The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211_crypto_tkip.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD$");
   28 
   29 /*
   30  * IEEE 802.11i TKIP crypto support.
   31  *
   32  * Part of this module is derived from similar code in the Host
   33  * AP driver. The code is used with the consent of the author and
   34  * it's license is included below.
   35  */
   36 #include <sys/param.h>
   37 #include <sys/systm.h> 
   38 #include <sys/mbuf.h>   
   39 #include <sys/malloc.h>
   40 #include <sys/kernel.h>
   41 #include <sys/module.h>
   42 #include <sys/endian.h>
   43 
   44 #include <sys/socket.h>
   45 
   46 #include <net/if.h>
   47 #include <net/if_media.h>
   48 #include <net/ethernet.h>
   49 
   50 #include <net80211/ieee80211_var.h>
   51 
   52 static  void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
   53 static  void tkip_detach(struct ieee80211_key *);
   54 static  int tkip_setkey(struct ieee80211_key *);
   55 static  int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
   56 static  int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
   57 static  int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
   58 static  int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
   59 
   60 static const struct ieee80211_cipher tkip  = {
   61         .ic_name        = "TKIP",
   62         .ic_cipher      = IEEE80211_CIPHER_TKIP,
   63         .ic_header      = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   64                           IEEE80211_WEP_EXTIVLEN,
   65         .ic_trailer     = IEEE80211_WEP_CRCLEN,
   66         .ic_miclen      = IEEE80211_WEP_MICLEN,
   67         .ic_attach      = tkip_attach,
   68         .ic_detach      = tkip_detach,
   69         .ic_setkey      = tkip_setkey,
   70         .ic_encap       = tkip_encap,
   71         .ic_decap       = tkip_decap,
   72         .ic_enmic       = tkip_enmic,
   73         .ic_demic       = tkip_demic,
   74 };
   75 
   76 typedef uint8_t u8;
   77 typedef uint16_t u16;
   78 typedef uint32_t __u32;
   79 typedef uint32_t u32;
   80 #define memmove(dst, src, n)    ovbcopy(src, dst, n)
   81 
   82 struct tkip_ctx {
   83         struct ieee80211com *tc_ic;     /* for diagnostics */
   84 
   85         u16     tx_ttak[5];
   86         int     tx_phase1_done;
   87         u8      tx_rc4key[16];          /* XXX for test module; make locals? */
   88 
   89         u16     rx_ttak[5];
   90         int     rx_phase1_done;
   91         u8      rx_rc4key[16];          /* XXX for test module; make locals? */
   92         uint64_t rx_rsc;                /* held until MIC verified */
   93 };
   94 
   95 static  void michael_mic(struct tkip_ctx *, const u8 *key,
   96                 struct mbuf *m, u_int off, size_t data_len,
   97                 u8 mic[IEEE80211_WEP_MICLEN]);
   98 static  int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
   99                 struct mbuf *, int hdr_len);
  100 static  int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
  101                 struct mbuf *, int hdr_len);
  102 
  103 /* number of references from net80211 layer */
  104 static  int nrefs = 0;
  105 
  106 static void *
  107 tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
  108 {
  109         struct tkip_ctx *ctx;
  110 
  111         MALLOC(ctx, struct tkip_ctx *, sizeof(struct tkip_ctx),
  112                 M_DEVBUF, M_NOWAIT | M_ZERO);
  113         if (ctx == NULL) {
  114                 ic->ic_stats.is_crypto_nomem++;
  115                 return NULL;
  116         }
  117 
  118         ctx->tc_ic = ic;
  119         nrefs++;                        /* NB: we assume caller locking */
  120         return ctx;
  121 }
  122 
  123 static void
  124 tkip_detach(struct ieee80211_key *k)
  125 {
  126         struct tkip_ctx *ctx = k->wk_private;
  127 
  128         FREE(ctx, M_DEVBUF);
  129         KASSERT(nrefs > 0, ("imbalanced attach/detach"));
  130         nrefs--;                        /* NB: we assume caller locking */
  131 }
  132 
  133 static int
  134 tkip_setkey(struct ieee80211_key *k)
  135 {
  136         struct tkip_ctx *ctx = k->wk_private;
  137 
  138         if (k->wk_keylen != (128/NBBY)) {
  139                 (void) ctx;             /* XXX */
  140                 IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
  141                         "%s: Invalid key length %u, expecting %u\n",
  142                         __func__, k->wk_keylen, 128/NBBY);
  143                 return 0;
  144         }
  145         k->wk_keytsc = 1;               /* TSC starts at 1 */
  146         return 1;
  147 }
  148 
  149 /*
  150  * Add privacy headers and do any s/w encryption required.
