency for the primary BAND channel.
 1551  *
 1552  * For 5, 10, 20MHz channels it'll be the normally configured channel
 1553  * frequency.
 1554  *
 1555  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
 1556  * wide channel, not the centre of the primary channel (that's ic_freq).
 1557  *
 1558  * For 80+80MHz channels this will be the centre of the primary
 1559  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
 1560  */
 1561 uint32_t
 1562 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
 1563 {
 1564 
 1565         /*
 1566          * VHT - use the pre-calculated centre frequency
 1567          * of the given channel.
 1568          */
 1569         if (IEEE80211_IS_CHAN_VHT(c))
 1570                 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
 1571 
 1572         if (IEEE80211_IS_CHAN_HT40U(c)) {
 1573                 return (c->ic_freq + 10);
 1574         }
 1575         if (IEEE80211_IS_CHAN_HT40D(c)) {
 1576                 return (c->ic_freq - 10);
 1577         }
 1578 
 1579         return (c->ic_freq);
 1580 }
 1581 
 1582 /*
 1583  * For now, no 80+80 support; it will likely always return 0.
 1584  */
 1585 uint32_t
 1586 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
 1587 {
 1588 
 1589         if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
 1590                 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
 1591 
 1592         return (0);
 1593 }
 1594 
 1595 /*
 1596  * Adds channels into specified channel list (ieee[] array must be sorted).
 1597  * Channels are already sorted.
 1598  */
 1599 static int
 1600 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1601     const uint8_t ieee[], int nieee, uint32_t flags[])
 1602 {
 1603         uint16_t freq;
 1604         int i, j, error;
 1605         int is_vht;
 1606 
 1607         for (i = 0; i < nieee; i++) {
 1608                 freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
 1609                 for (j = 0; flags[j] != 0; j++) {
 1610                         /*
 1611                          * Notes:
 1612                          * + HT40 and VHT40 channels occur together, so
 1613                          *   we need to be careful that we actually allow that.
 1614                          * + VHT80, VHT160 will coexist with HT40/VHT40, so
 1615                          *   make sure it's not skipped because of the overlap
 1616                          *   check used for (V)HT40.
 1617                          */
 1618                         is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
 1619 
 1620                         /* XXX TODO FIXME VHT80P80. */
 1621 
 1622                         /* Test for VHT160 analogue to the VHT80 below. */
 1623                         if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
 1624                                 if (! is_vht160_valid_freq(freq))
 1625                                         continue;
 1626 
 1627                         /*
 1628                          * Test for VHT80.
 1629                          * XXX This is all very broken right now.
 1630                          * What we /should/ do is:
 1631                          *
 1632                          * + check that the frequency is in the list of
 1633                          *   allowed VHT80 ranges; and
 1634                          * + the other 3 channels in the list are actually
 1635                          *   also available.
 1636                          */
 1637                         if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
 1638                                 if (! is_vht80_valid_freq(freq))
 1639                                         continue;
 1640 
 1641                         /*
 1642                          * Test for (V)HT40.
 1643                          *
 1644                          * This is also a fall through from VHT80; as we only
 1645                          * allow a VHT80 channel if the VHT40 combination is
 1646                          * also valid.  If the VHT40 form is not valid then
 1647                          * we certainly can't do VHT80..
 1648                          */
 1649                         if (flags[j] & IEEE80211_CHAN_HT40D)
 1650                                 /*
 1651                                  * Can't have a "lower" channel if we are the
 1652                                  * first channel.
 1653                                  *
 1654                                  * Can't have a "lower" channel if it's below/
 1655                                  * within 20MHz of the first channel.
 1656                                  *
 1657                                  * Can't have a "lower" channel if the channel
 1658                                  * below it is not 20MHz away.
 1659                                  */
 1660                                 if (i == 0 || ieee[i] < ieee[0] + 4 ||
 1661                                     freq - 20 !=
 1662                                     ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
 1663                                         continue;
 1664                         if (flags[j] & IEEE80211_CHAN_HT40U)
 1665                                 /*
 1666                                  * Can't have an "upper" channel if we are
 1667                                  * the last channel.
 1668                                  *
 1669                                  * Can't have an "upper" channel be above the
 1670                                  * last channel in the list.
 1671                                  *
 1672                                  * Can't have an "upper" channel if the next
 1673                                  * channel according to the math isn't 20MHz
 1674                                  * away.  (Likely for channel 13/14.)
 1675                                  */
 1676                                 if (i == nieee - 1 ||
 1677                                     ieee[i] + 4 > ieee[nieee - 1] ||
 1678                                     freq + 20 !=
 1679                                     ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
 1680                                         continue;
 1681 
 1682                         if (j == 0) {
 1683                                 error = addchan(chans, maxchans, nchans,
 1684                                     ieee[i], freq, 0, flags[j]);
 1685                         } else {
 1686                                 error = copychan_prev(chans, maxchans, nchans,
 1687                                     flags[j]);
 1688                         }
 1689                         if (error != 0)
 1690                                 return (error);
 1691                 }
 1692         }
 1693 
 1694         return (0);
 1695 }
 1696 
 1697 int
 1698 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
 1699     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
 1700     int cbw_flags)
 1701 {
 1702         uint32_t flags[IEEE80211_MODE_MAX];
 1703 
 1704         /* XXX no VHT for now */
 1705         getflags_2ghz(bands, flags, cbw_flags);
 1706         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1707 
 1708         return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
 1709 }
 1710 
 1711 int
 1712 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
 1713     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
 1714 {
 1715         const uint8_t default_chan_list[] =
 1716             { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
 1717 
 1718         return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
 1719             default_chan_list, nitems(default_chan_list), bands, cbw_flags));
 1720 }
 1721 
 1722 int
 1723 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
 1724     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
 1725     int cbw_flags)
 1726 {
 1727         /*
 1728          * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
 1729          * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
 1730          */
 1731         uint32_t flags[2 * IEEE80211_MODE_MAX];
 1732 
 1733         getflags_5ghz(bands, flags, cbw_flags);
 1734         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1735 
 1736         return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
 1737 }
 1738 
 1739 /*
 1740  * Locate a channel given a frequency+flags.  We cache
 1741  * the previous lookup to optimize switching between two
 1742  * channels--as happens with dynamic turbo.
