The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2001 Atsushi Onoe
    5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211.c 336184 2018-07-10 23:30:19Z kevans $");
   31 
   32 /*
   33  * IEEE 802.11 generic handler
   34  */
   35 #include "opt_wlan.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/kernel.h>
   40 #include <sys/malloc.h>
   41 #include <sys/socket.h>
   42 #include <sys/sbuf.h>
   43 
   44 #include <machine/stdarg.h>
   45 
   46 #include <net/if.h>
   47 #include <net/if_var.h>
   48 #include <net/if_dl.h>
   49 #include <net/if_media.h>
   50 #include <net/if_types.h>
   51 #include <net/ethernet.h>
   52 
   53 #include <net80211/ieee80211_var.h>
   54 #include <net80211/ieee80211_regdomain.h>
   55 #ifdef IEEE80211_SUPPORT_SUPERG
   56 #include <net80211/ieee80211_superg.h>
   57 #endif
   58 #include <net80211/ieee80211_ratectl.h>
   59 #include <net80211/ieee80211_vht.h>
   60 
   61 #include <net/bpf.h>
   62 
   63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
   64         [IEEE80211_MODE_AUTO]     = "auto",
   65         [IEEE80211_MODE_11A]      = "11a",
   66         [IEEE80211_MODE_11B]      = "11b",
   67         [IEEE80211_MODE_11G]      = "11g",
   68         [IEEE80211_MODE_FH]       = "FH",
   69         [IEEE80211_MODE_TURBO_A]  = "turboA",
   70         [IEEE80211_MODE_TURBO_G]  = "turboG",
   71         [IEEE80211_MODE_STURBO_A] = "sturboA",
   72         [IEEE80211_MODE_HALF]     = "half",
   73         [IEEE80211_MODE_QUARTER]  = "quarter",
   74         [IEEE80211_MODE_11NA]     = "11na",
   75         [IEEE80211_MODE_11NG]     = "11ng",
   76         [IEEE80211_MODE_VHT_2GHZ]         = "11acg",
   77         [IEEE80211_MODE_VHT_5GHZ]         = "11ac",
   78 };
   79 /* map ieee80211_opmode to the corresponding capability bit */
   80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
   81         [IEEE80211_M_IBSS]      = IEEE80211_C_IBSS,
   82         [IEEE80211_M_WDS]       = IEEE80211_C_WDS,
   83         [IEEE80211_M_STA]       = IEEE80211_C_STA,
   84         [IEEE80211_M_AHDEMO]    = IEEE80211_C_AHDEMO,
   85         [IEEE80211_M_HOSTAP]    = IEEE80211_C_HOSTAP,
   86         [IEEE80211_M_MONITOR]   = IEEE80211_C_MONITOR,
   87 #ifdef IEEE80211_SUPPORT_MESH
   88         [IEEE80211_M_MBSS]      = IEEE80211_C_MBSS,
   89 #endif
   90 };
   91 
   92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
   93         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   94 
   95 static  void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
   96 static  void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
   97 static  void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
   98 static  void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
   99 static  int ieee80211_media_setup(struct ieee80211com *ic,
  100                 struct ifmedia *media, int caps, int addsta,
  101                 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
  102 static  int media_status(enum ieee80211_opmode,
  103                 const struct ieee80211_channel *);
  104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
  105 
  106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
  107 
  108 /*
  109  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
  110  */
  111 #define B(r)    ((r) | IEEE80211_RATE_BASIC)
  112 static const struct ieee80211_rateset ieee80211_rateset_11a =
  113         { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
  114 static const struct ieee80211_rateset ieee80211_rateset_half =
  115         { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
  116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
  117         { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
  118 static const struct ieee80211_rateset ieee80211_rateset_11b =
  119         { 4, { B(2), B(4), B(11), B(22) } };
  120 /* NB: OFDM rates are handled specially based on mode */
  121 static const struct ieee80211_rateset ieee80211_rateset_11g =
  122         { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
  123 #undef B
  124 
  125 static int set_vht_extchan(struct ieee80211_channel *c);
  126 
  127 /*
  128  * Fill in 802.11 available channel set, mark
  129  * all available channels as active, and pick
  130  * a default channel if not already specified.
  131  */
  132 void
  133 ieee80211_chan_init(struct ieee80211com *ic)
  134 {
  135 #define DEFAULTRATES(m, def) do { \
  136         if (ic->ic_sup_rates[m].rs_nrates == 0) \
  137                 ic->ic_sup_rates[m] = def; \
  138 } while (0)
  139         struct ieee80211_channel *c;
  140         int i;
  141 
  142         KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
  143                 ("invalid number of channels specified: %u", ic->ic_nchans));
  144         memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
  145         memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
  146         setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
  147         for (i = 0; i < ic->ic_nchans; i++) {
  148                 c = &ic->ic_channels[i];
  149                 KASSERT(c->ic_flags != 0, ("channel with no flags"));
  150                 /*
  151                  * Help drivers that work only with frequencies by filling
  152                  * in IEEE channel #'s if not already calculated.  Note this
  153                  * mimics similar work done in ieee80211_setregdomain when
  154                  * changing regulatory state.
  155                  */
  156                 if (c->ic_ieee == 0)
  157                         c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
  158 
  159                 /*
  160                  * Setup the HT40/VHT40 upper/lower bits.
  161                  * The VHT80 math is done elsewhere.
  162                  */
  163                 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
  164                         c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
  165                             (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
  166                             c->ic_flags);
  167 
  168                 /* Update VHT math */
  169                 /*
  170                  * XXX VHT again, note that this assumes VHT80 channels
  171                  * are legit already
  172                  */
  173                 set_vht_extchan(c);
  174 
  175                 /* default max tx power to max regulatory */
  176                 if (c->ic_maxpower == 0)
  177                         c->ic_maxpower = 2*c->ic_maxregpower;
  178                 setbit(ic->ic_chan_avail, c->ic_ieee);
  179                 /*
  180                  * Identify mode capabilities.
  181                  */
  182                 if (IEEE80211_IS_CHAN_A(c))
  183                         setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
  184                 if (IEEE80211_IS_CHAN_B(c))
  185                         setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
  186                 if (IEEE80211_IS_CHAN_ANYG(c))
  187                         setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
  188                 if (IEEE80211_IS_CHAN_FHSS(c))
  189                         setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
  190                 if (IEEE80211_IS_CHAN_108A(c))
  191                         setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
  192                 if (IEEE80211_IS_CHAN_108G(c))
  193                         setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
  194                 if (IEEE80211_IS_CHAN_ST(c))
  195                         setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
  196                 if (IEEE80211_IS_CHAN_HALF(c))
  197                         setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
  198                 if (IEEE80211_IS_CHAN_QUARTER(c))
  199                         setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
  200                 if (IEEE80211_IS_CHAN_HTA(c))
  201                         setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
  202                 if (IEEE80211_IS_CHAN_HTG(c))
  203                         setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
  204                 if (IEEE80211_IS_CHAN_VHTA(c))
  205                         setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
  206                 if (IEEE80211_IS_CHAN_VHTG(c))
  207                         setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
  208         }
  209         /* initialize candidate channels to all available */
  210         memcpy(ic->ic_chan_active, ic->ic_chan_avail,
  211                 sizeof(ic->ic_chan_avail));
  212 
  213         /* sort channel table to allow lookup optimizations */
  214         ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
  215 
  216         /* invalidate any previous state */
  217         ic->ic_bsschan = IEEE80211_CHAN_ANYC;
  218         ic->ic_prevchan = NULL;
  219         ic->ic_csa_newchan = NULL;
  220         /* arbitrarily pick the first channel */
  221         ic->ic_curchan = &ic->ic_channels[0];
  222         ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
  223 
  224         /* fillin well-known rate sets if driver has not specified */
  225         DEFAULTRATES(IEEE80211_MODE_11B,         ieee80211_rateset_11b);
  226         DEFAULTRATES(IEEE80211_MODE_11G,         ieee80211_rateset_11g);
  227         DEFAULTRATES(IEEE80211_MODE_11A,         ieee80211_rateset_11a);
  228         DEFAULTRATES(IEEE80211_MODE_TURBO_A,     ieee80211_rateset_11a);
  229         DEFAULTRATES(IEEE80211_MODE_TURBO_G,     ieee80211_rateset_11g);
  230         DEFAULTRATES(IEEE80211_MODE_STURBO_A,    ieee80211_rateset_11a);
  231         DEFAULTRATES(IEEE80211_MODE_HALF,        ieee80211_rateset_half);
  232         DEFAULTRATES(IEEE80211_MODE_QUARTER,     ieee80211_rateset_quarter);
  233         DEFAULTRATES(IEEE80211_MODE_11NA,        ieee80211_rateset_11a);
  234         DEFAULTRATES(IEEE80211_MODE_11NG,        ieee80211_rateset_11g);
  235         DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,    ieee80211_rateset_11g);
  236         DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,    ieee80211_rateset_11a);
  237 
  238         /*
  239          * Setup required information to fill the mcsset field, if driver did
  240          * not. Assume a 2T2R setup for historic reasons.
  241          */
  242         if (ic->ic_rxstream == 0)
  243                 ic->ic_rxstream = 2;
  244         if (ic->ic_txstream == 0)
  245                 ic->ic_txstream = 2;
  246 
  247         ieee80211_init_suphtrates(ic);
  248 
  249         /*
  250          * Set auto mode to reset active channel state and any desired channel.
  251          */
  252         (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
  253 #undef DEFAULTRATES
  254 }
  255 
  256 static void
  257 null_update_mcast(struct ieee80211com *ic)
  258 {
  259 
  260         ic_printf(ic, "need multicast update callback\n");
  261 }
  262 
  263 static void
  264 null_update_promisc(struct ieee80211com *ic)
  265 {
  266 
  267         ic_printf(ic, "need promiscuous mode update callback\n");
  268 }
  269 
  270 static void
  271 null_update_chw(struct ieee80211com *ic)
  272 {
  273 
  274         ic_printf(ic, "%s: need callback\n", __func__);
  275 }
  276 
  277 int
  278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
  279 {
  280         va_list ap;
  281         int retval;
  282 
  283         retval = printf("%s: ", ic->ic_name);
  284         va_start(ap, fmt);
  285         retval += vprintf(fmt, ap);
  286         va_end(ap);
  287         return (retval);
  288 }
  289 
  290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
  291 static struct mtx ic_list_mtx;
  292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
  293 
  294 static int
  295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
  296 {
  297         struct ieee80211com *ic;
  298         struct sbuf sb;
  299         char *sp;
  300         int error;
  301 
  302         error = sysctl_wire_old_buffer(req, 0);
  303         if (error)
  304                 return (error);
  305         sbuf_new_for_sysctl(&sb, NULL, 8, req);
  306         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
  307         sp = "";
  308         mtx_lock(&ic_list_mtx);
  309         LIST_FOREACH(ic, &ic_head, ic_next) {
  310                 sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
  311                 sp = " ";
  312         }
  313         mtx_unlock(&ic_list_mtx);
  314         error = sbuf_finish(&sb);
  315         sbuf_delete(&sb);
  316         return (error);
  317 }
  318 
  319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
  320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  321     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
  322 
  323 /*
  324  * Attach/setup the common net80211 state.  Called by
  325  * the driver on attach to prior to creating any vap's.