  151  */
  152 static int
  153 tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
  154 {
  155         struct tkip_ctx *ctx = k->wk_private;
  156         struct ieee80211com *ic = ctx->tc_ic;
  157         uint8_t *ivp;
  158         int hdrlen;
  159 
  160         /*
  161          * Handle TKIP counter measures requirement.
  162          */
  163         if (ic->ic_flags & IEEE80211_F_COUNTERM) {
  164 #ifdef IEEE80211_DEBUG
  165                 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
  166 #endif
  167 
  168                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
  169                         "[%s] Discard frame due to countermeasures (%s)\n",
  170                         ether_sprintf(wh->i_addr2), __func__);
  171                 ic->ic_stats.is_crypto_tkipcm++;
  172                 return 0;
  173         }
  174         hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
  175 
  176         /*
  177          * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
  178          */
  179         M_PREPEND(m, tkip.ic_header, M_NOWAIT);
  180         if (m == NULL)
  181                 return 0;
  182         ivp = mtod(m, uint8_t *);
  183         memmove(ivp, ivp + tkip.ic_header, hdrlen);
  184         ivp += hdrlen;
  185 
  186         ivp[0] = k->wk_keytsc >> 8;             /* TSC1 */
  187         ivp[1] = (ivp[0] | 0x20) & 0x7f;        /* WEP seed */
  188         ivp[2] = k->wk_keytsc >> 0;             /* TSC0 */
  189         ivp[3] = keyid | IEEE80211_WEP_EXTIV;   /* KeyID | ExtID */
  190         ivp[4] = k->wk_keytsc >> 16;            /* TSC2 */
  191         ivp[5] = k->wk_keytsc >> 24;            /* TSC3 */
  192         ivp[6] = k->wk_keytsc >> 32;            /* TSC4 */
  193         ivp[7] = k->wk_keytsc >> 40;            /* TSC5 */
  194 
  195         /*
  196          * Finally, do software encrypt if neeed.
  197          */
  198         if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
  199                 if (!tkip_encrypt(ctx, k, m, hdrlen))
  200                         return 0;
  201                 /* NB: tkip_encrypt handles wk_keytsc */
  202         } else
  203                 k->wk_keytsc++;
  204 
  205         return 1;
  206 }
  207 
  208 /*
  209  * Add MIC to the frame as needed.
  210  */
  211 static int
  212 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
  213 {
  214         struct tkip_ctx *ctx = k->wk_private;
  215 
  216         if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
  217                 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
  218                 struct ieee80211com *ic = ctx->tc_ic;
  219                 int hdrlen;
  220                 uint8_t mic[IEEE80211_WEP_MICLEN];
  221 
  222                 ic->ic_stats.is_crypto_tkipenmic++;
  223 
  224                 hdrlen = ieee80211_hdrspace(ic, wh);
  225 
  226                 michael_mic(ctx, k->wk_txmic,
  227                         m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
  228                 return m_append(m, tkip.ic_miclen, mic);
  229         }
  230         return 1;
  231 }
  232 
  233 static __inline uint64_t
  234 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
  235 {
  236         uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
  237         uint16_t iv16 = (b4 << 0) | (b5 << 8);
  238         return (((uint64_t)iv16) << 32) | iv32;
  239 }
  240 
  241 /*
  242  * Validate and strip privacy headers (and trailer) for a
  243  * received frame.  If necessary, decrypt the frame using
  244  * the specified key.
  245  */
  246 static int
  247 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
  248 {
  249         struct tkip_ctx *ctx = k->wk_private;
  250         struct ieee80211com *ic = ctx->tc_ic;
  251         struct ieee80211_frame *wh;
  252         uint8_t *ivp;
  253 
  254         /*
  255          * Header should have extended IV and sequence number;
  256          * verify the former and validate the latter.
  257          */
  258         wh = mtod(m, struct ieee80211_frame *);
  259         ivp = mtod(m, uint8_t *) + hdrlen;
  260         if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
  261                 /*
  262                  * No extended IV; discard frame.
