The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211_proto.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2001 Atsushi Onoe
    5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
    6  * Copyright (c) 2012 IEEE
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 /*
   34  * IEEE 802.11 protocol support.
   35  */
   36 
   37 #include "opt_inet.h"
   38 #include "opt_wlan.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/kernel.h>
   43 #include <sys/malloc.h>
   44 
   45 #include <sys/socket.h>
   46 #include <sys/sockio.h>
   47 
   48 #include <net/if.h>
   49 #include <net/if_var.h>
   50 #include <net/if_media.h>
   51 #include <net/ethernet.h>               /* XXX for ether_sprintf */
   52 
   53 #include <net80211/ieee80211_var.h>
   54 #include <net80211/ieee80211_adhoc.h>
   55 #include <net80211/ieee80211_sta.h>
   56 #include <net80211/ieee80211_hostap.h>
   57 #include <net80211/ieee80211_wds.h>
   58 #ifdef IEEE80211_SUPPORT_MESH
   59 #include <net80211/ieee80211_mesh.h>
   60 #endif
   61 #include <net80211/ieee80211_monitor.h>
   62 #include <net80211/ieee80211_input.h>
   63 
   64 /* XXX tunables */
   65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS       3       /* pkts / 100ms */
   66 #define HIGH_PRI_SWITCH_THRESH                  10      /* pkts / 100ms */
   67 
   68 const char *mgt_subtype_name[] = {
   69         "assoc_req",    "assoc_resp",   "reassoc_req",  "reassoc_resp",
   70         "probe_req",    "probe_resp",   "timing_adv",   "reserved#7",
   71         "beacon",       "atim",         "disassoc",     "auth",
   72         "deauth",       "action",       "action_noack", "reserved#15"
   73 };
   74 const char *ctl_subtype_name[] = {
   75         "reserved#0",   "reserved#1",   "reserved#2",   "reserved#3",
   76         "reserved#4",   "reserved#5",   "reserved#6",   "control_wrap",
   77         "bar",          "ba",           "ps_poll",      "rts",
   78         "cts",          "ack",          "cf_end",       "cf_end_ack"
   79 };
   80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
   81         "IBSS",         /* IEEE80211_M_IBSS */
   82         "STA",          /* IEEE80211_M_STA */
   83         "WDS",          /* IEEE80211_M_WDS */
   84         "AHDEMO",       /* IEEE80211_M_AHDEMO */
   85         "HOSTAP",       /* IEEE80211_M_HOSTAP */
   86         "MONITOR",      /* IEEE80211_M_MONITOR */
   87         "MBSS"          /* IEEE80211_M_MBSS */
   88 };
   89 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
   90         "INIT",         /* IEEE80211_S_INIT */
   91         "SCAN",         /* IEEE80211_S_SCAN */
   92         "AUTH",         /* IEEE80211_S_AUTH */
   93         "ASSOC",        /* IEEE80211_S_ASSOC */
   94         "CAC",          /* IEEE80211_S_CAC */
   95         "RUN",          /* IEEE80211_S_RUN */
   96         "CSA",          /* IEEE80211_S_CSA */
   97         "SLEEP",        /* IEEE80211_S_SLEEP */
   98 };
   99 const char *ieee80211_wme_acnames[] = {
  100         "WME_AC_BE",
  101         "WME_AC_BK",
  102         "WME_AC_VI",
  103         "WME_AC_VO",
  104         "WME_UPSD",
  105 };
  106 
  107 /*
  108  * Reason code descriptions were (mostly) obtained from
  109  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
  110  */
  111 const char *
  112 ieee80211_reason_to_string(uint16_t reason)
  113 {
  114         switch (reason) {
  115         case IEEE80211_REASON_UNSPECIFIED:
  116                 return ("unspecified");
  117         case IEEE80211_REASON_AUTH_EXPIRE:
  118                 return ("previous authentication is expired");
  119         case IEEE80211_REASON_AUTH_LEAVE:
  120                 return ("sending STA is leaving/has left IBSS or ESS");
  121         case IEEE80211_REASON_ASSOC_EXPIRE:
  122                 return ("disassociated due to inactivity");
  123         case IEEE80211_REASON_ASSOC_TOOMANY:
  124                 return ("too many associated STAs");
  125         case IEEE80211_REASON_NOT_AUTHED:
  126                 return ("class 2 frame received from nonauthenticated STA");
  127         case IEEE80211_REASON_NOT_ASSOCED:
  128                 return ("class 3 frame received from nonassociated STA");
  129         case IEEE80211_REASON_ASSOC_LEAVE:
  130                 return ("sending STA is leaving/has left BSS");
  131         case IEEE80211_REASON_ASSOC_NOT_AUTHED:
  132                 return ("STA requesting (re)association is not authenticated");
  133         case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
  134                 return ("information in the Power Capability element is "
  135                         "unacceptable");
  136         case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
  137                 return ("information in the Supported Channels element is "
  138                         "unacceptable");
  139         case IEEE80211_REASON_IE_INVALID:
  140                 return ("invalid element");
  141         case IEEE80211_REASON_MIC_FAILURE:
  142                 return ("MIC failure");
  143         case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
  144                 return ("4-Way handshake timeout");
  145         case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
  146                 return ("group key update timeout");
  147         case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
  148                 return ("element in 4-Way handshake different from "
  149                         "(re)association request/probe response/beacon frame");
  150         case IEEE80211_REASON_GROUP_CIPHER_INVALID:
  151                 return ("invalid group cipher");
  152         case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
  153                 return ("invalid pairwise cipher");
  154         case IEEE80211_REASON_AKMP_INVALID:
  155                 return ("invalid AKMP");
  156         case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
  157                 return ("unsupported version in RSN IE");
  158         case IEEE80211_REASON_INVALID_RSN_IE_CAP:
  159                 return ("invalid capabilities in RSN IE");
  160         case IEEE80211_REASON_802_1X_AUTH_FAILED:
  161                 return ("IEEE 802.1X authentication failed");
  162         case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
  163                 return ("cipher suite rejected because of the security "
  164                         "policy");
  165         case IEEE80211_REASON_UNSPECIFIED_QOS:
  166                 return ("unspecified (QoS-related)");
  167         case IEEE80211_REASON_INSUFFICIENT_BW:
  168                 return ("QoS AP lacks sufficient bandwidth for this QoS STA");
  169         case IEEE80211_REASON_TOOMANY_FRAMES:
  170                 return ("too many frames need to be acknowledged");
  171         case IEEE80211_REASON_OUTSIDE_TXOP:
  172                 return ("STA is transmitting outside the limits of its TXOPs");
  173         case IEEE80211_REASON_LEAVING_QBSS:
  174                 return ("requested from peer STA (the STA is "
  175                         "resetting/leaving the BSS)");
  176         case IEEE80211_REASON_BAD_MECHANISM:
  177                 return ("requested from peer STA (it does not want to use "
  178                         "the mechanism)");
  179         case IEEE80211_REASON_SETUP_NEEDED:
  180                 return ("requested from peer STA (setup is required for the "
  181                         "used mechanism)");
  182         case IEEE80211_REASON_TIMEOUT:
  183                 return ("requested from peer STA (timeout)");
  184         case IEEE80211_REASON_PEER_LINK_CANCELED:
  185                 return ("SME cancels the mesh peering instance (not related "
  186                         "to the maximum number of peer mesh STAs)");
  187         case IEEE80211_REASON_MESH_MAX_PEERS:
  188                 return ("maximum number of peer mesh STAs was reached");
  189         case IEEE80211_REASON_MESH_CPVIOLATION:
  190                 return ("the received information violates the Mesh "
  191                         "Configuration policy configured in the mesh STA "
  192                         "profile");
  193         case IEEE80211_REASON_MESH_CLOSE_RCVD:
  194                 return ("the mesh STA has received a Mesh Peering Close "
  195                         "message requesting to close the mesh peering");
  196         case IEEE80211_REASON_MESH_MAX_RETRIES:
  197                 return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
  198                         "Peering Open messages, without receiving a Mesh "
  199                         "Peering Confirm message");
  200         case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
  201                 return ("the confirmTimer for the mesh peering instance times "
  202                         "out");
  203         case IEEE80211_REASON_MESH_INVALID_GTK:
  204                 return ("the mesh STA fails to unwrap the GTK or the values "
  205                         "in the wrapped contents do not match");
  206         case IEEE80211_REASON_MESH_INCONS_PARAMS:
  207                 return ("the mesh STA receives inconsistent information about "
  208                         "the mesh parameters between Mesh Peering Management "
  209                         "frames");
  210         case IEEE80211_REASON_MESH_INVALID_SECURITY:
  211                 return ("the mesh STA fails the authenticated mesh peering "
  212                         "exchange because due to failure in selecting "
  213                         "pairwise/group ciphersuite");
  214         case IEEE80211_REASON_MESH_PERR_NO_PROXY:
  215                 return ("the mesh STA does not have proxy information for "
  216                         "this external destination");
  217         case IEEE80211_REASON_MESH_PERR_NO_FI:
  218                 return ("the mesh STA does not have forwarding information "
  219                         "for this destination");
  220         case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
  221                 return ("the mesh STA determines that the link to the next "
  222                         "hop of an active path in its forwarding information "
  223                         "is no longer usable");
  224         case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
  225                 return ("the MAC address of the STA already exists in the "
  226                         "mesh BSS");
  227         case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
  228                 return ("the mesh STA performs channel switch to meet "
  229                         "regulatory requirements");
  230         case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
  231                 return ("the mesh STA performs channel switch with "
  232                         "unspecified reason");
  233         default:
  234                 return ("reserved/unknown");
  235         }
  236 }
  237 
  238 static void beacon_miss(void *, int);
  239 static void beacon_swmiss(void *, int);
  240 static void parent_updown(void *, int);
  241 static void update_mcast(void *, int);
  242 static void update_promisc(void *, int);
  243 static void update_channel(void *, int);
  244 static void update_chw(void *, int);
  245 static void vap_update_wme(void *, int);
  246 static void vap_update_slot(void *, int);
  247 static void restart_vaps(void *, int);
  248 static void vap_update_erp_protmode(void *, int);
  249 static void vap_update_preamble(void *, int);
  250 static void vap_update_ht_protmode(void *, int);
  251 static void ieee80211_newstate_cb(void *, int);
  252 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *,
  253     struct ieee80211_node *);
  254 
  255 static int
  256 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
  257         const struct ieee80211_bpf_params *params)
  258 {
  259 
  260         ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
  261         m_freem(m);
  262         return ENETDOWN;
  263 }
  264 
  265 void
  266 ieee80211_proto_attach(struct ieee80211com *ic)
  267 {
  268         uint8_t hdrlen;
  269 
  270         /* override the 802.3 setting */
  271         hdrlen = ic->ic_headroom
  272                 + sizeof(struct ieee80211_qosframe_addr4)
  273                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
  274                 + IEEE80211_WEP_EXTIVLEN;
  275         /* XXX no way to recalculate on ifdetach */
  276         max_linkhdr_grow(ALIGN(hdrlen));
  277         //ic->ic_protmode = IEEE80211_PROT_CTSONLY;
  278 
  279         TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
  280         TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
  281         TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
  282         TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
  283         TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
  284         TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
  285         TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
  286 
  287         ic->ic_wme.wme_hipri_switch_hysteresis =
  288                 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
  289 
  290         /* initialize management frame handlers */
  291         ic->ic_send_mgmt = ieee80211_send_mgmt;
  292         ic->ic_raw_xmit = null_raw_xmit;
  293 
  294         ieee80211_adhoc_attach(ic);
  295         ieee80211_sta_attach(ic);
  296         ieee80211_wds_attach(ic);
  297         ieee80211_hostap_attach(ic);
  298 #ifdef IEEE80211_SUPPORT_MESH
  299         ieee80211_mesh_attach(ic);
  300 #endif
  301         ieee80211_monitor_attach(ic);
  302 }
  303 
  304 void
  305 ieee80211_proto_detach(struct ieee80211com *ic)
  306 {
  307         ieee80211_monitor_detach(ic);
  308 #ifdef IEEE80211_SUPPORT_MESH
  309         ieee80211_mesh_detach(ic);
  310 #endif
  311         ieee80211_hostap_detach(ic);
  312         ieee80211_wds_detach(ic);
  313         ieee80211_adhoc_detach(ic);
  314         ieee80211_sta_detach(ic);
  315 }
  316 
  317 static void
  318 null_update_beacon(struct ieee80211vap *vap, int item)
  319 {
  320 }
  321 
  322 void
  323 ieee80211_proto_vattach(struct ieee80211vap *vap)
  324 {
  325         struct ieee80211com *ic = vap->iv_ic;
  326         struct ifnet *ifp = vap->iv_ifp;
  327         int i;
  328 
  329         /* override the 802.3 setting */
  330         ifp->if_hdrlen = ic->ic_headroom
  331                 + sizeof(struct ieee80211_qosframe_addr4)
  332                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
  333                 + IEEE80211_WEP_EXTIVLEN;
  334 
  335         vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
  336         vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
  337         vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
  338         callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
  339         callout_init(&vap->iv_mgtsend, 1);
  340         TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
  341         TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
  342         TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
  343         TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
  344         TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap);
  345         TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap);
  346         TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap);
  347         /*
  348          * Install default tx rate handling: no fixed rate, lowest
  349          * supported rate for mgmt and multicast frames.  Default
  350          * max retry count.  These settings can be changed by the
  351          * driver and/or user applications.