 1743  */
 1744 struct ieee80211_channel *
 1745 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
 1746 {
 1747         struct ieee80211_channel *c;
 1748 
 1749         flags &= IEEE80211_CHAN_ALLTURBO;
 1750         c = ic->ic_prevchan;
 1751         if (c != NULL && c->ic_freq == freq &&
 1752             (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1753                 return c;
 1754         /* brute force search */
 1755         return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
 1756 }
 1757 
 1758 /*
 1759  * Locate a channel given a channel number+flags.  We cache
 1760  * the previous lookup to optimize switching between two
 1761  * channels--as happens with dynamic turbo.
 1762  */
 1763 struct ieee80211_channel *
 1764 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
 1765 {
 1766         struct ieee80211_channel *c;
 1767         int i;
 1768 
 1769         flags &= IEEE80211_CHAN_ALLTURBO;
 1770         c = ic->ic_prevchan;
 1771         if (c != NULL && c->ic_ieee == ieee &&
 1772             (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1773                 return c;
 1774         /* brute force search */
 1775         for (i = 0; i < ic->ic_nchans; i++) {
 1776                 c = &ic->ic_channels[i];
 1777                 if (c->ic_ieee == ieee &&
 1778                     (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1779                         return c;
 1780         }
 1781         return NULL;
 1782 }
 1783 
 1784 /*
 1785  * Lookup a channel suitable for the given rx status.
 1786  *
 1787  * This is used to find a channel for a frame (eg beacon, probe
 1788  * response) based purely on the received PHY information.
 1789  *
 1790  * For now it tries to do it based on R_FREQ / R_IEEE.
 1791  * This is enough for 11bg and 11a (and thus 11ng/11na)
 1792  * but it will not be enough for GSM, PSB channels and the
 1793  * like.  It also doesn't know about legacy-turbog and
 1794  * legacy-turbo modes, which some offload NICs actually
 1795  * support in weird ways.
 1796  *
 1797  * Takes the ic and rxstatus; returns the channel or NULL
 1798  * if not found.
 1799  *
 1800  * XXX TODO: Add support for that when the need arises.
 1801  */
 1802 struct ieee80211_channel *
 1803 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
 1804     const struct ieee80211_rx_stats *rxs)
 1805 {
 1806         struct ieee80211com *ic = vap->iv_ic;
 1807         uint32_t flags;
 1808         struct ieee80211_channel *c;
 1809 
 1810         if (rxs == NULL)
 1811                 return (NULL);
 1812 
 1813         /*
 1814          * Strictly speaking we only use freq for now,
 1815          * however later on we may wish to just store
 1816          * the ieee for verification.
 1817          */
 1818         if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
 1819                 return (NULL);
 1820         if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
 1821                 return (NULL);
 1822         if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
 1823                 return (NULL);
 1824 
 1825         /*
 1826          * If the rx status contains a valid ieee/freq, then
 1827          * ensure we populate the correct channel information
 1828          * in rxchan before passing it up to the scan infrastructure.
 1829          * Offload NICs will pass up beacons from all channels
 1830          * during background scans.
 1831          */
 1832 
 1833         /* Determine a band */
 1834         switch (rxs->c_band) {
 1835         case IEEE80211_CHAN_2GHZ:
 1836                 flags = IEEE80211_CHAN_G;
 1837                 break;
 1838         case IEEE80211_CHAN_5GHZ:
 1839                 flags = IEEE80211_CHAN_A;
 1840                 break;
 1841         default:
 1842                 if (rxs->c_freq < 3000) {
 1843                         flags = IEEE80211_CHAN_G;
 1844                 } else {
 1845                         flags = IEEE80211_CHAN_A;
 1846                 }
 1847                 break;
 1848         }
 1849 
 1850         /* Channel lookup */
 1851         c = ieee80211_find_channel(ic, rxs->c_freq, flags);
 1852 
 1853         IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
 1854             "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
 1855             __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
 1856 
 1857         return (c);
 1858 }
 1859 
 1860 static void
 1861 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
 1862 {
 1863 #define ADD(_ic, _s, _o) \
 1864         ifmedia_add(media, \
 1865                 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
 1866         static const u_int mopts[IEEE80211_MODE_MAX] = {
 1867             [IEEE80211_MODE_AUTO]       = IFM_AUTO,
 1868             [IEEE80211_MODE_11A]        = IFM_IEEE80211_11A,
 1869             [IEEE80211_MODE_11B]        = IFM_IEEE80211_11B,
 1870             [IEEE80211_MODE_11G]        = IFM_IEEE80211_11G,
 1871             [IEEE80211_MODE_FH]         = IFM_IEEE80211_FH,
 1872             [IEEE80211_MODE_TURBO_A]    = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
 1873             [IEEE80211_MODE_TURBO_G]    = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
 1874             [IEEE80211_MODE_STURBO_A]   = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
 1875             [IEEE80211_MODE_HALF]       = IFM_IEEE80211_11A,    /* XXX */
 1876             [IEEE80211_MODE_QUARTER]    = IFM_IEEE80211_11A,    /* XXX */
 1877             [IEEE80211_MODE_11NA]       = IFM_IEEE80211_11NA,
 1878             [IEEE80211_MODE_11NG]       = IFM_IEEE80211_11NG,
 1879             [IEEE80211_MODE_VHT_2GHZ]   = IFM_IEEE80211_VHT2G,
 1880             [IEEE80211_MODE_VHT_5GHZ]   = IFM_IEEE80211_VHT5G,
 1881         };
 1882         u_int mopt;
 1883 
 1884         mopt = mopts[mode];
 1885         if (addsta)
 1886                 ADD(ic, mword, mopt);   /* STA mode has no cap */
 1887         if (caps & IEEE80211_C_IBSS)
 1888                 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
 1889         if (caps & IEEE80211_C_HOSTAP)
 1890                 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
 1891         if (caps & IEEE80211_C_AHDEMO)
 1892                 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
 1893         if (caps & IEEE80211_C_MONITOR)
 1894                 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
 1895         if (caps & IEEE80211_C_WDS)
 1896                 ADD(media, mword, mopt | IFM_IEEE80211_WDS);
 1897         if (caps & IEEE80211_C_MBSS)
 1898                 ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
 1899 #undef ADD
 1900 }
 1901 
 1902 /*
 1903  * Setup the media data structures according to the channel and
 1904  * rate tables.
