The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2001 Atsushi Onoe
    5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 /*
   33  * IEEE 802.11 generic handler
   34  */
   35 #include "opt_wlan.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/kernel.h>
   40 #include <sys/malloc.h>
   41 #include <sys/socket.h>
   42 #include <sys/sbuf.h>
   43 
   44 #include <machine/stdarg.h>
   45 
   46 #include <net/if.h>
   47 #include <net/if_var.h>
   48 #include <net/if_dl.h>
   49 #include <net/if_media.h>
   50 #include <net/if_types.h>
   51 #include <net/ethernet.h>
   52 
   53 #include <net80211/ieee80211_var.h>
   54 #include <net80211/ieee80211_regdomain.h>
   55 #ifdef IEEE80211_SUPPORT_SUPERG
   56 #include <net80211/ieee80211_superg.h>
   57 #endif
   58 #include <net80211/ieee80211_ratectl.h>
   59 #include <net80211/ieee80211_vht.h>
   60 
   61 #include <net/bpf.h>
   62 
   63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
   64         [IEEE80211_MODE_AUTO]     = "auto",
   65         [IEEE80211_MODE_11A]      = "11a",
   66         [IEEE80211_MODE_11B]      = "11b",
   67         [IEEE80211_MODE_11G]      = "11g",
   68         [IEEE80211_MODE_FH]       = "FH",
   69         [IEEE80211_MODE_TURBO_A]  = "turboA",
   70         [IEEE80211_MODE_TURBO_G]  = "turboG",
   71         [IEEE80211_MODE_STURBO_A] = "sturboA",
   72         [IEEE80211_MODE_HALF]     = "half",
   73         [IEEE80211_MODE_QUARTER]  = "quarter",
   74         [IEEE80211_MODE_11NA]     = "11na",
   75         [IEEE80211_MODE_11NG]     = "11ng",
   76         [IEEE80211_MODE_VHT_2GHZ]         = "11acg",
   77         [IEEE80211_MODE_VHT_5GHZ]         = "11ac",
   78 };
   79 /* map ieee80211_opmode to the corresponding capability bit */
   80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
   81         [IEEE80211_M_IBSS]      = IEEE80211_C_IBSS,
   82         [IEEE80211_M_WDS]       = IEEE80211_C_WDS,
   83         [IEEE80211_M_STA]       = IEEE80211_C_STA,
   84         [IEEE80211_M_AHDEMO]    = IEEE80211_C_AHDEMO,
   85         [IEEE80211_M_HOSTAP]    = IEEE80211_C_HOSTAP,
   86         [IEEE80211_M_MONITOR]   = IEEE80211_C_MONITOR,
   87 #ifdef IEEE80211_SUPPORT_MESH
   88         [IEEE80211_M_MBSS]      = IEEE80211_C_MBSS,
   89 #endif
   90 };
   91 
   92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
   93         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   94 
   95 static  void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
   96 static  void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
   97 static  void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
   98 static  void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
   99 static  int ieee80211_media_setup(struct ieee80211com *ic,
  100                 struct ifmedia *media, int caps, int addsta,
  101                 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
  102 static  int media_status(enum ieee80211_opmode,
  103                 const struct ieee80211_channel *);
  104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
  105 
  106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
  107 
  108 /*
  109  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
  110  */
  111 #define B(r)    ((r) | IEEE80211_RATE_BASIC)
  112 static const struct ieee80211_rateset ieee80211_rateset_11a =
  113         { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
  114 static const struct ieee80211_rateset ieee80211_rateset_half =
  115         { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
  116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
  117         { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
  118 static const struct ieee80211_rateset ieee80211_rateset_11b =
  119         { 4, { B(2), B(4), B(11), B(22) } };
  120 /* NB: OFDM rates are handled specially based on mode */
  121 static const struct ieee80211_rateset ieee80211_rateset_11g =
  122         { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
  123 #undef B
  124 
  125 static int set_vht_extchan(struct ieee80211_channel *c);
  126 
  127 /*
  128  * Fill in 802.11 available channel set, mark
  129  * all available channels as active, and pick
  130  * a default channel if not already specified.
  131  */
  132 void
  133 ieee80211_chan_init(struct ieee80211com *ic)
  134 {
  135 #define DEFAULTRATES(m, def) do { \
  136         if (ic->ic_sup_rates[m].rs_nrates == 0) \
  137                 ic->ic_sup_rates[m] = def; \
  138 } while (0)
  139         struct ieee80211_channel *c;
  140         int i;
  141 
  142         KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
  143                 ("invalid number of channels specified: %u", ic->ic_nchans));
  144         memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
  145         memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
  146         setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
  147         for (i = 0; i < ic->ic_nchans; i++) {
  148                 c = &ic->ic_channels[i];
  149                 KASSERT(c->ic_flags != 0, ("channel with no flags"));
  150                 /*
  151                  * Help drivers that work only with frequencies by filling
  152                  * in IEEE channel #'s if not already calculated.  Note this
  153                  * mimics similar work done in ieee80211_setregdomain when
  154                  * changing regulatory state.
  155                  */
  156                 if (c->ic_ieee == 0)
  157                         c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
  158 
  159                 /*
  160                  * Setup the HT40/VHT40 upper/lower bits.
  161                  * The VHT80/... math is done elsewhere.
  162                  */
  163                 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
  164                         c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
  165                             (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
  166                             c->ic_flags);
  167 
  168                 /* Update VHT math */
  169                 /*
  170                  * XXX VHT again, note that this assumes VHT80/... channels
  171                  * are legit already.
  172                  */
  173                 set_vht_extchan(c);
  174 
  175                 /* default max tx power to max regulatory */
  176                 if (c->ic_maxpower == 0)
  177                         c->ic_maxpower = 2*c->ic_maxregpower;
  178                 setbit(ic->ic_chan_avail, c->ic_ieee);
  179                 /*
  180                  * Identify mode capabilities.
  181                  */
  182                 if (IEEE80211_IS_CHAN_A(c))
  183                         setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
  184                 if (IEEE80211_IS_CHAN_B(c))
  185                         setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
  186                 if (IEEE80211_IS_CHAN_ANYG(c))
  187                         setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
  188                 if (IEEE80211_IS_CHAN_FHSS(c))
  189                         setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
  190                 if (IEEE80211_IS_CHAN_108A(c))
  191                         setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
  192                 if (IEEE80211_IS_CHAN_108G(c))
  193                         setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
  194                 if (IEEE80211_IS_CHAN_ST(c))
  195                         setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
  196                 if (IEEE80211_IS_CHAN_HALF(c))
  197                         setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
  198                 if (IEEE80211_IS_CHAN_QUARTER(c))
  199                         setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
  200                 if (IEEE80211_IS_CHAN_HTA(c))
  201                         setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
  202                 if (IEEE80211_IS_CHAN_HTG(c))
  203                         setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
  204                 if (IEEE80211_IS_CHAN_VHTA(c))
  205                         setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
  206                 if (IEEE80211_IS_CHAN_VHTG(c))
  207                         setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
  208         }
  209         /* initialize candidate channels to all available */
  210         memcpy(ic->ic_chan_active, ic->ic_chan_avail,
  211                 sizeof(ic->ic_chan_avail));
  212 
  213         /* sort channel table to allow lookup optimizations */
  214         ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
  215 
  216         /* invalidate any previous state */
  217         ic->ic_bsschan = IEEE80211_CHAN_ANYC;
  218         ic->ic_prevchan = NULL;
  219         ic->ic_csa_newchan = NULL;
  220         /* arbitrarily pick the first channel */
  221         ic->ic_curchan = &ic->ic_channels[0];
  222         ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
  223 
  224         /* fillin well-known rate sets if driver has not specified */
  225         DEFAULTRATES(IEEE80211_MODE_11B,         ieee80211_rateset_11b);
  226         DEFAULTRATES(IEEE80211_MODE_11G,         ieee80211_rateset_11g);
  227         DEFAULTRATES(IEEE80211_MODE_11A,         ieee80211_rateset_11a);
  228         DEFAULTRATES(IEEE80211_MODE_TURBO_A,     ieee80211_rateset_11a);
  229         DEFAULTRATES(IEEE80211_MODE_TURBO_G,     ieee80211_rateset_11g);
  230         DEFAULTRATES(IEEE80211_MODE_STURBO_A,    ieee80211_rateset_11a);
  231         DEFAULTRATES(IEEE80211_MODE_HALF,        ieee80211_rateset_half);
  232         DEFAULTRATES(IEEE80211_MODE_QUARTER,     ieee80211_rateset_quarter);
  233         DEFAULTRATES(IEEE80211_MODE_11NA,        ieee80211_rateset_11a);
  234         DEFAULTRATES(IEEE80211_MODE_11NG,        ieee80211_rateset_11g);
  235         DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,    ieee80211_rateset_11g);
  236         DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,    ieee80211_rateset_11a);
  237 
  238         /*
  239          * Setup required information to fill the mcsset field, if driver did
  240          * not. Assume a 2T2R setup for historic reasons.
  241          */
  242         if (ic->ic_rxstream == 0)
  243                 ic->ic_rxstream = 2;
  244         if (ic->ic_txstream == 0)
  245                 ic->ic_txstream = 2;
  246 
  247         ieee80211_init_suphtrates(ic);
  248 
  249         /*
  250          * Set auto mode to reset active channel state and any desired channel.
  251          */
  252         (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
  253 #undef DEFAULTRATES
  254 }
  255 
  256 static void
  257 null_update_mcast(struct ieee80211com *ic)
  258 {
  259 
  260         ic_printf(ic, "need multicast update callback\n");
  261 }
  262 
  263 static void
  264 null_update_promisc(struct ieee80211com *ic)
  265 {
  266 
  267         ic_printf(ic, "need promiscuous mode update callback\n");
  268 }
  269 
  270 static void
  271 null_update_chw(struct ieee80211com *ic)
  272 {
  273 
  274         ic_printf(ic, "%s: need callback\n", __func__);
  275 }
  276 
  277 int
  278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
  279 {
  280         va_list ap;
  281         int retval;
  282 
  283         retval = printf("%s: ", ic->ic_name);
  284         va_start(ap, fmt);
  285         retval += vprintf(fmt, ap);
  286         va_end(ap);
  287         return (retval);
  288 }
  289 
  290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
  291 static struct mtx ic_list_mtx;
  292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
  293 
  294 static int
  295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
  296 {
  297         struct ieee80211com *ic;
  298         struct sbuf sb;
  299         char *sp;
  300         int error;
  301 
  302         error = sysctl_wire_old_buffer(req, 0);
  303         if (error)
  304                 return (error);
  305         sbuf_new_for_sysctl(&sb, NULL, 8, req);
  306         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
  307         sp = "";
  308         mtx_lock(&ic_list_mtx);
  309         LIST_FOREACH(ic, &ic_head, ic_next) {
  310                 sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
  311                 sp = " ";
  312         }
  313         mtx_unlock(&ic_list_mtx);
  314         error = sbuf_finish(&sb);
  315         sbuf_delete(&sb);
  316         return (error);
  317 }
  318 
  319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
  320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  321     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
  322 
  323 /*
  324  * Attach/setup the common net80211 state.  Called by
  325  * the driver on attach to prior to creating any vap's.
  326  */
  327 void
  328 ieee80211_ifattach(struct ieee80211com *ic)
  329 {
  330 
  331         IEEE80211_LOCK_INIT(ic, ic->ic_name);
  332         IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
  333         TAILQ_INIT(&ic->ic_vaps);
  334 
  335         /* Create a taskqueue for all state changes */
  336         ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
  337             taskqueue_thread_enqueue, &ic->ic_tq);
  338         taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
  339             ic->ic_name);
  340         ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
  341         ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
  342         /*
  343          * Fill in 802.11 available channel set, mark all
  344          * available channels as active, and pick a default
  345          * channel if not already specified.