  352          */
  353         for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
  354                 if (isclr(ic->ic_modecaps, i))
  355                         continue;
  356 
  357                 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
  358 
  359                 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
  360 
  361                 /*
  362                  * Setting the management rate to MCS 0 assumes that the
  363                  * BSS Basic rate set is empty and the BSS Basic MCS set
  364                  * is not.
  365                  *
  366                  * Since we're not checking this, default to the lowest
  367                  * defined rate for this mode.
  368                  *
  369                  * At least one 11n AP (DLINK DIR-825) is reported to drop
  370                  * some MCS management traffic (eg BA response frames.)
  371                  *
  372                  * See also: 9.6.0 of the 802.11n-2009 specification.
  373                  */
  374 #ifdef  NOTYET
  375                 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
  376                         vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
  377                         vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
  378                 } else {
  379                         vap->iv_txparms[i].mgmtrate =
  380                             rs->rs_rates[0] & IEEE80211_RATE_VAL;
  381                         vap->iv_txparms[i].mcastrate = 
  382                             rs->rs_rates[0] & IEEE80211_RATE_VAL;
  383                 }
  384 #endif
  385                 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
  386                 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
  387                 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
  388         }
  389         vap->iv_roaming = IEEE80211_ROAMING_AUTO;
  390 
  391         vap->iv_update_beacon = null_update_beacon;
  392         vap->iv_deliver_data = ieee80211_deliver_data;
  393         vap->iv_protmode = IEEE80211_PROT_CTSONLY;
  394         vap->iv_update_bss = vap_update_bss;
  395 
  396         /* attach support for operating mode */
  397         ic->ic_vattach[vap->iv_opmode](vap);
  398 }
  399 
  400 void
  401 ieee80211_proto_vdetach(struct ieee80211vap *vap)
  402 {
  403 #define FREEAPPIE(ie) do { \
  404         if (ie != NULL) \
  405                 IEEE80211_FREE(ie, M_80211_NODE_IE); \
  406 } while (0)
  407         /*
  408          * Detach operating mode module.
  409          */
  410         if (vap->iv_opdetach != NULL)
  411                 vap->iv_opdetach(vap);
  412         /*
  413          * This should not be needed as we detach when reseting
  414          * the state but be conservative here since the
  415          * authenticator may do things like spawn kernel threads.
  416          */
  417         if (vap->iv_auth->ia_detach != NULL)
  418                 vap->iv_auth->ia_detach(vap);
  419         /*
  420          * Detach any ACL'ator.
  421          */
  422         if (vap->iv_acl != NULL)
  423                 vap->iv_acl->iac_detach(vap);
  424 
  425         FREEAPPIE(vap->iv_appie_beacon);
  426         FREEAPPIE(vap->iv_appie_probereq);
  427         FREEAPPIE(vap->iv_appie_proberesp);
  428         FREEAPPIE(vap->iv_appie_assocreq);
  429         FREEAPPIE(vap->iv_appie_assocresp);
  430         FREEAPPIE(vap->iv_appie_wpa);
  431 #undef FREEAPPIE
  432 }
  433 
  434 /*
  435  * Simple-minded authenticator module support.
  436  */
  437 
  438 #define IEEE80211_AUTH_MAX      (IEEE80211_AUTH_WPA+1)
  439 /* XXX well-known names */
  440 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
  441         "wlan_internal",        /* IEEE80211_AUTH_NONE */
  442         "wlan_internal",        /* IEEE80211_AUTH_OPEN */
  443         "wlan_internal",        /* IEEE80211_AUTH_SHARED */
  444         "wlan_xauth",           /* IEEE80211_AUTH_8021X  */
  445         "wlan_internal",        /* IEEE80211_AUTH_AUTO */
  446         "wlan_xauth",           /* IEEE80211_AUTH_WPA */
  447 };
  448 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
  449 
  450 static const struct ieee80211_authenticator auth_internal = {
  451         .ia_name                = "wlan_internal",
  452         .ia_attach              = NULL,
  453         .ia_detach              = NULL,
  454         .ia_node_join           = NULL,
  455         .ia_node_leave          = NULL,
  456 };
  457 
  458 /*
  459  * Setup internal authenticators once; they are never unregistered.
  460  */
  461 static void
  462 ieee80211_auth_setup(void)
  463 {
  464         ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
  465         ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
  466         ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
  467 }
  468 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
  469 
  470 const struct ieee80211_authenticator *
  471 ieee80211_authenticator_get(int auth)
  472 {
  473         if (auth >= IEEE80211_AUTH_MAX)
  474                 return NULL;
  475         if (authenticators[auth] == NULL)
  476                 ieee80211_load_module(auth_modnames[auth]);
  477         return authenticators[auth];
  478 }
  479 
  480 void
  481 ieee80211_authenticator_register(int type,
  482         const struct ieee80211_authenticator *auth)
  483 {
  484         if (type >= IEEE80211_AUTH_MAX)
  485                 return;
  486         authenticators[type] = auth;
  487 }
  488 
  489 void
  490 ieee80211_authenticator_unregister(int type)
  491 {
  492 
  493         if (type >= IEEE80211_AUTH_MAX)
  494                 return;
  495         authenticators[type] = NULL;
  496 }
  497 
  498 /*
  499  * Very simple-minded ACL module support.
  500  */
  501 /* XXX just one for now */
  502 static  const struct ieee80211_aclator *acl = NULL;
  503 
  504 void
  505 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
  506 {
  507         printf("wlan: %s acl policy registered\n", iac->iac_name);
  508         acl = iac;
  509 }
  510 
  511 void
  512 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
  513 {
  514         if (acl == iac)
  515                 acl = NULL;
  516         printf("wlan: %s acl policy unregistered\n", iac->iac_name);
  517 }
  518 
  519 const struct ieee80211_aclator *
  520 ieee80211_aclator_get(const char *name)
  521 {
  522         if (acl == NULL)
  523                 ieee80211_load_module("wlan_acl");
  524         return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
  525 }
  526 
  527 void
  528 ieee80211_print_essid(const uint8_t *essid, int len)
  529 {
  530         const uint8_t *p;
  531         int i;
  532 
  533         if (len > IEEE80211_NWID_LEN)
  534                 len = IEEE80211_NWID_LEN;
  535         /* determine printable or not */
  536         for (i = 0, p = essid; i < len; i++, p++) {
  537                 if (*p < ' ' || *p > 0x7e)
  538                         break;
  539         }
  540         if (i == len) {
  541                 printf("\"");
  542                 for (i = 0, p = essid; i < len; i++, p++)
  543                         printf("%c", *p);
  544                 printf("\"");
  545         } else {
  546                 printf("0x");
  547                 for (i = 0, p = essid; i < len; i++, p++)
  548                         printf("%02x", *p);
  549         }
  550 }
  551 
  552 void
  553 ieee80211_dump_pkt(struct ieee80211com *ic,
  554         const uint8_t *buf, int len, int rate, int rssi)
  555 {
  556         const struct ieee80211_frame *wh;
  557         int i;
  558 
  559         wh = (const struct ieee80211_frame *)buf;
  560         switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  561         case IEEE80211_FC1_DIR_NODS:
  562                 printf("NODS %s", ether_sprintf(wh->i_addr2));
  563                 printf("->%s", ether_sprintf(wh->i_addr1));
  564                 printf("(%s)", ether_sprintf(wh->i_addr3));
  565                 break;
  566         case IEEE80211_FC1_DIR_TODS:
  567                 printf("TODS %s", ether_sprintf(wh->i_addr2));
  568                 printf("->%s", ether_sprintf(wh->i_addr3));
  569                 printf("(%s)", ether_sprintf(wh->i_addr1));
  570                 break;
  571         case IEEE80211_FC1_DIR_FROMDS:
  572                 printf("FRDS %s", ether_sprintf(wh->i_addr3));
  573                 printf("->%s", ether_sprintf(wh->i_addr1));
  574                 printf("(%s)", ether_sprintf(wh->i_addr2));
  575                 break;
  576         case IEEE80211_FC1_DIR_DSTODS:
  577                 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
  578                 printf("->%s", ether_sprintf(wh->i_addr3));
  579                 printf("(%s", ether_sprintf(wh->i_addr2));
  580                 printf("->%s)", ether_sprintf(wh->i_addr1));
  581                 break;
  582         }
  583         switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
  584         case IEEE80211_FC0_TYPE_DATA:
  585                 printf(" data");
  586                 break;
  587         case IEEE80211_FC0_TYPE_MGT:
  588                 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
  589                 break;
  590         default:
  591                 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
  592                 break;
  593         }
  594         if (IEEE80211_QOS_HAS_SEQ(wh)) {
  595                 const struct ieee80211_qosframe *qwh = 
  596                         (const struct ieee80211_qosframe *)buf;
  597                 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
  598                         qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
  599         }
  600         if (IEEE80211_IS_PROTECTED(wh)) {
  601                 int off;
  602 
  603                 off = ieee80211_anyhdrspace(ic, wh);
  604                 printf(" WEP [IV %.02x %.02x %.02x",
  605                         buf[off+0], buf[off+1], buf[off+2]);
  606                 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
  607                         printf(" %.02x %.02x %.02x",
  608                                 buf[off+4], buf[off+5], buf[off+6]);
  609                 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
  610         }
  611         if (rate >= 0)
  612                 printf(" %dM", rate / 2);
  613         if (rssi >= 0)
  614                 printf(" +%d", rssi);
  615         printf("\n");
  616         if (len > 0) {
  617                 for (i = 0; i < len; i++) {
  618                         if ((i & 1) == 0)
  619                                 printf(" ");
  620                         printf("%02x", buf[i]);
  621                 }
  622                 printf("\n");
  623         }
  624 }
  625 
  626 static __inline int
  627 findrix(const struct ieee80211_rateset *rs, int r)
  628 {
  629         int i;
  630 
  631         for (i = 0; i < rs->rs_nrates; i++)
  632                 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
  633                         return i;
  634         return -1;
  635 }
  636 
  637 int
  638 ieee80211_fix_rate(struct ieee80211_node *ni,
  639         struct ieee80211_rateset *nrs, int flags)
  640 {
  641         struct ieee80211vap *vap = ni->ni_vap;
  642         struct ieee80211com *ic = ni->ni_ic;
  643         int i, j, rix, error;
  644         int okrate, badrate, fixedrate, ucastrate;
  645         const struct ieee80211_rateset *srs;
  646         uint8_t r;
  647 
  648         error = 0;
  649         okrate = badrate = 0;
  650         ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
  651         if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
  652                 /*
  653                  * Workaround awkwardness with fixed rate.  We are called
  654                  * to check both the legacy rate set and the HT rate set
  655                  * but we must apply any legacy fixed rate check only to the
  656                  * legacy rate set and vice versa.  We cannot tell what type
  657                  * of rate set we've been given (legacy or HT) but we can
  658                  * distinguish the fixed rate type (MCS have 0x80 set).
  659                  * So to deal with this the caller communicates whether to
  660                  * check MCS or legacy rate using the flags and we use the
  661                  * type of any fixed rate to avoid applying an MCS to a
  662                  * legacy rate and vice versa.
  663                  */
  664                 if (ucastrate & 0x80) {
  665                         if (flags & IEEE80211_F_DOFRATE)
  666                                 flags &= ~IEEE80211_F_DOFRATE;
  667                 } else if ((ucastrate & 0x80) == 0) {
  668                         if (flags & IEEE80211_F_DOFMCS)
  669                                 flags &= ~IEEE80211_F_DOFMCS;
  670                 }
  671                 /* NB: required to make MCS match below work */
  672                 ucastrate &= IEEE80211_RATE_VAL;
  673         }
  674         fixedrate = IEEE80211_FIXED_RATE_NONE;
  675         /*
  676          * XXX we are called to process both MCS and legacy rates;
  677          * we must use the appropriate basic rate set or chaos will
  678          * ensue; for now callers that want MCS must supply
  679          * IEEE80211_F_DOBRS; at some point we'll need to split this
  680          * function so there are two variants, one for MCS and one
  681          * for legacy rates.
  682          */
  683         if (flags & IEEE80211_F_DOBRS)
  684                 srs = (const struct ieee80211_rateset *)
  685                     ieee80211_get_suphtrates(ic, ni->ni_chan);
  686         else
  687                 srs = ieee80211_get_suprates(ic, ni->ni_chan);
  688         for (i = 0; i < nrs->rs_nrates; ) {
  689                 if (flags & IEEE80211_F_DOSORT) {
  690                         /*
  691                          * Sort rates.