  326  */
  327 void
  328 ieee80211_ifattach(struct ieee80211com *ic)
  329 {
  330 
  331         IEEE80211_LOCK_INIT(ic, ic->ic_name);
  332         IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
  333         TAILQ_INIT(&ic->ic_vaps);
  334 
  335         /* Create a taskqueue for all state changes */
  336         ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
  337             taskqueue_thread_enqueue, &ic->ic_tq);
  338         taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
  339             ic->ic_name);
  340         ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
  341         ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
  342         /*
  343          * Fill in 802.11 available channel set, mark all
  344          * available channels as active, and pick a default
  345          * channel if not already specified.
  346          */
  347         ieee80211_chan_init(ic);
  348 
  349         ic->ic_update_mcast = null_update_mcast;
  350         ic->ic_update_promisc = null_update_promisc;
  351         ic->ic_update_chw = null_update_chw;
  352 
  353         ic->ic_hash_key = arc4random();
  354         ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
  355         ic->ic_lintval = ic->ic_bintval;
  356         ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
  357 
  358         ieee80211_crypto_attach(ic);
  359         ieee80211_node_attach(ic);
  360         ieee80211_power_attach(ic);
  361         ieee80211_proto_attach(ic);
  362 #ifdef IEEE80211_SUPPORT_SUPERG
  363         ieee80211_superg_attach(ic);
  364 #endif
  365         ieee80211_ht_attach(ic);
  366         ieee80211_vht_attach(ic);
  367         ieee80211_scan_attach(ic);
  368         ieee80211_regdomain_attach(ic);
  369         ieee80211_dfs_attach(ic);
  370 
  371         ieee80211_sysctl_attach(ic);
  372 
  373         mtx_lock(&ic_list_mtx);
  374         LIST_INSERT_HEAD(&ic_head, ic, ic_next);
  375         mtx_unlock(&ic_list_mtx);
  376 }
  377 
  378 /*
  379  * Detach net80211 state on device detach.  Tear down
  380  * all vap's and reclaim all common state prior to the
  381  * device state going away.  Note we may call back into
  382  * driver; it must be prepared for this.
  383  */
  384 void
  385 ieee80211_ifdetach(struct ieee80211com *ic)
  386 {
  387         struct ieee80211vap *vap;
  388 
  389         /*
  390          * We use this as an indicator that ifattach never had a chance to be
  391          * called, e.g. early driver attach failed and ifdetach was called
  392          * during subsequent detach.  Never fear, for we have nothing to do
  393          * here.
  394          */
  395         if (ic->ic_tq == NULL)
  396                 return;
  397 
  398         mtx_lock(&ic_list_mtx);
  399         LIST_REMOVE(ic, ic_next);
  400         mtx_unlock(&ic_list_mtx);
  401 
  402         taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
  403 
  404         /*
  405          * The VAP is responsible for setting and clearing
  406          * the VIMAGE context.
  407          */
  408         while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
  409                 ieee80211_vap_destroy(vap);
  410         ieee80211_waitfor_parent(ic);
  411 
  412         ieee80211_sysctl_detach(ic);
  413         ieee80211_dfs_detach(ic);
  414         ieee80211_regdomain_detach(ic);
  415         ieee80211_scan_detach(ic);
  416 #ifdef IEEE80211_SUPPORT_SUPERG
  417         ieee80211_superg_detach(ic);
  418 #endif
  419         ieee80211_vht_detach(ic);
  420         ieee80211_ht_detach(ic);
  421         /* NB: must be called before ieee80211_node_detach */
  422         ieee80211_proto_detach(ic);
  423         ieee80211_crypto_detach(ic);
  424         ieee80211_power_detach(ic);
  425         ieee80211_node_detach(ic);
  426 
  427         counter_u64_free(ic->ic_ierrors);
  428         counter_u64_free(ic->ic_oerrors);
  429 
  430         taskqueue_free(ic->ic_tq);
  431         IEEE80211_TX_LOCK_DESTROY(ic);
  432         IEEE80211_LOCK_DESTROY(ic);
  433 }
  434 
  435 struct ieee80211com *
  436 ieee80211_find_com(const char *name)
  437 {
  438         struct ieee80211com *ic;
  439 
  440         mtx_lock(&ic_list_mtx);
  441         LIST_FOREACH(ic, &ic_head, ic_next)
  442                 if (strcmp(ic->ic_name, name) == 0)
  443                         break;
  444         mtx_unlock(&ic_list_mtx);
  445 
  446         return (ic);
  447 }
  448 
  449 void
  450 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
  451 {
  452         struct ieee80211com *ic;
  453 
  454         mtx_lock(&ic_list_mtx);
  455         LIST_FOREACH(ic, &ic_head, ic_next)
  456                 (*f)(arg, ic);
  457         mtx_unlock(&ic_list_mtx);
  458 }
  459 
  460 /*
  461  * Default reset method for use with the ioctl support.  This
  462  * method is invoked after any state change in the 802.11
  463  * layer that should be propagated to the hardware but not
  464  * require re-initialization of the 802.11 state machine (e.g
  465  * rescanning for an ap).  We always return ENETRESET which
  466  * should cause the driver to re-initialize the device. Drivers
  467  * can override this method to implement more optimized support.
  468  */
  469 static int
  470 default_reset(struct ieee80211vap *vap, u_long cmd)
  471 {
  472         return ENETRESET;
  473 }
  474 
  475 /*
  476  * Default for updating the VAP default TX key index.
  477  *
  478  * Drivers that support TX offload as well as hardware encryption offload
  479  * may need to be informed of key index changes separate from the key
  480  * update.
  481  */
  482 static void
  483 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
  484 {
  485 
  486         /* XXX assert validity */
  487         /* XXX assert we're in a key update block */
  488         vap->iv_def_txkey = kid;
  489 }
  490 
  491 /*
  492  * Add underlying device errors to vap errors.
  493  */
  494 static uint64_t
  495 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
  496 {
  497         struct ieee80211vap *vap = ifp->if_softc;
  498         struct ieee80211com *ic = vap->iv_ic;
  499         uint64_t rv;
  500 
  501         rv = if_get_counter_default(ifp, cnt);
  502         switch (cnt) {
  503         case IFCOUNTER_OERRORS:
  504                 rv += counter_u64_fetch(ic->ic_oerrors);
  505                 break;
  506         case IFCOUNTER_IERRORS:
  507                 rv += counter_u64_fetch(ic->ic_ierrors);
  508                 break;
  509         default:
  510                 break;
  511         }
  512 
  513         return (rv);
  514 }
  515 
  516 /*
  517  * Prepare a vap for use.  Drivers use this call to
  518  * setup net80211 state in new vap's prior attaching
  519  * them with ieee80211_vap_attach (below).
  520  */
  521 int
  522 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
  523     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
  524     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
  525 {
  526         struct ifnet *ifp;
  527 
  528         ifp = if_alloc(IFT_ETHER);
  529         if (ifp == NULL) {
  530                 ic_printf(ic, "%s: unable to allocate ifnet\n",
  531                     __func__);
  532                 return ENOMEM;
  533         }
  534         if_initname(ifp, name, unit);
  535         ifp->if_softc = vap;                    /* back pointer */
  536         ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
  537         ifp->if_transmit = ieee80211_vap_transmit;
  538         ifp->if_qflush = ieee80211_vap_qflush;
  539         ifp->if_ioctl = ieee80211_ioctl;
  540         ifp->if_init = ieee80211_init;
  541         ifp->if_get_counter = ieee80211_get_counter;
  542 
  543         vap->iv_ifp = ifp;
  544         vap->iv_ic = ic;
  545         vap->iv_flags = ic->ic_flags;           /* propagate common flags */
  546         vap->iv_flags_ext = ic->ic_flags_ext;
  547         vap->iv_flags_ven = ic->ic_flags_ven;
  548         vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
  549 
  550         /* 11n capabilities - XXX methodize */
  551         vap->iv_htcaps = ic->ic_htcaps;
  552         vap->iv_htextcaps = ic->ic_htextcaps;
  553 
  554         /* 11ac capabilities - XXX methodize */
  555         vap->iv_vhtcaps = ic->ic_vhtcaps;
  556         vap->iv_vhtextcaps = ic->ic_vhtextcaps;
  557 
  558         vap->iv_opmode = opmode;
  559         vap->iv_caps |= ieee80211_opcap[opmode];
  560         IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
  561         switch (opmode) {
  562         case IEEE80211_M_WDS:
  563                 /*
  564                  * WDS links must specify the bssid of the far end.
  565                  * For legacy operation this is a static relationship.
  566                  * For non-legacy operation the station must associate
  567                  * and be authorized to pass traffic.  Plumbing the
  568                  * vap to the proper node happens when the vap
  569                  * transitions to RUN state.
  570                  */
  571                 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
  572                 vap->iv_flags |= IEEE80211_F_DESBSSID;
  573                 if (flags & IEEE80211_CLONE_WDSLEGACY)
  574                         vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
  575                 break;
  576 #ifdef IEEE80211_SUPPORT_TDMA
  577         case IEEE80211_M_AHDEMO:
  578                 if (flags & IEEE80211_CLONE_TDMA) {
  579                         /* NB: checked before clone operation allowed */
  580                         KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
  581                             ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
  582                         /*
  583                          * Propagate TDMA capability to mark vap; this
  584                          * cannot be removed and is used to distinguish
  585                          * regular ahdemo operation from ahdemo+tdma.
  586                          */
  587                         vap->iv_caps |= IEEE80211_C_TDMA;
  588                 }
  589                 break;
  590 #endif
  591         default:
  592                 break;
  593         }
  594         /* auto-enable s/w beacon miss support */
  595         if (flags & IEEE80211_CLONE_NOBEACONS)
  596                 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
  597         /* auto-generated or user supplied MAC address */
  598         if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
  599                 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
  600         /*
  601          * Enable various functionality by default if we're
  602          * capable; the driver can override us if it knows better.
  603          */
  604         if (vap->iv_caps & IEEE80211_C_WME)
  605                 vap->iv_flags |= IEEE80211_F_WME;
  606         if (vap->iv_caps & IEEE80211_C_BURST)
  607                 vap->iv_flags |= IEEE80211_F_BURST;
  608         /* NB: bg scanning only makes sense for station mode right now */
  609         if (vap->iv_opmode == IEEE80211_M_STA &&
  610             (vap->iv_caps & IEEE80211_C_BGSCAN))
  611                 vap->iv_flags |= IEEE80211_F_BGSCAN;
  612         vap->iv_flags |= IEEE80211_F_DOTH;      /* XXX no cap, just ena */
  613         /* NB: DFS support only makes sense for ap mode right now */
  614         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
  615             (vap->iv_caps & IEEE80211_C_DFS))
  616                 vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
  617 
  618         vap->iv_des_chan = IEEE80211_CHAN_ANYC;         /* any channel is ok */
  619         vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
  620         vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
  621         /*
  622          * Install a default reset method for the ioctl support;
  623          * the driver can override this.
  624          */
  625         vap->iv_reset = default_reset;
  626 
  627         /*
  628          * Install a default crypto key update method, the driver
  629          * can override this.
  630          */
  631         vap->iv_update_deftxkey = default_update_deftxkey;
  632 
  633         ieee80211_sysctl_vattach(vap);
  634         ieee80211_crypto_vattach(vap);
  635         ieee80211_node_vattach(vap);
  636         ieee80211_power_vattach(vap);
  637         ieee80211_proto_vattach(vap);
  638 #ifdef IEEE80211_SUPPORT_SUPERG
  639         ieee80211_superg_vattach(vap);
  640 #endif
  641         ieee80211_ht_vattach(vap);
  642         ieee80211_vht_vattach(vap);
  643         ieee80211_scan_vattach(vap);
  644         ieee80211_regdomain_vattach(vap);
  645         ieee80211_radiotap_vattach(vap);
  646         ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
  647 
  648         return 0;
  649 }
  650 
  651 /*
  652  * Activate a vap.  State should have been prepared with a
  653  * call to ieee80211_vap_setup and by the driver.  On return
  654  * from this call the vap is ready for use.