  346          */
  347         ieee80211_chan_init(ic);
  348 
  349         ic->ic_update_mcast = null_update_mcast;
  350         ic->ic_update_promisc = null_update_promisc;
  351         ic->ic_update_chw = null_update_chw;
  352 
  353         ic->ic_hash_key = arc4random();
  354         ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
  355         ic->ic_lintval = ic->ic_bintval;
  356         ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
  357 
  358         ieee80211_crypto_attach(ic);
  359         ieee80211_node_attach(ic);
  360         ieee80211_power_attach(ic);
  361         ieee80211_proto_attach(ic);
  362 #ifdef IEEE80211_SUPPORT_SUPERG
  363         ieee80211_superg_attach(ic);
  364 #endif
  365         ieee80211_ht_attach(ic);
  366         ieee80211_vht_attach(ic);
  367         ieee80211_scan_attach(ic);
  368         ieee80211_regdomain_attach(ic);
  369         ieee80211_dfs_attach(ic);
  370 
  371         ieee80211_sysctl_attach(ic);
  372 
  373         mtx_lock(&ic_list_mtx);
  374         LIST_INSERT_HEAD(&ic_head, ic, ic_next);
  375         mtx_unlock(&ic_list_mtx);
  376 }
  377 
  378 /*
  379  * Detach net80211 state on device detach.  Tear down
  380  * all vap's and reclaim all common state prior to the
  381  * device state going away.  Note we may call back into
  382  * driver; it must be prepared for this.
  383  */
  384 void
  385 ieee80211_ifdetach(struct ieee80211com *ic)
  386 {
  387         struct ieee80211vap *vap;
  388 
  389         /*
  390          * We use this as an indicator that ifattach never had a chance to be
  391          * called, e.g. early driver attach failed and ifdetach was called
  392          * during subsequent detach.  Never fear, for we have nothing to do
  393          * here.
  394          */
  395         if (ic->ic_tq == NULL)
  396                 return;
  397 
  398         mtx_lock(&ic_list_mtx);
  399         LIST_REMOVE(ic, ic_next);
  400         mtx_unlock(&ic_list_mtx);
  401 
  402         taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
  403 
  404         /*
  405          * The VAP is responsible for setting and clearing
  406          * the VIMAGE context.
  407          */
  408         while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
  409                 ieee80211_com_vdetach(vap);
  410                 ieee80211_vap_destroy(vap);
  411         }
  412         ieee80211_waitfor_parent(ic);
  413 
  414         ieee80211_sysctl_detach(ic);
  415         ieee80211_dfs_detach(ic);
  416         ieee80211_regdomain_detach(ic);
  417         ieee80211_scan_detach(ic);
  418 #ifdef IEEE80211_SUPPORT_SUPERG
  419         ieee80211_superg_detach(ic);
  420 #endif
  421         ieee80211_vht_detach(ic);
  422         ieee80211_ht_detach(ic);
  423         /* NB: must be called before ieee80211_node_detach */
  424         ieee80211_proto_detach(ic);
  425         ieee80211_crypto_detach(ic);
  426         ieee80211_power_detach(ic);
  427         ieee80211_node_detach(ic);
  428 
  429         counter_u64_free(ic->ic_ierrors);
  430         counter_u64_free(ic->ic_oerrors);
  431 
  432         taskqueue_free(ic->ic_tq);
  433         IEEE80211_TX_LOCK_DESTROY(ic);
  434         IEEE80211_LOCK_DESTROY(ic);
  435 }
  436 
  437 struct ieee80211com *
  438 ieee80211_find_com(const char *name)
  439 {
  440         struct ieee80211com *ic;
  441 
  442         mtx_lock(&ic_list_mtx);
  443         LIST_FOREACH(ic, &ic_head, ic_next)
  444                 if (strcmp(ic->ic_name, name) == 0)
  445                         break;
  446         mtx_unlock(&ic_list_mtx);
  447 
  448         return (ic);
  449 }
  450 
  451 void
  452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
  453 {
  454         struct ieee80211com *ic;
  455 
  456         mtx_lock(&ic_list_mtx);
  457         LIST_FOREACH(ic, &ic_head, ic_next)
  458                 (*f)(arg, ic);
  459         mtx_unlock(&ic_list_mtx);
  460 }
  461 
  462 /*
  463  * Default reset method for use with the ioctl support.  This
  464  * method is invoked after any state change in the 802.11
  465  * layer that should be propagated to the hardware but not
  466  * require re-initialization of the 802.11 state machine (e.g
  467  * rescanning for an ap).  We always return ENETRESET which
  468  * should cause the driver to re-initialize the device. Drivers
  469  * can override this method to implement more optimized support.
  470  */
  471 static int
  472 default_reset(struct ieee80211vap *vap, u_long cmd)
  473 {
  474         return ENETRESET;
  475 }
  476 
  477 /*
  478  * Default for updating the VAP default TX key index.
  479  *
  480  * Drivers that support TX offload as well as hardware encryption offload
  481  * may need to be informed of key index changes separate from the key
  482  * update.
  483  */
  484 static void
  485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
  486 {
  487 
  488         /* XXX assert validity */
  489         /* XXX assert we're in a key update block */
  490         vap->iv_def_txkey = kid;
  491 }
  492 
  493 /*
  494  * Add underlying device errors to vap errors.
  495  */
  496 static uint64_t
  497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
  498 {
  499         struct ieee80211vap *vap = ifp->if_softc;
  500         struct ieee80211com *ic = vap->iv_ic;
  501         uint64_t rv;
  502 
  503         rv = if_get_counter_default(ifp, cnt);
  504         switch (cnt) {
  505         case IFCOUNTER_OERRORS:
  506                 rv += counter_u64_fetch(ic->ic_oerrors);
  507                 break;
  508         case IFCOUNTER_IERRORS:
  509                 rv += counter_u64_fetch(ic->ic_ierrors);
  510                 break;
  511         default:
  512                 break;
  513         }
  514 
  515         return (rv);
  516 }
  517 
  518 /*
  519  * Prepare a vap for use.  Drivers use this call to
  520  * setup net80211 state in new vap's prior attaching
  521  * them with ieee80211_vap_attach (below).
  522  */
  523 int
  524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
  525     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
  526     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
  527 {
  528         struct ifnet *ifp;
  529 
  530         ifp = if_alloc(IFT_ETHER);
  531         if (ifp == NULL) {
  532                 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
  533                 return ENOMEM;
  534         }
  535         if_initname(ifp, name, unit);
  536         ifp->if_softc = vap;                    /* back pointer */
  537         ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
  538         ifp->if_transmit = ieee80211_vap_transmit;
  539         ifp->if_qflush = ieee80211_vap_qflush;
  540         ifp->if_ioctl = ieee80211_ioctl;
  541         ifp->if_init = ieee80211_init;
  542         ifp->if_get_counter = ieee80211_get_counter;
  543 
  544         vap->iv_ifp = ifp;
  545         vap->iv_ic = ic;
  546         vap->iv_flags = ic->ic_flags;           /* propagate common flags */
  547         vap->iv_flags_ext = ic->ic_flags_ext;
  548         vap->iv_flags_ven = ic->ic_flags_ven;
  549         vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
  550 
  551         /* 11n capabilities - XXX methodize */
  552         vap->iv_htcaps = ic->ic_htcaps;
  553         vap->iv_htextcaps = ic->ic_htextcaps;
  554 
  555         /* 11ac capabilities - XXX methodize */
  556         vap->iv_vhtcaps = ic->ic_vhtcaps;
  557         vap->iv_vhtextcaps = ic->ic_vhtextcaps;
  558 
  559         vap->iv_opmode = opmode;
  560         vap->iv_caps |= ieee80211_opcap[opmode];
  561         IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
  562         switch (opmode) {
  563         case IEEE80211_M_WDS:
  564                 /*
  565                  * WDS links must specify the bssid of the far end.
  566                  * For legacy operation this is a static relationship.
  567                  * For non-legacy operation the station must associate
  568                  * and be authorized to pass traffic.  Plumbing the
  569                  * vap to the proper node happens when the vap
  570                  * transitions to RUN state.
  571                  */
  572                 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
  573                 vap->iv_flags |= IEEE80211_F_DESBSSID;
  574                 if (flags & IEEE80211_CLONE_WDSLEGACY)
  575                         vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
  576                 break;
  577 #ifdef IEEE80211_SUPPORT_TDMA
  578         case IEEE80211_M_AHDEMO:
  579                 if (flags & IEEE80211_CLONE_TDMA) {
  580                         /* NB: checked before clone operation allowed */
  581                         KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
  582                             ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
  583                         /*
  584                          * Propagate TDMA capability to mark vap; this
  585                          * cannot be removed and is used to distinguish
  586                          * regular ahdemo operation from ahdemo+tdma.
  587                          */
  588                         vap->iv_caps |= IEEE80211_C_TDMA;
  589                 }
  590                 break;
  591 #endif
  592         default:
  593                 break;
  594         }
  595         /* auto-enable s/w beacon miss support */
  596         if (flags & IEEE80211_CLONE_NOBEACONS)
  597                 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
  598         /* auto-generated or user supplied MAC address */
  599         if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
  600                 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
  601         /*
  602          * Enable various functionality by default if we're
  603          * capable; the driver can override us if it knows better.
  604          */
  605         if (vap->iv_caps & IEEE80211_C_WME)
  606                 vap->iv_flags |= IEEE80211_F_WME;
  607         if (vap->iv_caps & IEEE80211_C_BURST)
  608                 vap->iv_flags |= IEEE80211_F_BURST;
  609         /* NB: bg scanning only makes sense for station mode right now */
  610         if (vap->iv_opmode == IEEE80211_M_STA &&
  611             (vap->iv_caps & IEEE80211_C_BGSCAN))
  612                 vap->iv_flags |= IEEE80211_F_BGSCAN;
  613         vap->iv_flags |= IEEE80211_F_DOTH;      /* XXX no cap, just ena */
  614         /* NB: DFS support only makes sense for ap mode right now */
  615         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
  616             (vap->iv_caps & IEEE80211_C_DFS))
  617                 vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
  618         /* NB: only flip on U-APSD for hostap/sta for now */
  619         if ((vap->iv_opmode == IEEE80211_M_STA)
  620             || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
  621                 if (vap->iv_caps & IEEE80211_C_UAPSD)
  622                         vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
  623         }
  624 
  625         vap->iv_des_chan = IEEE80211_CHAN_ANYC;         /* any channel is ok */
  626         vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
  627         vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
  628         /*
  629          * Install a default reset method for the ioctl support;
  630          * the driver can override this.
  631          */
  632         vap->iv_reset = default_reset;
  633 
  634         /*
  635          * Install a default crypto key update method, the driver
  636          * can override this.
  637          */
  638         vap->iv_update_deftxkey = default_update_deftxkey;
  639 
  640         ieee80211_sysctl_vattach(vap);
  641         ieee80211_crypto_vattach(vap);
  642         ieee80211_node_vattach(vap);
  643         ieee80211_power_vattach(vap);
  644         ieee80211_proto_vattach(vap);
  645 #ifdef IEEE80211_SUPPORT_SUPERG
  646         ieee80211_superg_vattach(vap);
  647 #endif
  648         ieee80211_ht_vattach(vap);
  649         ieee80211_vht_vattach(vap);
  650         ieee80211_scan_vattach(vap);
  651         ieee80211_regdomain_vattach(vap);
  652         ieee80211_radiotap_vattach(vap);
  653         ieee80211_vap_reset_erp(vap);
  654         ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
  655 
  656         return 0;
  657 }
  658 
  659 /*
  660  * Activate a vap.  State should have been prepared with a
  661  * call to ieee80211_vap_setup and by the driver.  On return
  662  * from this call the vap is ready for use.
  663  */
  664 int
  665 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
  666     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
  667 {
  668         struct ifnet *ifp = vap->iv_ifp;
  669         struct ieee80211com *ic = vap->iv_ic;
  670         struct ifmediareq imr;
  671         int maxrate;
  672 
  673         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
  674             "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
  675             __func__, ieee80211_opmode_name[vap->iv_opmode],
  676             ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
  677 
  678         /*
  679          * Do late attach work that cannot happen until after
  680          * the driver has had a chance to override defaults.