  263                  */
  264                 IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
  265                         "[%s] missing ExtIV for TKIP cipher\n",
  266                         ether_sprintf(wh->i_addr2));
  267                 ctx->tc_ic->ic_stats.is_rx_tkipformat++;
  268                 return 0;
  269         }
  270         /*
  271          * Handle TKIP counter measures requirement.
  272          */
  273         if (ic->ic_flags & IEEE80211_F_COUNTERM) {
  274                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
  275                         "[%s] discard frame due to countermeasures (%s)\n",
  276                         ether_sprintf(wh->i_addr2), __func__);
  277                 ic->ic_stats.is_crypto_tkipcm++;
  278                 return 0;
  279         }
  280 
  281         ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
  282         if (ctx->rx_rsc <= k->wk_keyrsc) {
  283                 /*
  284                  * Replay violation; notify upper layer.
  285                  */
  286                 ieee80211_notify_replay_failure(ctx->tc_ic, wh, k, ctx->rx_rsc);
  287                 ctx->tc_ic->ic_stats.is_rx_tkipreplay++;
  288                 return 0;
  289         }
  290         /*
  291          * NB: We can't update the rsc in the key until MIC is verified.
  292          *
  293          * We assume we are not preempted between doing the check above
  294          * and updating wk_keyrsc when stripping the MIC in tkip_demic.
  295          * Otherwise we might process another packet and discard it as
  296          * a replay.
  297          */
  298 
  299         /*
  300          * Check if the device handled the decrypt in hardware.
  301          * If so we just strip the header; otherwise we need to
  302          * handle the decrypt in software.
  303          */
  304         if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
  305             !tkip_decrypt(ctx, k, m, hdrlen))
  306                 return 0;
  307 
  308         /*
  309          * Copy up 802.11 header and strip crypto bits.
  310          */
  311         memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
  312         m_adj(m, tkip.ic_header);
  313         m_adj(m, -tkip.ic_trailer);
  314 
  315         return 1;
  316 }
  317 
  318 /*
  319  * Verify and strip MIC from the frame.
  320  */
  321 static int
  322 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
  323 {
  324         struct tkip_ctx *ctx = k->wk_private;
  325 
  326         if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
  327                 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
  328                 struct ieee80211com *ic = ctx->tc_ic;
  329                 int hdrlen = ieee80211_hdrspace(ic, wh);
  330                 u8 mic[IEEE80211_WEP_MICLEN];
  331                 u8 mic0[IEEE80211_WEP_MICLEN];
  332 
  333                 ic->ic_stats.is_crypto_tkipdemic++;
  334 
  335                 michael_mic(ctx, k->wk_rxmic, 
  336                         m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
  337                         mic);
  338                 m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
  339                         tkip.ic_miclen, mic0);
  340                 if (memcmp(mic, mic0, tkip.ic_miclen)) {
  341                         /* NB: 802.11 layer handles statistic and debug msg */
  342                         ieee80211_notify_michael_failure(ic, wh,
  343                                 k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
  344                                         k->wk_rxkeyix : k->wk_keyix);
  345                         return 0;
  346                 }
  347         }
  348         /*
  349          * Strip MIC from the tail.
  350          */
  351         m_adj(m, -tkip.ic_miclen);
  352 
  353         /*
  354          * Ok to update rsc now that MIC has been verified.
  355          */
  356         k->wk_keyrsc = ctx->rx_rsc;
  357 
  358         return 1;
  359 }
  360 
  361 /*
  362  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
  363  *
  364  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
  365  *
  366  * This program is free software; you can redistribute it and/or modify
  367  * it under the terms of the GNU General Public License version 2 as
  368  * published by the Free Software Foundation. See README and COPYING for
  369  * more details.
  370  *
  371  * Alternatively, this software may be distributed under the terms of BSD
  372  * license.