 1905  */
 1906 static int
 1907 ieee80211_media_setup(struct ieee80211com *ic,
 1908         struct ifmedia *media, int caps, int addsta,
 1909         ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
 1910 {
 1911         int i, j, rate, maxrate, mword, r;
 1912         enum ieee80211_phymode mode;
 1913         const struct ieee80211_rateset *rs;
 1914         struct ieee80211_rateset allrates;
 1915 
 1916         /*
 1917          * Fill in media characteristics.
 1918          */
 1919         ifmedia_init(media, 0, media_change, media_stat);
 1920         maxrate = 0;
 1921         /*
 1922          * Add media for legacy operating modes.
 1923          */
 1924         memset(&allrates, 0, sizeof(allrates));
 1925         for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
 1926                 if (isclr(ic->ic_modecaps, mode))
 1927                         continue;
 1928                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 1929                 if (mode == IEEE80211_MODE_AUTO)
 1930                         continue;
 1931                 rs = &ic->ic_sup_rates[mode];
 1932                 for (i = 0; i < rs->rs_nrates; i++) {
 1933                         rate = rs->rs_rates[i];
 1934                         mword = ieee80211_rate2media(ic, rate, mode);
 1935                         if (mword == 0)
 1936                                 continue;
 1937                         addmedia(media, caps, addsta, mode, mword);
 1938                         /*
 1939                          * Add legacy rate to the collection of all rates.
 1940                          */
 1941                         r = rate & IEEE80211_RATE_VAL;
 1942                         for (j = 0; j < allrates.rs_nrates; j++)
 1943                                 if (allrates.rs_rates[j] == r)
 1944                                         break;
 1945                         if (j == allrates.rs_nrates) {
 1946                                 /* unique, add to the set */
 1947                                 allrates.rs_rates[j] = r;
 1948                                 allrates.rs_nrates++;
 1949                         }
 1950                         rate = (rate & IEEE80211_RATE_VAL) / 2;
 1951                         if (rate > maxrate)
 1952                                 maxrate = rate;
 1953                 }
 1954         }
 1955         for (i = 0; i < allrates.rs_nrates; i++) {
 1956                 mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
 1957                                 IEEE80211_MODE_AUTO);
 1958                 if (mword == 0)
 1959                         continue;
 1960                 /* NB: remove media options from mword */
 1961                 addmedia(media, caps, addsta,
 1962                     IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
 1963         }
 1964         /*
 1965          * Add HT/11n media.  Note that we do not have enough
 1966          * bits in the media subtype to express the MCS so we
 1967          * use a "placeholder" media subtype and any fixed MCS
 1968          * must be specified with a different mechanism.
 1969          */
 1970         for (; mode <= IEEE80211_MODE_11NG; mode++) {
 1971                 if (isclr(ic->ic_modecaps, mode))
 1972                         continue;
 1973                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 1974                 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
 1975         }
 1976         if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
 1977             isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
 1978                 addmedia(media, caps, addsta,
 1979                     IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
 1980                 i = ic->ic_txstream * 8 - 1;
 1981                 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
 1982                     (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
 1983                         rate = ieee80211_htrates[i].ht40_rate_400ns;
 1984                 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
 1985                         rate = ieee80211_htrates[i].ht40_rate_800ns;
 1986                 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
 1987                         rate = ieee80211_htrates[i].ht20_rate_400ns;
 1988                 else
 1989                         rate = ieee80211_htrates[i].ht20_rate_800ns;
 1990                 if (rate > maxrate)
 1991                         maxrate = rate;
 1992         }
 1993 
 1994         /*
 1995          * Add VHT media.
 1996          * XXX-BZ skip "VHT_2GHZ" for now.
