1 /*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * Alternatively, this software may be distributed under the terms of the
18 * GNU General Public License ("GPL") version 2 as published by the Free
19 * Software Foundation.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD: releng/6.2/sys/net80211/ieee80211_output.c 161891 2006-09-02 15:06:04Z sam $");
35
36 #include "opt_inet.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/endian.h>
43
44 #include <sys/socket.h>
45
46 #include <net/bpf.h>
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/if_llc.h>
50 #include <net/if_media.h>
51 #include <net/if_vlan_var.h>
52
53 #include <net80211/ieee80211_var.h>
54
55 #ifdef INET
56 #include <netinet/in.h>
57 #include <netinet/if_ether.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #endif
61
62 #ifdef IEEE80211_DEBUG
63 /*
64 * Decide if an outbound management frame should be
65 * printed when debugging is enabled. This filters some
66 * of the less interesting frames that come frequently
67 * (e.g. beacons).
68 */
69 static __inline int
70 doprint(struct ieee80211com *ic, int subtype)
71 {
72 switch (subtype) {
73 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
74 return (ic->ic_opmode == IEEE80211_M_IBSS);
75 }
76 return 1;
77 }
78 #endif
79
80 /*
81 * Set the direction field and address fields of an outgoing
82 * non-QoS frame. Note this should be called early on in
83 * constructing a frame as it sets i_fc[1]; other bits can
84 * then be or'd in.
85 */
86 static void
87 ieee80211_send_setup(struct ieee80211com *ic,
88 struct ieee80211_node *ni,
89 struct ieee80211_frame *wh,
90 int type,
91 const u_int8_t sa[IEEE80211_ADDR_LEN],
92 const u_int8_t da[IEEE80211_ADDR_LEN],
93 const u_int8_t bssid[IEEE80211_ADDR_LEN])
94 {
95 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
96
97 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
98 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
99 switch (ic->ic_opmode) {
100 case IEEE80211_M_STA:
101 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
102 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
103 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
104 IEEE80211_ADDR_COPY(wh->i_addr3, da);
105 break;
106 case IEEE80211_M_IBSS:
107 case IEEE80211_M_AHDEMO:
108 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
109 IEEE80211_ADDR_COPY(wh->i_addr1, da);
110 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
111 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
112 break;
113 case IEEE80211_M_HOSTAP:
114 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
115 IEEE80211_ADDR_COPY(wh->i_addr1, da);
116 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
117 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
118 break;
119 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
120 break;
121 }
122 } else {
123 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
124 IEEE80211_ADDR_COPY(wh->i_addr1, da);
125 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
126 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
127 }
128 *(u_int16_t *)&wh->i_dur[0] = 0;
129 /* NB: use non-QoS tid */
130 *(u_int16_t *)&wh->i_seq[0] =
131 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
132 ni->ni_txseqs[0]++;
133 #undef WH4
134 }
135
136 /*
137 * Send a management frame to the specified node. The node pointer
138 * must have a reference as the pointer will be passed to the driver
139 * and potentially held for a long time. If the frame is successfully
140 * dispatched to the driver, then it is responsible for freeing the
141 * reference (and potentially free'ing up any associated storage).
142 */
143 static int
144 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
145 struct mbuf *m, int type, int timer)
146 {
147 struct ifnet *ifp = ic->ic_ifp;
148 struct ieee80211_frame *wh;
149
150 KASSERT(ni != NULL, ("null node"));
151
152 /*
153 * Yech, hack alert! We want to pass the node down to the
154 * driver's start routine. If we don't do so then the start
155 * routine must immediately look it up again and that can
156 * cause a lock order reversal if, for example, this frame
157 * is being sent because the station is being timedout and
158 * the frame being sent is a DEAUTH message. We could stick
159 * this in an m_tag and tack that on to the mbuf. However
160 * that's rather expensive to do for every frame so instead
161 * we stuff it in the rcvif field since outbound frames do
162 * not (presently) use this.
163 */
164 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
165 if (m == NULL)
166 return ENOMEM;
167 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
168 m->m_pkthdr.rcvif = (void *)ni;
169
170 wh = mtod(m, struct ieee80211_frame *);
171 ieee80211_send_setup(ic, ni, wh,
172 IEEE80211_FC0_TYPE_MGT | type,
173 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
174 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
175 m->m_flags &= ~M_LINK0;
176 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
177 "[%s] encrypting frame (%s)\n",
178 ether_sprintf(wh->i_addr1), __func__);
179 wh->i_fc[1] |= IEEE80211_FC1_WEP;
180 }
181 #ifdef IEEE80211_DEBUG
182 /* avoid printing too many frames */
183 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
184 ieee80211_msg_dumppkts(ic)) {
185 printf("[%s] send %s on channel %u\n",
186 ether_sprintf(wh->i_addr1),
187 ieee80211_mgt_subtype_name[
188 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
189 IEEE80211_FC0_SUBTYPE_SHIFT],
190 ieee80211_chan2ieee(ic, ic->ic_curchan));
191 }
192 #endif
193 IEEE80211_NODE_STAT(ni, tx_mgmt);
194 IF_ENQUEUE(&ic->ic_mgtq, m);
195 if (timer) {
196 /*
197 * Set the mgt frame timeout.
198 */
199 ic->ic_mgt_timer = timer;
200 ifp->if_timer = 1;
201 }
202 if_start(ifp);
203 return 0;
204 }
205
206 /*
207 * Send a null data frame to the specified node.
208 *
209 * NB: the caller is assumed to have setup a node reference
210 * for use; this is necessary to deal with a race condition
211 * when probing for inactive stations.
212 */
213 int
214 ieee80211_send_nulldata(struct ieee80211_node *ni)
215 {
216 struct ieee80211com *ic = ni->ni_ic;
217 struct ifnet *ifp = ic->ic_ifp;
218 struct mbuf *m;
219 struct ieee80211_frame *wh;
220
221 MGETHDR(m, M_NOWAIT, MT_HEADER);
222 if (m == NULL) {
223 /* XXX debug msg */
224 ic->ic_stats.is_tx_nobuf++;
225 ieee80211_unref_node(&ni);
226 return ENOMEM;
227 }
228 m->m_pkthdr.rcvif = (void *) ni;
229
230 wh = mtod(m, struct ieee80211_frame *);
231 ieee80211_send_setup(ic, ni, wh,
232 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
233 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
234 /* NB: power management bit is never sent by an AP */
235 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
236 ic->ic_opmode != IEEE80211_M_HOSTAP)
237 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
238 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
239
240 IEEE80211_NODE_STAT(ni, tx_data);
241
242 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
243 "[%s] send null data frame on channel %u, pwr mgt %s\n",
244 ether_sprintf(ni->ni_macaddr),
245 ieee80211_chan2ieee(ic, ic->ic_curchan),
246 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
247
248 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */
249 if_start(ifp);
250
251 return 0;
252 }
253
254 /*
255 * Assign priority to a frame based on any vlan tag assigned
256 * to the station and/or any Diffserv setting in an IP header.