  681          */
  682         ieee80211_node_latevattach(vap);
  683         ieee80211_power_latevattach(vap);
  684 
  685         maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
  686             vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
  687         ieee80211_media_status(ifp, &imr);
  688         /* NB: strip explicit mode; we're actually in autoselect */
  689         ifmedia_set(&vap->iv_media,
  690             imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
  691         if (maxrate)
  692                 ifp->if_baudrate = IF_Mbps(maxrate);
  693 
  694         ether_ifattach(ifp, macaddr);
  695         IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
  696         /* hook output method setup by ether_ifattach */
  697         vap->iv_output = ifp->if_output;
  698         ifp->if_output = ieee80211_output;
  699         /* NB: if_mtu set by ether_ifattach to ETHERMTU */
  700 
  701         IEEE80211_LOCK(ic);
  702         TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
  703         ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
  704 #ifdef IEEE80211_SUPPORT_SUPERG
  705         ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
  706 #endif
  707         ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
  708         ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
  709         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
  710         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
  711 
  712         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
  713         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
  714         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
  715         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
  716         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
  717         IEEE80211_UNLOCK(ic);
  718 
  719         return 1;
  720 }
  721 
  722 /*
  723  * Tear down vap state and reclaim the ifnet.
  724  * The driver is assumed to have prepared for
  725  * this; e.g. by turning off interrupts for the
  726  * underlying device.
  727  */
  728 void
  729 ieee80211_vap_detach(struct ieee80211vap *vap)
  730 {
  731         struct ieee80211com *ic = vap->iv_ic;
  732         struct ifnet *ifp = vap->iv_ifp;
  733 
  734         CURVNET_SET(ifp->if_vnet);
  735 
  736         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
  737             __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
  738 
  739         /* NB: bpfdetach is called by ether_ifdetach and claims all taps */
  740         ether_ifdetach(ifp);
  741 
  742         ieee80211_stop(vap);
  743 
  744         /*
  745          * Flush any deferred vap tasks.
  746          */
  747         ieee80211_draintask(ic, &vap->iv_nstate_task);
  748         ieee80211_draintask(ic, &vap->iv_swbmiss_task);
  749         ieee80211_draintask(ic, &vap->iv_wme_task);
  750         ieee80211_draintask(ic, &ic->ic_parent_task);
  751 
  752         /* XXX band-aid until ifnet handles this for us */
  753         taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
  754 
  755         IEEE80211_LOCK(ic);
  756         KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
  757         TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
  758         ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
  759 #ifdef IEEE80211_SUPPORT_SUPERG
  760         ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
  761 #endif
  762         ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
  763         ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
  764         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
  765         ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
  766 
  767         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
  768         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
  769         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
  770         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
  771         ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
  772 
  773         /* NB: this handles the bpfdetach done below */
  774         ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
  775         if (vap->iv_ifflags & IFF_PROMISC)
  776                 ieee80211_promisc(vap, false);
  777         if (vap->iv_ifflags & IFF_ALLMULTI)
  778                 ieee80211_allmulti(vap, false);
  779         IEEE80211_UNLOCK(ic);
  780 
  781         ifmedia_removeall(&vap->iv_media);
  782 
  783         ieee80211_radiotap_vdetach(vap);
  784         ieee80211_regdomain_vdetach(vap);
  785         ieee80211_scan_vdetach(vap);
  786 #ifdef IEEE80211_SUPPORT_SUPERG
  787         ieee80211_superg_vdetach(vap);
  788 #endif
  789         ieee80211_vht_vdetach(vap);
  790         ieee80211_ht_vdetach(vap);
  791         /* NB: must be before ieee80211_node_vdetach */
  792         ieee80211_proto_vdetach(vap);
  793         ieee80211_crypto_vdetach(vap);
  794         ieee80211_power_vdetach(vap);
  795         ieee80211_node_vdetach(vap);
  796         ieee80211_sysctl_vdetach(vap);
  797 
  798         if_free(ifp);
  799 
  800         CURVNET_RESTORE();
  801 }
  802 
  803 /*
  804  * Count number of vaps in promisc, and issue promisc on
  805  * parent respectively.
  806  */
  807 void
  808 ieee80211_promisc(struct ieee80211vap *vap, bool on)
  809 {
  810         struct ieee80211com *ic = vap->iv_ic;
  811 
  812         IEEE80211_LOCK_ASSERT(ic);
  813 
  814         if (on) {
  815                 if (++ic->ic_promisc == 1)
  816                         ieee80211_runtask(ic, &ic->ic_promisc_task);
  817         } else {
  818                 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
  819                     __func__, ic));
  820                 if (--ic->ic_promisc == 0)
  821                         ieee80211_runtask(ic, &ic->ic_promisc_task);
  822         }
  823 }
  824 
  825 /*
  826  * Count number of vaps in allmulti, and issue allmulti on
  827  * parent respectively.
  828  */
  829 void
  830 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
  831 {
  832         struct ieee80211com *ic = vap->iv_ic;
  833 
  834         IEEE80211_LOCK_ASSERT(ic);
  835 
  836         if (on) {
  837                 if (++ic->ic_allmulti == 1)
  838                         ieee80211_runtask(ic, &ic->ic_mcast_task);
  839         } else {
  840                 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
  841                     __func__, ic));
  842                 if (--ic->ic_allmulti == 0)
  843                         ieee80211_runtask(ic, &ic->ic_mcast_task);
  844         }
  845 }
  846 
  847 /*
  848  * Synchronize flag bit state in the com structure
  849  * according to the state of all vap's.  This is used,
  850  * for example, to handle state changes via ioctls.
  851  */
  852 static void
  853 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
  854 {
  855         struct ieee80211vap *vap;
  856         int bit;
  857 
  858         IEEE80211_LOCK_ASSERT(ic);
  859 
  860         bit = 0;
  861         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  862                 if (vap->iv_flags & flag) {
  863                         bit = 1;
  864                         break;
  865                 }
  866         if (bit)
  867                 ic->ic_flags |= flag;
  868         else
  869                 ic->ic_flags &= ~flag;
  870 }
  871 
  872 void
  873 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
  874 {
  875         struct ieee80211com *ic = vap->iv_ic;
  876 
  877         IEEE80211_LOCK(ic);
  878         if (flag < 0) {
  879                 flag = -flag;
  880                 vap->iv_flags &= ~flag;
  881         } else
  882                 vap->iv_flags |= flag;
  883         ieee80211_syncflag_locked(ic, flag);
  884         IEEE80211_UNLOCK(ic);
  885 }
  886 
  887 /*
  888  * Synchronize flags_ht bit state in the com structure
  889  * according to the state of all vap's.  This is used,
  890  * for example, to handle state changes via ioctls.
  891  */
  892 static void
  893 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
  894 {
  895         struct ieee80211vap *vap;
  896         int bit;
  897 
  898         IEEE80211_LOCK_ASSERT(ic);
  899 
  900         bit = 0;
  901         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  902                 if (vap->iv_flags_ht & flag) {
  903                         bit = 1;
  904                         break;
  905                 }
  906         if (bit)
  907                 ic->ic_flags_ht |= flag;
  908         else
  909                 ic->ic_flags_ht &= ~flag;
  910 }
  911 
  912 void
  913 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
  914 {
  915         struct ieee80211com *ic = vap->iv_ic;
  916 
  917         IEEE80211_LOCK(ic);
  918         if (flag < 0) {
  919                 flag = -flag;
  920                 vap->iv_flags_ht &= ~flag;
  921         } else
  922                 vap->iv_flags_ht |= flag;
  923         ieee80211_syncflag_ht_locked(ic, flag);
  924         IEEE80211_UNLOCK(ic);
  925 }
  926 
  927 /*
  928  * Synchronize flags_vht bit state in the com structure
  929  * according to the state of all vap's.  This is used,
  930  * for example, to handle state changes via ioctls.
  931  */
  932 static void
  933 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
  934 {
  935         struct ieee80211vap *vap;
  936         int bit;
  937 
  938         IEEE80211_LOCK_ASSERT(ic);
  939 
  940         bit = 0;
  941         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  942                 if (vap->iv_flags_vht & flag) {
  943                         bit = 1;
  944                         break;
  945                 }
  946         if (bit)
  947                 ic->ic_flags_vht |= flag;
  948         else
  949                 ic->ic_flags_vht &= ~flag;
  950 }
  951 
  952 void
  953 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
  954 {
  955         struct ieee80211com *ic = vap->iv_ic;
  956 
  957         IEEE80211_LOCK(ic);
  958         if (flag < 0) {
  959                 flag = -flag;
  960                 vap->iv_flags_vht &= ~flag;
  961         } else
  962                 vap->iv_flags_vht |= flag;
  963         ieee80211_syncflag_vht_locked(ic, flag);
  964         IEEE80211_UNLOCK(ic);
  965 }
  966 
  967 /*
  968  * Synchronize flags_ext bit state in the com structure
  969  * according to the state of all vap's.  This is used,
  970  * for example, to handle state changes via ioctls.
  971  */
  972 static void
  973 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
  974 {
  975         struct ieee80211vap *vap;
  976         int bit;
  977 
  978         IEEE80211_LOCK_ASSERT(ic);
  979 
  980         bit = 0;
  981         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
  982                 if (vap->iv_flags_ext & flag) {
  983                         bit = 1;
  984                         break;
  985                 }
  986         if (bit)
  987                 ic->ic_flags_ext |= flag;
  988         else
  989                 ic->ic_flags_ext &= ~flag;
  990 }
  991 
  992 void
  993 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
  994 {
  995         struct ieee80211com *ic = vap->iv_ic;
  996 
  997         IEEE80211_LOCK(ic);
  998         if (flag < 0) {
  999                 flag = -flag;
 1000                 vap->iv_flags_ext &= ~flag;
 1001         } else
 1002                 vap->iv_flags_ext |= flag;
 1003         ieee80211_syncflag_ext_locked(ic, flag);
 1004         IEEE80211_UNLOCK(ic);
 1005 }
 1006 
 1007 static __inline int
 1008 mapgsm(u_int freq, u_int flags)
 1009 {
 1010         freq *= 10;
 1011         if (flags & IEEE80211_CHAN_QUARTER)
 1012                 freq += 5;
 1013         else if (flags & IEEE80211_CHAN_HALF)
 1014                 freq += 10;
 1015         else
 1016                 freq += 20;
 1017         /* NB: there is no 907/20 wide but leave room */
 1018         return (freq - 906*10) / 5;
 1019 }
 1020 
 1021 static __inline int
 1022 mappsb(u_int freq, u_int flags)
 1023 {
 1024         return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
 1025 }
 1026 
 1027 /*
 1028  * Convert MHz frequency to IEEE channel number.
 1029  */
 1030 int
 1031 ieee80211_mhz2ieee(u_int freq, u_int flags)
 1032 {
 1033 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
 1034         if (flags & IEEE80211_CHAN_GSM)
 1035                 return mapgsm(freq, flags);
 1036         if (flags & IEEE80211_CHAN_2GHZ) {      /* 2GHz band */
 1037                 if (freq == 2484)
 1038                         return 14;
 1039                 if (freq < 2484)
 1040                         return ((int) freq - 2407) / 5;
 1041                 else
 1042                         return 15 + ((freq - 2512) / 20);
 1043         } else if (flags & IEEE80211_CHAN_5GHZ) {       /* 5Ghz band */
 1044                 if (freq <= 5000) {
 1045                         /* XXX check regdomain? */
 1046                         if (IS_FREQ_IN_PSB(freq))
 1047                                 return mappsb(freq, flags);
 1048                         return (freq - 4000) / 5;
 1049                 } else
 1050                         return (freq - 5000) / 5;
 1051         } else {                                /* either, guess */
 1052                 if (freq == 2484)
 1053                         return 14;
 1054                 if (freq < 2484) {
 1055                         if (907 <= freq && freq <= 922)
 1056                                 return mapgsm(freq, flags);
 1057                         return ((int) freq - 2407) / 5;
 1058                 }
 1059                 if (freq < 5000) {
 1060                         if (IS_FREQ_IN_PSB(freq))
 1061                                 return mappsb(freq, flags);
 1062                         else if (freq > 4900)
 1063                                 return (freq - 4000) / 5;
 1064                         else
 1065                                 return 15 + ((freq - 2512) / 20);
 1066                 }
 1067                 return (freq - 5000) / 5;
 1068         }
 1069 #undef IS_FREQ_IN_PSB
 1070 }
 1071 
 1072 /*
 1073  * Convert channel to IEEE channel number.