 1997          */
 1998         for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
 1999             mode++) {
 2000                 if (isclr(ic->ic_modecaps, mode))
 2001                         continue;
 2002                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 2003                 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
 2004         }
 2005         if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
 2006                addmedia(media, caps, addsta,
 2007                    IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
 2008 
 2009                 /* XXX TODO: VHT maxrate */
 2010         }
 2011 
 2012         return maxrate;
 2013 }
 2014 
 2015 /* XXX inline or eliminate? */
 2016 const struct ieee80211_rateset *
 2017 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
 2018 {
 2019         /* XXX does this work for 11ng basic rates? */
 2020         return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
 2021 }
 2022 
 2023 /* XXX inline or eliminate? */
 2024 const struct ieee80211_htrateset *
 2025 ieee80211_get_suphtrates(struct ieee80211com *ic,
 2026     const struct ieee80211_channel *c)
 2027 {
 2028         return &ic->ic_sup_htrates;
 2029 }
 2030 
 2031 void
 2032 ieee80211_announce(struct ieee80211com *ic)
 2033 {
 2034         int i, rate, mword;
 2035         enum ieee80211_phymode mode;
 2036         const struct ieee80211_rateset *rs;
 2037 
 2038         /* NB: skip AUTO since it has no rates */
 2039         for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
 2040                 if (isclr(ic->ic_modecaps, mode))
 2041                         continue;
 2042                 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
 2043                 rs = &ic->ic_sup_rates[mode];
 2044                 for (i = 0; i < rs->rs_nrates; i++) {
 2045                         mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
 2046                         if (mword == 0)
 2047                                 continue;
 2048                         rate = ieee80211_media2rate(mword);
 2049                         printf("%s%d%sMbps", (i != 0 ? " " : ""),
 2050                             rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
 2051                 }
 2052                 printf("\n");
 2053         }
 2054         ieee80211_ht_announce(ic);
 2055         ieee80211_vht_announce(ic);
 2056 }
 2057 
 2058 void
 2059 ieee80211_announce_channels(struct ieee80211com *ic)
 2060 {
 2061         const struct ieee80211_channel *c;
 2062         char type;
 2063         int i, cw;
 2064 
 2065         printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
 2066         for (i = 0; i < ic->ic_nchans; i++) {
 2067                 c = &ic->ic_channels[i];
 2068                 if (IEEE80211_IS_CHAN_ST(c))
 2069                         type = 'S';
 2070                 else if (IEEE80211_IS_CHAN_108A(c))
 2071                         type = 'T';
 2072                 else if (IEEE80211_IS_CHAN_108G(c))
 2073                         type = 'G';
 2074                 else if (IEEE80211_IS_CHAN_HT(c))
 2075                         type = 'n';
 2076                 else if (IEEE80211_IS_CHAN_A(c))
 2077                         type = 'a';
 2078                 else if (IEEE80211_IS_CHAN_ANYG(c))
 2079                         type = 'g';
 2080                 else if (IEEE80211_IS_CHAN_B(c))
 2081                         type = 'b';
 2082                 else
 2083                         type = 'f';
 2084                 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
 2085                         cw = 40;
 2086                 else if (IEEE80211_IS_CHAN_HALF(c))
 2087                         cw = 10;
 2088                 else if (IEEE80211_IS_CHAN_QUARTER(c))
 2089                         cw = 5;
 2090                 else
 2091                         cw = 20;
 2092                 printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
 2093                         , c->ic_ieee, c->ic_freq, type
 2094                         , cw
 2095                         , IEEE80211_IS_CHAN_HT40U(c) ? '+' :
 2096                           IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
 2097                         , c->ic_maxregpower
 2098                         , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
 2099                         , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
 2100                 );
 2101         }
 2102 }
 2103 
 2104 static int
 2105 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
 2106 {
 2107         switch (IFM_MODE(ime->ifm_media)) {
 2108         case IFM_IEEE80211_11A:
 2109                 *mode = IEEE80211_MODE_11A;
 2110                 break;
 2111         case IFM_IEEE80211_11B:
 2112                 *mode = IEEE80211_MODE_11B;
 2113                 break;
 2114         case IFM_IEEE80211_11G:
 2115                 *mode = IEEE80211_MODE_11G;
 2116                 break;
 2117         case IFM_IEEE80211_FH:
 2118                 *mode = IEEE80211_MODE_FH;
 2119                 break;
 2120         case IFM_IEEE80211_11NA:
 2121                 *mode = IEEE80211_MODE_11NA;
 2122                 break;
 2123         case IFM_IEEE80211_11NG:
 2124                 *mode = IEEE80211_MODE_11NG;
 2125                 break;
 2126         case IFM_IEEE80211_VHT2G:
 2127                 *mode = IEEE80211_MODE_VHT_2GHZ;
 2128                 break;
 2129         case IFM_IEEE80211_VHT5G:
 2130                 *mode = IEEE80211_MODE_VHT_5GHZ;
 2131                 break;
 2132         case IFM_AUTO:
 2133                 *mode = IEEE80211_MODE_AUTO;
 2134                 break;
 2135         default:
 2136                 return 0;
 2137         }
 2138         /*
 2139          * Turbo mode is an ``option''.
 2140          * XXX does not apply to AUTO
 2141          */
 2142         if (ime->ifm_media & IFM_IEEE80211_TURBO) {
 2143                 if (*mode == IEEE80211_MODE_11A) {
 2144                         if (flags & IEEE80211_F_TURBOP)
 2145                                 *mode = IEEE80211_MODE_TURBO_A;
 2146                         else
 2147                                 *mode = IEEE80211_MODE_STURBO_A;
 2148                 } else if (*mode == IEEE80211_MODE_11G)
 2149                         *mode = IEEE80211_MODE_TURBO_G;
 2150                 else
 2151                         return 0;
 2152         }
 2153         /* XXX HT40 +/- */
 2154         return 1;
 2155 }
 2156 
 2157 /*
 2158  * Handle a media change request on the vap interface.