  655  */
  656 int
  657 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
  658     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
  659 {
  660         struct ifnet *ifp = vap->iv_ifp;
  661         struct ieee80211com *ic = vap->iv_ic;
  662         struct ifmediareq imr;
  663         int maxrate;
  664 
  665         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
  666             "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
  667             __func__, ieee80211_opmode_name[vap->iv_opmode],
  668             ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
  669 
  670         /*
  671          * Do late attach work that cannot happen until after
  672          * the driver has had a chance to override defaults.
  673          */
  674         ieee80211_node_latevattach(vap);
  675         ieee80211_power_latevattach(vap);
  676 
  677         maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
  678             vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
  679         ieee80211_media_status(ifp, &imr);
  680         /* NB: strip explicit mode; we're actually in autoselect */
  681         ifmedia_set(&vap->iv_media,
  682             imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
  683         if (maxrate)
  684                 ifp->if_baudrate = IF_Mbps(maxrate);
  685 
  686         ether_ifattach(ifp, macaddr);
  687         IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
  688         /* hook output method setup by ether_ifattach */
  689         vap->iv_output = ifp->if_output;
  690         ifp->if_output = ieee80211_output;
  691         /* NB: if_mtu set by ether_ifattach to ETHERMTU */
  692 
  693         IEEE80211_LOCK(ic);
  694         TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
  695         ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
  696 #ifdef IEEE80211_SUPPORT_SUPERG
  697         ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
  698 #endif
  699         ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
  700         ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
  701         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
  702         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
  703 
  704         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
  705         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
  706         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
  707         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
  708         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
  709         IEEE80211_UNLOCK(ic);
  710 
  711         return 1;
  712 }
  713 
  714 /*
  715  * Tear down vap state and reclaim the ifnet.
  716  * The driver is assumed to have prepared for
  717  * this; e.g. by turning off interrupts for the
  718  * underlying device.
  719  */
  720 void
  721 ieee80211_vap_detach(struct ieee80211vap *vap)
  722 {
  723         struct ieee80211com *ic = vap->iv_ic;
  724         struct ifnet *ifp = vap->iv_ifp;
  725 
  726         CURVNET_SET(ifp->if_vnet);
  727 
  728         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
  729             __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
  730 
  731         /* NB: bpfdetach is called by ether_ifdetach and claims all taps */
  732         ether_ifdetach(ifp);
  733 
  734         ieee80211_stop(vap);
  735 
  736         /*
  737          * Flush any deferred vap tasks.
  738          */
  739         ieee80211_draintask(ic, &vap->iv_nstate_task);
  740         ieee80211_draintask(ic, &vap->iv_swbmiss_task);
  741         ieee80211_draintask(ic, &vap->iv_wme_task);
  742         ieee80211_draintask(ic, &ic->ic_parent_task);
  743 
  744         /* XXX band-aid until ifnet handles this for us */
  745         taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
  746 
  747         IEEE80211_LOCK(ic);
  748         KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
  749         TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
  750         ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
  751 #ifdef IEEE80211_SUPPORT_SUPERG
  752         ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
  753 #endif
  754         ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
  755         ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
  756         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
  757         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
  758 
  759         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
  760         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
  761         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
  762         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
  763         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
  764 
  765         /* NB: this handles the bpfdetach done below */
  766         ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
  767         if (vap->iv_ifflags & IFF_PROMISC)
  768                 ieee80211_promisc(vap, false);
  769         if (vap->iv_ifflags & IFF_ALLMULTI)
  770                 ieee80211_allmulti(vap, false);
  771         IEEE80211_UNLOCK(ic);
  772 
  773         ifmedia_removeall(&vap->iv_media);
  774 
  775         ieee80211_radiotap_vdetach(vap);
  776         ieee80211_regdomain_vdetach(vap);
  777         ieee80211_scan_vdetach(vap);
  778 #ifdef IEEE80211_SUPPORT_SUPERG
  779         ieee80211_superg_vdetach(vap);
  780 #endif
  781         ieee80211_vht_vdetach(vap);
  782         ieee80211_ht_vdetach(vap);
  783         /* NB: must be before ieee80211_node_vdetach */
  784         ieee80211_proto_vdetach(vap);
  785         ieee80211_crypto_vdetach(vap);
  786         ieee80211_power_vdetach(vap);
  787         ieee80211_node_vdetach(vap);
  788         ieee80211_sysctl_vdetach(vap);
  789 
  790         if_free(ifp);
  791 
  792         CURVNET_RESTORE();
  793 }
  794 
  795 /*
  796  * Count number of vaps in promisc, and issue promisc on
  797  * parent respectively.
  798  */
  799 void
  800 ieee80211_promisc(struct ieee80211vap *vap, bool on)
  801 {
  802         struct ieee80211com *ic = vap->iv_ic;
  803 
  804         IEEE80211_LOCK_ASSERT(ic);
  805 
  806         if (on) {
  807                 if (++ic->ic_promisc == 1)
  808                         ieee80211_runtask(ic, &ic->ic_promisc_task);
  809         } else {
  810                 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
  811                     __func__, ic));
  812                 if (--ic->ic_promisc == 0)
  813                         ieee80211_runtask(ic, &ic->ic_promisc_task);
  814         }
  815 }
  816 
  817 /*
  818  * Count number of vaps in allmulti, and issue allmulti on
  819  * parent respectively.
  820  */
  821 void
  822 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
  823 {
  824         struct ieee80211com *ic = vap->iv_ic;
  825 
  826         IEEE80211_LOCK_ASSERT(ic);
  827 
  828         if (on) {
  829                 if (++ic->ic_allmulti == 1)
  830                         ieee80211_runtask(ic, &ic->ic_mcast_task);
  831         } else {
  832                 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
  833                     __func__, ic));
  834                 if (--ic->ic_allmulti == 0)
  835                         ieee80211_runtask(ic, &ic->ic_mcast_task);
  836         }
  837 }
  838 
  839 /*
  840  * Synchronize flag bit state in the com structure
  841  * according to the state of all vap's.  This is used,
  842  * for example, to handle state changes via ioctls.
  843  */
  844 static void
  845 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
  846 {
  847         struct ieee80211vap *vap;
  848         int bit;
  849 
  850         IEEE80211_LOCK_ASSERT(ic);
  851 
  852         bit = 0;
  853         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  854                 if (vap->iv_flags & flag) {
  855                         bit = 1;
  856                         break;
  857                 }
  858         if (bit)
  859                 ic->ic_flags |= flag;
  860         else
  861                 ic->ic_flags &= ~flag;
  862 }
  863 
  864 void
  865 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
  866 {
  867         struct ieee80211com *ic = vap->iv_ic;
  868 
  869         IEEE80211_LOCK(ic);
  870         if (flag < 0) {
  871                 flag = -flag;
  872                 vap->iv_flags &= ~flag;
  873         } else
  874                 vap->iv_flags |= flag;
  875         ieee80211_syncflag_locked(ic, flag);
  876         IEEE80211_UNLOCK(ic);
  877 }
  878 
  879 /*
  880  * Synchronize flags_ht bit state in the com structure
  881  * according to the state of all vap's.  This is used,
  882  * for example, to handle state changes via ioctls.
  883  */
  884 static void
  885 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
  886 {
  887         struct ieee80211vap *vap;
  888         int bit;
  889 
  890         IEEE80211_LOCK_ASSERT(ic);
  891 
  892         bit = 0;
  893         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  894                 if (vap->iv_flags_ht & flag) {
  895                         bit = 1;
  896                         break;
  897                 }
  898         if (bit)
  899                 ic->ic_flags_ht |= flag;
  900         else
  901                 ic->ic_flags_ht &= ~flag;
  902 }
  903 
  904 void
  905 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
  906 {
  907         struct ieee80211com *ic = vap->iv_ic;
  908 
  909         IEEE80211_LOCK(ic);
  910         if (flag < 0) {
  911                 flag = -flag;
  912                 vap->iv_flags_ht &= ~flag;
  913         } else
  914                 vap->iv_flags_ht |= flag;
  915         ieee80211_syncflag_ht_locked(ic, flag);
  916         IEEE80211_UNLOCK(ic);
  917 }
  918 
  919 /*
  920  * Synchronize flags_vht bit state in the com structure
  921  * according to the state of all vap's.  This is used,
  922  * for example, to handle state changes via ioctls.
  923  */
  924 static void
  925 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
  926 {
  927         struct ieee80211vap *vap;
  928         int bit;
  929 
  930         IEEE80211_LOCK_ASSERT(ic);
  931 
  932         bit = 0;
  933         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  934                 if (vap->iv_flags_vht & flag) {
  935                         bit = 1;
  936                         break;
  937                 }
  938         if (bit)
  939                 ic->ic_flags_vht |= flag;
  940         else
  941                 ic->ic_flags_vht &= ~flag;
  942 }
  943 
  944 void
  945 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
  946 {
  947         struct ieee80211com *ic = vap->iv_ic;
  948 
  949         IEEE80211_LOCK(ic);
  950         if (flag < 0) {
  951                 flag = -flag;
  952                 vap->iv_flags_vht &= ~flag;
  953         } else
  954                 vap->iv_flags_vht |= flag;
  955         ieee80211_syncflag_vht_locked(ic, flag);
  956         IEEE80211_UNLOCK(ic);
  957 }
  958 
  959 /*
  960  * Synchronize flags_ext bit state in the com structure
  961  * according to the state of all vap's.  This is used,
  962  * for example, to handle state changes via ioctls.
  963  */
  964 static void
  965 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
  966 {
  967         struct ieee80211vap *vap;
  968         int bit;
  969 
  970         IEEE80211_LOCK_ASSERT(ic);
  971 
  972         bit = 0;
  973         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  974                 if (vap->iv_flags_ext & flag) {
  975                         bit = 1;
  976                         break;
  977                 }
  978         if (bit)
  979                 ic->ic_flags_ext |= flag;
  980         else
  981                 ic->ic_flags_ext &= ~flag;
  982 }
  983 
  984 void
  985 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
  986 {
  987         struct ieee80211com *ic = vap->iv_ic;
  988 
  989         IEEE80211_LOCK(ic);
  990         if (flag < 0) {
  991                 flag = -flag;
  992                 vap->iv_flags_ext &= ~flag;
  993         } else
  994                 vap->iv_flags_ext |= flag;
  995         ieee80211_syncflag_ext_locked(ic, flag);
  996         IEEE80211_UNLOCK(ic);
  997 }
  998 
  999 static __inline int
 1000 mapgsm(u_int freq, u_int flags)
 1001 {
 1002         freq *= 10;
 1003         if (flags & IEEE80211_CHAN_QUARTER)
 1004                 freq += 5;
 1005         else if (flags & IEEE80211_CHAN_HALF)
 1006                 freq += 10;
 1007         else
 1008                 freq += 20;
 1009         /* NB: there is no 907/20 wide but leave room */
 1010         return (freq - 906*10) / 5;
 1011 }
 1012 
 1013 static __inline int
 1014 mappsb(u_int freq, u_int flags)
 1015 {
 1016         return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
 1017 }
 1018 
 1019 /*
 1020  * Convert MHz frequency to IEEE channel number.