 1074  */
 1075 int
 1076 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
 1077 {
 1078         if (c == NULL) {
 1079                 ic_printf(ic, "invalid channel (NULL)\n");
 1080                 return 0;               /* XXX */
 1081         }
 1082         return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
 1083 }
 1084 
 1085 /*
 1086  * Convert IEEE channel number to MHz frequency.
 1087  */
 1088 u_int
 1089 ieee80211_ieee2mhz(u_int chan, u_int flags)
 1090 {
 1091         if (flags & IEEE80211_CHAN_GSM)
 1092                 return 907 + 5 * (chan / 10);
 1093         if (flags & IEEE80211_CHAN_2GHZ) {      /* 2GHz band */
 1094                 if (chan == 14)
 1095                         return 2484;
 1096                 if (chan < 14)
 1097                         return 2407 + chan*5;
 1098                 else
 1099                         return 2512 + ((chan-15)*20);
 1100         } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
 1101                 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
 1102                         chan -= 37;
 1103                         return 4940 + chan*5 + (chan % 5 ? 2 : 0);
 1104                 }
 1105                 return 5000 + (chan*5);
 1106         } else {                                /* either, guess */
 1107                 /* XXX can't distinguish PSB+GSM channels */
 1108                 if (chan == 14)
 1109                         return 2484;
 1110                 if (chan < 14)                  /* 0-13 */
 1111                         return 2407 + chan*5;
 1112                 if (chan < 27)                  /* 15-26 */
 1113                         return 2512 + ((chan-15)*20);
 1114                 return 5000 + (chan*5);
 1115         }
 1116 }
 1117 
 1118 static __inline void
 1119 set_extchan(struct ieee80211_channel *c)
 1120 {
 1121 
 1122         /*
 1123          * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
 1124          * "the secondary channel number shall be 'N + [1,-1] * 4'
 1125          */
 1126         if (c->ic_flags & IEEE80211_CHAN_HT40U)
 1127                 c->ic_extieee = c->ic_ieee + 4;
 1128         else if (c->ic_flags & IEEE80211_CHAN_HT40D)
 1129                 c->ic_extieee = c->ic_ieee - 4;
 1130         else
 1131                 c->ic_extieee = 0;
 1132 }
 1133 
 1134 /*
 1135  * Populate the freq1/freq2 fields as appropriate for VHT channels.
 1136  *
 1137  * This for now uses a hard-coded list of 80MHz wide channels.
 1138  *
 1139  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
 1140  * wide channel we've already decided upon.
 1141  *
 1142  * For VHT80 and VHT160, there are only a small number of fixed
 1143  * 80/160MHz wide channels, so we just use those.
 1144  *
 1145  * This is all likely very very wrong - both the regulatory code
 1146  * and this code needs to ensure that all four channels are
 1147  * available and valid before the VHT80 (and eight for VHT160) channel
 1148  * is created.
 1149  */
 1150 
 1151 struct vht_chan_range {
 1152         uint16_t freq_start;
 1153         uint16_t freq_end;
 1154 };
 1155 
 1156 struct vht_chan_range vht80_chan_ranges[] = {
 1157         { 5170, 5250 },
 1158         { 5250, 5330 },
 1159         { 5490, 5570 },
 1160         { 5570, 5650 },
 1161         { 5650, 5730 },
 1162         { 5735, 5815 },
 1163         { 0, 0 }
 1164 };
 1165 
 1166 struct vht_chan_range vht160_chan_ranges[] = {
 1167         { 5170, 5330 },
 1168         { 5490, 5650 },
 1169         { 0, 0 }
 1170 };
 1171 
 1172 static int
 1173 set_vht_extchan(struct ieee80211_channel *c)
 1174 {
 1175         int i;
 1176 
 1177         if (! IEEE80211_IS_CHAN_VHT(c))
 1178                 return (0);
 1179 
 1180         if (IEEE80211_IS_CHAN_VHT80P80(c)) {
 1181                 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
 1182                     __func__, c->ic_ieee, c->ic_flags);
 1183         }
 1184 
 1185         if (IEEE80211_IS_CHAN_VHT160(c)) {
 1186                 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
 1187                         if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
 1188                             c->ic_freq < vht160_chan_ranges[i].freq_end) {
 1189                                 int midpoint;
 1190 
 1191                                 midpoint = vht160_chan_ranges[i].freq_start + 80;
 1192                                 c->ic_vht_ch_freq1 =
 1193                                     ieee80211_mhz2ieee(midpoint, c->ic_flags);
 1194                                 c->ic_vht_ch_freq2 = 0;
 1195 #if 0
 1196                                 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
 1197                                     __func__, c->ic_ieee, c->ic_freq, midpoint,
 1198                                     c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
 1199 #endif
 1200                                 return (1);
 1201                         }
 1202                 }
 1203                 return (0);
 1204         }
 1205 
 1206         if (IEEE80211_IS_CHAN_VHT80(c)) {
 1207                 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
 1208                         if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
 1209                             c->ic_freq < vht80_chan_ranges[i].freq_end) {
 1210                                 int midpoint;
 1211 
 1212                                 midpoint = vht80_chan_ranges[i].freq_start + 40;
 1213                                 c->ic_vht_ch_freq1 =
 1214                                     ieee80211_mhz2ieee(midpoint, c->ic_flags);
 1215                                 c->ic_vht_ch_freq2 = 0;
 1216 #if 0
 1217                                 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
 1218                                     __func__, c->ic_ieee, c->ic_freq, midpoint,
 1219                                     c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
 1220 #endif
 1221                                 return (1);
 1222                         }
 1223                 }
 1224                 return (0);
 1225         }
 1226 
 1227         if (IEEE80211_IS_CHAN_VHT40(c)) {
 1228                 if (IEEE80211_IS_CHAN_HT40U(c))
 1229                         c->ic_vht_ch_freq1 = c->ic_ieee + 2;
 1230                 else if (IEEE80211_IS_CHAN_HT40D(c))
 1231                         c->ic_vht_ch_freq1 = c->ic_ieee - 2;
 1232                 else
 1233                         return (0);
 1234                 return (1);
 1235         }
 1236 
 1237         if (IEEE80211_IS_CHAN_VHT20(c)) {
 1238                 c->ic_vht_ch_freq1 = c->ic_ieee;
 1239                 return (1);
 1240         }
 1241 
 1242         printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
 1243             __func__, c->ic_ieee, c->ic_flags);
 1244 
 1245         return (0);
 1246 }
 1247 
 1248 /*
 1249  * Return whether the current channel could possibly be a part of
 1250  * a VHT80/VHT160 channel.
 1251  *
 1252  * This doesn't check that the whole range is in the allowed list
 1253  * according to regulatory.
 1254  */
 1255 static bool
 1256 is_vht160_valid_freq(uint16_t freq)
 1257 {
 1258         int i;
 1259 
 1260         for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
 1261                 if (freq >= vht160_chan_ranges[i].freq_start &&
 1262                     freq < vht160_chan_ranges[i].freq_end)
 1263                         return (true);
 1264         }
 1265         return (false);
 1266 }
 1267 
 1268 static int
 1269 is_vht80_valid_freq(uint16_t freq)
 1270 {
 1271         int i;
 1272         for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
 1273                 if (freq >= vht80_chan_ranges[i].freq_start &&
 1274                     freq < vht80_chan_ranges[i].freq_end)
 1275                         return (1);
 1276         }
 1277         return (0);
 1278 }
 1279 
 1280 static int
 1281 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1282     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
 1283 {
 1284         struct ieee80211_channel *c;
 1285 
 1286         if (*nchans >= maxchans)
 1287                 return (ENOBUFS);
 1288 
 1289 #if 0
 1290         printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
 1291             __func__, *nchans, ieee, freq, flags);
 1292 #endif
 1293 
 1294         c = &chans[(*nchans)++];
 1295         c->ic_ieee = ieee;
 1296         c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
 1297         c->ic_maxregpower = maxregpower;
 1298         c->ic_maxpower = 2 * maxregpower;
 1299         c->ic_flags = flags;
 1300         c->ic_vht_ch_freq1 = 0;
 1301         c->ic_vht_ch_freq2 = 0;
 1302         set_extchan(c);
 1303         set_vht_extchan(c);
 1304 
 1305         return (0);
 1306 }
 1307 
 1308 static int
 1309 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1310     uint32_t flags)
 1311 {
 1312         struct ieee80211_channel *c;
 1313 
 1314         KASSERT(*nchans > 0, ("channel list is empty\n"));
 1315 
 1316         if (*nchans >= maxchans)
 1317                 return (ENOBUFS);
 1318 
 1319 #if 0
 1320         printf("%s: %d: flags=0x%08x\n",
 1321             __func__, *nchans, flags);
 1322 #endif
 1323 
 1324         c = &chans[(*nchans)++];
 1325         c[0] = c[-1];
 1326         c->ic_flags = flags;
 1327         c->ic_vht_ch_freq1 = 0;
 1328         c->ic_vht_ch_freq2 = 0;
 1329         set_extchan(c);
 1330         set_vht_extchan(c);
 1331 
 1332         return (0);
 1333 }
 1334 
 1335 /*
 1336  * XXX VHT-2GHz
 1337  */
 1338 static void
 1339 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
 1340 {
 1341         int nmodes;
 1342 
 1343         nmodes = 0;
 1344         if (isset(bands, IEEE80211_MODE_11B))
 1345                 flags[nmodes++] = IEEE80211_CHAN_B;
 1346         if (isset(bands, IEEE80211_MODE_11G))
 1347                 flags[nmodes++] = IEEE80211_CHAN_G;
 1348         if (isset(bands, IEEE80211_MODE_11NG))
 1349                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
 1350         if (cbw_flags & NET80211_CBW_FLAG_HT40) {
 1351                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
 1352                 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
 1353         }
 1354         flags[nmodes] = 0;
 1355 }
 1356 
 1357 static void
 1358 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
 1359 {
 1360         int nmodes;
 1361 
 1362         /*
 1363          * The addchan_list() function seems to expect the flags array to
 1364          * be in channel width order, so the VHT bits are interspersed
 1365          * as appropriate to maintain said order.
 1366          *
 1367          * It also assumes HT40U is before HT40D.
 1368          */
 1369         nmodes = 0;
 1370 
 1371         /* 20MHz */
 1372         if (isset(bands, IEEE80211_MODE_11A))
 1373                 flags[nmodes++] = IEEE80211_CHAN_A;
 1374         if (isset(bands, IEEE80211_MODE_11NA))
 1375                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
 1376         if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1377                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
 1378                     IEEE80211_CHAN_VHT20;
 1379         }
 1380 
 1381         /* 40MHz */
 1382         if (cbw_flags & NET80211_CBW_FLAG_HT40)
 1383                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
 1384         if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
 1385             isset(bands, IEEE80211_MODE_VHT_5GHZ))
 1386                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
 1387                     IEEE80211_CHAN_VHT40U;
 1388         if (cbw_flags & NET80211_CBW_FLAG_HT40)
 1389                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
 1390         if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
 1391             isset(bands, IEEE80211_MODE_VHT_5GHZ))
 1392                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
 1393                     IEEE80211_CHAN_VHT40D;
 1394 
 1395         /* 80MHz */
 1396         if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
 1397             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1398                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
 1399                     IEEE80211_CHAN_VHT80;
 1400                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
 1401                     IEEE80211_CHAN_VHT80;
 1402         }
 1403 
 1404         /* VHT160 */
 1405         if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
 1406             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1407                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
 1408                     IEEE80211_CHAN_VHT160;
 1409                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
 1410                     IEEE80211_CHAN_VHT160;
 1411         }
 1412 
 1413         /* VHT80+80 */
 1414         if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
 1415             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1416                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
 1417                     IEEE80211_CHAN_VHT80P80;
 1418                 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
 1419                     IEEE80211_CHAN_VHT80P80;
 1420         }
 1421 
 1422         flags[nmodes] = 0;
 1423 }
 1424 
 1425 static void
 1426 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
 1427 {
 1428 
 1429         flags[0] = 0;
 1430         if (isset(bands, IEEE80211_MODE_11A) ||
 1431             isset(bands, IEEE80211_MODE_11NA) ||
 1432             isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
 1433                 if (isset(bands, IEEE80211_MODE_11B) ||
 1434                     isset(bands, IEEE80211_MODE_11G) ||
 1435                     isset(bands, IEEE80211_MODE_11NG) ||
 1436                     isset(bands, IEEE80211_MODE_VHT_2GHZ))
 1437                         return;
 1438 
 1439                 getflags_5ghz(bands, flags, cbw_flags);
 1440         } else
 1441                 getflags_2ghz(bands, flags, cbw_flags);
 1442 }
 1443 
 1444 /*
 1445  * Add one 20 MHz channel into specified channel list.