 2159  */
 2160 int
 2161 ieee80211_media_change(struct ifnet *ifp)
 2162 {
 2163         struct ieee80211vap *vap = ifp->if_softc;
 2164         struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
 2165         uint16_t newmode;
 2166 
 2167         if (!media2mode(ime, vap->iv_flags, &newmode))
 2168                 return EINVAL;
 2169         if (vap->iv_des_mode != newmode) {
 2170                 vap->iv_des_mode = newmode;
 2171                 /* XXX kick state machine if up+running */
 2172         }
 2173         return 0;
 2174 }
 2175 
 2176 /*
 2177  * Common code to calculate the media status word
 2178  * from the operating mode and channel state.
 2179  */
 2180 static int
 2181 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
 2182 {
 2183         int status;
 2184 
 2185         status = IFM_IEEE80211;
 2186         switch (opmode) {
 2187         case IEEE80211_M_STA:
 2188                 break;
 2189         case IEEE80211_M_IBSS:
 2190                 status |= IFM_IEEE80211_ADHOC;
 2191                 break;
 2192         case IEEE80211_M_HOSTAP:
 2193                 status |= IFM_IEEE80211_HOSTAP;
 2194                 break;
 2195         case IEEE80211_M_MONITOR:
 2196                 status |= IFM_IEEE80211_MONITOR;
 2197                 break;
 2198         case IEEE80211_M_AHDEMO:
 2199                 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
 2200                 break;
 2201         case IEEE80211_M_WDS:
 2202                 status |= IFM_IEEE80211_WDS;
 2203                 break;
 2204         case IEEE80211_M_MBSS:
 2205                 status |= IFM_IEEE80211_MBSS;
 2206                 break;
 2207         }
 2208         if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
 2209                 status |= IFM_IEEE80211_VHT5G;
 2210         } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
 2211                 status |= IFM_IEEE80211_VHT2G;
 2212         } else if (IEEE80211_IS_CHAN_HTA(chan)) {
 2213                 status |= IFM_IEEE80211_11NA;
 2214         } else if (IEEE80211_IS_CHAN_HTG(chan)) {
 2215                 status |= IFM_IEEE80211_11NG;
 2216         } else if (IEEE80211_IS_CHAN_A(chan)) {
 2217                 status |= IFM_IEEE80211_11A;
 2218         } else if (IEEE80211_IS_CHAN_B(chan)) {
 2219                 status |= IFM_IEEE80211_11B;
 2220         } else if (IEEE80211_IS_CHAN_ANYG(chan)) {
 2221                 status |= IFM_IEEE80211_11G;
 2222         } else if (IEEE80211_IS_CHAN_FHSS(chan)) {
 2223                 status |= IFM_IEEE80211_FH;
 2224         }
 2225         /* XXX else complain? */
 2226 
 2227         if (IEEE80211_IS_CHAN_TURBO(chan))
 2228                 status |= IFM_IEEE80211_TURBO;
 2229 #if 0
 2230         if (IEEE80211_IS_CHAN_HT20(chan))
 2231                 status |= IFM_IEEE80211_HT20;
 2232         if (IEEE80211_IS_CHAN_HT40(chan))
 2233                 status |= IFM_IEEE80211_HT40;
 2234 #endif
 2235         return status;
 2236 }
 2237 
 2238 void
 2239 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
 2240 {
 2241         struct ieee80211vap *vap = ifp->if_softc;
 2242         struct ieee80211com *ic = vap->iv_ic;
 2243         enum ieee80211_phymode mode;
 2244 
 2245         imr->ifm_status = IFM_AVALID;
 2246         /*
 2247          * NB: use the current channel's mode to lock down a xmit
 2248          * rate only when running; otherwise we may have a mismatch
 2249          * in which case the rate will not be convertible.
 2250          */
 2251         if (vap->iv_state == IEEE80211_S_RUN ||
 2252             vap->iv_state == IEEE80211_S_SLEEP) {
 2253                 imr->ifm_status |= IFM_ACTIVE;
 2254                 mode = ieee80211_chan2mode(ic->ic_curchan);
 2255         } else
 2256                 mode = IEEE80211_MODE_AUTO;
 2257         imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
 2258         /*
 2259          * Calculate a current rate if possible.
 2260          */
 2261         if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
 2262                 /*
 2263                  * A fixed rate is set, report that.
 2264                  */
 2265                 imr->ifm_active |= ieee80211_rate2media(ic,
 2266                         vap->iv_txparms[mode].ucastrate, mode);
 2267         } else if (vap->iv_opmode == IEEE80211_M_STA) {
 2268                 /*
 2269                  * In station mode report the current transmit rate.
 2270                  */
 2271                 imr->ifm_active |= ieee80211_rate2media(ic,
 2272                         vap->iv_bss->ni_txrate, mode);
 2273         } else
 2274                 imr->ifm_active |= IFM_AUTO;
 2275         if (imr->ifm_status & IFM_ACTIVE)
 2276                 imr->ifm_current = imr->ifm_active;
 2277 }
 2278 
 2279 /*
 2280  * Set the current phy mode and recalculate the active channel
 2281  * set based on the available channels for this mode.  Also
 2282  * select a new default/current channel if the current one is
 2283  * inappropriate for this mode.
 2284  */
 2285 int
 2286 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
 2287 {
 2288         /*
 2289          * Adjust basic rates in 11b/11g supported rate set.
 2290          * Note that if operating on a hal/quarter rate channel
 2291          * this is a noop as those rates sets are different
 2292          * and used instead.
 2293          */
 2294         if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
 2295                 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
 2296 
 2297         ic->ic_curmode = mode;
 2298         ieee80211_reset_erp(ic);        /* reset global ERP state */
 2299 
 2300         return 0;
 2301 }
 2302 
 2303 /*
 2304  * Return the phy mode for with the specified channel.