 1021  */
 1022 int
 1023 ieee80211_mhz2ieee(u_int freq, u_int flags)
 1024 {
 1025 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
 1026         if (flags & IEEE80211_CHAN_GSM)
 1027                 return mapgsm(freq, flags);
 1028         if (flags & IEEE80211_CHAN_2GHZ) {      /* 2GHz band */
 1029                 if (freq == 2484)
 1030                         return 14;
 1031                 if (freq < 2484)
 1032                         return ((int) freq - 2407) / 5;
 1033                 else
 1034                         return 15 + ((freq - 2512) / 20);
 1035         } else if (flags & IEEE80211_CHAN_5GHZ) {       /* 5Ghz band */
 1036                 if (freq <= 5000) {
 1037                         /* XXX check regdomain? */
 1038                         if (IS_FREQ_IN_PSB(freq))
 1039                                 return mappsb(freq, flags);
 1040                         return (freq - 4000) / 5;
 1041                 } else
 1042                         return (freq - 5000) / 5;
 1043         } else {                                /* either, guess */
 1044                 if (freq == 2484)
 1045                         return 14;
 1046                 if (freq < 2484) {
 1047                         if (907 <= freq && freq <= 922)
 1048                                 return mapgsm(freq, flags);
 1049                         return ((int) freq - 2407) / 5;
 1050                 }
 1051                 if (freq < 5000) {
 1052                         if (IS_FREQ_IN_PSB(freq))
 1053                                 return mappsb(freq, flags);
 1054                         else if (freq > 4900)
 1055                                 return (freq - 4000) / 5;
 1056                         else
 1057                                 return 15 + ((freq - 2512) / 20);
 1058                 }
 1059                 return (freq - 5000) / 5;
 1060         }
 1061 #undef IS_FREQ_IN_PSB
 1062 }
 1063 
 1064 /*
 1065  * Convert channel to IEEE channel number.
 1066  */
 1067 int
 1068 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
 1069 {
 1070         if (c == NULL) {
 1071                 ic_printf(ic, "invalid channel (NULL)\n");
 1072                 return 0;               /* XXX */
 1073         }
 1074         return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
 1075 }
 1076 
 1077 /*
 1078  * Convert IEEE channel number to MHz frequency.
 1079  */
 1080 u_int
 1081 ieee80211_ieee2mhz(u_int chan, u_int flags)
 1082 {
 1083         if (flags & IEEE80211_CHAN_GSM)
 1084                 return 907 + 5 * (chan / 10);
 1085         if (flags & IEEE80211_CHAN_2GHZ) {      /* 2GHz band */
 1086                 if (chan == 14)
 1087                         return 2484;
 1088                 if (chan < 14)
 1089                         return 2407 + chan*5;
 1090                 else
 1091                         return 2512 + ((chan-15)*20);
 1092         } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
 1093                 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
 1094                         chan -= 37;
 1095                         return 4940 + chan*5 + (chan % 5 ? 2 : 0);
 1096                 }
 1097                 return 5000 + (chan*5);
 1098         } else {                                /* either, guess */
 1099                 /* XXX can't distinguish PSB+GSM channels */
 1100                 if (chan == 14)
 1101                         return 2484;
 1102                 if (chan < 14)                  /* 0-13 */
 1103                         return 2407 + chan*5;
 1104                 if (chan < 27)                  /* 15-26 */
 1105                         return 2512 + ((chan-15)*20);
 1106                 return 5000 + (chan*5);
 1107         }
 1108 }
 1109 
 1110 static __inline void
 1111 set_extchan(struct ieee80211_channel *c)
 1112 {
 1113 
 1114         /*
 1115          * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
 1116          * "the secondary channel number shall be 'N + [1,-1] * 4'
 1117          */
 1118         if (c->ic_flags & IEEE80211_CHAN_HT40U)
 1119                 c->ic_extieee = c->ic_ieee + 4;
 1120         else if (c->ic_flags & IEEE80211_CHAN_HT40D)
 1121                 c->ic_extieee = c->ic_ieee - 4;
 1122         else
 1123                 c->ic_extieee = 0;
 1124 }
 1125 
 1126 /*
 1127  * Populate the freq1/freq2 fields as appropriate for VHT channels.
 1128  *
 1129  * This for now uses a hard-coded list of 80MHz wide channels.
 1130  *
 1131  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
 1132  * wide channel we've already decided upon.
 1133  *
 1134  * For VHT80 and VHT160, there are only a small number of fixed
 1135  * 80/160MHz wide channels, so we just use those.
 1136  *
 1137  * This is all likely very very wrong - both the regulatory code
 1138  * and this code needs to ensure that all four channels are
 1139  * available and valid before the VHT80 (and eight for VHT160) channel
 1140  * is created.
 1141  */
 1142 
 1143 struct vht_chan_range {
 1144         uint16_t freq_start;
 1145         uint16_t freq_end;
 1146 };
 1147 
 1148 struct vht_chan_range vht80_chan_ranges[] = {
 1149         { 5170, 5250 },
 1150         { 5250, 5330 },
 1151         { 5490, 5570 },
 1152         { 5570, 5650 },
 1153         { 5650, 5730 },
 1154         { 5735, 5815 },
 1155         { 0, 0, }
 1156 };
 1157 
 1158 static int
 1159 set_vht_extchan(struct ieee80211_channel *c)
 1160 {
 1161         int i;
 1162 
 1163         if (! IEEE80211_IS_CHAN_VHT(c)) {
 1164                 return (0);
 1165         }
 1166 
 1167         if (IEEE80211_IS_CHAN_VHT20(c)) {
 1168                 c->ic_vht_ch_freq1 = c->ic_ieee;
 1169                 return (1);
 1170         }
 1171 
 1172         if (IEEE80211_IS_CHAN_VHT40(c)) {
 1173                 if (IEEE80211_IS_CHAN_HT40U(c))
 1174                         c->ic_vht_ch_freq1 = c->ic_ieee + 2;
 1175                 else if (IEEE80211_IS_CHAN_HT40D(c))
 1176                         c->ic_vht_ch_freq1 = c->ic_ieee - 2;
 1177                 else
 1178                         return (0);
 1179                 return (1);
 1180         }
 1181 
 1182         if (IEEE80211_IS_CHAN_VHT80(c)) {
 1183                 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
 1184                         if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
 1185                             c->ic_freq < vht80_chan_ranges[i].freq_end) {
 1186                                 int midpoint;
 1187 
 1188                                 midpoint = vht80_chan_ranges[i].freq_start + 40;
 1189                                 c->ic_vht_ch_freq1 =
 1190                                     ieee80211_mhz2ieee(midpoint, c->ic_flags);
 1191                                 c->ic_vht_ch_freq2 = 0;
 1192 #if 0
 1193                                 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
 1194                                     __func__, c->ic_ieee, c->ic_freq, midpoint,
 1195                                     c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
 1196 #endif
 1197                                 return (1);
 1198                         }
 1199                 }
 1200                 return (0);
 1201         }
 1202 
 1203         printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
 1204             __func__,
 1205             c->ic_ieee,
 1206             c->ic_flags);
 1207 
 1208         return (0);
 1209 }
 1210 
 1211 /*
 1212  * Return whether the current channel could possibly be a part of
 1213  * a VHT80 channel.
 1214  *
 1215  * This doesn't check that the whole range is in the allowed list
 1216  * according to regulatory.
 1217  */
 1218 static int
 1219 is_vht80_valid_freq(uint16_t freq)
 1220 {
 1221         int i;
 1222         for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
 1223                 if (freq >= vht80_chan_ranges[i].freq_start &&
 1224                     freq < vht80_chan_ranges[i].freq_end)
 1225                         return (1);
 1226         }
 1227         return (0);
 1228 }
 1229 
 1230 static int
 1231 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1232     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
 1233 {
 1234         struct ieee80211_channel *c;
 1235 
 1236         if (*nchans >= maxchans)
 1237                 return (ENOBUFS);
 1238 
 1239 #if 0
 1240         printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
 1241             __func__,
 1242             *nchans,
 1243             ieee,
 1244             freq,
 1245             flags);
 1246 #endif
 1247 
 1248         c = &chans[(*nchans)++];
 1249         c->ic_ieee = ieee;
 1250         c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
 1251         c->ic_maxregpower = maxregpower;
 1252         c->ic_maxpower = 2 * maxregpower;
 1253         c->ic_flags = flags;
 1254         c->ic_vht_ch_freq1 = 0;
 1255         c->ic_vht_ch_freq2 = 0;
 1256         set_extchan(c);
 1257         set_vht_extchan(c);
 1258 
 1259         return (0);
 1260 }
 1261 
 1262 static int
 1263 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1264     uint32_t flags)
 1265 {
 1266         struct ieee80211_channel *c;
 1267 
 1268         KASSERT(*nchans > 0, ("channel list is empty\n"));
 1269 
 1270         if (*nchans >= maxchans)
 1271                 return (ENOBUFS);
 1272 
 1273 #if 0
 1274         printf("%s: %d: flags=0x%08x\n",
 1275             __func__,
 1276             *nchans,
 1277             flags);
 1278 #endif
 1279 
 1280         c = &chans[(*nchans)++];
 1281         c[0] = c[-1];
 1282         c->ic_flags = flags;
 1283         c->ic_vht_ch_freq1 = 0;
 1284         c->ic_vht_ch_freq2 = 0;
 1285         set_extchan(c);
 1286         set_vht_extchan(c);
 1287 
 1288         return (0);
 1289 }
 1290 
 1291 /*
 1292  * XXX VHT-2GHz
 1293  */
 1294 static void
 1295 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
 1296 {
 1297         int nmodes;
 1298 
 1299         nmodes = 0;
 1300         if (isset(bands, IEEE80211_MODE_11B))
 1301                 flags[nmodes++] = IEEE80211_CHAN_B;
 1302         if (isset(bands, IEEE80211_MODE_11G))
 1303                 flags[nmodes++] = IEEE80211_CHAN_G;
 1304         if (isset(bands, IEEE80211_MODE_11NG))
 1305                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
 1306         if (ht40) {
 1307                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
 1308                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
 1309         }
 1310         flags[nmodes] = 0;
 1311 }
 1312 
 1313 static void
 1314 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
 1315 {
 1316         int nmodes;
 1317 
 1318         /*
 1319          * the addchan_list function seems to expect the flags array to
 1320          * be in channel width order, so the VHT bits are interspersed
 1321          * as appropriate to maintain said order.
 1322          *
 1323          * It also assumes HT40U is before HT40D.