 1446  * You MUST NOT mix bands when calling this.  It will not add 5ghz
 1447  * channels if you have any B/G/N band bit set.
 1448  * The _cbw() variant does also support HT40/VHT80/160/80+80.
 1449  */
 1450 int
 1451 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
 1452     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
 1453     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
 1454 {
 1455         uint32_t flags[IEEE80211_MODE_MAX];
 1456         int i, error;
 1457 
 1458         getflags(bands, flags, cbw_flags);
 1459         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1460 
 1461         error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
 1462             flags[0] | chan_flags);
 1463         for (i = 1; flags[i] != 0 && error == 0; i++) {
 1464                 error = copychan_prev(chans, maxchans, nchans,
 1465                     flags[i] | chan_flags);
 1466         }
 1467 
 1468         return (error);
 1469 }
 1470 
 1471 int
 1472 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
 1473     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
 1474     uint32_t chan_flags, const uint8_t bands[])
 1475 {
 1476 
 1477         return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
 1478             maxregpower, chan_flags, bands, 0));
 1479 }
 1480 
 1481 static struct ieee80211_channel *
 1482 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
 1483     uint32_t flags)
 1484 {
 1485         struct ieee80211_channel *c;
 1486         int i;
 1487 
 1488         flags &= IEEE80211_CHAN_ALLTURBO;
 1489         /* brute force search */
 1490         for (i = 0; i < nchans; i++) {
 1491                 c = &chans[i];
 1492                 if (c->ic_freq == freq &&
 1493                     (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1494                         return c;
 1495         }
 1496         return NULL;
 1497 }
 1498 
 1499 /*
 1500  * Add 40 MHz channel pair into specified channel list.
 1501  */
 1502 /* XXX VHT */
 1503 int
 1504 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
 1505     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
 1506 {
 1507         struct ieee80211_channel *cent, *extc;
 1508         uint16_t freq;
 1509         int error;
 1510 
 1511         freq = ieee80211_ieee2mhz(ieee, flags);
 1512 
 1513         /*
 1514          * Each entry defines an HT40 channel pair; find the
 1515          * center channel, then the extension channel above.
 1516          */
 1517         flags |= IEEE80211_CHAN_HT20;
 1518         cent = findchannel(chans, *nchans, freq, flags);
 1519         if (cent == NULL)
 1520                 return (EINVAL);
 1521 
 1522         extc = findchannel(chans, *nchans, freq + 20, flags);
 1523         if (extc == NULL)
 1524                 return (ENOENT);
 1525 
 1526         flags &= ~IEEE80211_CHAN_HT;
 1527         error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
 1528             maxregpower, flags | IEEE80211_CHAN_HT40U);
 1529         if (error != 0)
 1530                 return (error);
 1531 
 1532         error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
 1533             maxregpower, flags | IEEE80211_CHAN_HT40D);
 1534 
 1535         return (error);
 1536 }
 1537 
 1538 /*
 1539  * Fetch the center frequency for the primary channel.
 1540  */
 1541 uint32_t
 1542 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
 1543 {
 1544 
 1545         return (c->ic_freq);
 1546 }
 1547 
 1548 /*
 1549  * Fetch the center frequency for the primary BAND channel.
 1550  *
 1551  * For 5, 10, 20MHz channels it'll be the normally configured channel
 1552  * frequency.
 1553  *
 1554  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
 1555  * wide channel, not the centre of the primary channel (that's ic_freq).
 1556  *
 1557  * For 80+80MHz channels this will be the centre of the primary
 1558  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
 1559  */
 1560 uint32_t
 1561 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
 1562 {
 1563 
 1564         /*
 1565          * VHT - use the pre-calculated centre frequency
 1566          * of the given channel.
 1567          */
 1568         if (IEEE80211_IS_CHAN_VHT(c))
 1569                 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
 1570 
 1571         if (IEEE80211_IS_CHAN_HT40U(c)) {
 1572                 return (c->ic_freq + 10);
 1573         }
 1574         if (IEEE80211_IS_CHAN_HT40D(c)) {
 1575                 return (c->ic_freq - 10);
 1576         }
 1577 
 1578         return (c->ic_freq);
 1579 }
 1580 
 1581 /*
 1582  * For now, no 80+80 support; it will likely always return 0.
 1583  */
 1584 uint32_t
 1585 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
 1586 {
 1587 
 1588         if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
 1589                 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
 1590 
 1591         return (0);
 1592 }
 1593 
 1594 /*
 1595  * Adds channels into specified channel list (ieee[] array must be sorted).
 1596  * Channels are already sorted.
 1597  */
 1598 static int
 1599 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
 1600     const uint8_t ieee[], int nieee, uint32_t flags[])
 1601 {
 1602         uint16_t freq;
 1603         int i, j, error;
 1604         int is_vht;
 1605 
 1606         for (i = 0; i < nieee; i++) {
 1607                 freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
 1608                 for (j = 0; flags[j] != 0; j++) {
 1609                         /*
 1610                          * Notes:
 1611                          * + HT40 and VHT40 channels occur together, so
 1612                          *   we need to be careful that we actually allow that.
 1613                          * + VHT80, VHT160 will coexist with HT40/VHT40, so
 1614                          *   make sure it's not skipped because of the overlap
 1615                          *   check used for (V)HT40.
 1616                          */
 1617                         is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
 1618 
 1619                         /* XXX TODO FIXME VHT80P80. */
 1620 
 1621                         /* Test for VHT160 analogue to the VHT80 below. */
 1622                         if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
 1623                                 if (! is_vht160_valid_freq(freq))
 1624                                         continue;
 1625 
 1626                         /*
 1627                          * Test for VHT80.
 1628                          * XXX This is all very broken right now.
 1629                          * What we /should/ do is:
 1630                          *
 1631                          * + check that the frequency is in the list of
 1632                          *   allowed VHT80 ranges; and
 1633                          * + the other 3 channels in the list are actually
 1634                          *   also available.
 1635                          */
 1636                         if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
 1637                                 if (! is_vht80_valid_freq(freq))
 1638                                         continue;
 1639 
 1640                         /*
 1641                          * Test for (V)HT40.
 1642                          *
 1643                          * This is also a fall through from VHT80; as we only
 1644                          * allow a VHT80 channel if the VHT40 combination is
 1645                          * also valid.  If the VHT40 form is not valid then
 1646                          * we certainly can't do VHT80..
 1647                          */
 1648                         if (flags[j] & IEEE80211_CHAN_HT40D)
 1649                                 /*
 1650                                  * Can't have a "lower" channel if we are the
 1651                                  * first channel.
 1652                                  *
 1653                                  * Can't have a "lower" channel if it's below/
 1654                                  * within 20MHz of the first channel.
 1655                                  *
 1656                                  * Can't have a "lower" channel if the channel
 1657                                  * below it is not 20MHz away.
 1658                                  */
 1659                                 if (i == 0 || ieee[i] < ieee[0] + 4 ||
 1660                                     freq - 20 !=
 1661                                     ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
 1662                                         continue;
 1663                         if (flags[j] & IEEE80211_CHAN_HT40U)
 1664                                 /*
 1665                                  * Can't have an "upper" channel if we are
 1666                                  * the last channel.
 1667                                  *
 1668                                  * Can't have an "upper" channel be above the
 1669                                  * last channel in the list.
 1670                                  *
 1671                                  * Can't have an "upper" channel if the next
 1672                                  * channel according to the math isn't 20MHz
 1673                                  * away.  (Likely for channel 13/14.)
 1674                                  */
 1675                                 if (i == nieee - 1 ||
 1676                                     ieee[i] + 4 > ieee[nieee - 1] ||
 1677                                     freq + 20 !=
 1678                                     ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
 1679                                         continue;
 1680 
 1681                         if (j == 0) {
 1682                                 error = addchan(chans, maxchans, nchans,
 1683                                     ieee[i], freq, 0, flags[j]);
 1684                         } else {
 1685                                 error = copychan_prev(chans, maxchans, nchans,
 1686                                     flags[j]);
 1687                         }
 1688                         if (error != 0)
 1689                                 return (error);
 1690                 }
 1691         }
 1692 
 1693         return (0);
 1694 }
 1695 
 1696 int
 1697 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
 1698     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
 1699     int cbw_flags)
 1700 {
 1701         uint32_t flags[IEEE80211_MODE_MAX];
 1702 
 1703         /* XXX no VHT for now */
 1704         getflags_2ghz(bands, flags, cbw_flags);
 1705         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1706 
 1707         return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
 1708 }
 1709 
 1710 int
 1711 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
 1712     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
 1713 {
 1714         const uint8_t default_chan_list[] =
 1715             { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
 1716 
 1717         return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
 1718             default_chan_list, nitems(default_chan_list), bands, cbw_flags));
 1719 }
 1720 
 1721 int
 1722 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
 1723     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
 1724     int cbw_flags)
 1725 {
 1726         /*
 1727          * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
 1728          * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
 1729          */
 1730         uint32_t flags[2 * IEEE80211_MODE_MAX];
 1731 
 1732         getflags_5ghz(bands, flags, cbw_flags);
 1733         KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
 1734 
 1735         return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
 1736 }
 1737 
 1738 /*
 1739  * Locate a channel given a frequency+flags.  We cache
 1740  * the previous lookup to optimize switching between two
 1741  * channels--as happens with dynamic turbo.
 1742  */
 1743 struct ieee80211_channel *
 1744 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
 1745 {
 1746         struct ieee80211_channel *c;
 1747 
 1748         flags &= IEEE80211_CHAN_ALLTURBO;
 1749         c = ic->ic_prevchan;
 1750         if (c != NULL && c->ic_freq == freq &&
 1751             (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1752                 return c;
 1753         /* brute force search */
 1754         return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
 1755 }
 1756 
 1757 /*
 1758  * Locate a channel given a channel number+flags.  We cache
 1759  * the previous lookup to optimize switching between two
 1760  * channels--as happens with dynamic turbo.
 1761  */
 1762 struct ieee80211_channel *
 1763 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
 1764 {
 1765         struct ieee80211_channel *c;
 1766         int i;
 1767 
 1768         flags &= IEEE80211_CHAN_ALLTURBO;
 1769         c = ic->ic_prevchan;
 1770         if (c != NULL && c->ic_ieee == ieee &&
 1771             (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1772                 return c;
 1773         /* brute force search */
 1774         for (i = 0; i < ic->ic_nchans; i++) {
 1775                 c = &ic->ic_channels[i];
 1776                 if (c->ic_ieee == ieee &&
 1777                     (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
 1778                         return c;
 1779         }
 1780         return NULL;
 1781 }
 1782 
 1783 /*
 1784  * Lookup a channel suitable for the given rx status.
 1785  *
 1786  * This is used to find a channel for a frame (eg beacon, probe
 1787  * response) based purely on the received PHY information.
 1788  *
 1789  * For now it tries to do it based on R_FREQ / R_IEEE.