  692                          */
  693                         for (j = i + 1; j < nrs->rs_nrates; j++) {
  694                                 if (IEEE80211_RV(nrs->rs_rates[i]) >
  695                                     IEEE80211_RV(nrs->rs_rates[j])) {
  696                                         r = nrs->rs_rates[i];
  697                                         nrs->rs_rates[i] = nrs->rs_rates[j];
  698                                         nrs->rs_rates[j] = r;
  699                                 }
  700                         }
  701                 }
  702                 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
  703                 badrate = r;
  704                 /*
  705                  * Check for fixed rate.
  706                  */
  707                 if (r == ucastrate)
  708                         fixedrate = r;
  709                 /*
  710                  * Check against supported rates.
  711                  */
  712                 rix = findrix(srs, r);
  713                 if (flags & IEEE80211_F_DONEGO) {
  714                         if (rix < 0) {
  715                                 /*
  716                                  * A rate in the node's rate set is not
  717                                  * supported.  If this is a basic rate and we
  718                                  * are operating as a STA then this is an error.
  719                                  * Otherwise we just discard/ignore the rate.
  720                                  */
  721                                 if ((flags & IEEE80211_F_JOIN) &&
  722                                     (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
  723                                         error++;
  724                         } else if ((flags & IEEE80211_F_JOIN) == 0) {
  725                                 /*
  726                                  * Overwrite with the supported rate
  727                                  * value so any basic rate bit is set.
  728                                  */
  729                                 nrs->rs_rates[i] = srs->rs_rates[rix];
  730                         }
  731                 }
  732                 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
  733                         /*
  734                          * Delete unacceptable rates.
  735                          */
  736                         nrs->rs_nrates--;
  737                         for (j = i; j < nrs->rs_nrates; j++)
  738                                 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
  739                         nrs->rs_rates[j] = 0;
  740                         continue;
  741                 }
  742                 if (rix >= 0)
  743                         okrate = nrs->rs_rates[i];
  744                 i++;
  745         }
  746         if (okrate == 0 || error != 0 ||
  747             ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
  748              fixedrate != ucastrate)) {
  749                 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
  750                     "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
  751                     "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
  752                 return badrate | IEEE80211_RATE_BASIC;
  753         } else
  754                 return IEEE80211_RV(okrate);
  755 }
  756 
  757 /*
  758  * Reset 11g-related state.
  759  *
  760  * This is for per-VAP ERP/11g state.
  761  *
  762  * Eventually everything in ieee80211_reset_erp() will be
  763  * per-VAP and in here.
  764  */
  765 void
  766 ieee80211_vap_reset_erp(struct ieee80211vap *vap)
  767 {
  768         struct ieee80211com *ic = vap->iv_ic;
  769 
  770         vap->iv_nonerpsta = 0;
  771         vap->iv_longslotsta = 0;
  772 
  773         vap->iv_flags &= ~IEEE80211_F_USEPROT;
  774         /*
  775          * Set short preamble and ERP barker-preamble flags.
  776          */
  777         if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  778             (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) {
  779                 vap->iv_flags |= IEEE80211_F_SHPREAMBLE;
  780                 vap->iv_flags &= ~IEEE80211_F_USEBARKER;
  781         } else {
  782                 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE;
  783                 vap->iv_flags |= IEEE80211_F_USEBARKER;
  784         }
  785 
  786         /*
  787          * Short slot time is enabled only when operating in 11g
  788          * and not in an IBSS.  We must also honor whether or not
  789          * the driver is capable of doing it.
  790          */
  791         ieee80211_vap_set_shortslottime(vap,
  792                 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  793                 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
  794                 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
  795                 vap->iv_opmode == IEEE80211_M_HOSTAP &&
  796                 (ic->ic_caps & IEEE80211_C_SHSLOT)));
  797 }
  798 
  799 /*
  800  * Reset 11g-related state.
  801  *
  802  * Note this resets the global state and a caller should schedule
  803  * a re-check of all the VAPs after setup to update said state.
  804  */
  805 void
  806 ieee80211_reset_erp(struct ieee80211com *ic)
  807 {
  808 #if 0
  809         ic->ic_flags &= ~IEEE80211_F_USEPROT;
  810         /*
  811          * Set short preamble and ERP barker-preamble flags.
  812          */
  813         if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  814             (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
  815                 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
  816                 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
  817         } else {
  818                 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
  819                 ic->ic_flags |= IEEE80211_F_USEBARKER;
  820         }
  821 #endif
  822         /* XXX TODO: schedule a new per-VAP ERP calculation */
  823 }
  824 
  825 static struct ieee80211_node *
  826 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni)
  827 {
  828         struct ieee80211_node *obss;
  829 
  830         obss = vap->iv_bss;
  831         vap->iv_bss = ni;
  832 
  833         return (obss);
  834 }
  835 
  836 /*
  837  * Deferred slot time update.
  838  *
  839  * For per-VAP slot time configuration, call the VAP
  840  * method if the VAP requires it.  Otherwise, just call the
  841  * older global method.
  842  *
  843  * If the per-VAP method is called then it's expected that
  844  * the driver/firmware will take care of turning the per-VAP
  845  * flags into slot time configuration.
  846  *
  847  * If the per-VAP method is not called then the global flags will be
  848  * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
  849  * be set only if all of the vaps will have it set.
  850  *
  851  * Look at the comments for vap_update_erp_protmode() for more
  852  * background; this assumes all VAPs are on the same channel.
  853  */
  854 static void
  855 vap_update_slot(void *arg, int npending)
  856 {
  857         struct ieee80211vap *vap = arg;
  858         struct ieee80211com *ic = vap->iv_ic;
  859         struct ieee80211vap *iv;
  860         int num_shslot = 0, num_lgslot = 0;
  861 
  862         /*
  863          * Per-VAP path - we've already had the flags updated;
  864          * so just notify the driver and move on.
  865          */
  866         if (vap->iv_updateslot != NULL) {
  867                 vap->iv_updateslot(vap);
  868                 return;
  869         }
  870 
  871         /*
  872          * Iterate over all of the VAP flags to update the
  873          * global flag.
  874          *
  875          * If all vaps have short slot enabled then flip on
  876          * short slot.  If any vap has it disabled then
  877          * we leave it globally disabled.  This should provide
  878          * correct behaviour in a multi-BSS scenario where
  879          * at least one VAP has short slot disabled for some
  880          * reason.
  881          */
  882         IEEE80211_LOCK(ic);
  883         TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
  884                 if (iv->iv_flags & IEEE80211_F_SHSLOT)
  885                         num_shslot++;
  886                 else
  887                         num_lgslot++;
  888         }
  889 
  890         /*
  891          * It looks backwards but - if the number of short slot VAPs
  892          * is zero then we're not short slot.  Else, we have one
  893          * or more short slot VAPs and we're checking to see if ANY
  894          * of them have short slot disabled.
  895          */
  896         if (num_shslot == 0)
  897                 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
  898         else if (num_lgslot == 0)
  899                 ic->ic_flags |= IEEE80211_F_SHSLOT;
  900         IEEE80211_UNLOCK(ic);
  901 
  902         /*
  903          * Call the driver with our new global slot time flags.
  904          */
  905         if (ic->ic_updateslot != NULL)
  906                 ic->ic_updateslot(ic);
  907 }
  908 
  909 /*
  910  * Deferred ERP protmode update.
  911  *
  912  * This currently calculates the global ERP protection mode flag
  913  * based on each of the VAPs.  Any VAP with it enabled is enough
  914  * for the global flag to be enabled.  All VAPs with it disabled
  915  * is enough for it to be disabled.
  916  *
  917  * This may make sense right now for the supported hardware where
  918  * net80211 is controlling the single channel configuration, but
  919  * offload firmware that's doing channel changes (eg off-channel
  920  * TDLS, off-channel STA, off-channel P2P STA/AP) may get some
  921  * silly looking flag updates.
  922  *
  923  * Ideally the protection mode calculation is done based on the
  924  * channel, and all VAPs using that channel will inherit it.
  925  * But until that's what net80211 does, this wil have to do.
  926  */
  927 static void
  928 vap_update_erp_protmode(void *arg, int npending)
  929 {
  930         struct ieee80211vap *vap = arg;
  931         struct ieee80211com *ic = vap->iv_ic;
  932         struct ieee80211vap *iv;
  933         int enable_protmode = 0;
  934         int non_erp_present = 0;
  935 
  936         /*
  937          * Iterate over all of the VAPs to calculate the overlapping
  938          * ERP protection mode configuration and ERP present math.
  939          *
  940          * For now we assume that if a driver can handle this per-VAP
  941          * then it'll ignore the ic->ic_protmode variant and instead
  942          * will look at the vap related flags.
  943          */
  944         IEEE80211_LOCK(ic);
  945         TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
  946                 if (iv->iv_flags & IEEE80211_F_USEPROT)
  947                         enable_protmode = 1;
  948                 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR)
  949                         non_erp_present = 1;
  950         }
  951 
  952         if (enable_protmode)
  953                 ic->ic_flags |= IEEE80211_F_USEPROT;
  954         else
  955                 ic->ic_flags &= ~IEEE80211_F_USEPROT;
  956 
  957         if (non_erp_present)
  958                 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
  959         else
  960                 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
  961 
  962         /* Beacon update on all VAPs */
  963         ieee80211_notify_erp_locked(ic);
  964 
  965         IEEE80211_UNLOCK(ic);
  966 
  967         IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
  968             "%s: called; enable_protmode=%d, non_erp_present=%d\n",
  969             __func__, enable_protmode, non_erp_present);
  970 
  971         /*
  972          * Now that the global configuration flags are calculated,
  973          * notify the VAP about its configuration.
  974          *
  975          * The global flags will be used when assembling ERP IEs
  976          * for multi-VAP operation, even if it's on a different
  977          * channel.  Yes, that's going to need fixing in the
  978          * future.
  979          */
  980         if (vap->iv_erp_protmode_update != NULL)
  981                 vap->iv_erp_protmode_update(vap);
  982 }
  983 
  984 /*
  985  * Deferred ERP short preamble/barker update.
  986  *
  987  * All VAPs need to use short preamble for it to be globally
  988  * enabled or not.
  989  *
  990  * Look at the comments for vap_update_erp_protmode() for more
  991  * background; this assumes all VAPs are on the same channel.
  992  */
  993 static void
  994 vap_update_preamble(void *arg, int npending)
  995 {
  996         struct ieee80211vap *vap = arg;
  997         struct ieee80211com *ic = vap->iv_ic;
  998         struct ieee80211vap *iv;
  999         int barker_count = 0, short_preamble_count = 0, count = 0;
 1000 
 1001         /*
 1002          * Iterate over all of the VAPs to calculate the overlapping
 1003          * short or long preamble configuration.
 1004          *
 1005          * For now we assume that if a driver can handle this per-VAP
 1006          * then it'll ignore the ic->ic_flags variant and instead
 1007          * will look at the vap related flags.
 1008          */
 1009         IEEE80211_LOCK(ic);
 1010         TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
 1011                 if (iv->iv_flags & IEEE80211_F_USEBARKER)
 1012                         barker_count++;
 1013                 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE)
 1014                         short_preamble_count++;
 1015                 count++;
 1016         }
 1017 
 1018         /*
 1019          * As with vap_update_erp_protmode(), the global flags are
 1020          * currently used for beacon IEs.
 1021          */
 1022         IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
 1023             "%s: called; barker_count=%d, short_preamble_count=%d\n",
 1024             __func__, barker_count, short_preamble_count);
 1025 
 1026         /*
 1027          * Only flip on short preamble if all of the VAPs support
 1028          * it.
 1029          */
 1030         if (barker_count == 0 && short_preamble_count == count) {
 1031                 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
 1032                 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
 1033         } else {
 1034                 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
 1035                 ic->ic_flags |= IEEE80211_F_USEBARKER;
 1036         }
 1037         IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
 1038           "%s: global barker=%d preamble=%d\n",
 1039           __func__,
 1040           !! (ic->ic_flags & IEEE80211_F_USEBARKER),
 1041           !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE));
 1042 
 1043         /* Beacon update on all VAPs */
 1044         ieee80211_notify_erp_locked(ic);
 1045 
 1046         IEEE80211_UNLOCK(ic);
 1047 
 1048         /* Driver notification */
 1049         if (vap->iv_erp_protmode_update != NULL)
 1050                 vap->iv_preamble_update(vap);
 1051 }
 1052 
 1053 /*
 1054  * Deferred HT protmode update and beacon update.
 1055  *
 1056  * Look at the comments for vap_update_erp_protmode() for more
 1057  * background; this assumes all VAPs are on the same channel.