  373  */
  374 
  375 static const __u32 crc32_table[256] = {
  376         0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
  377         0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
  378         0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
  379         0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
  380         0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
  381         0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
  382         0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
  383         0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
  384         0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
  385         0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
  386         0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
  387         0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
  388         0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
  389         0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
  390         0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
  391         0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
  392         0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
  393         0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
  394         0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
  395         0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
  396         0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
  397         0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
  398         0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
  399         0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
  400         0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
  401         0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
  402         0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
  403         0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
  404         0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
  405         0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
  406         0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
  407         0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
  408         0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
  409         0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
  410         0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
  411         0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
  412         0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
  413         0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
  414         0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
  415         0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
  416         0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
  417         0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
  418         0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
  419         0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
  420         0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
  421         0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
  422         0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
  423         0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
  424         0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
  425         0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
  426         0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
  427         0x2d02ef8dL
  428 };
  429 
  430 static __inline u16 RotR1(u16 val)
  431 {
  432         return (val >> 1) | (val << 15);
  433 }
  434 
  435 static __inline u8 Lo8(u16 val)
  436 {
  437         return val & 0xff;
  438 }
  439 
  440 static __inline u8 Hi8(u16 val)
  441 {
  442         return val >> 8;
  443 }
  444 
  445 static __inline u16 Lo16(u32 val)
  446 {
  447         return val & 0xffff;
  448 }
  449 
  450 static __inline u16 Hi16(u32 val)
  451 {
  452         return val >> 16;
  453 }
  454 
  455 static __inline u16 Mk16(u8 hi, u8 lo)
  456 {
  457         return lo | (((u16) hi) << 8);
  458 }
  459 
  460 static __inline u16 Mk16_le(const u16 *v)
  461 {
  462         return le16toh(*v);
  463 }
  464 
  465 static const u16 Sbox[256] = {
  466         0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  467         0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  468         0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  469         0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  470         0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  471         0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  472         0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  473         0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  474         0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  475         0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  476         0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  477         0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  478         0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  479         0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  480         0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  481         0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  482         0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  483         0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  484         0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  485         0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  486         0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  487         0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  488         0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  489         0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  490         0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  491         0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  492         0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  493         0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  494         0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  495         0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  496         0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  497         0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  498 };
  499 
  500 static __inline u16 _S_(u16 v)
  501 {
  502         u16 t = Sbox[Hi8(v)];
  503         return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
  504 }
  505 
  506 #define PHASE1_LOOP_COUNT 8
  507 
  508 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
  509 {
  510         int i, j;
  511 
  512         /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
  513         TTAK[0] = Lo16(IV32);
  514         TTAK[1] = Hi16(IV32);
  515         TTAK[2] = Mk16(TA[1], TA[0]);
  516         TTAK[3] = Mk16(TA[3], TA[2]);
  517         TTAK[4] = Mk16(TA[5], TA[4]);
  518 
  519         for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  520                 j = 2 * (i & 1);
  521                 TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
  522                 TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
  523                 TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
  524                 TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
  525                 TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
  526         }
  527 }
  528 
  529 #ifndef _BYTE_ORDER
  530 #error "Don't know native byte order"
  531 #endif
  532 
  533 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
  534                                u16 IV16)
  535 {