 1324          */
 1325         nmodes = 0;
 1326 
 1327         /* 20MHz */
 1328         if (isset(bands, IEEE80211_MODE_11A))
 1329                 flags[nmodes++] = IEEE80211_CHAN_A;
 1330         if (isset(bands, IEEE80211_MODE_11NA))
 1331                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
 1332         if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1333                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
 1334                     IEEE80211_CHAN_VHT20;
 1335         }
 1336 
 1337         /* 40MHz */
 1338         if (ht40) {
 1339                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
 1340         }
 1341         if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1342                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U
 1343                     | IEEE80211_CHAN_VHT40U;
 1344         }
 1345         if (ht40) {
 1346                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
 1347         }
 1348         if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1349                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D
 1350                     | IEEE80211_CHAN_VHT40D;
 1351         }
 1352 
 1353         /* 80MHz */
 1354         if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1355                 flags[nmodes++] = IEEE80211_CHAN_A |
 1356                     IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80;
 1357                 flags[nmodes++] = IEEE80211_CHAN_A |
 1358                     IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80;
 1359         }
 1360 
 1361         /* XXX VHT80+80 */
 1362         /* XXX VHT160 */
 1363         flags[nmodes] = 0;
 1364 }
 1365 
 1366 static void
 1367 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
 1368 {
 1369 
 1370         flags[0] = 0;
 1371         if (isset(bands, IEEE80211_MODE_11A) ||
 1372             isset(bands, IEEE80211_MODE_11NA) ||
 1373             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1374                 if (isset(bands, IEEE80211_MODE_11B) ||
 1375                     isset(bands, IEEE80211_MODE_11G) ||
 1376                     isset(bands, IEEE80211_MODE_11NG) ||
 1377                     isset(bands, IEEE80211_MODE_VHT_2GHZ))
 1378                         return;
 1379 
 1380                 getflags_5ghz(bands, flags, ht40, vht80);
 1381         } else
 1382                 getflags_2ghz(bands, flags, ht40);
 1383 }
 1384 
 1385 /*
 1386  * Add one 20 MHz channel into specified channel list.
 1387  */
 1388 /* XXX VHT */
 1389 int
 1390 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
 1391     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
 1392     uint32_t chan_flags, const uint8_t bands[])
 1393 {
 1394         uint32_t flags[IEEE80211_MODE_MAX];
 1395         int i, error;
 1396 
 1397         getflags(bands, flags, 0, 0);
 1398         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1399 
 1400         error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
 1401             flags[0] | chan_flags);
 1402         for (i = 1; flags[i] != 0 && error == 0; i++) {
 1403                 error = copychan_prev(chans, maxchans, nchans,
 1404                     flags[i] | chan_flags);
 1405         }
 1406 
 1407         return (error);
 1408 }
 1409 
 1410 static struct ieee80211_channel *
 1411 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
 1412     uint32_t flags)
 1413 {
 1414         struct ieee80211_channel *c;
 1415         int i;
 1416 
 1417         flags &= IEEE80211_CHAN_ALLTURBO;
 1418         /* brute force search */
 1419         for (i = 0; i < nchans; i++) {
 1420                 c = &chans[i];
 1421                 if (c->ic_freq == freq &&
 1422                     (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1423                         return c;
 1424         }
 1425         return NULL;
 1426 }
 1427 
 1428 /*
 1429  * Add 40 MHz channel pair into specified channel list.
 1430  */
 1431 /* XXX VHT */
 1432 int
 1433 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
 1434     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
 1435 {
 1436         struct ieee80211_channel *cent, *extc;
 1437         uint16_t freq;
 1438         int error;
 1439 
 1440         freq = ieee80211_ieee2mhz(ieee, flags);
 1441 
 1442         /*
 1443          * Each entry defines an HT40 channel pair; find the
 1444          * center channel, then the extension channel above.
 1445          */
 1446         flags |= IEEE80211_CHAN_HT20;
 1447         cent = findchannel(chans, *nchans, freq, flags);
 1448         if (cent == NULL)
 1449                 return (EINVAL);
 1450 
 1451         extc = findchannel(chans, *nchans, freq + 20, flags);
 1452         if (extc == NULL)
 1453                 return (ENOENT);
 1454 
 1455         flags &= ~IEEE80211_CHAN_HT;
 1456         error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
 1457             maxregpower, flags | IEEE80211_CHAN_HT40U);
 1458         if (error != 0)
 1459                 return (error);
 1460 
 1461         error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
 1462             maxregpower, flags | IEEE80211_CHAN_HT40D);
 1463 
 1464         return (error);
 1465 }
 1466 
 1467 /*
 1468  * Fetch the center frequency for the primary channel.
 1469  */
 1470 uint32_t
 1471 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
 1472 {
 1473 
 1474         return (c->ic_freq);
 1475 }
 1476 
 1477 /*
 1478  * Fetch the center frequency for the primary BAND channel.
 1479  *
 1480  * For 5, 10, 20MHz channels it'll be the normally configured channel
 1481  * frequency.
 1482  *
 1483  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
 1484  * wide channel, not the centre of the primary channel (that's ic_freq).
 1485  *
 1486  * For 80+80MHz channels this will be the centre of the primary
 1487  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
 1488  */
 1489 uint32_t
 1490 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
 1491 {
 1492 
 1493         /*
 1494          * VHT - use the pre-calculated centre frequency
 1495          * of the given channel.
 1496          */
 1497         if (IEEE80211_IS_CHAN_VHT(c))
 1498                 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
 1499 
 1500         if (IEEE80211_IS_CHAN_HT40U(c)) {
 1501                 return (c->ic_freq + 10);
 1502         }
 1503         if (IEEE80211_IS_CHAN_HT40D(c)) {
 1504                 return (c->ic_freq - 10);
 1505         }
 1506 
 1507         return (c->ic_freq);
 1508 }
 1509 
 1510 /*
 1511  * For now, no 80+80 support; it will likely always return 0.
 1512  */
 1513 uint32_t
 1514 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
 1515 {
 1516 
 1517         if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
 1518                 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
 1519 
 1520         return (0);
 1521 }
 1522 
 1523 /*
 1524  * Adds channels into specified channel list (ieee[] array must be sorted).
 1525  * Channels are already sorted.
 1526  */
 1527 static int
 1528 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1529     const uint8_t ieee[], int nieee, uint32_t flags[])
 1530 {
 1531         uint16_t freq;
 1532         int i, j, error;
 1533         int is_vht;
 1534 
 1535         for (i = 0; i < nieee; i++) {
 1536                 freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
 1537                 for (j = 0; flags[j] != 0; j++) {
 1538                         /*
 1539                          * Notes:
 1540                          * + HT40 and VHT40 channels occur together, so
 1541                          *   we need to be careful that we actually allow that.
 1542                          * + VHT80, VHT160 will coexist with HT40/VHT40, so
 1543                          *   make sure it's not skipped because of the overlap
 1544                          *   check used for (V)HT40.
 1545                          */
 1546                         is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
 1547 
 1548                         /*
 1549                          * Test for VHT80.
 1550                          * XXX This is all very broken right now.
 1551                          * What we /should/ do is:
 1552                          *
 1553                          * + check that the frequency is in the list of
 1554                          *   allowed VHT80 ranges; and
 1555                          * + the other 3 channels in the list are actually
 1556                          *   also available.
 1557                          */
 1558                         if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
 1559                                 if (! is_vht80_valid_freq(freq))
 1560                                         continue;
 1561 
 1562                         /*
 1563                          * Test for (V)HT40.
 1564                          *
 1565                          * This is also a fall through from VHT80; as we only
 1566                          * allow a VHT80 channel if the VHT40 combination is
 1567                          * also valid.  If the VHT40 form is not valid then
 1568                          * we certainly can't do VHT80..
 1569                          */
 1570                         if (flags[j] & IEEE80211_CHAN_HT40D)
 1571                                 /*
 1572                                  * Can't have a "lower" channel if we are the
 1573                                  * first channel.
 1574                                  *
 1575                                  * Can't have a "lower" channel if it's below/
 1576                                  * within 20MHz of the first channel.
 1577                                  *
 1578                                  * Can't have a "lower" channel if the channel
 1579                                  * below it is not 20MHz away.
 1580                                  */
 1581                                 if (i == 0 || ieee[i] < ieee[0] + 4 ||
 1582                                     freq - 20 !=
 1583                                     ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
 1584                                         continue;
 1585                         if (flags[j] & IEEE80211_CHAN_HT40U)
 1586                                 /*
 1587                                  * Can't have an "upper" channel if we are
 1588                                  * the last channel.
 1589                                  *
 1590                                  * Can't have an "upper" channel be above the
 1591                                  * last channel in the list.
 1592                                  *
 1593                                  * Can't have an "upper" channel if the next
 1594                                  * channel according to the math isn't 20MHz
 1595                                  * away.  (Likely for channel 13/14.)
 1596                                  */
 1597                                 if (i == nieee - 1 ||
 1598                                     ieee[i] + 4 > ieee[nieee - 1] ||
 1599                                     freq + 20 !=
 1600                                     ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
 1601                                         continue;
 1602 
 1603                         if (j == 0) {
 1604                                 error = addchan(chans, maxchans, nchans,
 1605                                     ieee[i], freq, 0, flags[j]);
 1606                         } else {
 1607                                 error = copychan_prev(chans, maxchans, nchans,
 1608                                     flags[j]);
 1609                         }
 1610                         if (error != 0)
 1611                                 return (error);
 1612                 }
 1613         }
 1614 
 1615         return (0);
 1616 }
 1617 
 1618 int
 1619 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
 1620     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
 1621     int ht40)
 1622 {
 1623         uint32_t flags[IEEE80211_MODE_MAX];
 1624 
 1625         /* XXX no VHT for now */
 1626         getflags_2ghz(bands, flags, ht40);
 1627         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1628 
 1629         return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
 1630 }
 1631 
 1632 int
 1633 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
 1634     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
 1635     int ht40)
 1636 {
 1637         uint32_t flags[IEEE80211_MODE_MAX];
 1638         int vht80 = 0;
 1639 
 1640         /*
 1641          * For now, assume VHT == VHT80 support as a minimum.
 1642          */
 1643         if (isset(bands, IEEE80211_MODE_VHT_5GHZ))
 1644                 vht80 = 1;
 1645 
 1646         getflags_5ghz(bands, flags, ht40, vht80);
 1647         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1648 
 1649         return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
 1650 }
 1651 
 1652 /*
 1653  * Locate a channel given a frequency+flags.  We cache
 1654  * the previous lookup to optimize switching between two
 1655  * channels--as happens with dynamic turbo.
 1656  */
 1657 struct ieee80211_channel *
 1658 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
 1659 {
 1660         struct ieee80211_channel *c;
 1661 
 1662         flags &= IEEE80211_CHAN_ALLTURBO;
 1663         c = ic->ic_prevchan;
 1664         if (c != NULL && c->ic_freq == freq &&
 1665             (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1666                 return c;
 1667         /* brute force search */
 1668         return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
 1669 }
 1670 
 1671 /*
 1672  * Locate a channel given a channel number+flags.  We cache
 1673  * the previous lookup to optimize switching between two
 1674  * channels--as happens with dynamic turbo.
 1675  */
 1676 struct ieee80211_channel *
 1677 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
 1678 {
 1679         struct ieee80211_channel *c;
 1680         int i;
 1681 
 1682         flags &= IEEE80211_CHAN_ALLTURBO;
 1683         c = ic->ic_prevchan;
 1684         if (c != NULL && c->ic_ieee == ieee &&
 1685             (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1686                 return c;
 1687         /* brute force search */
 1688         for (i = 0; i < ic->ic_nchans; i++) {
 1689                 c = &ic->ic_channels[i];
 1690                 if (c->ic_ieee == ieee &&
 1691                     (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1692                         return c;
 1693         }
 1694         return NULL;
 1695 }
 1696 
 1697 /*
 1698  * Lookup a channel suitable for the given rx status.
 1699  *
 1700  * This is used to find a channel for a frame (eg beacon, probe
 1701  * response) based purely on the received PHY information.
 1702  *
 1703  * For now it tries to do it based on R_FREQ / R_IEEE.