 1058  */
 1059 static void
 1060 vap_update_ht_protmode(void *arg, int npending)
 1061 {
 1062         struct ieee80211vap *vap = arg;
 1063         struct ieee80211vap *iv;
 1064         struct ieee80211com *ic = vap->iv_ic;
 1065         int num_vaps = 0, num_pure = 0;
 1066         int num_optional = 0, num_ht2040 = 0, num_nonht = 0;
 1067         int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0;
 1068         int num_nonhtpr = 0;
 1069 
 1070         /*
 1071          * Iterate over all of the VAPs to calculate everything.
 1072          *
 1073          * There are a few different flags to calculate:
 1074          *
 1075          * + whether there's HT only or HT+legacy stations;
 1076          * + whether there's HT20, HT40, or HT20+HT40 stations;
 1077          * + whether the desired protection mode is mixed, pure or
 1078          *   one of the two above.
 1079          *
 1080          * For now we assume that if a driver can handle this per-VAP
 1081          * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode
 1082          * variant and instead will look at the vap related variables.
 1083          *
 1084          * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) !
 1085          */
 1086 
 1087         IEEE80211_LOCK(ic);
 1088         TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
 1089                 num_vaps++;
 1090                 /* overlapping BSSes advertising non-HT status present */
 1091                 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR)
 1092                         num_nonht++;
 1093                 /* Operating mode flags */
 1094                 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT)
 1095                         num_nonhtpr++;
 1096                 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) {
 1097                 case IEEE80211_HTINFO_OPMODE_PURE:
 1098                         num_pure++;
 1099                         break;
 1100                 case IEEE80211_HTINFO_OPMODE_PROTOPT:
 1101                         num_optional++;
 1102                         break;
 1103                 case IEEE80211_HTINFO_OPMODE_HT20PR:
 1104                         num_ht2040++;
 1105                         break;
 1106                 }
 1107 
 1108                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
 1109                     "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n",
 1110                     __func__,
 1111                     ieee80211_get_vap_ifname(iv),
 1112                     !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR),
 1113                     iv->iv_curhtprotmode);
 1114 
 1115                 num_ht_sta += iv->iv_ht_sta_assoc;
 1116                 num_ht40_sta += iv->iv_ht40_sta_assoc;
 1117                 num_sta += iv->iv_sta_assoc;
 1118         }
 1119 
 1120         /*
 1121          * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS
 1122          * non-HT present), set it here.  This shouldn't be used by
 1123          * anything but the old overlapping BSS logic so if any drivers
 1124          * consume it, it's up to date.
 1125          */
 1126         if (num_nonht > 0)
 1127                 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
 1128         else
 1129                 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
 1130 
 1131         /*
 1132          * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.)
 1133          *
 1134          * + If all VAPs are PURE, we can stay PURE.
 1135          * + If all VAPs are PROTOPT, we can go to PROTOPT.
 1136          * + If any VAP has HT20PR then it sees at least a HT40+HT20 station.
 1137          *   Note that we may have a VAP with one HT20 and a VAP with one HT40;
 1138          *   So we look at the sum ht and sum ht40 sta counts; if we have a
 1139          *   HT station and the HT20 != HT40 count, we have to do HT20PR here.
 1140          *   Note all stations need to be HT for this to be an option.
 1141          * + The fall-through is MIXED, because it means we have some odd
 1142          *   non HT40-involved combination of opmode and this is the most
 1143          *   sensible default.
 1144          */
 1145         ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
 1146 
 1147         if (num_pure == num_vaps)
 1148                 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
 1149 
 1150         if (num_optional == num_vaps)
 1151                 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT;
 1152 
 1153         /*
 1154          * Note: we need /a/ HT40 station somewhere for this to
 1155          * be a possibility.
 1156          */
 1157         if ((num_ht2040 > 0) ||
 1158             ((num_ht_sta > 0) && (num_ht40_sta > 0) &&
 1159              (num_ht_sta != num_ht40_sta)))
 1160                 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR;
 1161 
 1162         /*
 1163          * Step 3 - if any of the stations across the VAPs are
 1164          * non-HT then this needs to be flipped back to MIXED.
 1165          */
 1166         if (num_ht_sta != num_sta)
 1167                 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
 1168 
 1169         /*
 1170          * Step 4 - If we see any overlapping BSS non-HT stations
 1171          * via beacons then flip on NONHT_PRESENT.
 1172          */
 1173         if (num_nonhtpr > 0)
 1174                 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT;
 1175 
 1176         /* Notify all VAPs to potentially update their beacons */
 1177         TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next)
 1178                 ieee80211_htinfo_notify(iv);
 1179 
 1180         IEEE80211_UNLOCK(ic);
 1181 
 1182         IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
 1183           "%s: global: nonht_pr=%d ht_opmode=0x%02x\n",
 1184           __func__,
 1185           !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR),
 1186           ic->ic_curhtprotmode);
 1187 
 1188         /* Driver update */
 1189         if (vap->iv_erp_protmode_update != NULL)
 1190                 vap->iv_ht_protmode_update(vap);
 1191 }
 1192 
 1193 /*
 1194  * Set the short slot time state and notify the driver.
 1195  *
 1196  * This is the per-VAP slot time state.
 1197  */
 1198 void
 1199 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
 1200 {
 1201         struct ieee80211com *ic = vap->iv_ic;
 1202 
 1203         /* XXX lock? */
 1204 
 1205         /*
 1206          * Only modify the per-VAP slot time.
 1207          */
 1208         if (onoff)
 1209                 vap->iv_flags |= IEEE80211_F_SHSLOT;
 1210         else
 1211                 vap->iv_flags &= ~IEEE80211_F_SHSLOT;
 1212 
 1213         IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
 1214             "%s: called; onoff=%d\n", __func__, onoff);
 1215         /* schedule the deferred slot flag update and update */
 1216         ieee80211_runtask(ic, &vap->iv_slot_task);
 1217 }
 1218 
 1219 /*
 1220  * Update the VAP short /long / barker preamble state and
 1221  * update beacon state if needed.
 1222  *
 1223  * For now it simply copies the global flags into the per-vap
 1224  * flags and schedules the callback.  Later this will support
 1225  * both global and per-VAP flags, especially useful for
 1226  * and STA+STA multi-channel operation (eg p2p).
 1227  */
 1228 void
 1229 ieee80211_vap_update_preamble(struct ieee80211vap *vap)
 1230 {
 1231         struct ieee80211com *ic = vap->iv_ic;
 1232 
 1233         /* XXX lock? */
 1234 
 1235         IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
 1236             "%s: called\n", __func__);
 1237         /* schedule the deferred slot flag update and update */
 1238         ieee80211_runtask(ic, &vap->iv_preamble_task);
 1239 }
 1240 
 1241 /*
 1242  * Update the VAP 11g protection mode and update beacon state
 1243  * if needed.
 1244  */
 1245 void
 1246 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap)
 1247 {
 1248         struct ieee80211com *ic = vap->iv_ic;
 1249 
 1250         /* XXX lock? */
 1251 
 1252         IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
 1253             "%s: called\n", __func__);
 1254         /* schedule the deferred slot flag update and update */
 1255         ieee80211_runtask(ic, &vap->iv_erp_protmode_task);
 1256 }
 1257 
 1258 /*
 1259  * Update the VAP 11n protection mode and update beacon state
 1260  * if needed.
 1261  */
 1262 void
 1263 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap)
 1264 {
 1265         struct ieee80211com *ic = vap->iv_ic;
 1266 
 1267         /* XXX lock? */
 1268 
 1269         IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
 1270             "%s: called\n", __func__);
 1271         /* schedule the deferred protmode update */
 1272         ieee80211_runtask(ic, &vap->iv_ht_protmode_task);
 1273 }
 1274 
 1275 /*
 1276  * Check if the specified rate set supports ERP.
 1277  * NB: the rate set is assumed to be sorted.
 1278  */
 1279 int
 1280 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
 1281 {
 1282         static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
 1283         int i, j;
 1284 
 1285         if (rs->rs_nrates < nitems(rates))
 1286                 return 0;
 1287         for (i = 0; i < nitems(rates); i++) {
 1288                 for (j = 0; j < rs->rs_nrates; j++) {
 1289                         int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
 1290                         if (rates[i] == r)
 1291                                 goto next;
 1292                         if (r > rates[i])
 1293                                 return 0;
 1294                 }
 1295                 return 0;
 1296         next:
 1297                 ;
 1298         }
 1299         return 1;
 1300 }
 1301 
 1302 /*
 1303  * Mark the basic rates for the rate table based on the
 1304  * operating mode.  For real 11g we mark all the 11b rates
 1305  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
 1306  * 11b rates.  There's also a pseudo 11a-mode used to mark only
 1307  * the basic OFDM rates.
 1308  */
 1309 static void
 1310 setbasicrates(struct ieee80211_rateset *rs,
 1311     enum ieee80211_phymode mode, int add)
 1312 {
 1313         static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
 1314             [IEEE80211_MODE_11A]        = { 3, { 12, 24, 48 } },
 1315             [IEEE80211_MODE_11B]        = { 2, { 2, 4 } },
 1316                                             /* NB: mixed b/g */
 1317             [IEEE80211_MODE_11G]        = { 4, { 2, 4, 11, 22 } },
 1318             [IEEE80211_MODE_TURBO_A]    = { 3, { 12, 24, 48 } },
 1319             [IEEE80211_MODE_TURBO_G]    = { 4, { 2, 4, 11, 22 } },
 1320             [IEEE80211_MODE_STURBO_A]   = { 3, { 12, 24, 48 } },
 1321             [IEEE80211_MODE_HALF]       = { 3, { 6, 12, 24 } },
 1322             [IEEE80211_MODE_QUARTER]    = { 3, { 3, 6, 12 } },
 1323             [IEEE80211_MODE_11NA]       = { 3, { 12, 24, 48 } },
 1324                                             /* NB: mixed b/g */
 1325             [IEEE80211_MODE_11NG]       = { 4, { 2, 4, 11, 22 } },
 1326                                             /* NB: mixed b/g */
 1327             [IEEE80211_MODE_VHT_2GHZ]   = { 4, { 2, 4, 11, 22 } },
 1328             [IEEE80211_MODE_VHT_5GHZ]   = { 3, { 12, 24, 48 } },
 1329         };
 1330         int i, j;
 1331 
 1332         for (i = 0; i < rs->rs_nrates; i++) {
 1333                 if (!add)
 1334                         rs->rs_rates[i] &= IEEE80211_RATE_VAL;
 1335                 for (j = 0; j < basic[mode].rs_nrates; j++)
 1336                         if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
 1337                                 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
 1338                                 break;
 1339                         }
 1340         }
 1341 }
 1342 
 1343 /*
 1344  * Set the basic rates in a rate set.
 1345  */
 1346 void
 1347 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
 1348     enum ieee80211_phymode mode)
 1349 {
 1350         setbasicrates(rs, mode, 0);
 1351 }
 1352 
 1353 /*
 1354  * Add basic rates to a rate set.
 1355  */
 1356 void
 1357 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
 1358     enum ieee80211_phymode mode)
 1359 {
 1360         setbasicrates(rs, mode, 1);
 1361 }
 1362 
 1363 /*
 1364  * WME protocol support.
 1365  *
 1366  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
 1367  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
 1368  * Draft 2.0 Test Plan (Appendix D).
 1369  *
 1370  * Static/Dynamic Turbo mode settings come from Atheros.