 2305  */
 2306 enum ieee80211_phymode
 2307 ieee80211_chan2mode(const struct ieee80211_channel *chan)
 2308 {
 2309 
 2310         if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
 2311                 return IEEE80211_MODE_VHT_2GHZ;
 2312         else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
 2313                 return IEEE80211_MODE_VHT_5GHZ;
 2314         else if (IEEE80211_IS_CHAN_HTA(chan))
 2315                 return IEEE80211_MODE_11NA;
 2316         else if (IEEE80211_IS_CHAN_HTG(chan))
 2317                 return IEEE80211_MODE_11NG;
 2318         else if (IEEE80211_IS_CHAN_108G(chan))
 2319                 return IEEE80211_MODE_TURBO_G;
 2320         else if (IEEE80211_IS_CHAN_ST(chan))
 2321                 return IEEE80211_MODE_STURBO_A;
 2322         else if (IEEE80211_IS_CHAN_TURBO(chan))
 2323                 return IEEE80211_MODE_TURBO_A;
 2324         else if (IEEE80211_IS_CHAN_HALF(chan))
 2325                 return IEEE80211_MODE_HALF;
 2326         else if (IEEE80211_IS_CHAN_QUARTER(chan))
 2327                 return IEEE80211_MODE_QUARTER;
 2328         else if (IEEE80211_IS_CHAN_A(chan))
 2329                 return IEEE80211_MODE_11A;
 2330         else if (IEEE80211_IS_CHAN_ANYG(chan))
 2331                 return IEEE80211_MODE_11G;
 2332         else if (IEEE80211_IS_CHAN_B(chan))
 2333                 return IEEE80211_MODE_11B;
 2334         else if (IEEE80211_IS_CHAN_FHSS(chan))
 2335                 return IEEE80211_MODE_FH;
 2336 
 2337         /* NB: should not get here */
 2338         printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
 2339                 __func__, chan->ic_freq, chan->ic_flags);
 2340         return IEEE80211_MODE_11B;
 2341 }
 2342 
 2343 struct ratemedia {
 2344         u_int   match;  /* rate + mode */
 2345         u_int   media;  /* if_media rate */
 2346 };
 2347 
 2348 static int
 2349 findmedia(const struct ratemedia rates[], int n, u_int match)
 2350 {
 2351         int i;
 2352 
 2353         for (i = 0; i < n; i++)
 2354                 if (rates[i].match == match)
 2355                         return rates[i].media;
 2356         return IFM_AUTO;
 2357 }
 2358 
 2359 /*
 2360  * Convert IEEE80211 rate value to ifmedia subtype.
 2361  * Rate is either a legacy rate in units of 0.5Mbps
 2362  * or an MCS index.
 2363  */
 2364 int
 2365 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
 2366 {
 2367         static const struct ratemedia rates[] = {
 2368                 {   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
 2369                 {   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
 2370                 {   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
 2371                 {   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
 2372                 {  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
 2373                 {  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
 2374                 {  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
 2375                 {  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
 2376                 {  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
 2377                 {  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
 2378                 {  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
 2379                 {  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
 2380                 {  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
 2381                 {  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
 2382                 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
 2383                 {   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
 2384                 {   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
 2385                 {  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
 2386                 {  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
 2387                 {  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
 2388                 {  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
 2389                 {  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
 2390                 {  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
 2391                 {  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
 2392                 {  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
 2393                 {  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
 2394                 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
 2395                 {   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
 2396                 {   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
 2397                 {  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
 2398                 /* NB: OFDM72 doesn't really exist so we don't handle it */
 2399         };
 2400         static const struct ratemedia htrates[] = {
 2401                 {   0, IFM_IEEE80211_MCS },
 2402                 {   1, IFM_IEEE80211_MCS },
 2403                 {   2, IFM_IEEE80211_MCS },
 2404                 {   3, IFM_IEEE80211_MCS },
 2405                 {   4, IFM_IEEE80211_MCS },
 2406                 {   5, IFM_IEEE80211_MCS },
 2407                 {   6, IFM_IEEE80211_MCS },
 2408                 {   7, IFM_IEEE80211_MCS },
 2409                 {   8, IFM_IEEE80211_MCS },
 2410                 {   9, IFM_IEEE80211_MCS },
 2411                 {  10, IFM_IEEE80211_MCS },
 2412                 {  11, IFM_IEEE80211_MCS },
 2413                 {  12, IFM_IEEE80211_MCS },