257 * Finally, if an ACM policy is setup (in station mode) it's
258 * applied.
259 */
260 int
261 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
262 {
263 int v_wme_ac, d_wme_ac, ac;
264 #ifdef INET
265 struct ether_header *eh;
266 #endif
267
268 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
269 ac = WME_AC_BE;
270 goto done;
271 }
272
273 /*
274 * If node has a vlan tag then all traffic
275 * to it must have a matching tag.
276 */
277 v_wme_ac = 0;
278 if (ni->ni_vlan != 0) {
279 struct m_tag *mtag = VLAN_OUTPUT_TAG(ic->ic_ifp, m);
280 if (mtag == NULL) {
281 IEEE80211_NODE_STAT(ni, tx_novlantag);
282 return 1;
283 }
284 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
285 EVL_VLANOFTAG(ni->ni_vlan)) {
286 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
287 return 1;
288 }
289 /* map vlan priority to AC */
290 switch (EVL_PRIOFTAG(ni->ni_vlan)) {
291 case 1:
292 case 2:
293 v_wme_ac = WME_AC_BK;
294 break;
295 case 0:
296 case 3:
297 v_wme_ac = WME_AC_BE;
298 break;
299 case 4:
300 case 5:
301 v_wme_ac = WME_AC_VI;
302 break;
303 case 6:
304 case 7:
305 v_wme_ac = WME_AC_VO;
306 break;
307 }
308 }
309
310 #ifdef INET
311 eh = mtod(m, struct ether_header *);
312 if (eh->ether_type == htons(ETHERTYPE_IP)) {
313 const struct ip *ip = (struct ip *)
314 (mtod(m, u_int8_t *) + sizeof (*eh));
315 /*
316 * IP frame, map the TOS field.
317 */
318 switch (ip->ip_tos) {
319 case 0x08:
320 case 0x20:
321 d_wme_ac = WME_AC_BK; /* background */
322 break;
323 case 0x28:
324 case 0xa0:
325 d_wme_ac = WME_AC_VI; /* video */
326 break;
327 case 0x30: /* voice */
328 case 0xe0:
329 case 0x88: /* XXX UPSD */
330 case 0xb8:
331 d_wme_ac = WME_AC_VO;
332 break;
333 default:
334 d_wme_ac = WME_AC_BE;
335 break;
336 }
337 } else {
338 #endif /* INET */
339 d_wme_ac = WME_AC_BE;
340 #ifdef INET
341 }
342 #endif
343 /*
344 * Use highest priority AC.
345 */
346 if (v_wme_ac > d_wme_ac)
347 ac = v_wme_ac;
348 else
349 ac = d_wme_ac;
350
351 /*
352 * Apply ACM policy.
353 */
354 if (ic->ic_opmode == IEEE80211_M_STA) {
355 static const int acmap[4] = {
356 WME_AC_BK, /* WME_AC_BE */
357 WME_AC_BK, /* WME_AC_BK */
358 WME_AC_BE, /* WME_AC_VI */
359 WME_AC_VI, /* WME_AC_VO */
360 };
361 while (ac != WME_AC_BK &&
362 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
363 ac = acmap[ac];
364 }
365 done:
366 M_WME_SETAC(m, ac);
367 return 0;
368 }
369
370 /*
371 * Insure there is sufficient contiguous space to encapsulate the
372 * 802.11 data frame. If room isn't already there, arrange for it.
373 * Drivers and cipher modules assume we have done the necessary work
374 * and fail rudely if they don't find the space they need.
375 */
376 static struct mbuf *
377 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
378 struct ieee80211_key *key, struct mbuf *m)
379 {
380 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
381 int needed_space = hdrsize;
382
383 if (key != NULL) {
384 /* XXX belongs in crypto code? */
385 needed_space += key->wk_cipher->ic_header;
386 /* XXX frags */
387 /*
388 * When crypto is being done in the host we must insure
389 * the data are writable for the cipher routines; clone
390 * a writable mbuf chain.
391 * XXX handle SWMIC specially
392 */
393 if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) {
394 m = m_unshare(m, M_NOWAIT);
395 if (m == NULL) {
396 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
397 "%s: cannot get writable mbuf\n", __func__);
398 ic->ic_stats.is_tx_nobuf++; /* XXX new stat */
399 return NULL;
400 }
401 }
402 }
403 /*
404 * We know we are called just before stripping an Ethernet
405 * header and prepending an LLC header. This means we know
406 * there will be
407 * sizeof(struct ether_header) - sizeof(struct llc)
408 * bytes recovered to which we need additional space for the
409 * 802.11 header and any crypto header.
410 */
411 /* XXX check trailing space and copy instead? */
412 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
413 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
414 if (n == NULL) {
415 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
416 "%s: cannot expand storage\n", __func__);
417 ic->ic_stats.is_tx_nobuf++;
418 m_freem(m);
419 return NULL;
420 }
421 KASSERT(needed_space <= MHLEN,
422 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
423 /*
424 * Setup new mbuf to have leading space to prepend the
425 * 802.11 header and any crypto header bits that are
426 * required (the latter are added when the driver calls
427 * back to ieee80211_crypto_encap to do crypto encapsulation).
428 */
429 /* NB: must be first 'cuz it clobbers m_data */
430 m_move_pkthdr(n, m);
431 n->m_len = 0; /* NB: m_gethdr does not set */
432 n->m_data += needed_space;
433 /*
434 * Pull up Ethernet header to create the expected layout.
435 * We could use m_pullup but that's overkill (i.e. we don't
436 * need the actual data) and it cannot fail so do it inline
437 * for speed.
438 */
439 /* NB: struct ether_header is known to be contiguous */
440 n->m_len += sizeof(struct ether_header);
441 m->m_len -= sizeof(struct ether_header);
442 m->m_data += sizeof(struct ether_header);
443 /*
444 * Replace the head of the chain.
445 */
446 n->m_next = m;
447 m = n;
448 }
449 return m;
450 #undef TO_BE_RECLAIMED
451 }
452
453 #define KEY_UNDEFINED(k) ((k).wk_cipher == &ieee80211_cipher_none)
454 /*
455 * Return the transmit key to use in sending a unicast frame.
456 * If a unicast key is set we use that. When no unicast key is set
457 * we fall back to the default transmit key.
458 */
459 static __inline struct ieee80211_key *
460 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
461 {
462 if (KEY_UNDEFINED(ni->ni_ucastkey)) {
463 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
464 KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
465 return NULL;
466 return &ic->ic_nw_keys[ic->ic_def_txkey];
467 } else {
468 return &ni->ni_ucastkey;
469 }
470 }
471
472 /*
473 * Return the transmit key to use in sending a multicast frame.