 1371  */
 1372 typedef struct phyParamType {
 1373         uint8_t         aifsn;
 1374         uint8_t         logcwmin;
 1375         uint8_t         logcwmax;
 1376         uint16_t        txopLimit;
 1377         uint8_t         acm;
 1378 } paramType;
 1379 
 1380 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
 1381         [IEEE80211_MODE_AUTO]   = { 3, 4,  6,  0, 0 },
 1382         [IEEE80211_MODE_11A]    = { 3, 4,  6,  0, 0 },
 1383         [IEEE80211_MODE_11B]    = { 3, 4,  6,  0, 0 },
 1384         [IEEE80211_MODE_11G]    = { 3, 4,  6,  0, 0 },
 1385         [IEEE80211_MODE_FH]     = { 3, 4,  6,  0, 0 },
 1386         [IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
 1387         [IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
 1388         [IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
 1389         [IEEE80211_MODE_HALF]   = { 3, 4,  6,  0, 0 },
 1390         [IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
 1391         [IEEE80211_MODE_11NA]   = { 3, 4,  6,  0, 0 },
 1392         [IEEE80211_MODE_11NG]   = { 3, 4,  6,  0, 0 },
 1393         [IEEE80211_MODE_VHT_2GHZ]       = { 3, 4,  6,  0, 0 },
 1394         [IEEE80211_MODE_VHT_5GHZ]       = { 3, 4,  6,  0, 0 },
 1395 };
 1396 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
 1397         [IEEE80211_MODE_AUTO]   = { 7, 4, 10,  0, 0 },
 1398         [IEEE80211_MODE_11A]    = { 7, 4, 10,  0, 0 },
 1399         [IEEE80211_MODE_11B]    = { 7, 4, 10,  0, 0 },
 1400         [IEEE80211_MODE_11G]    = { 7, 4, 10,  0, 0 },
 1401         [IEEE80211_MODE_FH]     = { 7, 4, 10,  0, 0 },
 1402         [IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
 1403         [IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
 1404         [IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
 1405         [IEEE80211_MODE_HALF]   = { 7, 4, 10,  0, 0 },
 1406         [IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
 1407         [IEEE80211_MODE_11NA]   = { 7, 4, 10,  0, 0 },
 1408         [IEEE80211_MODE_11NG]   = { 7, 4, 10,  0, 0 },
 1409         [IEEE80211_MODE_VHT_2GHZ]       = { 7, 4, 10,  0, 0 },
 1410         [IEEE80211_MODE_VHT_5GHZ]       = { 7, 4, 10,  0, 0 },
 1411 };
 1412 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
 1413         [IEEE80211_MODE_AUTO]   = { 1, 3, 4,  94, 0 },
 1414         [IEEE80211_MODE_11A]    = { 1, 3, 4,  94, 0 },
 1415         [IEEE80211_MODE_11B]    = { 1, 3, 4, 188, 0 },
 1416         [IEEE80211_MODE_11G]    = { 1, 3, 4,  94, 0 },
 1417         [IEEE80211_MODE_FH]     = { 1, 3, 4, 188, 0 },
 1418         [IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
 1419         [IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
 1420         [IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
 1421         [IEEE80211_MODE_HALF]   = { 1, 3, 4,  94, 0 },
 1422         [IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
 1423         [IEEE80211_MODE_11NA]   = { 1, 3, 4,  94, 0 },
 1424         [IEEE80211_MODE_11NG]   = { 1, 3, 4,  94, 0 },
 1425         [IEEE80211_MODE_VHT_2GHZ]       = { 1, 3, 4,  94, 0 },
 1426         [IEEE80211_MODE_VHT_5GHZ]       = { 1, 3, 4,  94, 0 },
 1427 };
 1428 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
 1429         [IEEE80211_MODE_AUTO]   = { 1, 2, 3,  47, 0 },
 1430         [IEEE80211_MODE_11A]    = { 1, 2, 3,  47, 0 },
 1431         [IEEE80211_MODE_11B]    = { 1, 2, 3, 102, 0 },
 1432         [IEEE80211_MODE_11G]    = { 1, 2, 3,  47, 0 },
 1433         [IEEE80211_MODE_FH]     = { 1, 2, 3, 102, 0 },
 1434         [IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
 1435         [IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
 1436         [IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
 1437         [IEEE80211_MODE_HALF]   = { 1, 2, 3,  47, 0 },
 1438         [IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
 1439         [IEEE80211_MODE_11NA]   = { 1, 2, 3,  47, 0 },
 1440         [IEEE80211_MODE_11NG]   = { 1, 2, 3,  47, 0 },
 1441         [IEEE80211_MODE_VHT_2GHZ]       = { 1, 2, 3,  47, 0 },
 1442         [IEEE80211_MODE_VHT_5GHZ]       = { 1, 2, 3,  47, 0 },
 1443 };
 1444 
 1445 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
 1446         [IEEE80211_MODE_AUTO]   = { 3, 4, 10,  0, 0 },
 1447         [IEEE80211_MODE_11A]    = { 3, 4, 10,  0, 0 },
 1448         [IEEE80211_MODE_11B]    = { 3, 4, 10,  0, 0 },
 1449         [IEEE80211_MODE_11G]    = { 3, 4, 10,  0, 0 },
 1450         [IEEE80211_MODE_FH]     = { 3, 4, 10,  0, 0 },
 1451         [IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
 1452         [IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
 1453         [IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
 1454         [IEEE80211_MODE_HALF]   = { 3, 4, 10,  0, 0 },
 1455         [IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
 1456         [IEEE80211_MODE_11NA]   = { 3, 4, 10,  0, 0 },
 1457         [IEEE80211_MODE_11NG]   = { 3, 4, 10,  0, 0 },
 1458 };
 1459 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
 1460         [IEEE80211_MODE_AUTO]   = { 2, 3, 4,  94, 0 },
 1461         [IEEE80211_MODE_11A]    = { 2, 3, 4,  94, 0 },
 1462         [IEEE80211_MODE_11B]    = { 2, 3, 4, 188, 0 },
 1463         [IEEE80211_MODE_11G]    = { 2, 3, 4,  94, 0 },
 1464         [IEEE80211_MODE_FH]     = { 2, 3, 4, 188, 0 },
 1465         [IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
 1466         [IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
 1467         [IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
 1468         [IEEE80211_MODE_HALF]   = { 2, 3, 4,  94, 0 },
 1469         [IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
 1470         [IEEE80211_MODE_11NA]   = { 2, 3, 4,  94, 0 },
 1471         [IEEE80211_MODE_11NG]   = { 2, 3, 4,  94, 0 },
 1472 };
 1473 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
 1474         [IEEE80211_MODE_AUTO]   = { 2, 2, 3,  47, 0 },
 1475         [IEEE80211_MODE_11A]    = { 2, 2, 3,  47, 0 },
 1476         [IEEE80211_MODE_11B]    = { 2, 2, 3, 102, 0 },
 1477         [IEEE80211_MODE_11G]    = { 2, 2, 3,  47, 0 },
 1478         [IEEE80211_MODE_FH]     = { 2, 2, 3, 102, 0 },
 1479         [IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
 1480         [IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
 1481         [IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
 1482         [IEEE80211_MODE_HALF]   = { 2, 2, 3,  47, 0 },
 1483         [IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
 1484         [IEEE80211_MODE_11NA]   = { 2, 2, 3,  47, 0 },
 1485         [IEEE80211_MODE_11NG]   = { 2, 2, 3,  47, 0 },
 1486 };
 1487 
 1488 static void
 1489 _setifsparams(struct wmeParams *wmep, const paramType *phy)
 1490 {
 1491         wmep->wmep_aifsn = phy->aifsn;
 1492         wmep->wmep_logcwmin = phy->logcwmin;    
 1493         wmep->wmep_logcwmax = phy->logcwmax;            
 1494         wmep->wmep_txopLimit = phy->txopLimit;
 1495 }
 1496 
 1497 static void
 1498 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
 1499         struct wmeParams *wmep, const paramType *phy)
 1500 {
 1501         wmep->wmep_acm = phy->acm;
 1502         _setifsparams(wmep, phy);
 1503 
 1504         IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1505             "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
 1506             ieee80211_wme_acnames[ac], type,
 1507             wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
 1508             wmep->wmep_logcwmax, wmep->wmep_txopLimit);
 1509 }
 1510 
 1511 static void
 1512 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
 1513 {
 1514         struct ieee80211com *ic = vap->iv_ic;
 1515         struct ieee80211_wme_state *wme = &ic->ic_wme;
 1516         const paramType *pPhyParam, *pBssPhyParam;
 1517         struct wmeParams *wmep;
 1518         enum ieee80211_phymode mode;
 1519         int i;
 1520 
 1521         IEEE80211_LOCK_ASSERT(ic);
 1522 
 1523         if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
 1524                 return;
 1525 
 1526         /*
 1527          * Clear the wme cap_info field so a qoscount from a previous
 1528          * vap doesn't confuse later code which only parses the beacon
 1529          * field and updates hardware when said field changes.
 1530          * Otherwise the hardware is programmed with defaults, not what
 1531          * the beacon actually announces.
 1532          *
 1533          * Note that we can't ever have 0xff as an actual value;
 1534          * the only valid values are 0..15.
 1535          */
 1536         wme->wme_wmeChanParams.cap_info = 0xfe;
 1537 
 1538         /*
 1539          * Select mode; we can be called early in which case we
 1540          * always use auto mode.  We know we'll be called when
 1541          * entering the RUN state with bsschan setup properly
 1542          * so state will eventually get set correctly
 1543          */
 1544         if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
 1545                 mode = ieee80211_chan2mode(ic->ic_bsschan);
 1546         else
 1547                 mode = IEEE80211_MODE_AUTO;
 1548         for (i = 0; i < WME_NUM_AC; i++) {
 1549                 switch (i) {
 1550                 case WME_AC_BK:
 1551                         pPhyParam = &phyParamForAC_BK[mode];
 1552                         pBssPhyParam = &phyParamForAC_BK[mode];
 1553                         break;
 1554                 case WME_AC_VI:
 1555                         pPhyParam = &phyParamForAC_VI[mode];
 1556                         pBssPhyParam = &bssPhyParamForAC_VI[mode];
 1557                         break;
 1558                 case WME_AC_VO:
 1559                         pPhyParam = &phyParamForAC_VO[mode];
 1560                         pBssPhyParam = &bssPhyParamForAC_VO[mode];
 1561                         break;
 1562                 case WME_AC_BE:
 1563                 default:
 1564                         pPhyParam = &phyParamForAC_BE[mode];
 1565                         pBssPhyParam = &bssPhyParamForAC_BE[mode];
 1566                         break;
 1567                 }
 1568                 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
 1569                 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
 1570                         setwmeparams(vap, "chan", i, wmep, pPhyParam);
 1571                 } else {
 1572                         setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
 1573                 }       
 1574                 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
 1575                 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
 1576         }
 1577         /* NB: check ic_bss to avoid NULL deref on initial attach */
 1578         if (vap->iv_bss != NULL) {
 1579                 /*
 1580                  * Calculate aggressive mode switching threshold based
 1581                  * on beacon interval.  This doesn't need locking since
 1582                  * we're only called before entering the RUN state at
 1583                  * which point we start sending beacon frames.
 1584                  */
 1585                 wme->wme_hipri_switch_thresh =
 1586                         (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
 1587                 wme->wme_flags &= ~WME_F_AGGRMODE;
 1588                 ieee80211_wme_updateparams(vap);
 1589         }
 1590 }
 1591 
 1592 void
 1593 ieee80211_wme_initparams(struct ieee80211vap *vap)
 1594 {
 1595         struct ieee80211com *ic = vap->iv_ic;
 1596 
 1597         IEEE80211_LOCK(ic);
 1598         ieee80211_wme_initparams_locked(vap);
 1599         IEEE80211_UNLOCK(ic);
 1600 }
 1601 
 1602 /*
 1603  * Update WME parameters for ourself and the BSS.
 1604  */
 1605 void
 1606 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
 1607 {
 1608         static const paramType aggrParam[IEEE80211_MODE_MAX] = {
 1609             [IEEE80211_MODE_AUTO]       = { 2, 4, 10, 64, 0 },
 1610             [IEEE80211_MODE_11A]        = { 2, 4, 10, 64, 0 },
 1611             [IEEE80211_MODE_11B]        = { 2, 5, 10, 64, 0 },
 1612             [IEEE80211_MODE_11G]        = { 2, 4, 10, 64, 0 },
 1613             [IEEE80211_MODE_FH]         = { 2, 5, 10, 64, 0 },
 1614             [IEEE80211_MODE_TURBO_A]    = { 1, 3, 10, 64, 0 },
 1615             [IEEE80211_MODE_TURBO_G]    = { 1, 3, 10, 64, 0 },
 1616             [IEEE80211_MODE_STURBO_A]   = { 1, 3, 10, 64, 0 },
 1617             [IEEE80211_MODE_HALF]       = { 2, 4, 10, 64, 0 },
 1618             [IEEE80211_MODE_QUARTER]    = { 2, 4, 10, 64, 0 },
 1619             [IEEE80211_MODE_11NA]       = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
 1620             [IEEE80211_MODE_11NG]       = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
 1621             [IEEE80211_MODE_VHT_2GHZ]   = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
 1622             [IEEE80211_MODE_VHT_5GHZ]   = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
 1623         };
 1624         struct ieee80211com *ic = vap->iv_ic;
 1625         struct ieee80211_wme_state *wme = &ic->ic_wme;
 1626         const struct wmeParams *wmep;
 1627         struct wmeParams *chanp, *bssp;
 1628         enum ieee80211_phymode mode;
 1629         int i;
 1630         int do_aggrmode = 0;
 1631 
 1632         /*
 1633          * Set up the channel access parameters for the physical
 1634          * device.  First populate the configured settings.