 1704  * This is enough for 11bg and 11a (and thus 11ng/11na)
 1705  * but it will not be enough for GSM, PSB channels and the
 1706  * like.  It also doesn't know about legacy-turbog and
 1707  * legacy-turbo modes, which some offload NICs actually
 1708  * support in weird ways.
 1709  *
 1710  * Takes the ic and rxstatus; returns the channel or NULL
 1711  * if not found.
 1712  *
 1713  * XXX TODO: Add support for that when the need arises.
 1714  */
 1715 struct ieee80211_channel *
 1716 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
 1717     const struct ieee80211_rx_stats *rxs)
 1718 {
 1719         struct ieee80211com *ic = vap->iv_ic;
 1720         uint32_t flags;
 1721         struct ieee80211_channel *c;
 1722 
 1723         if (rxs == NULL)
 1724                 return (NULL);
 1725 
 1726         /*
 1727          * Strictly speaking we only use freq for now,
 1728          * however later on we may wish to just store
 1729          * the ieee for verification.
 1730          */
 1731         if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
 1732                 return (NULL);
 1733         if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
 1734                 return (NULL);
 1735 
 1736         /*
 1737          * If the rx status contains a valid ieee/freq, then
 1738          * ensure we populate the correct channel information
 1739          * in rxchan before passing it up to the scan infrastructure.
 1740          * Offload NICs will pass up beacons from all channels
 1741          * during background scans.
 1742          */
 1743 
 1744         /* Determine a band */
 1745         /* XXX should be done by the driver? */
 1746         if (rxs->c_freq < 3000) {
 1747                 flags = IEEE80211_CHAN_G;
 1748         } else {
 1749                 flags = IEEE80211_CHAN_A;
 1750         }
 1751 
 1752         /* Channel lookup */
 1753         c = ieee80211_find_channel(ic, rxs->c_freq, flags);
 1754 
 1755         IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
 1756             "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
 1757             __func__,
 1758             (int) rxs->c_freq,
 1759             (int) rxs->c_ieee,
 1760             flags,
 1761             c);
 1762 
 1763         return (c);
 1764 }
 1765 
 1766 static void
 1767 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
 1768 {
 1769 #define ADD(_ic, _s, _o) \
 1770         ifmedia_add(media, \
 1771                 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
 1772         static const u_int mopts[IEEE80211_MODE_MAX] = {
 1773             [IEEE80211_MODE_AUTO]       = IFM_AUTO,
 1774             [IEEE80211_MODE_11A]        = IFM_IEEE80211_11A,
 1775             [IEEE80211_MODE_11B]        = IFM_IEEE80211_11B,
 1776             [IEEE80211_MODE_11G]        = IFM_IEEE80211_11G,
 1777             [IEEE80211_MODE_FH]         = IFM_IEEE80211_FH,
 1778             [IEEE80211_MODE_TURBO_A]    = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
 1779             [IEEE80211_MODE_TURBO_G]    = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
 1780             [IEEE80211_MODE_STURBO_A]   = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
 1781             [IEEE80211_MODE_HALF]       = IFM_IEEE80211_11A,    /* XXX */
 1782             [IEEE80211_MODE_QUARTER]    = IFM_IEEE80211_11A,    /* XXX */
 1783             [IEEE80211_MODE_11NA]       = IFM_IEEE80211_11NA,
 1784             [IEEE80211_MODE_11NG]       = IFM_IEEE80211_11NG,
 1785             [IEEE80211_MODE_VHT_2GHZ]   = IFM_IEEE80211_VHT2G,
 1786             [IEEE80211_MODE_VHT_5GHZ]   = IFM_IEEE80211_VHT5G,
 1787         };
 1788         u_int mopt;
 1789 
 1790         mopt = mopts[mode];
 1791         if (addsta)
 1792                 ADD(ic, mword, mopt);   /* STA mode has no cap */
 1793         if (caps & IEEE80211_C_IBSS)
 1794                 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
 1795         if (caps & IEEE80211_C_HOSTAP)
 1796                 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
 1797         if (caps & IEEE80211_C_AHDEMO)
 1798                 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
 1799         if (caps & IEEE80211_C_MONITOR)
 1800                 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
 1801         if (caps & IEEE80211_C_WDS)
 1802                 ADD(media, mword, mopt | IFM_IEEE80211_WDS);
 1803         if (caps & IEEE80211_C_MBSS)
 1804                 ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
 1805 #undef ADD
 1806 }
 1807 
 1808 /*
 1809  * Setup the media data structures according to the channel and
 1810  * rate tables.
 1811  */
 1812 static int
 1813 ieee80211_media_setup(struct ieee80211com *ic,
 1814         struct ifmedia *media, int caps, int addsta,
 1815         ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
 1816 {
 1817         int i, j, rate, maxrate, mword, r;
 1818         enum ieee80211_phymode mode;
 1819         const struct ieee80211_rateset *rs;
 1820         struct ieee80211_rateset allrates;
 1821 
 1822         /*
 1823          * Fill in media characteristics.
 1824          */
 1825         ifmedia_init(media, 0, media_change, media_stat);
 1826         maxrate = 0;
 1827         /*
 1828          * Add media for legacy operating modes.
 1829          */
 1830         memset(&allrates, 0, sizeof(allrates));
 1831         for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
 1832                 if (isclr(ic->ic_modecaps, mode))
 1833                         continue;
 1834                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 1835                 if (mode == IEEE80211_MODE_AUTO)
 1836                         continue;
 1837                 rs = &ic->ic_sup_rates[mode];
 1838                 for (i = 0; i < rs->rs_nrates; i++) {
 1839                         rate = rs->rs_rates[i];
 1840                         mword = ieee80211_rate2media(ic, rate, mode);
 1841                         if (mword == 0)
 1842                                 continue;
 1843                         addmedia(media, caps, addsta, mode, mword);
 1844                         /*
 1845                          * Add legacy rate to the collection of all rates.
 1846                          */
 1847                         r = rate & IEEE80211_RATE_VAL;
 1848                         for (j = 0; j < allrates.rs_nrates; j++)
 1849                                 if (allrates.rs_rates[j] == r)
 1850                                         break;
 1851                         if (j == allrates.rs_nrates) {
 1852                                 /* unique, add to the set */
 1853                                 allrates.rs_rates[j] = r;
 1854                                 allrates.rs_nrates++;
 1855                         }
 1856                         rate = (rate & IEEE80211_RATE_VAL) / 2;
 1857                         if (rate > maxrate)
 1858                                 maxrate = rate;
 1859                 }
 1860         }
 1861         for (i = 0; i < allrates.rs_nrates; i++) {
 1862                 mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
 1863                                 IEEE80211_MODE_AUTO);
 1864                 if (mword == 0)
 1865                         continue;
 1866                 /* NB: remove media options from mword */
 1867                 addmedia(media, caps, addsta,
 1868                     IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
 1869         }
 1870         /*
 1871          * Add HT/11n media.  Note that we do not have enough
 1872          * bits in the media subtype to express the MCS so we
 1873          * use a "placeholder" media subtype and any fixed MCS
 1874          * must be specified with a different mechanism.
 1875          */
 1876         for (; mode <= IEEE80211_MODE_11NG; mode++) {
 1877                 if (isclr(ic->ic_modecaps, mode))
 1878                         continue;
 1879                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 1880                 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
 1881         }
 1882         if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
 1883             isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
 1884                 addmedia(media, caps, addsta,
 1885                     IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
 1886                 i = ic->ic_txstream * 8 - 1;
 1887                 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
 1888                     (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
 1889                         rate = ieee80211_htrates[i].ht40_rate_400ns;
 1890                 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
 1891                         rate = ieee80211_htrates[i].ht40_rate_800ns;
 1892                 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
 1893                         rate = ieee80211_htrates[i].ht20_rate_400ns;
 1894                 else
 1895                         rate = ieee80211_htrates[i].ht20_rate_800ns;
 1896                 if (rate > maxrate)
 1897                         maxrate = rate;
 1898         }
 1899 
 1900         /*
 1901          * Add VHT media.
 1902          */
 1903         for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) {
 1904                 if (isclr(ic->ic_modecaps, mode))
 1905                         continue;
 1906                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 1907                 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
 1908 
 1909                 /* XXX TODO: VHT maxrate */
 1910         }
 1911 
 1912         return maxrate;
 1913 }
 1914 
 1915 /* XXX inline or eliminate? */
 1916 const struct ieee80211_rateset *
 1917 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
 1918 {
 1919         /* XXX does this work for 11ng basic rates? */
 1920         return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
 1921 }
 1922 
 1923 /* XXX inline or eliminate? */
 1924 const struct ieee80211_htrateset *
 1925 ieee80211_get_suphtrates(struct ieee80211com *ic,
 1926     const struct ieee80211_channel *c)
 1927 {
 1928         return &ic->ic_sup_htrates;
 1929 }
 1930 
 1931 void
 1932 ieee80211_announce(struct ieee80211com *ic)
 1933 {
 1934         int i, rate, mword;
 1935         enum ieee80211_phymode mode;
 1936         const struct ieee80211_rateset *rs;
 1937 
 1938         /* NB: skip AUTO since it has no rates */
 1939         for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
 1940                 if (isclr(ic->ic_modecaps, mode))
 1941                         continue;
 1942                 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
 1943                 rs = &ic->ic_sup_rates[mode];
 1944                 for (i = 0; i < rs->rs_nrates; i++) {
 1945                         mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
 1946                         if (mword == 0)
 1947                                 continue;
 1948                         rate = ieee80211_media2rate(mword);
 1949                         printf("%s%d%sMbps", (i != 0 ? " " : ""),
 1950                             rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
 1951                 }
 1952                 printf("\n");
 1953         }
 1954         ieee80211_ht_announce(ic);
 1955         ieee80211_vht_announce(ic);
 1956 }
 1957 
 1958 void
 1959 ieee80211_announce_channels(struct ieee80211com *ic)
 1960 {
 1961         const struct ieee80211_channel *c;
 1962         char type;
 1963         int i, cw;
 1964 
 1965         printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
 1966         for (i = 0; i < ic->ic_nchans; i++) {
 1967                 c = &ic->ic_channels[i];
 1968                 if (IEEE80211_IS_CHAN_ST(c))
 1969                         type = 'S';
 1970                 else if (IEEE80211_IS_CHAN_108A(c))
 1971                         type = 'T';
 1972                 else if (IEEE80211_IS_CHAN_108G(c))
 1973                         type = 'G';
 1974                 else if (IEEE80211_IS_CHAN_HT(c))
 1975                         type = 'n';
 1976                 else if (IEEE80211_IS_CHAN_A(c))
 1977                         type = 'a';
 1978                 else if (IEEE80211_IS_CHAN_ANYG(c))
 1979                         type = 'g';
 1980                 else if (IEEE80211_IS_CHAN_B(c))
 1981                         type = 'b';
 1982                 else
 1983                         type = 'f';
 1984                 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
 1985                         cw = 40;
 1986                 else if (IEEE80211_IS_CHAN_HALF(c))
 1987                         cw = 10;
 1988                 else if (IEEE80211_IS_CHAN_QUARTER(c))
 1989                         cw = 5;
 1990                 else
 1991                         cw = 20;
 1992                 printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
 1993                         , c->ic_ieee, c->ic_freq, type
 1994                         , cw
 1995                         , IEEE80211_IS_CHAN_HT40U(c) ? '+' :
 1996                           IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
 1997                         , c->ic_maxregpower
 1998                         , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
 1999                         , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
 2000                 );
 2001         }
 2002 }
 2003 
 2004 static int
 2005 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
 2006 {
 2007         switch (IFM_MODE(ime->ifm_media)) {
 2008         case IFM_IEEE80211_11A:
 2009                 *mode = IEEE80211_MODE_11A;
 2010                 break;
 2011         case IFM_IEEE80211_11B:
 2012                 *mode = IEEE80211_MODE_11B;
 2013                 break;
 2014         case IFM_IEEE80211_11G:
 2015                 *mode = IEEE80211_MODE_11G;
 2016                 break;
 2017         case IFM_IEEE80211_FH:
 2018                 *mode = IEEE80211_MODE_FH;
 2019                 break;
 2020         case IFM_IEEE80211_11NA:
 2021                 *mode = IEEE80211_MODE_11NA;
 2022                 break;
 2023         case IFM_IEEE80211_11NG:
 2024                 *mode = IEEE80211_MODE_11NG;
 2025                 break;
 2026         case IFM_AUTO:
 2027                 *mode = IEEE80211_MODE_AUTO;
 2028                 break;
 2029         default:
 2030                 return 0;
 2031         }
 2032         /*
 2033          * Turbo mode is an ``option''.