474 * Multicast traffic always uses the group key which is installed as
475 * the default tx key.
476 */
477 static __inline struct ieee80211_key *
478 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
479 {
480 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
481 KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
482 return NULL;
483 return &ic->ic_nw_keys[ic->ic_def_txkey];
484 }
485
486 /*
487 * Encapsulate an outbound data frame. The mbuf chain is updated.
488 * If an error is encountered NULL is returned. The caller is required
489 * to provide a node reference and pullup the ethernet header in the
490 * first mbuf.
491 */
492 struct mbuf *
493 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
494 struct ieee80211_node *ni)
495 {
496 struct ether_header eh;
497 struct ieee80211_frame *wh;
498 struct ieee80211_key *key;
499 struct llc *llc;
500 int hdrsize, datalen, addqos;
501
502 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
503 memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header));
504
505 /*
506 * Insure space for additional headers. First identify
507 * transmit key to use in calculating any buffer adjustments
508 * required. This is also used below to do privacy
509 * encapsulation work. Then calculate the 802.11 header
510 * size and any padding required by the driver.
511 *
512 * Note key may be NULL if we fall back to the default
513 * transmit key and that is not set. In that case the
514 * buffer may not be expanded as needed by the cipher
515 * routines, but they will/should discard it.
516 */
517 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
518 if (ic->ic_opmode == IEEE80211_M_STA ||
519 !IEEE80211_IS_MULTICAST(eh.ether_dhost))
520 key = ieee80211_crypto_getucastkey(ic, ni);
521 else
522 key = ieee80211_crypto_getmcastkey(ic, ni);
523 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
524 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
525 "[%s] no default transmit key (%s) deftxkey %u\n",
526 ether_sprintf(eh.ether_dhost), __func__,
527 ic->ic_def_txkey);
528 ic->ic_stats.is_tx_nodefkey++;
529 }
530 } else
531 key = NULL;
532 /* XXX 4-address format */
533 /*
534 * XXX Some ap's don't handle QoS-encapsulated EAPOL
535 * frames so suppress use. This may be an issue if other
536 * ap's require all data frames to be QoS-encapsulated
537 * once negotiated in which case we'll need to make this
538 * configurable.
539 */
540 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
541 eh.ether_type != htons(ETHERTYPE_PAE);
542 if (addqos)
543 hdrsize = sizeof(struct ieee80211_qosframe);
544 else
545 hdrsize = sizeof(struct ieee80211_frame);
546 if (ic->ic_flags & IEEE80211_F_DATAPAD)
547 hdrsize = roundup(hdrsize, sizeof(u_int32_t));
548 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
549 if (m == NULL) {
550 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
551 goto bad;
552 }
553
554 /* NB: this could be optimized because of ieee80211_mbuf_adjust */
555 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
556 llc = mtod(m, struct llc *);
557 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
558 llc->llc_control = LLC_UI;
559 llc->llc_snap.org_code[0] = 0;
560 llc->llc_snap.org_code[1] = 0;
561 llc->llc_snap.org_code[2] = 0;
562 llc->llc_snap.ether_type = eh.ether_type;
563 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
564
565 M_PREPEND(m, hdrsize, M_DONTWAIT);
566 if (m == NULL) {
567 ic->ic_stats.is_tx_nobuf++;
568 goto bad;
569 }
570 wh = mtod(m, struct ieee80211_frame *);
571 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
572 *(u_int16_t *)wh->i_dur = 0;
573 switch (ic->ic_opmode) {
574 case IEEE80211_M_STA:
575 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
576 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
577 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
578 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
579 break;
580 case IEEE80211_M_IBSS:
581 case IEEE80211_M_AHDEMO:
582 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
583 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
584 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
585 /*
586 * NB: always use the bssid from ic_bss as the
587 * neighbor's may be stale after an ibss merge
588 */
589 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
590 break;
591 case IEEE80211_M_HOSTAP:
592 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
593 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
594 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
595 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
596 break;
597 case IEEE80211_M_MONITOR:
598 goto bad;
599 }
600 if (m->m_flags & M_MORE_DATA)
601 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
602 if (addqos) {
603 struct ieee80211_qosframe *qwh =
604 (struct ieee80211_qosframe *) wh;
605 int ac, tid;
606
607 ac = M_WME_GETAC(m);
608 /* map from access class/queue to 11e header priorty value */
609 tid = WME_AC_TO_TID(ac);
610 qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
611 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
612 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
613 qwh->i_qos[1] = 0;
614 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
615
616 *(u_int16_t *)wh->i_seq =
617 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
618 ni->ni_txseqs[tid]++;
619 } else {
620 *(u_int16_t *)wh->i_seq =
621 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
622 ni->ni_txseqs[0]++;
623 }
624 if (key != NULL) {
625 /*
626 * IEEE 802.1X: send EAPOL frames always in the clear.
627 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
628 */
629 if (eh.ether_type != htons(ETHERTYPE_PAE) ||
630 ((ic->ic_flags & IEEE80211_F_WPA) &&
631 (ic->ic_opmode == IEEE80211_M_STA ?
632 !KEY_UNDEFINED(*key) : !KEY_UNDEFINED(ni->ni_ucastkey)))) {
633 wh->i_fc[1] |= IEEE80211_FC1_WEP;
634 /* XXX do fragmentation */
635 if (!ieee80211_crypto_enmic(ic, key, m, 0)) {
636 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
637 "[%s] enmic failed, discard frame\n",
638 ether_sprintf(eh.ether_dhost));
639 ic->ic_stats.is_crypto_enmicfail++;
640 goto bad;
641 }
642 }
643 }
644
645 IEEE80211_NODE_STAT(ni, tx_data);
646 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
647 IEEE80211_NODE_STAT(ni, tx_mcast);
648 else
649 IEEE80211_NODE_STAT(ni, tx_ucast);
650 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
651
652 return m;
653 bad:
654 if (m != NULL)
655 m_freem(m);
656 return NULL;
657 }
658
659 /*
660 * Add a supported rates element id to a frame.
661 */
662 static u_int8_t *
663 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
664 {
665 int nrates;
666
667 *frm++ = IEEE80211_ELEMID_RATES;
668 nrates = rs->rs_nrates;
669 if (nrates > IEEE80211_RATE_SIZE)
670 nrates = IEEE80211_RATE_SIZE;
671 *frm++ = nrates;
672 memcpy(frm, rs->rs_rates, nrates);
673 return frm + nrates;
674 }
675
676 /*
677 * Add an extended supported rates element id to a frame.
678 */
679 static u_int8_t *
680 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
681 {
682 /*
683 * Add an extended supported rates element if operating in 11g mode.
684 */
685 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
686 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
687 *frm++ = IEEE80211_ELEMID_XRATES;
688 *frm++ = nrates;
689 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
690 frm += nrates;
691 }
692 return frm;
693 }
694
695 /*
696 * Add an ssid elemet to a frame.