 1635          */
 1636         for (i = 0; i < WME_NUM_AC; i++) {
 1637                 chanp = &wme->wme_chanParams.cap_wmeParams[i];
 1638                 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
 1639                 chanp->wmep_aifsn = wmep->wmep_aifsn;
 1640                 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
 1641                 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
 1642                 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
 1643 
 1644                 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
 1645                 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
 1646                 chanp->wmep_aifsn = wmep->wmep_aifsn;
 1647                 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
 1648                 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
 1649                 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
 1650         }
 1651 
 1652         /*
 1653          * Select mode; we can be called early in which case we
 1654          * always use auto mode.  We know we'll be called when
 1655          * entering the RUN state with bsschan setup properly
 1656          * so state will eventually get set correctly
 1657          */
 1658         if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
 1659                 mode = ieee80211_chan2mode(ic->ic_bsschan);
 1660         else
 1661                 mode = IEEE80211_MODE_AUTO;
 1662 
 1663         /*
 1664          * This implements aggressive mode as found in certain
 1665          * vendors' AP's.  When there is significant high
 1666          * priority (VI/VO) traffic in the BSS throttle back BE
 1667          * traffic by using conservative parameters.  Otherwise
 1668          * BE uses aggressive params to optimize performance of
 1669          * legacy/non-QoS traffic.
 1670          */
 1671 
 1672         /* Hostap? Only if aggressive mode is enabled */
 1673         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1674              (wme->wme_flags & WME_F_AGGRMODE) != 0)
 1675                 do_aggrmode = 1;
 1676 
 1677         /*
 1678          * Station? Only if we're in a non-QoS BSS.
 1679          */
 1680         else if ((vap->iv_opmode == IEEE80211_M_STA &&
 1681              (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
 1682                 do_aggrmode = 1;
 1683 
 1684         /*
 1685          * IBSS? Only if we we have WME enabled.
 1686          */
 1687         else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
 1688             (vap->iv_flags & IEEE80211_F_WME))
 1689                 do_aggrmode = 1;
 1690 
 1691         /*
 1692          * If WME is disabled on this VAP, default to aggressive mode
 1693          * regardless of the configuration.
 1694          */
 1695         if ((vap->iv_flags & IEEE80211_F_WME) == 0)
 1696                 do_aggrmode = 1;
 1697 
 1698         /* XXX WDS? */
 1699 
 1700         /* XXX MBSS? */
 1701 
 1702         if (do_aggrmode) {
 1703                 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
 1704                 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
 1705 
 1706                 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
 1707                 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
 1708                     aggrParam[mode].logcwmin;
 1709                 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
 1710                     aggrParam[mode].logcwmax;
 1711                 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
 1712                     (vap->iv_flags & IEEE80211_F_BURST) ?
 1713                         aggrParam[mode].txopLimit : 0;          
 1714                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1715                     "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
 1716                     "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
 1717                     chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
 1718                     chanp->wmep_logcwmax, chanp->wmep_txopLimit);
 1719         }
 1720 
 1721         /*
 1722          * Change the contention window based on the number of associated
 1723          * stations.  If the number of associated stations is 1 and
 1724          * aggressive mode is enabled, lower the contention window even
 1725          * further.
 1726          */
 1727         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1728             vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
 1729                 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
 1730                     [IEEE80211_MODE_AUTO]       = 3,
 1731                     [IEEE80211_MODE_11A]        = 3,
 1732                     [IEEE80211_MODE_11B]        = 4,
 1733                     [IEEE80211_MODE_11G]        = 3,
 1734                     [IEEE80211_MODE_FH]         = 4,
 1735                     [IEEE80211_MODE_TURBO_A]    = 3,
 1736                     [IEEE80211_MODE_TURBO_G]    = 3,
 1737                     [IEEE80211_MODE_STURBO_A]   = 3,
 1738                     [IEEE80211_MODE_HALF]       = 3,
 1739                     [IEEE80211_MODE_QUARTER]    = 3,
 1740                     [IEEE80211_MODE_11NA]       = 3,
 1741                     [IEEE80211_MODE_11NG]       = 3,
 1742                     [IEEE80211_MODE_VHT_2GHZ]   = 3,
 1743                     [IEEE80211_MODE_VHT_5GHZ]   = 3,
 1744                 };
 1745                 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
 1746                 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
 1747 
 1748                 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
 1749                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1750                     "update %s (chan+bss) logcwmin %u\n",
 1751                     ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
 1752         }
 1753 
 1754         /* schedule the deferred WME update */
 1755         ieee80211_runtask(ic, &vap->iv_wme_task);
 1756 
 1757         IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1758             "%s: WME params updated, cap_info 0x%x\n", __func__,
 1759             vap->iv_opmode == IEEE80211_M_STA ?
 1760                 wme->wme_wmeChanParams.cap_info :
 1761                 wme->wme_bssChanParams.cap_info);
 1762 }
 1763 
 1764 void
 1765 ieee80211_wme_updateparams(struct ieee80211vap *vap)
 1766 {
 1767         struct ieee80211com *ic = vap->iv_ic;
 1768 
 1769         if (ic->ic_caps & IEEE80211_C_WME) {
 1770                 IEEE80211_LOCK(ic);
 1771                 ieee80211_wme_updateparams_locked(vap);
 1772                 IEEE80211_UNLOCK(ic);
 1773         }
 1774 }
 1775 
 1776 /*
 1777  * Fetch the WME parameters for the given VAP.
 1778  *
 1779  * When net80211 grows p2p, etc support, this may return different
 1780  * parameters for each VAP.
 1781  */
 1782 void
 1783 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
 1784 {
 1785 
 1786         memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
 1787 }
 1788 
 1789 /*
 1790  * For NICs which only support one set of WME parameters (ie, softmac NICs)
 1791  * there may be different VAP WME parameters but only one is "active".
 1792  * This returns the "NIC" WME parameters for the currently active
 1793  * context.
 1794  */
 1795 void
 1796 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
 1797 {
 1798 
 1799         memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
 1800 }
 1801 
 1802 /*
 1803  * Return whether to use QoS on a given WME queue.
 1804  *
 1805  * This is intended to be called from the transmit path of softmac drivers
 1806  * which are setting NoAck bits in transmit descriptors.
 1807  *
 1808  * Ideally this would be set in some transmit field before the packet is
 1809  * queued to the driver but net80211 isn't quite there yet.
 1810  */
 1811 int
 1812 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
 1813 {
 1814         /* Bounds/sanity check */
 1815         if (ac < 0 || ac >= WME_NUM_AC)
 1816                 return (0);
 1817 
 1818         /* Again, there's only one global context for now */
 1819         return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
 1820 }
 1821 
 1822 static void
 1823 parent_updown(void *arg, int npending)
 1824 {
 1825         struct ieee80211com *ic = arg;
 1826 
 1827         ic->ic_parent(ic);
 1828 }
 1829 
 1830 static void
 1831 update_mcast(void *arg, int npending)
 1832 {
 1833         struct ieee80211com *ic = arg;
 1834 
 1835         ic->ic_update_mcast(ic);
 1836 }
 1837 
 1838 static void
 1839 update_promisc(void *arg, int npending)
 1840 {
 1841         struct ieee80211com *ic = arg;
 1842 
 1843         ic->ic_update_promisc(ic);
 1844 }
 1845 
 1846 static void
 1847 update_channel(void *arg, int npending)
 1848 {
 1849         struct ieee80211com *ic = arg;
 1850 
 1851         ic->ic_set_channel(ic);
 1852         ieee80211_radiotap_chan_change(ic);
 1853 }
 1854 
 1855 static void
 1856 update_chw(void *arg, int npending)
 1857 {
 1858         struct ieee80211com *ic = arg;
 1859 
 1860         /*
 1861          * XXX should we defer the channel width _config_ update until now?
 1862          */
 1863         ic->ic_update_chw(ic);
 1864 }
 1865 
 1866 /*
 1867  * Deferred WME parameter and beacon update.
 1868  *
 1869  * In preparation for per-VAP WME configuration, call the VAP
 1870  * method if the VAP requires it.  Otherwise, just call the
 1871  * older global method.  There isn't a per-VAP WME configuration
 1872  * just yet so for now just use the global configuration.
 1873  */
 1874 static void
 1875 vap_update_wme(void *arg, int npending)
 1876 {
 1877         struct ieee80211vap *vap = arg;
 1878         struct ieee80211com *ic = vap->iv_ic;
 1879         struct ieee80211_wme_state *wme = &ic->ic_wme;
 1880 
 1881         /* Driver update */
 1882         if (vap->iv_wme_update != NULL)
 1883                 vap->iv_wme_update(vap,
 1884                     ic->ic_wme.wme_chanParams.cap_wmeParams);
 1885         else
 1886                 ic->ic_wme.wme_update(ic);
 1887 
 1888         IEEE80211_LOCK(ic);
 1889         /*
 1890          * Arrange for the beacon update.
 1891          *
 1892          * XXX what about MBSS, WDS?
 1893          */
 1894         if (vap->iv_opmode == IEEE80211_M_HOSTAP
 1895             || vap->iv_opmode == IEEE80211_M_IBSS) {
 1896                 /*
 1897                  * Arrange for a beacon update and bump the parameter
 1898                  * set number so associated stations load the new values.
 1899                  */
 1900                 wme->wme_bssChanParams.cap_info =
 1901                         (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
 1902                 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
 1903         }
 1904         IEEE80211_UNLOCK(ic);
 1905 }
 1906 
 1907 static void
 1908 restart_vaps(void *arg, int npending)
 1909 {
 1910         struct ieee80211com *ic = arg;
 1911 
 1912         ieee80211_suspend_all(ic);
 1913         ieee80211_resume_all(ic);
 1914 }
 1915 
 1916 /*
 1917  * Block until the parent is in a known state.  This is
 1918  * used after any operations that dispatch a task (e.g.
 1919  * to auto-configure the parent device up/down).
 1920  */
 1921 void
 1922 ieee80211_waitfor_parent(struct ieee80211com *ic)
 1923 {
 1924         taskqueue_block(ic->ic_tq);
 1925         ieee80211_draintask(ic, &ic->ic_parent_task);
 1926         ieee80211_draintask(ic, &ic->ic_mcast_task);
 1927         ieee80211_draintask(ic, &ic->ic_promisc_task);
 1928         ieee80211_draintask(ic, &ic->ic_chan_task);
 1929         ieee80211_draintask(ic, &ic->ic_bmiss_task);
 1930         ieee80211_draintask(ic, &ic->ic_chw_task);
 1931         taskqueue_unblock(ic->ic_tq);
 1932 }
 1933 
 1934 /*
 1935  * Check to see whether the current channel needs reset.
 1936  *
 1937  * Some devices don't handle being given an invalid channel
 1938  * in their operating mode very well (eg wpi(4) will throw a
 1939  * firmware exception.)
 1940  *
 1941  * Return 0 if we're ok, 1 if the channel needs to be reset.
 1942  *
 1943  * See PR kern/202502.
 1944  */
 1945 static int
 1946 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
 1947 {
 1948         struct ieee80211com *ic = vap->iv_ic;
 1949 
 1950         if ((vap->iv_opmode == IEEE80211_M_IBSS &&
 1951              IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
 1952             (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1953              IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
 1954                 return (1);
 1955         return (0);
 1956 }
 1957 
 1958 /*
 1959  * Reset the curchan to a known good state.
 1960  */
 1961 static void
 1962 ieee80211_start_reset_chan(struct ieee80211vap *vap)
 1963 {
 1964         struct ieee80211com *ic = vap->iv_ic;
 1965 
 1966         ic->ic_curchan = &ic->ic_channels[0];
 1967 }
 1968 
 1969 /*
 1970  * Start a vap running.  If this is the first vap to be
 1971  * set running on the underlying device then we
 1972  * automatically bring the device up.
 1973  */
 1974 void
 1975 ieee80211_start_locked(struct ieee80211vap *vap)
 1976 {
 1977         struct ifnet *ifp = vap->iv_ifp;
 1978         struct ieee80211com *ic = vap->iv_ic;
 1979 
 1980         IEEE80211_LOCK_ASSERT(ic);
 1981 
 1982         IEEE80211_DPRINTF(vap,
 1983                 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1984                 "start running, %d vaps running\n", ic->ic_nrunning);
 1985 
 1986         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1987                 /*
 1988                  * Mark us running.  Note that it's ok to do this first;
 1989                  * if we need to bring the parent device up we defer that
 1990                  * to avoid dropping the com lock.  We expect the device
 1991                  * to respond to being marked up by calling back into us
 1992                  * through ieee80211_start_all at which point we'll come
 1993                  * back in here and complete the work.
 1994                  */
 1995                 ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1996                 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
 1997 
 1998                 /*
 1999                  * We are not running; if this we are the first vap
 2000                  * to be brought up auto-up the parent if necessary.
 2001                  */
 2002                 if (ic->ic_nrunning++ == 0) {
 2003                         /* reset the channel to a known good channel */
 2004                         if (ieee80211_start_check_reset_chan(vap))
 2005                                 ieee80211_start_reset_chan(vap);
 2006 
 2007                         IEEE80211_DPRINTF(vap,
 2008                             IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 2009                             "%s: up parent %s\n", __func__, ic->ic_name);
 2010                         ieee80211_runtask(ic, &ic->ic_parent_task);
 2011                         return;
 2012                 }
 2013         }
 2014         /*
 2015          * If the parent is up and running, then kick the
 2016          * 802.11 state machine as appropriate.