 1790  * This is enough for 11bg and 11a (and thus 11ng/11na)
 1791  * but it will not be enough for GSM, PSB channels and the
 1792  * like.  It also doesn't know about legacy-turbog and
 1793  * legacy-turbo modes, which some offload NICs actually
 1794  * support in weird ways.
 1795  *
 1796  * Takes the ic and rxstatus; returns the channel or NULL
 1797  * if not found.
 1798  *
 1799  * XXX TODO: Add support for that when the need arises.
 1800  */
 1801 struct ieee80211_channel *
 1802 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
 1803     const struct ieee80211_rx_stats *rxs)
 1804 {
 1805         struct ieee80211com *ic = vap->iv_ic;
 1806         uint32_t flags;
 1807         struct ieee80211_channel *c;
 1808 
 1809         if (rxs == NULL)
 1810                 return (NULL);
 1811 
 1812         /*
 1813          * Strictly speaking we only use freq for now,
 1814          * however later on we may wish to just store
 1815          * the ieee for verification.
 1816          */
 1817         if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
 1818                 return (NULL);
 1819         if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
 1820                 return (NULL);
 1821 
 1822         /*
 1823          * If the rx status contains a valid ieee/freq, then
 1824          * ensure we populate the correct channel information
 1825          * in rxchan before passing it up to the scan infrastructure.
 1826          * Offload NICs will pass up beacons from all channels
 1827          * during background scans.
 1828          */
 1829 
 1830         /* Determine a band */
 1831         /* XXX should be done by the driver? */
 1832         if (rxs->c_freq < 3000) {
 1833                 flags = IEEE80211_CHAN_G;
 1834         } else {
 1835                 flags = IEEE80211_CHAN_A;
 1836         }
 1837 
 1838         /* Channel lookup */
 1839         c = ieee80211_find_channel(ic, rxs->c_freq, flags);
 1840 
 1841         IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
 1842             "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
 1843             __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
 1844 
 1845         return (c);
 1846 }
 1847 
 1848 static void
 1849 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
 1850 {
 1851 #define ADD(_ic, _s, _o) \
 1852         ifmedia_add(media, \
 1853                 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
 1854         static const u_int mopts[IEEE80211_MODE_MAX] = {
 1855             [IEEE80211_MODE_AUTO]       = IFM_AUTO,
 1856             [IEEE80211_MODE_11A]        = IFM_IEEE80211_11A,
 1857             [IEEE80211_MODE_11B]        = IFM_IEEE80211_11B,
 1858             [IEEE80211_MODE_11G]        = IFM_IEEE80211_11G,
 1859             [IEEE80211_MODE_FH]         = IFM_IEEE80211_FH,
 1860             [IEEE80211_MODE_TURBO_A]    = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
 1861             [IEEE80211_MODE_TURBO_G]    = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
 1862             [IEEE80211_MODE_STURBO_A]   = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
 1863             [IEEE80211_MODE_HALF]       = IFM_IEEE80211_11A,    /* XXX */
 1864             [IEEE80211_MODE_QUARTER]    = IFM_IEEE80211_11A,    /* XXX */
 1865             [IEEE80211_MODE_11NA]       = IFM_IEEE80211_11NA,
 1866             [IEEE80211_MODE_11NG]       = IFM_IEEE80211_11NG,
 1867             [IEEE80211_MODE_VHT_2GHZ]   = IFM_IEEE80211_VHT2G,
 1868             [IEEE80211_MODE_VHT_5GHZ]   = IFM_IEEE80211_VHT5G,
 1869         };
 1870         u_int mopt;
 1871 
 1872         mopt = mopts[mode];
 1873         if (addsta)
 1874                 ADD(ic, mword, mopt);   /* STA mode has no cap */
 1875         if (caps & IEEE80211_C_IBSS)
 1876                 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
 1877         if (caps & IEEE80211_C_HOSTAP)
 1878                 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
 1879         if (caps & IEEE80211_C_AHDEMO)
 1880                 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
 1881         if (caps & IEEE80211_C_MONITOR)
 1882                 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
 1883         if (caps & IEEE80211_C_WDS)
 1884                 ADD(media, mword, mopt | IFM_IEEE80211_WDS);
 1885         if (caps & IEEE80211_C_MBSS)
 1886                 ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
 1887 #undef ADD
 1888 }
 1889 
 1890 /*
 1891  * Setup the media data structures according to the channel and
 1892  * rate tables.
 1893  */
 1894 static int
 1895 ieee80211_media_setup(struct ieee80211com *ic,
 1896         struct ifmedia *media, int caps, int addsta,
 1897         ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
 1898 {
 1899         int i, j, rate, maxrate, mword, r;
 1900         enum ieee80211_phymode mode;
 1901         const struct ieee80211_rateset *rs;
 1902         struct ieee80211_rateset allrates;
 1903 
 1904         /*
 1905          * Fill in media characteristics.
 1906          */
 1907         ifmedia_init(media, 0, media_change, media_stat);
 1908         maxrate = 0;
 1909         /*
 1910          * Add media for legacy operating modes.
 1911          */
 1912         memset(&allrates, 0, sizeof(allrates));
 1913         for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
 1914                 if (isclr(ic->ic_modecaps, mode))
 1915                         continue;
 1916                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 1917                 if (mode == IEEE80211_MODE_AUTO)
 1918                         continue;
 1919                 rs = &ic->ic_sup_rates[mode];
 1920                 for (i = 0; i < rs->rs_nrates; i++) {
 1921                         rate = rs->rs_rates[i];
 1922                         mword = ieee80211_rate2media(ic, rate, mode);
 1923                         if (mword == 0)
 1924                                 continue;
 1925                         addmedia(media, caps, addsta, mode, mword);
 1926                         /*
 1927                          * Add legacy rate to the collection of all rates.
 1928                          */
 1929                         r = rate & IEEE80211_RATE_VAL;
 1930                         for (j = 0; j < allrates.rs_nrates; j++)
 1931                                 if (allrates.rs_rates[j] == r)
 1932                                         break;
 1933                         if (j == allrates.rs_nrates) {
 1934                                 /* unique, add to the set */
 1935                                 allrates.rs_rates[j] = r;
 1936                                 allrates.rs_nrates++;
 1937                         }
 1938                         rate = (rate & IEEE80211_RATE_VAL) / 2;
 1939                         if (rate > maxrate)
 1940                                 maxrate = rate;
 1941                 }
 1942         }
 1943         for (i = 0; i < allrates.rs_nrates; i++) {
 1944                 mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
 1945                                 IEEE80211_MODE_AUTO);
 1946                 if (mword == 0)
 1947                         continue;
 1948                 /* NB: remove media options from mword */
 1949                 addmedia(media, caps, addsta,
 1950                     IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
 1951         }
 1952         /*
 1953          * Add HT/11n media.  Note that we do not have enough
 1954          * bits in the media subtype to express the MCS so we
 1955          * use a "placeholder" media subtype and any fixed MCS
 1956          * must be specified with a different mechanism.
 1957          */
 1958         for (; mode <= IEEE80211_MODE_11NG; mode++) {
 1959                 if (isclr(ic->ic_modecaps, mode))
 1960                         continue;
 1961                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 1962                 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
 1963         }
 1964         if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
 1965             isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
 1966                 addmedia(media, caps, addsta,
 1967                     IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
 1968                 i = ic->ic_txstream * 8 - 1;
 1969                 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
 1970                     (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
 1971                         rate = ieee80211_htrates[i].ht40_rate_400ns;
 1972                 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
 1973                         rate = ieee80211_htrates[i].ht40_rate_800ns;
 1974                 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
 1975                         rate = ieee80211_htrates[i].ht20_rate_400ns;
 1976                 else
 1977                         rate = ieee80211_htrates[i].ht20_rate_800ns;
 1978                 if (rate > maxrate)
 1979                         maxrate = rate;
 1980         }
 1981 
 1982         /*
 1983          * Add VHT media.
 1984          * XXX-BZ skip "VHT_2GHZ" for now.
 1985          */
 1986         for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
 1987             mode++) {
 1988                 if (isclr(ic->ic_modecaps, mode))
 1989                         continue;
 1990                 addmedia(media, caps, addsta, mode, IFM_AUTO);
 1991                 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
 1992         }
 1993         if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
 1994                addmedia(media, caps, addsta,
 1995                    IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
 1996 
 1997                 /* XXX TODO: VHT maxrate */
 1998         }
 1999 
 2000         return maxrate;
 2001 }
 2002 
 2003 /* XXX inline or eliminate? */
 2004 const struct ieee80211_rateset *
 2005 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
 2006 {
 2007         /* XXX does this work for 11ng basic rates? */
 2008         return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
 2009 }
 2010 
 2011 /* XXX inline or eliminate? */
 2012 const struct ieee80211_htrateset *
 2013 ieee80211_get_suphtrates(struct ieee80211com *ic,
 2014     const struct ieee80211_channel *c)
 2015 {
 2016         return &ic->ic_sup_htrates;
 2017 }
 2018 
 2019 void
 2020 ieee80211_announce(struct ieee80211com *ic)
 2021 {
 2022         int i, rate, mword;
 2023         enum ieee80211_phymode mode;
 2024         const struct ieee80211_rateset *rs;
 2025 
 2026         /* NB: skip AUTO since it has no rates */
 2027         for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
 2028                 if (isclr(ic->ic_modecaps, mode))
 2029                         continue;
 2030                 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
 2031                 rs = &ic->ic_sup_rates[mode];
 2032                 for (i = 0; i < rs->rs_nrates; i++) {
 2033                         mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
 2034                         if (mword == 0)
 2035                                 continue;
 2036                         rate = ieee80211_media2rate(mword);
 2037                         printf("%s%d%sMbps", (i != 0 ? " " : ""),
 2038                             rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
 2039                 }
 2040                 printf("\n");
 2041         }
 2042         ieee80211_ht_announce(ic);
 2043         ieee80211_vht_announce(ic);
 2044 }
 2045 
 2046 void
 2047 ieee80211_announce_channels(struct ieee80211com *ic)
 2048 {
 2049         const struct ieee80211_channel *c;
 2050         char type;
 2051         int i, cw;
 2052 
 2053         printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
 2054         for (i = 0; i < ic->ic_nchans; i++) {
 2055                 c = &ic->ic_channels[i];
 2056                 if (IEEE80211_IS_CHAN_ST(c))
 2057                         type = 'S';
 2058                 else if (IEEE80211_IS_CHAN_108A(c))
 2059                         type = 'T';
 2060                 else if (IEEE80211_IS_CHAN_108G(c))
 2061                         type = 'G';
 2062                 else if (IEEE80211_IS_CHAN_HT(c))
 2063                         type = 'n';
 2064                 else if (IEEE80211_IS_CHAN_A(c))
 2065                         type = 'a';
 2066                 else if (IEEE80211_IS_CHAN_ANYG(c))
 2067                         type = 'g';
 2068                 else if (IEEE80211_IS_CHAN_B(c))
 2069                         type = 'b';
 2070                 else
 2071                         type = 'f';
 2072                 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
 2073                         cw = 40;
 2074                 else if (IEEE80211_IS_CHAN_HALF(c))
 2075                         cw = 10;
 2076                 else if (IEEE80211_IS_CHAN_QUARTER(c))
 2077                         cw = 5;
 2078                 else
 2079                         cw = 20;
 2080                 printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
 2081                         , c->ic_ieee, c->ic_freq, type
 2082                         , cw
 2083                         , IEEE80211_IS_CHAN_HT40U(c) ? '+' :
 2084                           IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
 2085                         , c->ic_maxregpower
 2086                         , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
 2087                         , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
 2088                 );
 2089         }
 2090 }
 2091 
 2092 static int
 2093 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
 2094 {
 2095         switch (IFM_MODE(ime->ifm_media)) {
 2096         case IFM_IEEE80211_11A:
 2097                 *mode = IEEE80211_MODE_11A;
 2098                 break;
 2099         case IFM_IEEE80211_11B:
 2100                 *mode = IEEE80211_MODE_11B;
 2101                 break;
 2102         case IFM_IEEE80211_11G:
 2103                 *mode = IEEE80211_MODE_11G;
 2104                 break;
 2105         case IFM_IEEE80211_FH:
 2106                 *mode = IEEE80211_MODE_FH;
 2107                 break;
 2108         case IFM_IEEE80211_11NA:
 2109                 *mode = IEEE80211_MODE_11NA;
 2110                 break;
 2111         case IFM_IEEE80211_11NG:
 2112                 *mode = IEEE80211_MODE_11NG;
 2113                 break;
 2114         case IFM_IEEE80211_VHT2G:
 2115                 *mode = IEEE80211_MODE_VHT_2GHZ;
 2116                 break;
 2117         case IFM_IEEE80211_VHT5G:
 2118                 *mode = IEEE80211_MODE_VHT_5GHZ;
 2119                 break;
 2120         case IFM_AUTO:
 2121                 *mode = IEEE80211_MODE_AUTO;
 2122                 break;
 2123         default:
 2124                 return 0;
 2125         }
 2126         /*
 2127          * Turbo mode is an ``option''.