697 */
698 static u_int8_t *
699 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
700 {
701 *frm++ = IEEE80211_ELEMID_SSID;
702 *frm++ = len;
703 memcpy(frm, ssid, len);
704 return frm + len;
705 }
706
707 /*
708 * Add an erp element to a frame.
709 */
710 static u_int8_t *
711 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
712 {
713 u_int8_t erp;
714
715 *frm++ = IEEE80211_ELEMID_ERP;
716 *frm++ = 1;
717 erp = 0;
718 if (ic->ic_nonerpsta != 0)
719 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
720 if (ic->ic_flags & IEEE80211_F_USEPROT)
721 erp |= IEEE80211_ERP_USE_PROTECTION;
722 if (ic->ic_flags & IEEE80211_F_USEBARKER)
723 erp |= IEEE80211_ERP_LONG_PREAMBLE;
724 *frm++ = erp;
725 return frm;
726 }
727
728 static u_int8_t *
729 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
730 {
731 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2
732 #define ADDSHORT(frm, v) do { \
733 frm[0] = (v) & 0xff; \
734 frm[1] = (v) >> 8; \
735 frm += 2; \
736 } while (0)
737 #define ADDSELECTOR(frm, sel) do { \
738 memcpy(frm, sel, 4); \
739 frm += 4; \
740 } while (0)
741 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
742 static const u_int8_t cipher_suite[][4] = {
743 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */
744 { WPA_OUI_BYTES, WPA_CSE_TKIP },
745 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */
746 { WPA_OUI_BYTES, WPA_CSE_CCMP },
747 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
748 { WPA_OUI_BYTES, WPA_CSE_NULL },
749 };
750 static const u_int8_t wep104_suite[4] =
751 { WPA_OUI_BYTES, WPA_CSE_WEP104 };
752 static const u_int8_t key_mgt_unspec[4] =
753 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
754 static const u_int8_t key_mgt_psk[4] =
755 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
756 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
757 u_int8_t *frm = ie;
758 u_int8_t *selcnt;
759
760 *frm++ = IEEE80211_ELEMID_VENDOR;
761 *frm++ = 0; /* length filled in below */
762 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */
763 frm += sizeof(oui);
764 ADDSHORT(frm, WPA_VERSION);
765
766 /* XXX filter out CKIP */
767
768 /* multicast cipher */
769 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
770 rsn->rsn_mcastkeylen >= 13)
771 ADDSELECTOR(frm, wep104_suite);
772 else
773 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
774
775 /* unicast cipher list */
776 selcnt = frm;
777 ADDSHORT(frm, 0); /* selector count */
778 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
779 selcnt[0]++;
780 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
781 }
782 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
783 selcnt[0]++;
784 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
785 }
786
787 /* authenticator selector list */
788 selcnt = frm;
789 ADDSHORT(frm, 0); /* selector count */
790 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
791 selcnt[0]++;
792 ADDSELECTOR(frm, key_mgt_unspec);
793 }
794 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
795 selcnt[0]++;
796 ADDSELECTOR(frm, key_mgt_psk);
797 }
798
799 /* optional capabilities */
800 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
801 ADDSHORT(frm, rsn->rsn_caps);
802
803 /* calculate element length */
804 ie[1] = frm - ie - 2;
805 KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
806 ("WPA IE too big, %u > %zu",
807 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
808 return frm;
809 #undef ADDSHORT
810 #undef ADDSELECTOR
811 #undef WPA_OUI_BYTES
812 }
813
814 static u_int8_t *
815 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
816 {
817 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac
818 #define ADDSHORT(frm, v) do { \
819 frm[0] = (v) & 0xff; \
820 frm[1] = (v) >> 8; \
821 frm += 2; \
822 } while (0)
823 #define ADDSELECTOR(frm, sel) do { \
824 memcpy(frm, sel, 4); \
825 frm += 4; \
826 } while (0)
827 static const u_int8_t cipher_suite[][4] = {
828 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */
829 { RSN_OUI_BYTES, RSN_CSE_TKIP },
830 { RSN_OUI_BYTES, RSN_CSE_WRAP },
831 { RSN_OUI_BYTES, RSN_CSE_CCMP },
832 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
833 { RSN_OUI_BYTES, RSN_CSE_NULL },
834 };
835 static const u_int8_t wep104_suite[4] =
836 { RSN_OUI_BYTES, RSN_CSE_WEP104 };
837 static const u_int8_t key_mgt_unspec[4] =
838 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
839 static const u_int8_t key_mgt_psk[4] =
840 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
841 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
842 u_int8_t *frm = ie;
843 u_int8_t *selcnt;
844
845 *frm++ = IEEE80211_ELEMID_RSN;
846 *frm++ = 0; /* length filled in below */
847 ADDSHORT(frm, RSN_VERSION);
848
849 /* XXX filter out CKIP */
850
851 /* multicast cipher */
852 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
853 rsn->rsn_mcastkeylen >= 13)
854 ADDSELECTOR(frm, wep104_suite);
855 else
856 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
857
858 /* unicast cipher list */
859 selcnt = frm;
860 ADDSHORT(frm, 0); /* selector count */
861 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
862 selcnt[0]++;
863 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
864 }
865 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
866 selcnt[0]++;
867 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
868 }
869
870 /* authenticator selector list */
871 selcnt = frm;
872 ADDSHORT(frm, 0); /* selector count */
873 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
874 selcnt[0]++;
875 ADDSELECTOR(frm, key_mgt_unspec);
876 }
877 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
878 selcnt[0]++;
879 ADDSELECTOR(frm, key_mgt_psk);
880 }
881
882 /* optional capabilities */
883 ADDSHORT(frm, rsn->rsn_caps);
884 /* XXX PMKID */
885
886 /* calculate element length */
887 ie[1] = frm - ie - 2;
888 KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
889 ("RSN IE too big, %u > %zu",
890 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
891 return frm;
892 #undef ADDSELECTOR
893 #undef ADDSHORT
894 #undef RSN_OUI_BYTES
895 }
896
897 /*
898 * Add a WPA/RSN element to a frame.
899 */
900 static u_int8_t *
901 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
902 {
903
904 KASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
905 if (ic->ic_flags & IEEE80211_F_WPA2)
906 frm = ieee80211_setup_rsn_ie(ic, frm);
907 if (ic->ic_flags & IEEE80211_F_WPA1)
908 frm = ieee80211_setup_wpa_ie(ic, frm);
909 return frm;
910 }
911
912 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
913 /*
914 * Add a WME information element to a frame.