 2034          * XXX does not apply to AUTO
 2035          */
 2036         if (ime->ifm_media & IFM_IEEE80211_TURBO) {
 2037                 if (*mode == IEEE80211_MODE_11A) {
 2038                         if (flags & IEEE80211_F_TURBOP)
 2039                                 *mode = IEEE80211_MODE_TURBO_A;
 2040                         else
 2041                                 *mode = IEEE80211_MODE_STURBO_A;
 2042                 } else if (*mode == IEEE80211_MODE_11G)
 2043                         *mode = IEEE80211_MODE_TURBO_G;
 2044                 else
 2045                         return 0;
 2046         }
 2047         /* XXX HT40 +/- */
 2048         return 1;
 2049 }
 2050 
 2051 /*
 2052  * Handle a media change request on the vap interface.
 2053  */
 2054 int
 2055 ieee80211_media_change(struct ifnet *ifp)
 2056 {
 2057         struct ieee80211vap *vap = ifp->if_softc;
 2058         struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
 2059         uint16_t newmode;
 2060 
 2061         if (!media2mode(ime, vap->iv_flags, &newmode))
 2062                 return EINVAL;
 2063         if (vap->iv_des_mode != newmode) {
 2064                 vap->iv_des_mode = newmode;
 2065                 /* XXX kick state machine if up+running */
 2066         }
 2067         return 0;
 2068 }
 2069 
 2070 /*
 2071  * Common code to calculate the media status word
 2072  * from the operating mode and channel state.
 2073  */
 2074 static int
 2075 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
 2076 {
 2077         int status;
 2078 
 2079         status = IFM_IEEE80211;
 2080         switch (opmode) {
 2081         case IEEE80211_M_STA:
 2082                 break;
 2083         case IEEE80211_M_IBSS:
 2084                 status |= IFM_IEEE80211_ADHOC;
 2085                 break;
 2086         case IEEE80211_M_HOSTAP:
 2087                 status |= IFM_IEEE80211_HOSTAP;
 2088                 break;
 2089         case IEEE80211_M_MONITOR:
 2090                 status |= IFM_IEEE80211_MONITOR;
 2091                 break;
 2092         case IEEE80211_M_AHDEMO:
 2093                 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
 2094                 break;
 2095         case IEEE80211_M_WDS:
 2096                 status |= IFM_IEEE80211_WDS;
 2097                 break;
 2098         case IEEE80211_M_MBSS:
 2099                 status |= IFM_IEEE80211_MBSS;
 2100                 break;
 2101         }
 2102         if (IEEE80211_IS_CHAN_HTA(chan)) {
 2103                 status |= IFM_IEEE80211_11NA;
 2104         } else if (IEEE80211_IS_CHAN_HTG(chan)) {
 2105                 status |= IFM_IEEE80211_11NG;
 2106         } else if (IEEE80211_IS_CHAN_A(chan)) {
 2107                 status |= IFM_IEEE80211_11A;
 2108         } else if (IEEE80211_IS_CHAN_B(chan)) {
 2109                 status |= IFM_IEEE80211_11B;
 2110         } else if (IEEE80211_IS_CHAN_ANYG(chan)) {
 2111                 status |= IFM_IEEE80211_11G;
 2112         } else if (IEEE80211_IS_CHAN_FHSS(chan)) {
 2113                 status |= IFM_IEEE80211_FH;
 2114         }
 2115         /* XXX else complain? */
 2116 
 2117         if (IEEE80211_IS_CHAN_TURBO(chan))
 2118                 status |= IFM_IEEE80211_TURBO;
 2119 #if 0
 2120         if (IEEE80211_IS_CHAN_HT20(chan))
 2121                 status |= IFM_IEEE80211_HT20;
 2122         if (IEEE80211_IS_CHAN_HT40(chan))
 2123                 status |= IFM_IEEE80211_HT40;
 2124 #endif
 2125         return status;
 2126 }
 2127 
 2128 void
 2129 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
 2130 {
 2131         struct ieee80211vap *vap = ifp->if_softc;
 2132         struct ieee80211com *ic = vap->iv_ic;
 2133         enum ieee80211_phymode mode;
 2134 
 2135         imr->ifm_status = IFM_AVALID;
 2136         /*
 2137          * NB: use the current channel's mode to lock down a xmit
 2138          * rate only when running; otherwise we may have a mismatch
 2139          * in which case the rate will not be convertible.
 2140          */
 2141         if (vap->iv_state == IEEE80211_S_RUN ||
 2142             vap->iv_state == IEEE80211_S_SLEEP) {
 2143                 imr->ifm_status |= IFM_ACTIVE;
 2144                 mode = ieee80211_chan2mode(ic->ic_curchan);
 2145         } else
 2146                 mode = IEEE80211_MODE_AUTO;
 2147         imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
 2148         /*
 2149          * Calculate a current rate if possible.
 2150          */
 2151         if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
 2152                 /*
 2153                  * A fixed rate is set, report that.
 2154                  */
 2155                 imr->ifm_active |= ieee80211_rate2media(ic,
 2156                         vap->iv_txparms[mode].ucastrate, mode);
 2157         } else if (vap->iv_opmode == IEEE80211_M_STA) {
 2158                 /*
 2159                  * In station mode report the current transmit rate.
 2160                  */
 2161                 imr->ifm_active |= ieee80211_rate2media(ic,
 2162                         vap->iv_bss->ni_txrate, mode);
 2163         } else
 2164                 imr->ifm_active |= IFM_AUTO;
 2165         if (imr->ifm_status & IFM_ACTIVE)
 2166                 imr->ifm_current = imr->ifm_active;
 2167 }
 2168 
 2169 /*
 2170  * Set the current phy mode and recalculate the active channel
 2171  * set based on the available channels for this mode.  Also
 2172  * select a new default/current channel if the current one is
 2173  * inappropriate for this mode.
 2174  */
 2175 int
 2176 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
 2177 {
 2178         /*
 2179          * Adjust basic rates in 11b/11g supported rate set.
 2180          * Note that if operating on a hal/quarter rate channel
 2181          * this is a noop as those rates sets are different
 2182          * and used instead.
 2183          */
 2184         if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
 2185                 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
 2186 
 2187         ic->ic_curmode = mode;
 2188         ieee80211_reset_erp(ic);        /* reset ERP state */
 2189 
 2190         return 0;
 2191 }
 2192 
 2193 /*
 2194  * Return the phy mode for with the specified channel.
 2195  */
 2196 enum ieee80211_phymode
 2197 ieee80211_chan2mode(const struct ieee80211_channel *chan)
 2198 {
 2199 
 2200         if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
 2201                 return IEEE80211_MODE_VHT_2GHZ;
 2202         else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
 2203                 return IEEE80211_MODE_VHT_5GHZ;
 2204         else if (IEEE80211_IS_CHAN_HTA(chan))
 2205                 return IEEE80211_MODE_11NA;
 2206         else if (IEEE80211_IS_CHAN_HTG(chan))
 2207                 return IEEE80211_MODE_11NG;
 2208         else if (IEEE80211_IS_CHAN_108G(chan))
 2209                 return IEEE80211_MODE_TURBO_G;
 2210         else if (IEEE80211_IS_CHAN_ST(chan))
 2211                 return IEEE80211_MODE_STURBO_A;
 2212         else if (IEEE80211_IS_CHAN_TURBO(chan))
 2213                 return IEEE80211_MODE_TURBO_A;
 2214         else if (IEEE80211_IS_CHAN_HALF(chan))
 2215                 return IEEE80211_MODE_HALF;
 2216         else if (IEEE80211_IS_CHAN_QUARTER(chan))
 2217                 return IEEE80211_MODE_QUARTER;
 2218         else if (IEEE80211_IS_CHAN_A(chan))
 2219                 return IEEE80211_MODE_11A;
 2220         else if (IEEE80211_IS_CHAN_ANYG(chan))
 2221                 return IEEE80211_MODE_11G;
 2222         else if (IEEE80211_IS_CHAN_B(chan))
 2223                 return IEEE80211_MODE_11B;
 2224         else if (IEEE80211_IS_CHAN_FHSS(chan))
 2225                 return IEEE80211_MODE_FH;
 2226 
 2227         /* NB: should not get here */
 2228         printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
 2229                 __func__, chan->ic_freq, chan->ic_flags);
 2230         return IEEE80211_MODE_11B;
 2231 }
 2232 
 2233 struct ratemedia {
 2234         u_int   match;  /* rate + mode */
 2235         u_int   media;  /* if_media rate */
 2236 };
 2237 
 2238 static int
 2239 findmedia(const struct ratemedia rates[], int n, u_int match)
 2240 {
 2241         int i;
 2242 
 2243         for (i = 0; i < n; i++)
 2244                 if (rates[i].match == match)
 2245                         return rates[i].media;
 2246         return IFM_AUTO;
 2247 }
 2248 
 2249 /*
 2250  * Convert IEEE80211 rate value to ifmedia subtype.
 2251  * Rate is either a legacy rate in units of 0.5Mbps
 2252  * or an MCS index.