 2017          */
 2018         if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
 2019                 if (vap->iv_opmode == IEEE80211_M_STA) {
 2020 #if 0
 2021                         /* XXX bypasses scan too easily; disable for now */
 2022                         /*
 2023                          * Try to be intelligent about clocking the state
 2024                          * machine.  If we're currently in RUN state then
 2025                          * we should be able to apply any new state/parameters
 2026                          * simply by re-associating.  Otherwise we need to
 2027                          * re-scan to select an appropriate ap.
 2028                          */ 
 2029                         if (vap->iv_state >= IEEE80211_S_RUN)
 2030                                 ieee80211_new_state_locked(vap,
 2031                                     IEEE80211_S_ASSOC, 1);
 2032                         else
 2033 #endif
 2034                                 ieee80211_new_state_locked(vap,
 2035                                     IEEE80211_S_SCAN, 0);
 2036                 } else {
 2037                         /*
 2038                          * For monitor+wds mode there's nothing to do but
 2039                          * start running.  Otherwise if this is the first
 2040                          * vap to be brought up, start a scan which may be
 2041                          * preempted if the station is locked to a particular
 2042                          * channel.
 2043                          */
 2044                         vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
 2045                         if (vap->iv_opmode == IEEE80211_M_MONITOR ||
 2046                             vap->iv_opmode == IEEE80211_M_WDS)
 2047                                 ieee80211_new_state_locked(vap,
 2048                                     IEEE80211_S_RUN, -1);
 2049                         else
 2050                                 ieee80211_new_state_locked(vap,
 2051                                     IEEE80211_S_SCAN, 0);
 2052                 }
 2053         }
 2054 }
 2055 
 2056 /*
 2057  * Start a single vap.
 2058  */
 2059 void
 2060 ieee80211_init(void *arg)
 2061 {
 2062         struct ieee80211vap *vap = arg;
 2063 
 2064         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 2065             "%s\n", __func__);
 2066 
 2067         IEEE80211_LOCK(vap->iv_ic);
 2068         ieee80211_start_locked(vap);
 2069         IEEE80211_UNLOCK(vap->iv_ic);
 2070 }
 2071 
 2072 /*
 2073  * Start all runnable vap's on a device.
 2074  */
 2075 void
 2076 ieee80211_start_all(struct ieee80211com *ic)
 2077 {
 2078         struct ieee80211vap *vap;
 2079 
 2080         IEEE80211_LOCK(ic);
 2081         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 2082                 struct ifnet *ifp = vap->iv_ifp;
 2083                 if (IFNET_IS_UP_RUNNING(ifp))   /* NB: avoid recursion */
 2084                         ieee80211_start_locked(vap);
 2085         }
 2086         IEEE80211_UNLOCK(ic);
 2087 }
 2088 
 2089 /*
 2090  * Stop a vap.  We force it down using the state machine
 2091  * then mark it's ifnet not running.  If this is the last
 2092  * vap running on the underlying device then we close it
 2093  * too to insure it will be properly initialized when the
 2094  * next vap is brought up.
 2095  */
 2096 void
 2097 ieee80211_stop_locked(struct ieee80211vap *vap)
 2098 {
 2099         struct ieee80211com *ic = vap->iv_ic;
 2100         struct ifnet *ifp = vap->iv_ifp;
 2101 
 2102         IEEE80211_LOCK_ASSERT(ic);
 2103 
 2104         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 2105             "stop running, %d vaps running\n", ic->ic_nrunning);
 2106 
 2107         ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
 2108         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 2109                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;  /* mark us stopped */
 2110                 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
 2111                 if (--ic->ic_nrunning == 0) {
 2112                         IEEE80211_DPRINTF(vap,
 2113                             IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 2114                             "down parent %s\n", ic->ic_name);
 2115                         ieee80211_runtask(ic, &ic->ic_parent_task);
 2116                 }
 2117         }
 2118 }
 2119 
 2120 void
 2121 ieee80211_stop(struct ieee80211vap *vap)
 2122 {
 2123         struct ieee80211com *ic = vap->iv_ic;
 2124 
 2125         IEEE80211_LOCK(ic);
 2126         ieee80211_stop_locked(vap);
 2127         IEEE80211_UNLOCK(ic);
 2128 }
 2129 
 2130 /*
 2131  * Stop all vap's running on a device.
 2132  */
 2133 void
 2134 ieee80211_stop_all(struct ieee80211com *ic)
 2135 {
 2136         struct ieee80211vap *vap;
 2137 
 2138         IEEE80211_LOCK(ic);
 2139         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 2140                 struct ifnet *ifp = vap->iv_ifp;
 2141                 if (IFNET_IS_UP_RUNNING(ifp))   /* NB: avoid recursion */
 2142                         ieee80211_stop_locked(vap);
 2143         }
 2144         IEEE80211_UNLOCK(ic);
 2145 
 2146         ieee80211_waitfor_parent(ic);
 2147 }
 2148 
 2149 /*
 2150  * Stop all vap's running on a device and arrange
 2151  * for those that were running to be resumed.
 2152  */
 2153 void
 2154 ieee80211_suspend_all(struct ieee80211com *ic)
 2155 {
 2156         struct ieee80211vap *vap;
 2157 
 2158         IEEE80211_LOCK(ic);
 2159         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 2160                 struct ifnet *ifp = vap->iv_ifp;
 2161                 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
 2162                         vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
 2163                         ieee80211_stop_locked(vap);
 2164                 }
 2165         }
 2166         IEEE80211_UNLOCK(ic);
 2167 
 2168         ieee80211_waitfor_parent(ic);
 2169 }
 2170 
 2171 /*
 2172  * Start all vap's marked for resume.
 2173  */
 2174 void
 2175 ieee80211_resume_all(struct ieee80211com *ic)
 2176 {
 2177         struct ieee80211vap *vap;
 2178 
 2179         IEEE80211_LOCK(ic);
 2180         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 2181                 struct ifnet *ifp = vap->iv_ifp;
 2182                 if (!IFNET_IS_UP_RUNNING(ifp) &&
 2183                     (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
 2184                         vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
 2185                         ieee80211_start_locked(vap);
 2186                 }
 2187         }
 2188         IEEE80211_UNLOCK(ic);
 2189 }
 2190 
 2191 /*
 2192  * Restart all vap's running on a device.
 2193  */
 2194 void
 2195 ieee80211_restart_all(struct ieee80211com *ic)
 2196 {
 2197         /*
 2198          * NB: do not use ieee80211_runtask here, we will
 2199          * block & drain net80211 taskqueue.
 2200          */
 2201         taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
 2202 }
 2203 
 2204 void
 2205 ieee80211_beacon_miss(struct ieee80211com *ic)
 2206 {
 2207         IEEE80211_LOCK(ic);
 2208         if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 2209                 /* Process in a taskq, the handler may reenter the driver */
 2210                 ieee80211_runtask(ic, &ic->ic_bmiss_task);
 2211         }
 2212         IEEE80211_UNLOCK(ic);
 2213 }
 2214 
 2215 static void
 2216 beacon_miss(void *arg, int npending)
 2217 {
 2218         struct ieee80211com *ic = arg;
 2219         struct ieee80211vap *vap;
 2220 
 2221         IEEE80211_LOCK(ic);
 2222         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 2223                 /*
 2224                  * We only pass events through for sta vap's in RUN+ state;
 2225                  * may be too restrictive but for now this saves all the
 2226                  * handlers duplicating these checks.
 2227                  */
 2228                 if (vap->iv_opmode == IEEE80211_M_STA &&
 2229                     vap->iv_state >= IEEE80211_S_RUN &&
 2230                     vap->iv_bmiss != NULL)
 2231                         vap->iv_bmiss(vap);
 2232         }
 2233         IEEE80211_UNLOCK(ic);
 2234 }
 2235 
 2236 static void
 2237 beacon_swmiss(void *arg, int npending)
 2238 {
 2239         struct ieee80211vap *vap = arg;
 2240         struct ieee80211com *ic = vap->iv_ic;
 2241 
 2242         IEEE80211_LOCK(ic);
 2243         if (vap->iv_state >= IEEE80211_S_RUN) {
 2244                 /* XXX Call multiple times if npending > zero? */
 2245                 vap->iv_bmiss(vap);
 2246         }
 2247         IEEE80211_UNLOCK(ic);
 2248 }
 2249 
 2250 /*
 2251  * Software beacon miss handling.  Check if any beacons
 2252  * were received in the last period.  If not post a
 2253  * beacon miss; otherwise reset the counter.
 2254  */
 2255 void
 2256 ieee80211_swbmiss(void *arg)
 2257 {
 2258         struct ieee80211vap *vap = arg;
 2259         struct ieee80211com *ic = vap->iv_ic;
 2260 
 2261         IEEE80211_LOCK_ASSERT(ic);
 2262 
 2263         KASSERT(vap->iv_state >= IEEE80211_S_RUN,
 2264             ("wrong state %d", vap->iv_state));
 2265 
 2266         if (ic->ic_flags & IEEE80211_F_SCAN) {
 2267                 /*
 2268                  * If scanning just ignore and reset state.  If we get a
 2269                  * bmiss after coming out of scan because we haven't had
 2270                  * time to receive a beacon then we should probe the AP
 2271                  * before posting a real bmiss (unless iv_bmiss_max has
 2272                  * been artifiically lowered).  A cleaner solution might
 2273                  * be to disable the timer on scan start/end but to handle
 2274                  * case of multiple sta vap's we'd need to disable the
 2275                  * timers of all affected vap's.
 2276                  */
 2277                 vap->iv_swbmiss_count = 0;
 2278         } else if (vap->iv_swbmiss_count == 0) {
 2279                 if (vap->iv_bmiss != NULL)
 2280                         ieee80211_runtask(ic, &vap->iv_swbmiss_task);
 2281         } else
 2282                 vap->iv_swbmiss_count = 0;
 2283         callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
 2284                 ieee80211_swbmiss, vap);
 2285 }
 2286 
 2287 /*
 2288  * Start an 802.11h channel switch.  We record the parameters,
 2289  * mark the operation pending, notify each vap through the
 2290  * beacon update mechanism so it can update the beacon frame
 2291  * contents, and then switch vap's to CSA state to block outbound
 2292  * traffic.  Devices that handle CSA directly can use the state
 2293  * switch to do the right thing so long as they call
 2294  * ieee80211_csa_completeswitch when it's time to complete the
 2295  * channel change.  Devices that depend on the net80211 layer can
 2296  * use ieee80211_beacon_update to handle the countdown and the
 2297  * channel switch.
 2298  */
 2299 void
 2300 ieee80211_csa_startswitch(struct ieee80211com *ic,
 2301         struct ieee80211_channel *c, int mode, int count)
 2302 {
 2303         struct ieee80211vap *vap;
 2304 
 2305         IEEE80211_LOCK_ASSERT(ic);
 2306 
 2307         ic->ic_csa_newchan = c;
 2308         ic->ic_csa_mode = mode;
 2309         ic->ic_csa_count = count;
 2310         ic->ic_flags |= IEEE80211_F_CSAPENDING;
 2311         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 2312                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
 2313                     vap->iv_opmode == IEEE80211_M_IBSS ||
 2314                     vap->iv_opmode == IEEE80211_M_MBSS)
 2315                         ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
 2316                 /* switch to CSA state to block outbound traffic */
 2317                 if (vap->iv_state == IEEE80211_S_RUN)
 2318                         ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
 2319         }
 2320         ieee80211_notify_csa(ic, c, mode, count);
 2321 }
 2322 
 2323 /*
 2324  * Complete the channel switch by transitioning all CSA VAPs to RUN.
 2325  * This is called by both the completion and cancellation functions
 2326  * so each VAP is placed back in the RUN state and can thus transmit.
 2327  */
 2328 static void
 2329 csa_completeswitch(struct ieee80211com *ic)
 2330 {
 2331         struct ieee80211vap *vap;
 2332 
 2333         ic->ic_csa_newchan = NULL;
 2334         ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
 2335 
 2336         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 2337                 if (vap->iv_state == IEEE80211_S_CSA)
 2338                         ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
 2339 }
 2340 
 2341 /*
 2342  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
 2343  * We clear state and move all vap's in CSA state to RUN state
 2344  * so they can again transmit.
 2345  *
 2346  * Although this may not be completely correct, update the BSS channel
 2347  * for each VAP to the newly configured channel. The setcurchan sets
 2348  * the current operating channel for the interface (so the radio does
 2349  * switch over) but the VAP BSS isn't updated, leading to incorrectly
 2350  * reported information via ioctl.
 2351  */
 2352 void
 2353 ieee80211_csa_completeswitch(struct ieee80211com *ic)
 2354 {
 2355         struct ieee80211vap *vap;
 2356 
 2357         IEEE80211_LOCK_ASSERT(ic);
 2358 
 2359         KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
 2360 
 2361         ieee80211_setcurchan(ic, ic->ic_csa_newchan);
 2362         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 2363                 if (vap->iv_state == IEEE80211_S_CSA)
 2364                         vap->iv_bss->ni_chan = ic->ic_curchan;
 2365 
 2366         csa_completeswitch(ic);
 2367 }
 2368 
 2369 /*
 2370  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
 2371  * We clear state and move all vap's in CSA state to RUN state
 2372  * so they can again transmit.