915 */
916 static u_int8_t *
917 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
918 {
919 static const struct ieee80211_wme_info info = {
920 .wme_id = IEEE80211_ELEMID_VENDOR,
921 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
922 .wme_oui = { WME_OUI_BYTES },
923 .wme_type = WME_OUI_TYPE,
924 .wme_subtype = WME_INFO_OUI_SUBTYPE,
925 .wme_version = WME_VERSION,
926 .wme_info = 0,
927 };
928 memcpy(frm, &info, sizeof(info));
929 return frm + sizeof(info);
930 }
931
932 /*
933 * Add a WME parameters element to a frame.
934 */
935 static u_int8_t *
936 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
937 {
938 #define SM(_v, _f) (((_v) << _f##_S) & _f)
939 #define ADDSHORT(frm, v) do { \
940 frm[0] = (v) & 0xff; \
941 frm[1] = (v) >> 8; \
942 frm += 2; \
943 } while (0)
944 /* NB: this works 'cuz a param has an info at the front */
945 static const struct ieee80211_wme_info param = {
946 .wme_id = IEEE80211_ELEMID_VENDOR,
947 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
948 .wme_oui = { WME_OUI_BYTES },
949 .wme_type = WME_OUI_TYPE,
950 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
951 .wme_version = WME_VERSION,
952 };
953 int i;
954
955 memcpy(frm, ¶m, sizeof(param));
956 frm += __offsetof(struct ieee80211_wme_info, wme_info);
957 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
958 *frm++ = 0; /* reserved field */
959 for (i = 0; i < WME_NUM_AC; i++) {
960 const struct wmeParams *ac =
961 &wme->wme_bssChanParams.cap_wmeParams[i];
962 *frm++ = SM(i, WME_PARAM_ACI)
963 | SM(ac->wmep_acm, WME_PARAM_ACM)
964 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
965 ;
966 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
967 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
968 ;
969 ADDSHORT(frm, ac->wmep_txopLimit);
970 }
971 return frm;
972 #undef SM
973 #undef ADDSHORT
974 }
975 #undef WME_OUI_BYTES
976
977 /*
978 * Send a probe request frame with the specified ssid
979 * and any optional information element data.
980 */
981 int
982 ieee80211_send_probereq(struct ieee80211_node *ni,
983 const u_int8_t sa[IEEE80211_ADDR_LEN],
984 const u_int8_t da[IEEE80211_ADDR_LEN],
985 const u_int8_t bssid[IEEE80211_ADDR_LEN],
986 const u_int8_t *ssid, size_t ssidlen,
987 const void *optie, size_t optielen)
988 {
989 struct ieee80211com *ic = ni->ni_ic;
990 enum ieee80211_phymode mode;
991 struct ieee80211_frame *wh;
992 struct mbuf *m;
993 u_int8_t *frm;
994
995 /*
996 * Hold a reference on the node so it doesn't go away until after
997 * the xmit is complete all the way in the driver. On error we
998 * will remove our reference.
999 */
1000 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1001 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1002 __func__, __LINE__,
1003 ni, ether_sprintf(ni->ni_macaddr),
1004 ieee80211_node_refcnt(ni)+1);
1005 ieee80211_ref_node(ni);
1006
1007 /*
1008 * prreq frame format
1009 * [tlv] ssid
1010 * [tlv] supported rates
1011 * [tlv] extended supported rates
1012 * [tlv] user-specified ie's
1013 */
1014 m = ieee80211_getmgtframe(&frm,
1015 2 + IEEE80211_NWID_LEN
1016 + 2 + IEEE80211_RATE_SIZE
1017 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1018 + (optie != NULL ? optielen : 0)
1019 );
1020 if (m == NULL) {
1021 ic->ic_stats.is_tx_nobuf++;
1022 ieee80211_free_node(ni);
1023 return ENOMEM;
1024 }
1025
1026 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1027 mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1028 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
1029 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
1030
1031 if (optie != NULL) {
1032 memcpy(frm, optie, optielen);
1033 frm += optielen;
1034 }
1035 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1036
1037 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1038 if (m == NULL)
1039 return ENOMEM;
1040 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
1041 m->m_pkthdr.rcvif = (void *)ni;
1042
1043 wh = mtod(m, struct ieee80211_frame *);
1044 ieee80211_send_setup(ic, ni, wh,
1045 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1046 sa, da, bssid);
1047 /* XXX power management? */
1048
1049 IEEE80211_NODE_STAT(ni, tx_probereq);
1050 IEEE80211_NODE_STAT(ni, tx_mgmt);
1051
1052 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1053 "[%s] send probe req on channel %u\n",
1054 ether_sprintf(wh->i_addr1),
1055 ieee80211_chan2ieee(ic, ic->ic_curchan));
1056
1057 IF_ENQUEUE(&ic->ic_mgtq, m);
1058 if_start(ic->ic_ifp);
1059 return 0;
1060 }
1061
1062 /*
1063 * Calculate capability information for mgt frames.
1064 */
1065 static u_int16_t
1066 getcapinfo(struct ieee80211com *ic, struct ieee80211_channel *chan)
1067 {
1068 u_int16_t capinfo;
1069
1070 KASSERT(ic->ic_opmode != IEEE80211_M_STA, ("station mode"));
1071
1072 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1073 capinfo = IEEE80211_CAPINFO_ESS;
1074 else if (ic->ic_opmode == IEEE80211_M_IBSS)
1075 capinfo = IEEE80211_CAPINFO_IBSS;
1076 else
1077 capinfo = 0;
1078 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1079 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1080 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1081 IEEE80211_IS_CHAN_2GHZ(chan))
1082 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1083 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1084 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1085 return capinfo;
1086 }
1087
1088 /*
1089 * Send a management frame. The node is for the destination (or ic_bss
1090 * when in station mode). Nodes other than ic_bss have their reference
1091 * count bumped to reflect our use for an indeterminant time.
1092 */
1093 int
1094 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1095 int type, int arg)
1096 {
1097 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1098 struct mbuf *m;
1099 u_int8_t *frm;
1100 u_int16_t capinfo;
1101 int has_challenge, is_shared_key, ret, timer, status;
1102
1103 KASSERT(ni != NULL, ("null node"));
1104
1105 /*
1106 * Hold a reference on the node so it doesn't go away until after
1107 * the xmit is complete all the way in the driver. On error we
1108 * will remove our reference.
1109 */
1110 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1111 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1112 __func__, __LINE__,
1113 ni, ether_sprintf(ni->ni_macaddr),
1114 ieee80211_node_refcnt(ni)+1);
1115 ieee80211_ref_node(ni);
1116
1117 timer = 0;
1118 switch (type) {
1119 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
1120 /*
1121 * probe response frame format
1122 * [8] time stamp
1123 * [2] beacon interval
1124 * [2] cabability information
1125 * [tlv] ssid
1126 * [tlv] supported rates
1127 * [tlv] parameter set (FH/DS)
1128 * [tlv] parameter set (IBSS)
1129 * [tlv] extended rate phy (ERP)
1130 * [tlv] extended supported rates
1131 * [tlv] WPA
1132 * [tlv] WME (optional)
1133 */
1134 m = ieee80211_getmgtframe(&frm,
1135 8
1136 + sizeof(u_int16_t)
1137 + sizeof(u_int16_t)
1138 + 2 + IEEE80211_NWID_LEN
1139 + 2 + IEEE80211_RATE_SIZE
1140 + 7 /* max(7,3) */
1141 + 6
1142 + 3
1143 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1144 /* XXX !WPA1+WPA2 fits w/o a cluster */
1145 + (ic->ic_flags & IEEE80211_F_WPA ?