  536         /* Make temporary area overlap WEP seed so that the final copy can be
  537          * avoided on little endian hosts. */
  538         u16 *PPK = (u16 *) &WEPSeed[4];
  539 
  540         /* Step 1 - make copy of TTAK and bring in TSC */
  541         PPK[0] = TTAK[0];
  542         PPK[1] = TTAK[1];
  543         PPK[2] = TTAK[2];
  544         PPK[3] = TTAK[3];
  545         PPK[4] = TTAK[4];
  546         PPK[5] = TTAK[4] + IV16;
  547 
  548         /* Step 2 - 96-bit bijective mixing using S-box */
  549         PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
  550         PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
  551         PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
  552         PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
  553         PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
  554         PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
  555 
  556         PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
  557         PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
  558         PPK[2] += RotR1(PPK[1]);
  559         PPK[3] += RotR1(PPK[2]);
  560         PPK[4] += RotR1(PPK[3]);
  561         PPK[5] += RotR1(PPK[4]);
  562 
  563         /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
  564          * WEPSeed[0..2] is transmitted as WEP IV */
  565         WEPSeed[0] = Hi8(IV16);
  566         WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
  567         WEPSeed[2] = Lo8(IV16);
  568         WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
  569 
  570 #if _BYTE_ORDER == _BIG_ENDIAN
  571         {
  572                 int i;
  573                 for (i = 0; i < 6; i++)
  574                         PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
  575         }
  576 #endif
  577 }
  578 
  579 static void
  580 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
  581         uint8_t icv[IEEE80211_WEP_CRCLEN])
  582 {
  583         u32 i, j, k, crc;
  584         size_t buflen;
  585         u8 S[256];
  586         u8 *pos;
  587         struct mbuf *m;
  588 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
  589 
  590         /* Setup RC4 state */
  591         for (i = 0; i < 256; i++)
  592                 S[i] = i;
  593         j = 0;
  594         for (i = 0; i < 256; i++) {
  595                 j = (j + S[i] + key[i & 0x0f]) & 0xff;
  596                 S_SWAP(i, j);
  597         }
  598 
  599         /* Compute CRC32 over unencrypted data and apply RC4 to data */
  600         crc = ~0;
  601         i = j = 0;
  602         m = m0;
  603         pos = mtod(m, uint8_t *) + off;
  604         buflen = m->m_len - off;
  605         for (;;) {
  606                 if (buflen > data_len)
  607                         buflen = data_len;
  608                 data_len -= buflen;
  609                 for (k = 0; k < buflen; k++) {
  610                         crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
  611                         i = (i + 1) & 0xff;
  612                         j = (j + S[i]) & 0xff;
  613                         S_SWAP(i, j);
  614                         *pos++ ^= S[(S[i] + S[j]) & 0xff];
  615                 }
  616                 m = m->m_next;
  617                 if (m == NULL) {
  618                         KASSERT(data_len == 0,
  619                             ("out of buffers with data_len %zu\n", data_len));
  620                         break;
  621                 }
  622                 pos = mtod(m, uint8_t *);
  623                 buflen = m->m_len;
  624         }
  625         crc = ~crc;
  626 
  627         /* Append little-endian CRC32 and encrypt it to produce ICV */
  628         icv[0] = crc;
  629         icv[1] = crc >> 8;
  630         icv[2] = crc >> 16;
  631         icv[3] = crc >> 24;
  632         for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
  633                 i = (i + 1) & 0xff;
  634                 j = (j + S[i]) & 0xff;
  635                 S_SWAP(i, j);
  636                 icv[k] ^= S[(S[i] + S[j]) & 0xff];
  637         }
  638 }
  639 
  640 static int
  641 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
  642 {
  643         u32 i, j, k, crc;
  644         u8 S[256];
  645         u8 *pos, icv[4];
  646         size_t buflen;
  647 
  648         /* Setup RC4 state */
  649         for (i = 0; i < 256; i++)
  650                 S[i] = i;
  651         j = 0;
  652         for (i = 0; i < 256; i++) {
  653                 j = (j + S[i] + key[i & 0x0f]) & 0xff;
  654                 S_SWAP(i, j);
  655         }
  656 
  657         /* Apply RC4 to data and compute CRC32 over decrypted data */
  658         crc = ~0;
  659         i = j = 0;
  660         pos = mtod(m, uint8_t *) + off;
  661         buflen = m->m_len - off;
  662         for (;;) {
  663                 if (buflen > data_len)
  664                         buflen = data_len;
  665                 data_len -= buflen;
  666                 for (k = 0; k < buflen; k++) {
  667                         i = (i + 1) & 0xff;
  668                         j = (j + S[i]) & 0xff;
  669                         S_SWAP(i, j);
  670                         *pos ^= S[(S[i] + S[j]) & 0xff];
  671                         crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
  672                         pos++;
  673                 }
  674                 m = m->m_next;
  675                 if (m == NULL) {
  676                         KASSERT(data_len == 0,
  677                             ("out of buffers with data_len %zu\n", data_len));
  678                         break;
  679                 }
  680                 pos = mtod(m, uint8_t *);
  681                 buflen = m->m_len;
  682         }
  683         crc = ~crc;
  684 
  685         /* Encrypt little-endian CRC32 and verify that it matches with the
  686          * received ICV */
  687         icv[0] = crc;
  688         icv[1] = crc >> 8;
  689         icv[2] = crc >> 16;
  690         icv[3] = crc >> 24;
  691         for (k = 0; k < 4; k++) {
  692                 i = (i + 1) & 0xff;
  693                 j = (j + S[i]) & 0xff;
  694                 S_SWAP(i, j);
  695                 if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
  696                         /* ICV mismatch - drop frame */
  697                         return -1;
  698                 }
  699         }
  700 
  701         return 0;
  702 }
  703 
  704 
  705 static __inline u32 rotl(u32 val, int bits)
  706 {
  707         return (val << bits) | (val >> (32 - bits));
  708 }
  709 
  710 
  711 static __inline u32 rotr(u32 val, int bits)
  712 {
  713         return (val >> bits) | (val << (32 - bits));
  714 }
  715 
  716 
  717 static __inline u32 xswap(u32 val)
  718 {
  719         return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
  720 }
  721 
  722 
  723 #define michael_block(l, r)     \
  724 do {                            \
  725         r ^= rotl(l, 17);       \
  726         l += r;                 \
  727         r ^= xswap(l);          \
  728         l += r;                 \
  729         r ^= rotl(l, 3);        \
  730         l += r;                 \
  731         r ^= rotr(l, 2);        \
  732         l += r;                 \
  733 } while (0)
  734 
  735 
  736 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
  737 {
  738         return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
  739 }
  740 
  741 static __inline u32 get_le32(const u8 *p)
  742 {
  743         return get_le32_split(p[0], p[1], p[2], p[3]);
  744 }
  745 
  746 
  747 static __inline void put_le32(u8 *p, u32 v)
  748 {
  749         p[0] = v;
  750         p[1] = v >> 8;
  751         p[2] = v >> 16;
  752         p[3] = v >> 24;
  753 }
  754 
  755 /*
  756  * Craft pseudo header used to calculate the MIC.