 2128          * XXX does not apply to AUTO
 2129          */
 2130         if (ime->ifm_media & IFM_IEEE80211_TURBO) {
 2131                 if (*mode == IEEE80211_MODE_11A) {
 2132                         if (flags & IEEE80211_F_TURBOP)
 2133                                 *mode = IEEE80211_MODE_TURBO_A;
 2134                         else
 2135                                 *mode = IEEE80211_MODE_STURBO_A;
 2136                 } else if (*mode == IEEE80211_MODE_11G)
 2137                         *mode = IEEE80211_MODE_TURBO_G;
 2138                 else
 2139                         return 0;
 2140         }
 2141         /* XXX HT40 +/- */
 2142         return 1;
 2143 }
 2144 
 2145 /*
 2146  * Handle a media change request on the vap interface.
 2147  */
 2148 int
 2149 ieee80211_media_change(struct ifnet *ifp)
 2150 {
 2151         struct ieee80211vap *vap = ifp->if_softc;
 2152         struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
 2153         uint16_t newmode;
 2154 
 2155         if (!media2mode(ime, vap->iv_flags, &newmode))
 2156                 return EINVAL;
 2157         if (vap->iv_des_mode != newmode) {
 2158                 vap->iv_des_mode = newmode;
 2159                 /* XXX kick state machine if up+running */
 2160         }
 2161         return 0;
 2162 }
 2163 
 2164 /*
 2165  * Common code to calculate the media status word
 2166  * from the operating mode and channel state.
 2167  */
 2168 static int
 2169 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
 2170 {
 2171         int status;
 2172 
 2173         status = IFM_IEEE80211;
 2174         switch (opmode) {
 2175         case IEEE80211_M_STA:
 2176                 break;
 2177         case IEEE80211_M_IBSS:
 2178                 status |= IFM_IEEE80211_ADHOC;
 2179                 break;
 2180         case IEEE80211_M_HOSTAP:
 2181                 status |= IFM_IEEE80211_HOSTAP;
 2182                 break;
 2183         case IEEE80211_M_MONITOR:
 2184                 status |= IFM_IEEE80211_MONITOR;
 2185                 break;
 2186         case IEEE80211_M_AHDEMO:
 2187                 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
 2188                 break;
 2189         case IEEE80211_M_WDS:
 2190                 status |= IFM_IEEE80211_WDS;
 2191                 break;
 2192         case IEEE80211_M_MBSS:
 2193                 status |= IFM_IEEE80211_MBSS;
 2194                 break;
 2195         }
 2196         if (IEEE80211_IS_CHAN_HTA(chan)) {
 2197                 status |= IFM_IEEE80211_11NA;
 2198         } else if (IEEE80211_IS_CHAN_HTG(chan)) {
 2199                 status |= IFM_IEEE80211_11NG;
 2200         } else if (IEEE80211_IS_CHAN_A(chan)) {
 2201                 status |= IFM_IEEE80211_11A;
 2202         } else if (IEEE80211_IS_CHAN_B(chan)) {
 2203                 status |= IFM_IEEE80211_11B;
 2204         } else if (IEEE80211_IS_CHAN_ANYG(chan)) {
 2205                 status |= IFM_IEEE80211_11G;
 2206         } else if (IEEE80211_IS_CHAN_FHSS(chan)) {
 2207                 status |= IFM_IEEE80211_FH;
 2208         }
 2209         /* XXX else complain? */
 2210 
 2211         if (IEEE80211_IS_CHAN_TURBO(chan))
 2212                 status |= IFM_IEEE80211_TURBO;
 2213 #if 0
 2214         if (IEEE80211_IS_CHAN_HT20(chan))
 2215                 status |= IFM_IEEE80211_HT20;
 2216         if (IEEE80211_IS_CHAN_HT40(chan))
 2217                 status |= IFM_IEEE80211_HT40;
 2218 #endif
 2219         return status;
 2220 }
 2221 
 2222 void
 2223 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
 2224 {
 2225         struct ieee80211vap *vap = ifp->if_softc;
 2226         struct ieee80211com *ic = vap->iv_ic;
 2227         enum ieee80211_phymode mode;
 2228 
 2229         imr->ifm_status = IFM_AVALID;
 2230         /*
 2231          * NB: use the current channel's mode to lock down a xmit
 2232          * rate only when running; otherwise we may have a mismatch
 2233          * in which case the rate will not be convertible.
 2234          */
 2235         if (vap->iv_state == IEEE80211_S_RUN ||
 2236             vap->iv_state == IEEE80211_S_SLEEP) {
 2237                 imr->ifm_status |= IFM_ACTIVE;
 2238                 mode = ieee80211_chan2mode(ic->ic_curchan);
 2239         } else
 2240                 mode = IEEE80211_MODE_AUTO;
 2241         imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
 2242         /*
 2243          * Calculate a current rate if possible.
 2244          */
 2245         if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
 2246                 /*
 2247                  * A fixed rate is set, report that.
 2248                  */
 2249                 imr->ifm_active |= ieee80211_rate2media(ic,
 2250                         vap->iv_txparms[mode].ucastrate, mode);
 2251         } else if (vap->iv_opmode == IEEE80211_M_STA) {
 2252                 /*
 2253                  * In station mode report the current transmit rate.
 2254                  */
 2255                 imr->ifm_active |= ieee80211_rate2media(ic,
 2256                         vap->iv_bss->ni_txrate, mode);
 2257         } else
 2258                 imr->ifm_active |= IFM_AUTO;
 2259         if (imr->ifm_status & IFM_ACTIVE)
 2260                 imr->ifm_current = imr->ifm_active;
 2261 }
 2262 
 2263 /*
 2264  * Set the current phy mode and recalculate the active channel
 2265  * set based on the available channels for this mode.  Also
 2266  * select a new default/current channel if the current one is
 2267  * inappropriate for this mode.
 2268  */
 2269 int
 2270 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
 2271 {
 2272         /*
 2273          * Adjust basic rates in 11b/11g supported rate set.
 2274          * Note that if operating on a hal/quarter rate channel
 2275          * this is a noop as those rates sets are different
 2276          * and used instead.
 2277          */
 2278         if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
 2279                 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
 2280 
 2281         ic->ic_curmode = mode;
 2282         ieee80211_reset_erp(ic);        /* reset global ERP state */
 2283 
 2284         return 0;
 2285 }
 2286 
 2287 /*
 2288  * Return the phy mode for with the specified channel.
 2289  */
 2290 enum ieee80211_phymode
 2291 ieee80211_chan2mode(const struct ieee80211_channel *chan)
 2292 {
 2293 
 2294         if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
 2295                 return IEEE80211_MODE_VHT_2GHZ;
 2296         else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
 2297                 return IEEE80211_MODE_VHT_5GHZ;
 2298         else if (IEEE80211_IS_CHAN_HTA(chan))
 2299                 return IEEE80211_MODE_11NA;
 2300         else if (IEEE80211_IS_CHAN_HTG(chan))
 2301                 return IEEE80211_MODE_11NG;
 2302         else if (IEEE80211_IS_CHAN_108G(chan))
 2303                 return IEEE80211_MODE_TURBO_G;
 2304         else if (IEEE80211_IS_CHAN_ST(chan))
 2305                 return IEEE80211_MODE_STURBO_A;
 2306         else if (IEEE80211_IS_CHAN_TURBO(chan))
 2307                 return IEEE80211_MODE_TURBO_A;
 2308         else if (IEEE80211_IS_CHAN_HALF(chan))
 2309                 return IEEE80211_MODE_HALF;
 2310         else if (IEEE80211_IS_CHAN_QUARTER(chan))
 2311                 return IEEE80211_MODE_QUARTER;
 2312         else if (IEEE80211_IS_CHAN_A(chan))
 2313                 return IEEE80211_MODE_11A;
 2314         else if (IEEE80211_IS_CHAN_ANYG(chan))
 2315                 return IEEE80211_MODE_11G;
 2316         else if (IEEE80211_IS_CHAN_B(chan))
 2317                 return IEEE80211_MODE_11B;
 2318         else if (IEEE80211_IS_CHAN_FHSS(chan))
 2319                 return IEEE80211_MODE_FH;
 2320 
 2321         /* NB: should not get here */
 2322         printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
 2323                 __func__, chan->ic_freq, chan->ic_flags);
 2324         return IEEE80211_MODE_11B;
 2325 }
 2326 
 2327 struct ratemedia {
 2328         u_int   match;  /* rate + mode */
 2329         u_int   media;  /* if_media rate */
 2330 };
 2331 
 2332 static int
 2333 findmedia(const struct ratemedia rates[], int n, u_int match)
 2334 {
 2335         int i;
 2336 
 2337         for (i = 0; i < n; i++)
 2338                 if (rates[i].match == match)
 2339                         return rates[i].media;
 2340         return IFM_AUTO;
 2341 }
 2342 
 2343 /*
 2344  * Convert IEEE80211 rate value to ifmedia subtype.
 2345  * Rate is either a legacy rate in units of 0.5Mbps
 2346  * or an MCS index.