1146 2*sizeof(struct ieee80211_ie_wpa) : 0)
1147 + sizeof(struct ieee80211_wme_param)
1148 );
1149 if (m == NULL)
1150 senderr(ENOMEM, is_tx_nobuf);
1151
1152 memset(frm, 0, 8); /* timestamp should be filled later */
1153 frm += 8;
1154 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
1155 frm += 2;
1156 capinfo = getcapinfo(ic, ic->ic_curchan);
1157 *(u_int16_t *)frm = htole16(capinfo);
1158 frm += 2;
1159
1160 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
1161 ic->ic_bss->ni_esslen);
1162 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1163
1164 if (ic->ic_phytype == IEEE80211_T_FH) {
1165 *frm++ = IEEE80211_ELEMID_FHPARMS;
1166 *frm++ = 5;
1167 *frm++ = ni->ni_fhdwell & 0x00ff;
1168 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1169 *frm++ = IEEE80211_FH_CHANSET(
1170 ieee80211_chan2ieee(ic, ic->ic_curchan));
1171 *frm++ = IEEE80211_FH_CHANPAT(
1172 ieee80211_chan2ieee(ic, ic->ic_curchan));
1173 *frm++ = ni->ni_fhindex;
1174 } else {
1175 *frm++ = IEEE80211_ELEMID_DSPARMS;
1176 *frm++ = 1;
1177 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
1178 }
1179
1180 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1181 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1182 *frm++ = 2;
1183 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1184 }
1185 if (ic->ic_flags & IEEE80211_F_WPA)
1186 frm = ieee80211_add_wpa(frm, ic);
1187 if (ic->ic_curmode == IEEE80211_MODE_11G)
1188 frm = ieee80211_add_erp(frm, ic);
1189 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1190 if (ic->ic_flags & IEEE80211_F_WME)
1191 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1192 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1193 break;
1194
1195 case IEEE80211_FC0_SUBTYPE_AUTH:
1196 status = arg >> 16;
1197 arg &= 0xffff;
1198 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1199 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1200 ni->ni_challenge != NULL);
1201
1202 /*
1203 * Deduce whether we're doing open authentication or
1204 * shared key authentication. We do the latter if
1205 * we're in the middle of a shared key authentication
1206 * handshake or if we're initiating an authentication
1207 * request and configured to use shared key.
1208 */
1209 is_shared_key = has_challenge ||
1210 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1211 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1212 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1213
1214 m = ieee80211_getmgtframe(&frm,
1215 3 * sizeof(u_int16_t)
1216 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1217 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
1218 );
1219 if (m == NULL)
1220 senderr(ENOMEM, is_tx_nobuf);
1221
1222 ((u_int16_t *)frm)[0] =
1223 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1224 : htole16(IEEE80211_AUTH_ALG_OPEN);
1225 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */
1226 ((u_int16_t *)frm)[2] = htole16(status);/* status */
1227
1228 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1229 ((u_int16_t *)frm)[3] =
1230 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1231 IEEE80211_ELEMID_CHALLENGE);
1232 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
1233 IEEE80211_CHALLENGE_LEN);
1234 m->m_pkthdr.len = m->m_len =
1235 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
1236 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1237 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1238 "[%s] request encrypt frame (%s)\n",
1239 ether_sprintf(ni->ni_macaddr), __func__);
1240 m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1241 }
1242 } else
1243 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
1244
1245 /* XXX not right for shared key */
1246 if (status == IEEE80211_STATUS_SUCCESS)
1247 IEEE80211_NODE_STAT(ni, tx_auth);
1248 else
1249 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1250
1251 if (ic->ic_opmode == IEEE80211_M_STA)
1252 timer = IEEE80211_TRANS_WAIT;
1253 break;
1254
1255 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1256 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1257 "[%s] send station deauthenticate (reason %d)\n",
1258 ether_sprintf(ni->ni_macaddr), arg);
1259 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1260 if (m == NULL)
1261 senderr(ENOMEM, is_tx_nobuf);
1262 *(u_int16_t *)frm = htole16(arg); /* reason */
1263 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1264
1265 IEEE80211_NODE_STAT(ni, tx_deauth);
1266 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1267
1268 ieee80211_node_unauthorize(ni); /* port closed */
1269 break;
1270
1271 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1272 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1273 /*
1274 * asreq frame format
1275 * [2] capability information
1276 * [2] listen interval
1277 * [6*] current AP address (reassoc only)
1278 * [tlv] ssid
1279 * [tlv] supported rates
1280 * [tlv] extended supported rates
1281 * [tlv] WME
1282 * [tlv] user-specified ie's
1283 */
1284 m = ieee80211_getmgtframe(&frm,
1285 sizeof(u_int16_t)
1286 + sizeof(u_int16_t)
1287 + IEEE80211_ADDR_LEN
1288 + 2 + IEEE80211_NWID_LEN
1289 + 2 + IEEE80211_RATE_SIZE
1290 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1291 + sizeof(struct ieee80211_wme_info)
1292 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1293 );
1294 if (m == NULL)
1295 senderr(ENOMEM, is_tx_nobuf);
1296
1297 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
1298 ("wrong mode %u", ic->ic_opmode));
1299 capinfo = IEEE80211_CAPINFO_ESS;
1300 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1301 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1302 /*
1303 * NB: Some 11a AP's reject the request when
1304 * short premable is set.