  757  */
  758 static void
  759 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
  760 {
  761         const struct ieee80211_frame_addr4 *wh =
  762                 (const struct ieee80211_frame_addr4 *) wh0;
  763 
  764         switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  765         case IEEE80211_FC1_DIR_NODS:
  766                 IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  767                 IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
  768                 break;
  769         case IEEE80211_FC1_DIR_TODS:
  770                 IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  771                 IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
  772                 break;
  773         case IEEE80211_FC1_DIR_FROMDS:
  774                 IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  775                 IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
  776                 break;
  777         case IEEE80211_FC1_DIR_DSTODS:
  778                 IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  779                 IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
  780                 break;
  781         }
  782 
  783         if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
  784                 const struct ieee80211_qosframe *qwh =
  785                         (const struct ieee80211_qosframe *) wh;
  786                 hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  787         } else
  788                 hdr[12] = 0;
  789         hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  790 }
  791 
  792 static void
  793 michael_mic(struct tkip_ctx *ctx, const u8 *key,
  794         struct mbuf *m, u_int off, size_t data_len,
  795         u8 mic[IEEE80211_WEP_MICLEN])
  796 {
  797         uint8_t hdr[16];
  798         u32 l, r;
  799         const uint8_t *data;
  800         u_int space;
  801 
  802         michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
  803 
  804         l = get_le32(key);
  805         r = get_le32(key + 4);
  806 
  807         /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  808         l ^= get_le32(hdr);
  809         michael_block(l, r);
  810         l ^= get_le32(&hdr[4]);
  811         michael_block(l, r);
  812         l ^= get_le32(&hdr[8]);
  813         michael_block(l, r);
  814         l ^= get_le32(&hdr[12]);
  815         michael_block(l, r);
  816 
  817         /* first buffer has special handling */
  818         data = mtod(m, const uint8_t *) + off;
  819         space = m->m_len - off;
  820         for (;;) {
  821                 if (space > data_len)
  822                         space = data_len;
  823                 /* collect 32-bit blocks from current buffer */
  824                 while (space >= sizeof(uint32_t)) {
  825                         l ^= get_le32(data);
  826                         michael_block(l, r);
  827                         data += sizeof(uint32_t), space -= sizeof(uint32_t);
  828                         data_len -= sizeof(uint32_t);
  829                 }
  830                 if (data_len < sizeof(uint32_t))
  831                         break;
  832                 m = m->m_next;
  833                 if (m == NULL) {
  834                         KASSERT(0, ("out of data, data_len %zu\n", data_len));
  835                         break;
  836                 }
  837                 if (space != 0) {
  838                         const uint8_t *data_next;
  839                         /*
  840                          * Block straddles buffers, split references.
  841                          */
  842                         data_next = mtod(m, const uint8_t *);
  843                         KASSERT(m->m_len >= sizeof(uint32_t) - space,
  844                                 ("not enough data in following buffer, "
  845                                 "m_len %u need %zu\n", m->m_len,
  846                                 sizeof(uint32_t) - space));
  847                         switch (space) {
  848                         case 1:
  849                                 l ^= get_le32_split(data[0], data_next[0],
  850                                         data_next[1], data_next[2]);
  851                                 data = data_next + 3;
  852                                 space = m->m_len - 3;
  853                                 break;
  854                         case 2:
  855                                 l ^= get_le32_split(data[0], data[1],
  856                                         data_next[0], data_next[1]);
  857                                 data = data_next + 2;
  858                                 space = m->m_len - 2;
  859                                 break;
  860                         case 3:
  861                                 l ^= get_le32_split(data[0], data[1],
  862                                         data[2], data_next[0]);
  863                                 data = data_next + 1;
  864                                 space = m->m_len - 1;
  865                                 break;
  866                         }
  867                         michael_block(l, r);
  868                         data_len -= sizeof(uint32_t);
  869                 } else {
  870                         /*
  871                          * Setup for next buffer.