 2253  */
 2254 int
 2255 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
 2256 {
 2257         static const struct ratemedia rates[] = {
 2258                 {   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
 2259                 {   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
 2260                 {   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
 2261                 {   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
 2262                 {  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
 2263                 {  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
 2264                 {  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
 2265                 {  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
 2266                 {  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
 2267                 {  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
 2268                 {  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
 2269                 {  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
 2270                 {  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
 2271                 {  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
 2272                 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
 2273                 {   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
 2274                 {   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
 2275                 {  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
 2276                 {  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
 2277                 {  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
 2278                 {  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
 2279                 {  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
 2280                 {  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
 2281                 {  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
 2282                 {  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
 2283                 {  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
 2284                 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
 2285                 {   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
 2286                 {   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
 2287                 {  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
 2288                 /* NB: OFDM72 doesn't really exist so we don't handle it */
 2289         };
 2290         static const struct ratemedia htrates[] = {
 2291                 {   0, IFM_IEEE80211_MCS },
 2292                 {   1, IFM_IEEE80211_MCS },
 2293                 {   2, IFM_IEEE80211_MCS },
 2294                 {   3, IFM_IEEE80211_MCS },
 2295                 {   4, IFM_IEEE80211_MCS },
 2296                 {   5, IFM_IEEE80211_MCS },
 2297                 {   6, IFM_IEEE80211_MCS },
 2298                 {   7, IFM_IEEE80211_MCS },
 2299                 {   8, IFM_IEEE80211_MCS },
 2300                 {   9, IFM_IEEE80211_MCS },
 2301                 {  10, IFM_IEEE80211_MCS },
 2302                 {  11, IFM_IEEE80211_MCS },
 2303                 {  12, IFM_IEEE80211_MCS },
 2304                 {  13, IFM_IEEE80211_MCS },
 2305                 {  14, IFM_IEEE80211_MCS },
 2306                 {  15, IFM_IEEE80211_MCS },
 2307                 {  16, IFM_IEEE80211_MCS },
 2308                 {  17, IFM_IEEE80211_MCS },
 2309                 {  18, IFM_IEEE80211_MCS },
 2310                 {  19, IFM_IEEE80211_MCS },
 2311                 {  20, IFM_IEEE80211_MCS },
 2312                 {  21, IFM_IEEE80211_MCS },
 2313                 {  22, IFM_IEEE80211_MCS },
 2314                 {  23, IFM_IEEE80211_MCS },
 2315                 {  24, IFM_IEEE80211_MCS },
 2316                 {  25, IFM_IEEE80211_MCS },
 2317                 {  26, IFM_IEEE80211_MCS },
 2318                 {  27, IFM_IEEE80211_MCS },
 2319                 {  28, IFM_IEEE80211_MCS },
 2320                 {  29, IFM_IEEE80211_MCS },
 2321                 {  30, IFM_IEEE80211_MCS },
 2322                 {  31, IFM_IEEE80211_MCS },
 2323                 {  32, IFM_IEEE80211_MCS },
 2324                 {  33, IFM_IEEE80211_MCS },
 2325                 {  34, IFM_IEEE80211_MCS },
 2326                 {  35, IFM_IEEE80211_MCS },
 2327                 {  36, IFM_IEEE80211_MCS },
 2328                 {  37, IFM_IEEE80211_MCS },
 2329                 {  38, IFM_IEEE80211_MCS },
 2330                 {  39, IFM_IEEE80211_MCS },
 2331                 {  40, IFM_IEEE80211_MCS },
 2332                 {  41, IFM_IEEE80211_MCS },
 2333                 {  42, IFM_IEEE80211_MCS },
 2334                 {  43, IFM_IEEE80211_MCS },
 2335                 {  44, IFM_IEEE80211_MCS },
 2336                 {  45, IFM_IEEE80211_MCS },
 2337                 {  46, IFM_IEEE80211_MCS },
 2338                 {  47, IFM_IEEE80211_MCS },
 2339                 {  48, IFM_IEEE80211_MCS },
 2340                 {  49, IFM_IEEE80211_MCS },
 2341                 {  50, IFM_IEEE80211_MCS },
 2342                 {  51, IFM_IEEE80211_MCS },
 2343                 {  52, IFM_IEEE80211_MCS },
 2344                 {  53, IFM_IEEE80211_MCS },
 2345                 {  54, IFM_IEEE80211_MCS },
 2346                 {  55, IFM_IEEE80211_MCS },
 2347                 {  56, IFM_IEEE80211_MCS },
 2348                 {  57, IFM_IEEE80211_MCS },
 2349                 {  58, IFM_IEEE80211_MCS },
 2350                 {  59, IFM_IEEE80211_MCS },
 2351                 {  60, IFM_IEEE80211_MCS },
 2352                 {  61, IFM_IEEE80211_MCS },
 2353                 {  62, IFM_IEEE80211_MCS },
 2354                 {  63, IFM_IEEE80211_MCS },
 2355                 {  64, IFM_IEEE80211_MCS },
 2356                 {  65, IFM_IEEE80211_MCS },
 2357                 {  66, IFM_IEEE80211_MCS },
 2358                 {  67, IFM_IEEE80211_MCS },
 2359                 {  68, IFM_IEEE80211_MCS },
 2360                 {  69, IFM_IEEE80211_MCS },
 2361                 {  70, IFM_IEEE80211_MCS },
 2362                 {  71, IFM_IEEE80211_MCS },
 2363                 {  72, IFM_IEEE80211_MCS },
 2364                 {  73, IFM_IEEE80211_MCS },
 2365                 {  74, IFM_IEEE80211_MCS },
 2366                 {  75, IFM_IEEE80211_MCS },
 2367                 {  76, IFM_IEEE80211_MCS },
 2368         };
 2369         int m;
 2370 
 2371         /*
 2372          * Check 11n rates first for match as an MCS.
 2373          */
 2374         if (mode == IEEE80211_MODE_11NA) {
 2375                 if (rate & IEEE80211_RATE_MCS) {
 2376                         rate &= ~IEEE80211_RATE_MCS;
 2377                         m = findmedia(htrates, nitems(htrates), rate);
 2378                         if (m != IFM_AUTO)
 2379                                 return m | IFM_IEEE80211_11NA;
 2380                 }
 2381         } else if (mode == IEEE80211_MODE_11NG) {
 2382                 /* NB: 12 is ambiguous, it will be treated as an MCS */
 2383                 if (rate & IEEE80211_RATE_MCS) {
 2384                         rate &= ~IEEE80211_RATE_MCS;
 2385                         m = findmedia(htrates, nitems(htrates), rate);
 2386                         if (m != IFM_AUTO)
 2387                                 return m | IFM_IEEE80211_11NG;
 2388                 }
 2389         }
 2390         rate &= IEEE80211_RATE_VAL;
 2391         switch (mode) {
 2392         case IEEE80211_MODE_11A:
 2393         case IEEE80211_MODE_HALF:               /* XXX good 'nuf */
 2394         case IEEE80211_MODE_QUARTER:
 2395         case IEEE80211_MODE_11NA:
 2396         case IEEE80211_MODE_TURBO_A:
 2397         case IEEE80211_MODE_STURBO_A:
 2398                 return findmedia(rates, nitems(rates),
 2399                     rate | IFM_IEEE80211_11A);
 2400         case IEEE80211_MODE_11B:
 2401                 return findmedia(rates, nitems(rates),
 2402                     rate | IFM_IEEE80211_11B);
 2403         case IEEE80211_MODE_FH:
 2404                 return findmedia(rates, nitems(rates),
 2405                     rate | IFM_IEEE80211_FH);
 2406         case IEEE80211_MODE_AUTO:
 2407                 /* NB: ic may be NULL for some drivers */
 2408                 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
 2409                         return findmedia(rates, nitems(rates),
 2410                             rate | IFM_IEEE80211_FH);
 2411                 /* NB: hack, 11g matches both 11b+11a rates */
 2412                 /* fall thru... */
 2413         case IEEE80211_MODE_11G:
 2414         case IEEE80211_MODE_11NG:
 2415         case IEEE80211_MODE_TURBO_G:
 2416                 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
 2417         case IEEE80211_MODE_VHT_2GHZ:
 2418         case IEEE80211_MODE_VHT_5GHZ:
 2419                 /* XXX TODO: need to figure out mapping for VHT rates */
 2420                 return IFM_AUTO;
 2421         }
 2422         return IFM_AUTO;
 2423 }
 2424 
 2425 int
 2426 ieee80211_media2rate(int mword)
 2427 {
 2428         static const int ieeerates[] = {
 2429                 -1,             /* IFM_AUTO */
 2430                 0,              /* IFM_MANUAL */
 2431                 0,              /* IFM_NONE */
 2432                 2,              /* IFM_IEEE80211_FH1 */
 2433                 4,              /* IFM_IEEE80211_FH2 */
 2434                 2,              /* IFM_IEEE80211_DS1 */
 2435                 4,              /* IFM_IEEE80211_DS2 */
 2436                 11,             /* IFM_IEEE80211_DS5 */
 2437                 22,             /* IFM_IEEE80211_DS11 */
 2438                 44,             /* IFM_IEEE80211_DS22 */
 2439                 12,             /* IFM_IEEE80211_OFDM6 */
 2440                 18,             /* IFM_IEEE80211_OFDM9 */
 2441                 24,             /* IFM_IEEE80211_OFDM12 */
 2442                 36,             /* IFM_IEEE80211_OFDM18 */
 2443                 48,             /* IFM_IEEE80211_OFDM24 */
 2444                 72,             /* IFM_IEEE80211_OFDM36 */
 2445                 96,             /* IFM_IEEE80211_OFDM48 */
 2446                 108,            /* IFM_IEEE80211_OFDM54 */
 2447                 144,            /* IFM_IEEE80211_OFDM72 */
 2448                 0,              /* IFM_IEEE80211_DS354k */
 2449                 0,              /* IFM_IEEE80211_DS512k */
 2450                 6,              /* IFM_IEEE80211_OFDM3 */
 2451                 9,              /* IFM_IEEE80211_OFDM4 */
 2452                 54,             /* IFM_IEEE80211_OFDM27 */
 2453                 -1,             /* IFM_IEEE80211_MCS */
 2454                 -1,             /* IFM_IEEE80211_VHT */
 2455         };
 2456         return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
 2457                 ieeerates[IFM_SUBTYPE(mword)] : 0;
 2458 }
 2459 
 2460 /*
 2461  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
 2462  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
 2463  */
 2464 #define mix(a, b, c)                                                    \
 2465 do {                                                                    \
 2466         a -= b; a -= c; a ^= (c >> 13);                                 \
 2467         b -= c; b -= a; b ^= (a << 8);                                  \
 2468         c -= a; c -= b; c ^= (b >> 13);                                 \
 2469         a -= b; a -= c; a ^= (c >> 12);                                 \
 2470         b -= c; b -= a; b ^= (a << 16);                                 \
 2471         c -= a; c -= b; c ^= (b >> 5);                                  \
 2472         a -= b; a -= c; a ^= (c >> 3);                                  \
 2473         b -= c; b -= a; b ^= (a << 10);                                 \
 2474         c -= a; c -= b; c ^= (b >> 15);                                 \
 2475 } while (/*CONSTCOND*/0)
 2476 
 2477 uint32_t
 2478 ieee80211_mac_hash(const struct ieee80211com *ic,
 2479         const uint8_t addr[IEEE80211_ADDR_LEN])
 2480 {
 2481         uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
 2482 
 2483         b += addr[5] << 8;
 2484         b += addr[4];
 2485         a += addr[3] << 24;
 2486         a += addr[2] << 16;
 2487         a += addr[1] << 8;
 2488         a += addr[0];
 2489 
 2490         mix(a, b, c);
 2491 
 2492         return c;
 2493 }
 2494 #undef mix
 2495 
 2496 char
 2497 ieee80211_channel_type_char(const struct ieee80211_channel *c)
 2498 {
 2499         if (IEEE80211_IS_CHAN_ST(c))
 2500                 return 'S';
 2501         if (IEEE80211_IS_CHAN_108A(c))
 2502                 return 'T';
 2503         if (IEEE80211_IS_CHAN_108G(c))
 2504                 return 'G';
 2505         if (IEEE80211_IS_CHAN_VHT(c))
 2506                 return 'v';
 2507         if (IEEE80211_IS_CHAN_HT(c))
 2508                 return 'n';
 2509         if (IEEE80211_IS_CHAN_A(c))
 2510                 return 'a';
 2511         if (IEEE80211_IS_CHAN_ANYG(c))
 2512                 return 'g';
 2513         if (IEEE80211_IS_CHAN_B(c))
 2514                 return 'b';
 2515         return 'f';
 2516 }

Cache object: 28bb6f1dafb07d2845f937358efe46f0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.