1305 */
1306 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1307 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1308 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1309 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
1310 (ic->ic_caps & IEEE80211_C_SHSLOT))
1311 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1312 *(u_int16_t *)frm = htole16(capinfo);
1313 frm += 2;
1314
1315 *(u_int16_t *)frm = htole16(ic->ic_lintval);
1316 frm += 2;
1317
1318 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1319 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1320 frm += IEEE80211_ADDR_LEN;
1321 }
1322
1323 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1324 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1325 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1326 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1327 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1328 if (ic->ic_opt_ie != NULL) {
1329 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1330 frm += ic->ic_opt_ie_len;
1331 }
1332 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1333
1334 timer = IEEE80211_TRANS_WAIT;
1335 break;
1336
1337 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1338 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1339 /*
1340 * asreq frame format
1341 * [2] capability information
1342 * [2] status
1343 * [2] association ID
1344 * [tlv] supported rates
1345 * [tlv] extended supported rates
1346 * [tlv] WME (if enabled and STA enabled)
1347 */
1348 m = ieee80211_getmgtframe(&frm,
1349 sizeof(u_int16_t)
1350 + sizeof(u_int16_t)
1351 + sizeof(u_int16_t)
1352 + 2 + IEEE80211_RATE_SIZE
1353 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1354 + sizeof(struct ieee80211_wme_param)
1355 );
1356 if (m == NULL)
1357 senderr(ENOMEM, is_tx_nobuf);
1358
1359 capinfo = getcapinfo(ic, ic->ic_curchan);
1360 *(u_int16_t *)frm = htole16(capinfo);
1361 frm += 2;
1362
1363 *(u_int16_t *)frm = htole16(arg); /* status */
1364 frm += 2;
1365
1366 if (arg == IEEE80211_STATUS_SUCCESS) {
1367 *(u_int16_t *)frm = htole16(ni->ni_associd);
1368 IEEE80211_NODE_STAT(ni, tx_assoc);
1369 } else
1370 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1371 frm += 2;
1372
1373 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1374 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1375 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1376 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1377 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1378 break;
1379
1380 case IEEE80211_FC0_SUBTYPE_DISASSOC:
1381 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1382 "[%s] send station disassociate (reason %d)\n",
1383 ether_sprintf(ni->ni_macaddr), arg);
1384 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1385 if (m == NULL)
1386 senderr(ENOMEM, is_tx_nobuf);
1387 *(u_int16_t *)frm = htole16(arg); /* reason */
1388 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1389
1390 IEEE80211_NODE_STAT(ni, tx_disassoc);
1391 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1392 break;
1393
1394 default:
1395 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1396 "[%s] invalid mgmt frame type %u\n",
1397 ether_sprintf(ni->ni_macaddr), type);
1398 senderr(EINVAL, is_tx_unknownmgt);
1399 /* NOTREACHED */
1400 }
1401 ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
1402 if (ret != 0) {
1403 bad:
1404 ieee80211_free_node(ni);
1405 }
1406 return ret;
1407 #undef senderr
1408 }
1409
1410 /*
1411 * Allocate a beacon frame and fillin the appropriate bits.
1412 */
1413 struct mbuf *
1414 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1415 struct ieee80211_beacon_offsets *bo)
1416 {
1417 struct ifnet *ifp = ic->ic_ifp;
1418 struct ieee80211_frame *wh;
1419 struct mbuf *m;
1420 int pktlen;
1421 u_int8_t *frm, *efrm;
1422 u_int16_t capinfo;
1423 struct ieee80211_rateset *rs;
1424
1425 /*
1426 * beacon frame format
1427 * [8] time stamp
1428 * [2] beacon interval
1429 * [2] cabability information
1430 * [tlv] ssid
1431 * [tlv] supported rates
1432 * [3] parameter set (DS)
1433 * [tlv] parameter set (IBSS/TIM)
1434 * [tlv] extended rate phy (ERP)
1435 * [tlv] extended supported rates
1436 * [tlv] WME parameters
1437 * [tlv] WPA/RSN parameters
1438 * XXX Vendor-specific OIDs (e.g. Atheros)
1439 * NB: we allocate the max space required for the TIM bitmap.
1440 */
1441 rs = &ni->ni_rates;
1442 pktlen = 8 /* time stamp */
1443 + sizeof(u_int16_t) /* beacon interval */
1444 + sizeof(u_int16_t) /* capabilities */
1445 + 2 + ni->ni_esslen /* ssid */
1446 + 2 + IEEE80211_RATE_SIZE /* supported rates */
1447 + 2 + 1 /* DS parameters */
1448 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */
1449 + 2 + 1 /* ERP */
1450 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1451 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */
1452 sizeof(struct ieee80211_wme_param) : 0)
1453 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
1454 2*sizeof(struct ieee80211_ie_wpa) : 0)
1455 ;
1456 m = ieee80211_getmgtframe(&frm, pktlen);
1457 if (m == NULL) {
1458 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1459 "%s: cannot get buf; size %u\n", __func__, pktlen);
1460 ic->ic_stats.is_tx_nobuf++;
1461 return NULL;
1462 }
1463
1464 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
1465 frm += 8;
1466 *(u_int16_t *)frm = htole16(ni->ni_intval);
1467 frm += 2;
1468 capinfo = getcapinfo(ic, ni->ni_chan);
1469 bo->bo_caps = (u_int16_t *)frm;
1470 *(u_int16_t *)frm = htole16(capinfo);
1471 frm += 2;
1472 *frm++ = IEEE80211_ELEMID_SSID;
1473 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1474 *frm++ = ni->ni_esslen;
1475 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1476 frm += ni->ni_esslen;
1477 } else
1478 *frm++ = 0;
1479 frm = ieee80211_add_rates(frm, rs);
1480 if (ic->ic_curmode != IEEE80211_MODE_FH) {
1481 *frm++ = IEEE80211_ELEMID_DSPARMS;
1482 *frm++ = 1;
1483 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1484 }
1485 bo->bo_tim = frm;
1486 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1487 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1488 *frm++ = 2;
1489 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1490 bo->bo_tim_len = 0;
1491 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1492 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
1493
1494 tie->tim_ie = IEEE80211_ELEMID_TIM;
1495 tie->tim_len = 4; /* length */
1496 tie->tim_count = 0; /* DTIM count */
1497 tie->tim_period = ic->ic_dtim_period; /* DTIM period */
1498 tie->tim_bitctl = 0; /* bitmap control */
1499 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
1500 frm += sizeof(struct ieee80211_tim_ie);
1501 bo->bo_tim_len = 1;
1502 }
1503 bo->bo_trailer = frm;
1504 if (ic->ic_flags & IEEE80211_F_WME) {
1505 bo->bo_wme = frm;
1506 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1507 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1508 }
1509 if (ic->ic_flags & IEEE80211_F_WPA)
1510 frm = ieee80211_add_wpa(frm, ic);
1511 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1512 bo->bo_erp = frm;
1513 frm = ieee80211_add_erp(frm, ic);
1514 }
1515 efrm = ieee80211_add_xrates(frm, rs);
1516 bo->bo_trailer_len = efrm - bo->bo_trailer;
1517 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
1518
1519 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1520 KASSERT(m != NULL, ("no space for 802.11 header?"));
1521 wh = mtod(m, struct ieee80211_frame *);
1522 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1523 IEEE80211_FC0_SUBTYPE_BEACON;
1524 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1525 *(u_int16_t *)wh->i_dur = 0;
1526 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1527 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1528 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1529 *(u_int16_t *)wh->i_seq = 0;
1530
1531 return m;
1532 }
1533
1534 /*
1535 * Update the dynamic parts of a beacon frame based on the current state.