  872                          */
  873                         data = mtod(m, const uint8_t *);
  874                         space = m->m_len;
  875                 }
  876         }
  877         /* Last block and padding (0x5a, 4..7 x 0) */
  878         switch (data_len) {
  879         case 0:
  880                 l ^= get_le32_split(0x5a, 0, 0, 0);
  881                 break;
  882         case 1:
  883                 l ^= get_le32_split(data[0], 0x5a, 0, 0);
  884                 break;
  885         case 2:
  886                 l ^= get_le32_split(data[0], data[1], 0x5a, 0);
  887                 break;
  888         case 3:
  889                 l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
  890                 break;
  891         }
  892         michael_block(l, r);
  893         /* l ^= 0; */
  894         michael_block(l, r);
  895 
  896         put_le32(mic, l);
  897         put_le32(mic + 4, r);
  898 }
  899 
  900 static int
  901 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
  902         struct mbuf *m, int hdrlen)
  903 {
  904         struct ieee80211_frame *wh;
  905         uint8_t icv[IEEE80211_WEP_CRCLEN];
  906 
  907         ctx->tc_ic->ic_stats.is_crypto_tkip++;
  908 
  909         wh = mtod(m, struct ieee80211_frame *);
  910         if (!ctx->tx_phase1_done) {
  911                 tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
  912                                    (u32)(key->wk_keytsc >> 16));
  913                 ctx->tx_phase1_done = 1;
  914         }
  915         tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
  916                 (u16) key->wk_keytsc);
  917 
  918         wep_encrypt(ctx->tx_rc4key,
  919                 m, hdrlen + tkip.ic_header,
  920                 m->m_pkthdr.len - (hdrlen + tkip.ic_header),
  921                 icv);
  922         (void) m_append(m, IEEE80211_WEP_CRCLEN, icv);  /* XXX check return */
  923 
  924         key->wk_keytsc++;
  925         if ((u16)(key->wk_keytsc) == 0)
  926                 ctx->tx_phase1_done = 0;
  927         return 1;
  928 }
  929 
  930 static int
  931 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
  932         struct mbuf *m, int hdrlen)
  933 {
  934         struct ieee80211_frame *wh;
  935         u32 iv32;
  936         u16 iv16;
  937 
  938         ctx->tc_ic->ic_stats.is_crypto_tkip++;
  939 
  940         wh = mtod(m, struct ieee80211_frame *);
  941         /* NB: tkip_decap already verified header and left seq in rx_rsc */
  942         iv16 = (u16) ctx->rx_rsc;
  943         iv32 = (u32) (ctx->rx_rsc >> 16);
  944 
  945         if (iv32 != (u32)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
  946                 tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
  947                         wh->i_addr2, iv32);
  948                 ctx->rx_phase1_done = 1;
  949         }
  950         tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
  951 
  952         /* NB: m is unstripped; deduct headers + ICV to get payload */
  953         if (wep_decrypt(ctx->rx_rc4key,
  954                 m, hdrlen + tkip.ic_header,
  955                 m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
  956                 if (iv32 != (u32)(key->wk_keyrsc >> 16)) {
  957                         /* Previously cached Phase1 result was already lost, so
  958                          * it needs to be recalculated for the next packet. */
  959                         ctx->rx_phase1_done = 0;
  960                 }
  961                 IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
  962                     "[%s] TKIP ICV mismatch on decrypt\n",
  963                     ether_sprintf(wh->i_addr2));
  964                 ctx->tc_ic->ic_stats.is_rx_tkipicv++;
  965                 return 0;
  966         }
  967         return 1;
  968 }
  969 
  970 /*
  971  * Module glue.
  972  */
  973 IEEE80211_CRYPTO_MODULE(tkip, 1);

Cache object: a7e13892ad50ae26a63b3e5f37854fe7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.