 2414                 {  13, IFM_IEEE80211_MCS },
 2415                 {  14, IFM_IEEE80211_MCS },
 2416                 {  15, IFM_IEEE80211_MCS },
 2417                 {  16, IFM_IEEE80211_MCS },
 2418                 {  17, IFM_IEEE80211_MCS },
 2419                 {  18, IFM_IEEE80211_MCS },
 2420                 {  19, IFM_IEEE80211_MCS },
 2421                 {  20, IFM_IEEE80211_MCS },
 2422                 {  21, IFM_IEEE80211_MCS },
 2423                 {  22, IFM_IEEE80211_MCS },
 2424                 {  23, IFM_IEEE80211_MCS },
 2425                 {  24, IFM_IEEE80211_MCS },
 2426                 {  25, IFM_IEEE80211_MCS },
 2427                 {  26, IFM_IEEE80211_MCS },
 2428                 {  27, IFM_IEEE80211_MCS },
 2429                 {  28, IFM_IEEE80211_MCS },
 2430                 {  29, IFM_IEEE80211_MCS },
 2431                 {  30, IFM_IEEE80211_MCS },
 2432                 {  31, IFM_IEEE80211_MCS },
 2433                 {  32, IFM_IEEE80211_MCS },
 2434                 {  33, IFM_IEEE80211_MCS },
 2435                 {  34, IFM_IEEE80211_MCS },
 2436                 {  35, IFM_IEEE80211_MCS },
 2437                 {  36, IFM_IEEE80211_MCS },
 2438                 {  37, IFM_IEEE80211_MCS },
 2439                 {  38, IFM_IEEE80211_MCS },
 2440                 {  39, IFM_IEEE80211_MCS },
 2441                 {  40, IFM_IEEE80211_MCS },
 2442                 {  41, IFM_IEEE80211_MCS },
 2443                 {  42, IFM_IEEE80211_MCS },
 2444                 {  43, IFM_IEEE80211_MCS },
 2445                 {  44, IFM_IEEE80211_MCS },
 2446                 {  45, IFM_IEEE80211_MCS },
 2447                 {  46, IFM_IEEE80211_MCS },
 2448                 {  47, IFM_IEEE80211_MCS },
 2449                 {  48, IFM_IEEE80211_MCS },
 2450                 {  49, IFM_IEEE80211_MCS },
 2451                 {  50, IFM_IEEE80211_MCS },
 2452                 {  51, IFM_IEEE80211_MCS },
 2453                 {  52, IFM_IEEE80211_MCS },
 2454                 {  53, IFM_IEEE80211_MCS },
 2455                 {  54, IFM_IEEE80211_MCS },
 2456                 {  55, IFM_IEEE80211_MCS },
 2457                 {  56, IFM_IEEE80211_MCS },
 2458                 {  57, IFM_IEEE80211_MCS },
 2459                 {  58, IFM_IEEE80211_MCS },
 2460                 {  59, IFM_IEEE80211_MCS },
 2461                 {  60, IFM_IEEE80211_MCS },
 2462                 {  61, IFM_IEEE80211_MCS },
 2463                 {  62, IFM_IEEE80211_MCS },
 2464                 {  63, IFM_IEEE80211_MCS },
 2465                 {  64, IFM_IEEE80211_MCS },
 2466                 {  65, IFM_IEEE80211_MCS },
 2467                 {  66, IFM_IEEE80211_MCS },
 2468                 {  67, IFM_IEEE80211_MCS },
 2469                 {  68, IFM_IEEE80211_MCS },
 2470                 {  69, IFM_IEEE80211_MCS },
 2471                 {  70, IFM_IEEE80211_MCS },
 2472                 {  71, IFM_IEEE80211_MCS },
 2473                 {  72, IFM_IEEE80211_MCS },
 2474                 {  73, IFM_IEEE80211_MCS },
 2475                 {  74, IFM_IEEE80211_MCS },
 2476                 {  75, IFM_IEEE80211_MCS },
 2477                 {  76, IFM_IEEE80211_MCS },
 2478         };
 2479         static const struct ratemedia vhtrates[] = {
 2480                 {   0, IFM_IEEE80211_VHT },
 2481                 {   1, IFM_IEEE80211_VHT },
 2482                 {   2, IFM_IEEE80211_VHT },
 2483                 {   3, IFM_IEEE80211_VHT },
 2484                 {   4, IFM_IEEE80211_VHT },
 2485                 {   5, IFM_IEEE80211_VHT },
 2486                 {   6, IFM_IEEE80211_VHT },
 2487                 {   7, IFM_IEEE80211_VHT },
 2488                 {   8, IFM_IEEE80211_VHT },     /* Optional. */
 2489                 {   9, IFM_IEEE80211_VHT },     /* Optional. */
 2490 #if 0
 2491                 /* Some QCA and BRCM seem to support this; offspec. */
 2492                 {  10, IFM_IEEE80211_VHT },
 2493                 {  11, IFM_IEEE80211_VHT },
 2494 #endif
 2495         };
 2496         int m;
 2497 
 2498         /*
 2499          * Check 11ac/11n rates first for match as an MCS.
 2500          */
 2501         if (mode == IEEE80211_MODE_VHT_5GHZ) {
 2502                 if (rate & IFM_IEEE80211_VHT) {
 2503                         rate &= ~IFM_IEEE80211_VHT;
 2504                         m = findmedia(vhtrates, nitems(vhtrates), rate);
 2505                         if (m != IFM_AUTO)
 2506                                 return (m | IFM_IEEE80211_VHT);
 2507                 }
 2508         } else if (mode == IEEE80211_MODE_11NA) {
 2509                 if (rate & IEEE80211_RATE_MCS) {
 2510                         rate &= ~IEEE80211_RATE_MCS;
 2511                         m = findmedia(htrates, nitems(htrates), rate);
 2512                         if (m != IFM_AUTO)
 2513                                 return m | IFM_IEEE80211_11NA;
 2514                 }
 2515         } else if (mode == IEEE80211_MODE_11NG) {
 2516                 /* NB: 12 is ambiguous, it will be treated as an MCS */
 2517                 if (rate & IEEE80211_RATE_MCS) {
 2518                         rate &= ~IEEE80211_RATE_MCS;
 2519                         m = findmedia(htrates, nitems(htrates), rate);
 2520                         if (m != IFM_AUTO)
 2521                                 return m | IFM_IEEE80211_11NG;
 2522                 }
 2523         }
 2524         rate &= IEEE80211_RATE_VAL;
 2525         switch (mode) {
 2526         case IEEE80211_MODE_11A:
 2527         case IEEE80211_MODE_HALF:               /* XXX good 'nuf */
 2528         case IEEE80211_MODE_QUARTER:
 2529         case IEEE80211_MODE_11NA:
 2530         case IEEE80211_MODE_TURBO_A:
 2531         case IEEE80211_MODE_STURBO_A:
 2532                 return findmedia(rates, nitems(rates),
 2533                     rate | IFM_IEEE80211_11A);
 2534         case IEEE80211_MODE_11B:
 2535                 return findmedia(rates, nitems(rates),
 2536                     rate | IFM_IEEE80211_11B);
 2537         case IEEE80211_MODE_FH:
 2538                 return findmedia(rates, nitems(rates),
 2539                     rate | IFM_IEEE80211_FH);
 2540         case IEEE80211_MODE_AUTO:
 2541                 /* NB: ic may be NULL for some drivers */
 2542                 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
 2543                         return findmedia(rates, nitems(rates),
 2544                             rate | IFM_IEEE80211_FH);
 2545                 /* NB: hack, 11g matches both 11b+11a rates */
 2546                 /* fall thru... */
 2547         case IEEE80211_MODE_11G:
 2548         case IEEE80211_MODE_11NG:
 2549         case IEEE80211_MODE_TURBO_G:
 2550                 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
 2551         case IEEE80211_MODE_VHT_2GHZ:
 2552         case IEEE80211_MODE_VHT_5GHZ:
 2553                 /* XXX TODO: need to figure out mapping for VHT rates */
 2554                 return IFM_AUTO;
 2555         }
 2556         return IFM_AUTO;
 2557 }
 2558 
 2559 int
 2560 ieee80211_media2rate(int mword)
 2561 {
 2562         static const int ieeerates[] = {
 2563                 -1,             /* IFM_AUTO */
 2564                 0,              /* IFM_MANUAL */
 2565                 0,              /* IFM_NONE */
 2566                 2,              /* IFM_IEEE80211_FH1 */
 2567                 4,              /* IFM_IEEE80211_FH2 */
 2568                 2,              /* IFM_IEEE80211_DS1 */
 2569                 4,              /* IFM_IEEE80211_DS2 */
 2570                 11,             /* IFM_IEEE80211_DS5 */
 2571                 22,             /* IFM_IEEE80211_DS11 */
 2572                 44,             /* IFM_IEEE80211_DS22 */
 2573                 12,             /* IFM_IEEE80211_OFDM6 */
 2574                 18,             /* IFM_IEEE80211_OFDM9 */
 2575                 24,             /* IFM_IEEE80211_OFDM12 */
 2576                 36,             /* IFM_IEEE80211_OFDM18 */
 2577                 48,             /* IFM_IEEE80211_OFDM24 */
 2578                 72,             /* IFM_IEEE80211_OFDM36 */
 2579                 96,             /* IFM_IEEE80211_OFDM48 */
 2580                 108,            /* IFM_IEEE80211_OFDM54 */
 2581                 144,            /* IFM_IEEE80211_OFDM72 */
 2582                 0,              /* IFM_IEEE80211_DS354k */
 2583                 0,              /* IFM_IEEE80211_DS512k */
 2584                 6,              /* IFM_IEEE80211_OFDM3 */
 2585                 9,              /* IFM_IEEE80211_OFDM4 */
 2586                 54,             /* IFM_IEEE80211_OFDM27 */
 2587                 -1,             /* IFM_IEEE80211_MCS */
 2588                 -1,             /* IFM_IEEE80211_VHT */
 2589         };
 2590         return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
 2591                 ieeerates[IFM_SUBTYPE(mword)] : 0;
 2592 }
 2593 
 2594 /*
 2595  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
 2596  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
 2597  */
 2598 #define mix(a, b, c)                                                    \
 2599 do {                                                                    \
 2600         a -= b; a -= c; a ^= (c >> 13);                                 \
 2601         b -= c; b -= a; b ^= (a << 8);                                  \
 2602         c -= a; c -= b; c ^= (b >> 13);                                 \
 2603         a -= b; a -= c; a ^= (c >> 12);                                 \
 2604         b -= c; b -= a; b ^= (a << 16);                                 \
 2605         c -= a; c -= b; c ^= (b >> 5);                                  \
 2606         a -= b; a -= c; a ^= (c >> 3);                                  \
 2607         b -= c; b -= a; b ^= (a << 10);                                 \
 2608         c -= a; c -= b; c ^= (b >> 15);                                 \
 2609 } while (/*CONSTCOND*/0)
 2610 
 2611 uint32_t
 2612 ieee80211_mac_hash(const struct ieee80211com *ic,
 2613         const uint8_t addr[IEEE80211_ADDR_LEN])
 2614 {
 2615         uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
 2616 
 2617         b += addr[5] << 8;
 2618         b += addr[4];
 2619         a += addr[3] << 24;
 2620         a += addr[2] << 16;
 2621         a += addr[1] << 8;
 2622         a += addr[0];
 2623 
 2624         mix(a, b, c);
 2625 
 2626         return c;
 2627 }
 2628 #undef mix
 2629 
 2630 char
 2631 ieee80211_channel_type_char(const struct ieee80211_channel *c)
 2632 {
 2633         if (IEEE80211_IS_CHAN_ST(c))
 2634                 return 'S';
 2635         if (IEEE80211_IS_CHAN_108A(c))
 2636                 return 'T';
 2637         if (IEEE80211_IS_CHAN_108G(c))
 2638                 return 'G';
 2639         if (IEEE80211_IS_CHAN_VHT(c))
 2640                 return 'v';
 2641         if (IEEE80211_IS_CHAN_HT(c))
 2642                 return 'n';
 2643         if (IEEE80211_IS_CHAN_A(c))
 2644                 return 'a';
 2645         if (IEEE80211_IS_CHAN_ANYG(c))
 2646                 return 'g';
 2647         if (IEEE80211_IS_CHAN_B(c))
 2648                 return 'b';
 2649         return 'f';
 2650 }

Cache object: 9e126a694228c9c712c69c572f0a7c51


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.