1536 */
1537 int
1538 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1539 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1540 {
1541 int len_changed = 0;
1542 u_int16_t capinfo;
1543
1544 IEEE80211_BEACON_LOCK(ic);
1545 /* XXX faster to recalculate entirely or just changes? */
1546 capinfo = getcapinfo(ic, ni->ni_chan);
1547 *bo->bo_caps = htole16(capinfo);
1548
1549 if (ic->ic_flags & IEEE80211_F_WME) {
1550 struct ieee80211_wme_state *wme = &ic->ic_wme;
1551
1552 /*
1553 * Check for agressive mode change. When there is
1554 * significant high priority traffic in the BSS
1555 * throttle back BE traffic by using conservative
1556 * parameters. Otherwise BE uses agressive params
1557 * to optimize performance of legacy/non-QoS traffic.
1558 */
1559 if (wme->wme_flags & WME_F_AGGRMODE) {
1560 if (wme->wme_hipri_traffic >
1561 wme->wme_hipri_switch_thresh) {
1562 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1563 "%s: traffic %u, disable aggressive mode\n",
1564 __func__, wme->wme_hipri_traffic);
1565 wme->wme_flags &= ~WME_F_AGGRMODE;
1566 ieee80211_wme_updateparams_locked(ic);
1567 wme->wme_hipri_traffic =
1568 wme->wme_hipri_switch_hysteresis;
1569 } else
1570 wme->wme_hipri_traffic = 0;
1571 } else {
1572 if (wme->wme_hipri_traffic <=
1573 wme->wme_hipri_switch_thresh) {
1574 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1575 "%s: traffic %u, enable aggressive mode\n",
1576 __func__, wme->wme_hipri_traffic);
1577 wme->wme_flags |= WME_F_AGGRMODE;
1578 ieee80211_wme_updateparams_locked(ic);
1579 wme->wme_hipri_traffic = 0;
1580 } else
1581 wme->wme_hipri_traffic =
1582 wme->wme_hipri_switch_hysteresis;
1583 }
1584 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
1585 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
1586 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1587 }
1588 }
1589
1590 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
1591 struct ieee80211_tim_ie *tie =
1592 (struct ieee80211_tim_ie *) bo->bo_tim;
1593 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
1594 u_int timlen, timoff, i;
1595 /*
1596 * ATIM/DTIM needs updating. If it fits in the
1597 * current space allocated then just copy in the
1598 * new bits. Otherwise we need to move any trailing
1599 * data to make room. Note that we know there is
1600 * contiguous space because ieee80211_beacon_allocate
1601 * insures there is space in the mbuf to write a
1602 * maximal-size virtual bitmap (based on ic_max_aid).
1603 */
1604 /*
1605 * Calculate the bitmap size and offset, copy any
1606 * trailer out of the way, and then copy in the
1607 * new bitmap and update the information element.
1608 * Note that the tim bitmap must contain at least
1609 * one byte and any offset must be even.
1610 */
1611 if (ic->ic_ps_pending != 0) {
1612 timoff = 128; /* impossibly large */
1613 for (i = 0; i < ic->ic_tim_len; i++)
1614 if (ic->ic_tim_bitmap[i]) {
1615 timoff = i &~ 1;
1616 break;
1617 }
1618 KASSERT(timoff != 128, ("tim bitmap empty!"));
1619 for (i = ic->ic_tim_len-1; i >= timoff; i--)
1620 if (ic->ic_tim_bitmap[i])
1621 break;
1622 timlen = 1 + (i - timoff);
1623 } else {
1624 timoff = 0;
1625 timlen = 1;
1626 }
1627 if (timlen != bo->bo_tim_len) {
1628 /* copy up/down trailer */
1629 int adjust = tie->tim_bitmap+timlen
1630 - bo->bo_trailer;
1631 ovbcopy(bo->bo_trailer, bo->bo_trailer+adjust,
1632 bo->bo_trailer_len);
1633 bo->bo_trailer += adjust;
1634 bo->bo_wme += adjust;
1635 bo->bo_erp += adjust;
1636 bo->bo_tim_len = timlen;
1637
1638 /* update information element */
1639 tie->tim_len = 3 + timlen;
1640 tie->tim_bitctl = timoff;
1641 len_changed = 1;
1642 }
1643 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
1644 bo->bo_tim_len);
1645
1646 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
1647
1648 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
1649 "%s: TIM updated, pending %u, off %u, len %u\n",
1650 __func__, ic->ic_ps_pending, timoff, timlen);
1651 }
1652 /* count down DTIM period */
1653 if (tie->tim_count == 0)
1654 tie->tim_count = tie->tim_period - 1;
1655 else
1656 tie->tim_count--;
1657 /* update state for buffered multicast frames on DTIM */
1658 if (mcast && tie->tim_count == 0)
1659 tie->tim_bitctl |= 1;
1660 else
1661 tie->tim_bitctl &= ~1;
1662 if (ic->ic_flags_ext & IEEE80211_FEXT_ERPUPDATE) {
1663 /*
1664 * ERP element needs updating.
1665 */
1666 (void) ieee80211_add_erp(bo->bo_erp, ic);
1667 ic->ic_flags_ext &= ~IEEE80211_FEXT_ERPUPDATE;
1668 }
1669 }
1670 IEEE80211_BEACON_UNLOCK(ic);
1671
1672 return len_changed;
1673 }
1674
1675 /*
1676 * Save an outbound packet for a node in power-save sleep state.
1677 * The new packet is placed on the node's saved queue, and the TIM
1678 * is changed, if necessary.
1679 */
1680 void
1681 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
1682 struct mbuf *m)
1683 {
1684 int qlen, age;
1685
1686 IEEE80211_NODE_SAVEQ_LOCK(ni);
1687 if (_IF_QFULL(&ni->ni_savedq)) {
1688 _IF_DROP(&ni->ni_savedq);
1689 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
1690 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1691 "[%s] pwr save q overflow, drops %d (size %d)\n",
1692 ether_sprintf(ni->ni_macaddr),
1693 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
1694 #ifdef IEEE80211_DEBUG
1695 if (ieee80211_msg_dumppkts(ic))
1696 ieee80211_dump_pkt(mtod(m, caddr_t), m->m_len, -1, -1);
1697 #endif
1698 m_freem(m);
1699 return;
1700 }
1701 /*
1702 * Tag the frame with it's expiry time and insert
1703 * it in the queue. The aging interval is 4 times
1704 * the listen interval specified by the station.
1705 * Frames that sit around too long are reclaimed
1706 * using this information.
1707 */
1708 /* XXX handle overflow? */
1709 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
1710 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
1711 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
1712
1713 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
1714 "[%s] save frame with age %d, %u now queued\n",
1715 ether_sprintf(ni->ni_macaddr), age, qlen);
1716
1717 if (qlen == 1)
1718 ic->ic_set_tim(ni, 1);
1719 }
Cache object: b4eab29248e8f838cacfc0fd388b6680
|