 2347  */
 2348 int
 2349 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
 2350 {
 2351         static const struct ratemedia rates[] = {
 2352                 {   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
 2353                 {   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
 2354                 {   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
 2355                 {   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
 2356                 {  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
 2357                 {  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
 2358                 {  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
 2359                 {  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
 2360                 {  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
 2361                 {  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
 2362                 {  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
 2363                 {  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
 2364                 {  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
 2365                 {  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
 2366                 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
 2367                 {   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
 2368                 {   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
 2369                 {  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
 2370                 {  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
 2371                 {  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
 2372                 {  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
 2373                 {  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
 2374                 {  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
 2375                 {  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
 2376                 {  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
 2377                 {  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
 2378                 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
 2379                 {   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
 2380                 {   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
 2381                 {  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
 2382                 /* NB: OFDM72 doesn't really exist so we don't handle it */
 2383         };
 2384         static const struct ratemedia htrates[] = {
 2385                 {   0, IFM_IEEE80211_MCS },
 2386                 {   1, IFM_IEEE80211_MCS },
 2387                 {   2, IFM_IEEE80211_MCS },
 2388                 {   3, IFM_IEEE80211_MCS },
 2389                 {   4, IFM_IEEE80211_MCS },
 2390                 {   5, IFM_IEEE80211_MCS },
 2391                 {   6, IFM_IEEE80211_MCS },
 2392                 {   7, IFM_IEEE80211_MCS },
 2393                 {   8, IFM_IEEE80211_MCS },
 2394                 {   9, IFM_IEEE80211_MCS },
 2395                 {  10, IFM_IEEE80211_MCS },
 2396                 {  11, IFM_IEEE80211_MCS },
 2397                 {  12, IFM_IEEE80211_MCS },
 2398                 {  13, IFM_IEEE80211_MCS },
 2399                 {  14, IFM_IEEE80211_MCS },
 2400                 {  15, IFM_IEEE80211_MCS },
 2401                 {  16, IFM_IEEE80211_MCS },
 2402                 {  17, IFM_IEEE80211_MCS },
 2403                 {  18, IFM_IEEE80211_MCS },
 2404                 {  19, IFM_IEEE80211_MCS },
 2405                 {  20, IFM_IEEE80211_MCS },
 2406                 {  21, IFM_IEEE80211_MCS },
 2407                 {  22, IFM_IEEE80211_MCS },
 2408                 {  23, IFM_IEEE80211_MCS },
 2409                 {  24, IFM_IEEE80211_MCS },
 2410                 {  25, IFM_IEEE80211_MCS },
 2411                 {  26, IFM_IEEE80211_MCS },
 2412                 {  27, IFM_IEEE80211_MCS },
 2413                 {  28, IFM_IEEE80211_MCS },
 2414                 {  29, IFM_IEEE80211_MCS },
 2415                 {  30, IFM_IEEE80211_MCS },
 2416                 {  31, IFM_IEEE80211_MCS },
 2417                 {  32, IFM_IEEE80211_MCS },
 2418                 {  33, IFM_IEEE80211_MCS },
 2419                 {  34, IFM_IEEE80211_MCS },
 2420                 {  35, IFM_IEEE80211_MCS },
 2421                 {  36, IFM_IEEE80211_MCS },
 2422                 {  37, IFM_IEEE80211_MCS },
 2423                 {  38, IFM_IEEE80211_MCS },
 2424                 {  39, IFM_IEEE80211_MCS },
 2425                 {  40, IFM_IEEE80211_MCS },
 2426                 {  41, IFM_IEEE80211_MCS },
 2427                 {  42, IFM_IEEE80211_MCS },
 2428                 {  43, IFM_IEEE80211_MCS },
 2429                 {  44, IFM_IEEE80211_MCS },
 2430                 {  45, IFM_IEEE80211_MCS },
 2431                 {  46, IFM_IEEE80211_MCS },
 2432                 {  47, IFM_IEEE80211_MCS },
 2433                 {  48, IFM_IEEE80211_MCS },
 2434                 {  49, IFM_IEEE80211_MCS },
 2435                 {  50, IFM_IEEE80211_MCS },
 2436                 {  51, IFM_IEEE80211_MCS },
 2437                 {  52, IFM_IEEE80211_MCS },
 2438                 {  53, IFM_IEEE80211_MCS },
 2439                 {  54, IFM_IEEE80211_MCS },
 2440                 {  55, IFM_IEEE80211_MCS },
 2441                 {  56, IFM_IEEE80211_MCS },
 2442                 {  57, IFM_IEEE80211_MCS },
 2443                 {  58, IFM_IEEE80211_MCS },
 2444                 {  59, IFM_IEEE80211_MCS },
 2445                 {  60, IFM_IEEE80211_MCS },
 2446                 {  61, IFM_IEEE80211_MCS },
 2447                 {  62, IFM_IEEE80211_MCS },
 2448                 {  63, IFM_IEEE80211_MCS },
 2449                 {  64, IFM_IEEE80211_MCS },
 2450                 {  65, IFM_IEEE80211_MCS },
 2451                 {  66, IFM_IEEE80211_MCS },
 2452                 {  67, IFM_IEEE80211_MCS },
 2453                 {  68, IFM_IEEE80211_MCS },
 2454                 {  69, IFM_IEEE80211_MCS },
 2455                 {  70, IFM_IEEE80211_MCS },
 2456                 {  71, IFM_IEEE80211_MCS },
 2457                 {  72, IFM_IEEE80211_MCS },
 2458                 {  73, IFM_IEEE80211_MCS },
 2459                 {  74, IFM_IEEE80211_MCS },
 2460                 {  75, IFM_IEEE80211_MCS },
 2461                 {  76, IFM_IEEE80211_MCS },
 2462         };
 2463         static const struct ratemedia vhtrates[] = {
 2464                 {   0, IFM_IEEE80211_VHT },
 2465                 {   1, IFM_IEEE80211_VHT },
 2466                 {   2, IFM_IEEE80211_VHT },
 2467                 {   3, IFM_IEEE80211_VHT },
 2468                 {   4, IFM_IEEE80211_VHT },
 2469                 {   5, IFM_IEEE80211_VHT },
 2470                 {   6, IFM_IEEE80211_VHT },
 2471                 {   7, IFM_IEEE80211_VHT },
 2472                 {   8, IFM_IEEE80211_VHT },     /* Optional. */
 2473                 {   9, IFM_IEEE80211_VHT },     /* Optional. */
 2474 #if 0
 2475                 /* Some QCA and BRCM seem to support this; offspec. */
 2476                 {  10, IFM_IEEE80211_VHT },
 2477                 {  11, IFM_IEEE80211_VHT },
 2478 #endif
 2479         };
 2480         int m;
 2481 
 2482         /*
 2483          * Check 11ac/11n rates first for match as an MCS.
 2484          */
 2485         if (mode == IEEE80211_MODE_VHT_5GHZ) {
 2486                 if (rate & IFM_IEEE80211_VHT) {
 2487                         rate &= ~IFM_IEEE80211_VHT;
 2488                         m = findmedia(vhtrates, nitems(vhtrates), rate);
 2489                         if (m != IFM_AUTO)
 2490                                 return (m | IFM_IEEE80211_VHT);
 2491                 }
 2492         } else if (mode == IEEE80211_MODE_11NA) {
 2493                 if (rate & IEEE80211_RATE_MCS) {
 2494                         rate &= ~IEEE80211_RATE_MCS;
 2495                         m = findmedia(htrates, nitems(htrates), rate);
 2496                         if (m != IFM_AUTO)
 2497                                 return m | IFM_IEEE80211_11NA;
 2498                 }
 2499         } else if (mode == IEEE80211_MODE_11NG) {
 2500                 /* NB: 12 is ambiguous, it will be treated as an MCS */
 2501                 if (rate & IEEE80211_RATE_MCS) {
 2502                         rate &= ~IEEE80211_RATE_MCS;
 2503                         m = findmedia(htrates, nitems(htrates), rate);
 2504                         if (m != IFM_AUTO)
 2505                                 return m | IFM_IEEE80211_11NG;
 2506                 }
 2507         }
 2508         rate &= IEEE80211_RATE_VAL;
 2509         switch (mode) {
 2510         case IEEE80211_MODE_11A:
 2511         case IEEE80211_MODE_HALF:               /* XXX good 'nuf */
 2512         case IEEE80211_MODE_QUARTER:
 2513         case IEEE80211_MODE_11NA:
 2514         case IEEE80211_MODE_TURBO_A:
 2515         case IEEE80211_MODE_STURBO_A:
 2516                 return findmedia(rates, nitems(rates),
 2517                     rate | IFM_IEEE80211_11A);
 2518         case IEEE80211_MODE_11B:
 2519                 return findmedia(rates, nitems(rates),
 2520                     rate | IFM_IEEE80211_11B);
 2521         case IEEE80211_MODE_FH:
 2522                 return findmedia(rates, nitems(rates),
 2523                     rate | IFM_IEEE80211_FH);
 2524         case IEEE80211_MODE_AUTO:
 2525                 /* NB: ic may be NULL for some drivers */
 2526                 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
 2527                         return findmedia(rates, nitems(rates),
 2528                             rate | IFM_IEEE80211_FH);
 2529                 /* NB: hack, 11g matches both 11b+11a rates */
 2530                 /* fall thru... */
 2531         case IEEE80211_MODE_11G:
 2532         case IEEE80211_MODE_11NG:
 2533         case IEEE80211_MODE_TURBO_G:
 2534                 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
 2535         case IEEE80211_MODE_VHT_2GHZ:
 2536         case IEEE80211_MODE_VHT_5GHZ:
 2537                 /* XXX TODO: need to figure out mapping for VHT rates */
 2538                 return IFM_AUTO;
 2539         }
 2540         return IFM_AUTO;
 2541 }
 2542 
 2543 int
 2544 ieee80211_media2rate(int mword)
 2545 {
 2546         static const int ieeerates[] = {
 2547                 -1,             /* IFM_AUTO */
 2548                 0,              /* IFM_MANUAL */
 2549                 0,              /* IFM_NONE */
 2550                 2,              /* IFM_IEEE80211_FH1 */
 2551                 4,              /* IFM_IEEE80211_FH2 */
 2552                 2,              /* IFM_IEEE80211_DS1 */
 2553                 4,              /* IFM_IEEE80211_DS2 */
 2554                 11,             /* IFM_IEEE80211_DS5 */
 2555                 22,             /* IFM_IEEE80211_DS11 */
 2556                 44,             /* IFM_IEEE80211_DS22 */
 2557                 12,             /* IFM_IEEE80211_OFDM6 */
 2558                 18,             /* IFM_IEEE80211_OFDM9 */
 2559                 24,             /* IFM_IEEE80211_OFDM12 */
 2560                 36,             /* IFM_IEEE80211_OFDM18 */
 2561                 48,             /* IFM_IEEE80211_OFDM24 */
 2562                 72,             /* IFM_IEEE80211_OFDM36 */
 2563                 96,             /* IFM_IEEE80211_OFDM48 */
 2564                 108,            /* IFM_IEEE80211_OFDM54 */
 2565                 144,            /* IFM_IEEE80211_OFDM72 */
 2566                 0,              /* IFM_IEEE80211_DS354k */
 2567                 0,              /* IFM_IEEE80211_DS512k */
 2568                 6,              /* IFM_IEEE80211_OFDM3 */
 2569                 9,              /* IFM_IEEE80211_OFDM4 */
 2570                 54,             /* IFM_IEEE80211_OFDM27 */
 2571                 -1,             /* IFM_IEEE80211_MCS */
 2572                 -1,             /* IFM_IEEE80211_VHT */
 2573         };
 2574         return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
 2575                 ieeerates[IFM_SUBTYPE(mword)] : 0;
 2576 }
 2577 
 2578 /*
 2579  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
 2580  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
 2581  */
 2582 #define mix(a, b, c)                                                    \
 2583 do {                                                                    \
 2584         a -= b; a -= c; a ^= (c >> 13);                                 \
 2585         b -= c; b -= a; b ^= (a << 8);                                  \
 2586         c -= a; c -= b; c ^= (b >> 13);                                 \
 2587         a -= b; a -= c; a ^= (c >> 12);                                 \
 2588         b -= c; b -= a; b ^= (a << 16);                                 \
 2589         c -= a; c -= b; c ^= (b >> 5);                                  \
 2590         a -= b; a -= c; a ^= (c >> 3);                                  \
 2591         b -= c; b -= a; b ^= (a << 10);                                 \
 2592         c -= a; c -= b; c ^= (b >> 15);                                 \
 2593 } while (/*CONSTCOND*/0)
 2594 
 2595 uint32_t
 2596 ieee80211_mac_hash(const struct ieee80211com *ic,
 2597         const uint8_t addr[IEEE80211_ADDR_LEN])
 2598 {
 2599         uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
 2600 
 2601         b += addr[5] << 8;
 2602         b += addr[4];
 2603         a += addr[3] << 24;
 2604         a += addr[2] << 16;
 2605         a += addr[1] << 8;
 2606         a += addr[0];
 2607 
 2608         mix(a, b, c);
 2609 
 2610         return c;
 2611 }
 2612 #undef mix
 2613 
 2614 char
 2615 ieee80211_channel_type_char(const struct ieee80211_channel *c)
 2616 {
 2617         if (IEEE80211_IS_CHAN_ST(c))
 2618                 return 'S';
 2619         if (IEEE80211_IS_CHAN_108A(c))
 2620                 return 'T';
 2621         if (IEEE80211_IS_CHAN_108G(c))
 2622                 return 'G';
 2623         if (IEEE80211_IS_CHAN_VHT(c))
 2624                 return 'v';
 2625         if (IEEE80211_IS_CHAN_HT(c))
 2626                 return 'n';
 2627         if (IEEE80211_IS_CHAN_A(c))
 2628                 return 'a';
 2629         if (IEEE80211_IS_CHAN_ANYG(c))
 2630                 return 'g';
 2631         if (IEEE80211_IS_CHAN_B(c))
 2632                 return 'b';
 2633         return 'f';
 2634 }

Cache object: 618ef072ea2b00866666b821a58d68a3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.