 2373  */
 2374 void
 2375 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
 2376 {
 2377         IEEE80211_LOCK_ASSERT(ic);
 2378 
 2379         csa_completeswitch(ic);
 2380 }
 2381 
 2382 /*
 2383  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
 2384  * We clear state and move all vap's in CAC state to RUN state.
 2385  */
 2386 void
 2387 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
 2388 {
 2389         struct ieee80211com *ic = vap0->iv_ic;
 2390         struct ieee80211vap *vap;
 2391 
 2392         IEEE80211_LOCK(ic);
 2393         /*
 2394          * Complete CAC state change for lead vap first; then
 2395          * clock all the other vap's waiting.
 2396          */
 2397         KASSERT(vap0->iv_state == IEEE80211_S_CAC,
 2398             ("wrong state %d", vap0->iv_state));
 2399         ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
 2400 
 2401         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 2402                 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
 2403                         ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
 2404         IEEE80211_UNLOCK(ic);
 2405 }
 2406 
 2407 /*
 2408  * Force all vap's other than the specified vap to the INIT state
 2409  * and mark them as waiting for a scan to complete.  These vaps
 2410  * will be brought up when the scan completes and the scanning vap
 2411  * reaches RUN state by wakeupwaiting.
 2412  */
 2413 static void
 2414 markwaiting(struct ieee80211vap *vap0)
 2415 {
 2416         struct ieee80211com *ic = vap0->iv_ic;
 2417         struct ieee80211vap *vap;
 2418 
 2419         IEEE80211_LOCK_ASSERT(ic);
 2420 
 2421         /*
 2422          * A vap list entry can not disappear since we are running on the
 2423          * taskqueue and a vap destroy will queue and drain another state
 2424          * change task.
 2425          */
 2426         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 2427                 if (vap == vap0)
 2428                         continue;
 2429                 if (vap->iv_state != IEEE80211_S_INIT) {
 2430                         /* NB: iv_newstate may drop the lock */
 2431                         vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
 2432                         IEEE80211_LOCK_ASSERT(ic);
 2433                         vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 2434                 }
 2435         }
 2436 }
 2437 
 2438 /*
 2439  * Wakeup all vap's waiting for a scan to complete.  This is the
 2440  * companion to markwaiting (above) and is used to coordinate
 2441  * multiple vaps scanning.
 2442  * This is called from the state taskqueue.
 2443  */
 2444 static void
 2445 wakeupwaiting(struct ieee80211vap *vap0)
 2446 {
 2447         struct ieee80211com *ic = vap0->iv_ic;
 2448         struct ieee80211vap *vap;
 2449 
 2450         IEEE80211_LOCK_ASSERT(ic);
 2451 
 2452         /*
 2453          * A vap list entry can not disappear since we are running on the
 2454          * taskqueue and a vap destroy will queue and drain another state
 2455          * change task.
 2456          */
 2457         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 2458                 if (vap == vap0)
 2459                         continue;
 2460                 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
 2461                         vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
 2462                         /* NB: sta's cannot go INIT->RUN */
 2463                         /* NB: iv_newstate may drop the lock */
 2464 
 2465                         /*
 2466                          * This is problematic if the interface has OACTIVE
 2467                          * set.  Only the deferred ieee80211_newstate_cb()
 2468                          * will end up actually /clearing/ the OACTIVE
 2469                          * flag on a state transition to RUN from a non-RUN
 2470                          * state.
 2471                          *
 2472                          * But, we're not actually deferring this callback;
 2473                          * and when the deferred call occurs it shows up as
 2474                          * a RUN->RUN transition!  So the flag isn't/wasn't
 2475                          * cleared!
 2476                          *
 2477                          * I'm also not sure if it's correct to actually
 2478                          * do the transitions here fully through the deferred
 2479                          * paths either as other things can be invoked as
 2480                          * part of that state machine.
 2481                          *
 2482                          * So just keep this in mind when looking at what
 2483                          * the markwaiting/wakeupwaiting routines are doing
 2484                          * and how they invoke vap state changes.
 2485                          */
 2486 
 2487                         vap->iv_newstate(vap,
 2488                             vap->iv_opmode == IEEE80211_M_STA ?
 2489                                 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
 2490                         IEEE80211_LOCK_ASSERT(ic);
 2491                 }
 2492         }
 2493 }
 2494 
 2495 /*
 2496  * Handle post state change work common to all operating modes.
 2497  */
 2498 static void
 2499 ieee80211_newstate_cb(void *xvap, int npending)
 2500 {
 2501         struct ieee80211vap *vap = xvap;
 2502         struct ieee80211com *ic = vap->iv_ic;
 2503         enum ieee80211_state nstate, ostate;
 2504         int arg, rc;
 2505 
 2506         IEEE80211_LOCK(ic);
 2507         nstate = vap->iv_nstate;
 2508         arg = vap->iv_nstate_arg;
 2509 
 2510         if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
 2511                 /*
 2512                  * We have been requested to drop back to the INIT before
 2513                  * proceeding to the new state.
 2514                  */
 2515                 /* Deny any state changes while we are here. */
 2516                 vap->iv_nstate = IEEE80211_S_INIT;
 2517                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2518                     "%s: %s -> %s arg %d\n", __func__,
 2519                     ieee80211_state_name[vap->iv_state],
 2520                     ieee80211_state_name[vap->iv_nstate], arg);
 2521                 vap->iv_newstate(vap, vap->iv_nstate, 0);
 2522                 IEEE80211_LOCK_ASSERT(ic);
 2523                 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
 2524                     IEEE80211_FEXT_STATEWAIT);
 2525                 /* enqueue new state transition after cancel_scan() task */
 2526                 ieee80211_new_state_locked(vap, nstate, arg);
 2527                 goto done;
 2528         }
 2529 
 2530         ostate = vap->iv_state;
 2531         if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
 2532                 /*
 2533                  * SCAN was forced; e.g. on beacon miss.  Force other running
 2534                  * vap's to INIT state and mark them as waiting for the scan to
 2535                  * complete.  This insures they don't interfere with our
 2536                  * scanning.  Since we are single threaded the vaps can not
 2537                  * transition again while we are executing.
 2538                  *
 2539                  * XXX not always right, assumes ap follows sta
 2540                  */
 2541                 markwaiting(vap);
 2542         }
 2543         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2544             "%s: %s -> %s arg %d\n", __func__,
 2545             ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
 2546 
 2547         rc = vap->iv_newstate(vap, nstate, arg);
 2548         IEEE80211_LOCK_ASSERT(ic);
 2549         vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
 2550         if (rc != 0) {
 2551                 /* State transition failed */
 2552                 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
 2553                 KASSERT(nstate != IEEE80211_S_INIT,
 2554                     ("INIT state change failed"));
 2555                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2556                     "%s: %s returned error %d\n", __func__,
 2557                     ieee80211_state_name[nstate], rc);
 2558                 goto done;
 2559         }
 2560 
 2561         /*
 2562          * Handle the case of a RUN->RUN transition occuring when STA + AP
 2563          * VAPs occur on the same radio.
 2564          *
 2565          * The mark and wakeup waiting routines call iv_newstate() directly,
 2566          * but they do not end up deferring state changes here.
 2567          * Thus, although the VAP newstate method sees a transition
 2568          * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN
 2569          * transition.  If OACTIVE is set then it is never cleared.
 2570          *
 2571          * So, if we're here and the state is RUN, just clear OACTIVE.
 2572          * At some point if the markwaiting/wakeupwaiting paths end up
 2573          * also invoking the deferred state updates then this will
 2574          * be no-op code - and also if OACTIVE is finally retired, it'll
 2575          * also be no-op code.
 2576          */
 2577         if (nstate == IEEE80211_S_RUN) {
 2578                 /*
 2579                  * OACTIVE may be set on the vap if the upper layer
 2580                  * tried to transmit (e.g. IPv6 NDP) before we reach
 2581                  * RUN state.  Clear it and restart xmit.
 2582                  *
 2583                  * Note this can also happen as a result of SLEEP->RUN
 2584                  * (i.e. coming out of power save mode).
 2585                  *
 2586                  * Historically this was done only for a state change
 2587                  * but is needed earlier; see next comment.  The 2nd half
 2588                  * of the work is still only done in case of an actual
 2589                  * state change below.
 2590                  */
 2591                 /*
 2592                  * Unblock the VAP queue; a RUN->RUN state can happen
 2593                  * on a STA+AP setup on the AP vap.  See wakeupwaiting().
 2594                  */
 2595                 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2596 
 2597                 /*
 2598                  * XXX TODO Kick-start a VAP queue - this should be a method!
 2599                  */
 2600         }
 2601 
 2602         /* No actual transition, skip post processing */
 2603         if (ostate == nstate)
 2604                 goto done;
 2605 
 2606         if (nstate == IEEE80211_S_RUN) {
 2607 
 2608                 /* bring up any vaps waiting on us */
 2609                 wakeupwaiting(vap);
 2610         } else if (nstate == IEEE80211_S_INIT) {
 2611                 /*
 2612                  * Flush the scan cache if we did the last scan (XXX?)
 2613                  * and flush any frames on send queues from this vap.
 2614                  * Note the mgt q is used only for legacy drivers and
 2615                  * will go away shortly.
 2616                  */
 2617                 ieee80211_scan_flush(vap);
 2618 
 2619                 /*
 2620                  * XXX TODO: ic/vap queue flush
 2621                  */
 2622         }
 2623 done:
 2624         IEEE80211_UNLOCK(ic);
 2625 }
 2626 
 2627 /*
 2628  * Public interface for initiating a state machine change.
 2629  * This routine single-threads the request and coordinates
 2630  * the scheduling of multiple vaps for the purpose of selecting
 2631  * an operating channel.  Specifically the following scenarios
 2632  * are handled:
 2633  * o only one vap can be selecting a channel so on transition to
 2634  *   SCAN state if another vap is already scanning then
 2635  *   mark the caller for later processing and return without
 2636  *   doing anything (XXX? expectations by caller of synchronous operation)
 2637  * o only one vap can be doing CAC of a channel so on transition to
 2638  *   CAC state if another vap is already scanning for radar then
 2639  *   mark the caller for later processing and return without
 2640  *   doing anything (XXX? expectations by caller of synchronous operation)
 2641  * o if another vap is already running when a request is made
 2642  *   to SCAN then an operating channel has been chosen; bypass
 2643  *   the scan and just join the channel
 2644  *
 2645  * Note that the state change call is done through the iv_newstate
 2646  * method pointer so any driver routine gets invoked.  The driver
 2647  * will normally call back into operating mode-specific
 2648  * ieee80211_newstate routines (below) unless it needs to completely
 2649  * bypass the state machine (e.g. because the firmware has it's
 2650  * own idea how things should work).  Bypassing the net80211 layer
 2651  * is usually a mistake and indicates lack of proper integration
 2652  * with the net80211 layer.
 2653  */
 2654 int
 2655 ieee80211_new_state_locked(struct ieee80211vap *vap,
 2656         enum ieee80211_state nstate, int arg)
 2657 {
 2658         struct ieee80211com *ic = vap->iv_ic;
 2659         struct ieee80211vap *vp;
 2660         enum ieee80211_state ostate;
 2661         int nrunning, nscanning;
 2662 
 2663         IEEE80211_LOCK_ASSERT(ic);
 2664 
 2665         if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
 2666                 if (vap->iv_nstate == IEEE80211_S_INIT ||
 2667                     ((vap->iv_state == IEEE80211_S_INIT ||
 2668                     (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
 2669                     vap->iv_nstate == IEEE80211_S_SCAN &&
 2670                     nstate > IEEE80211_S_SCAN)) {
 2671                         /*
 2672                          * XXX The vap is being stopped/started,
 2673                          * do not allow any other state changes
 2674                          * until this is completed.
 2675                          */
 2676                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2677                             "%s: %s -> %s (%s) transition discarded\n",
 2678                             __func__,
 2679                             ieee80211_state_name[vap->iv_state],
 2680                             ieee80211_state_name[nstate],
 2681                             ieee80211_state_name[vap->iv_nstate]);
 2682                         return -1;
 2683                 } else if (vap->iv_state != vap->iv_nstate) {
 2684 #if 0
 2685                         /* Warn if the previous state hasn't completed. */
 2686                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2687                             "%s: pending %s -> %s transition lost\n", __func__,
 2688                             ieee80211_state_name[vap->iv_state],
 2689                             ieee80211_state_name[vap->iv_nstate]);
 2690 #else
 2691                         /* XXX temporarily enable to identify issues */
 2692                         if_printf(vap->iv_ifp,
 2693                             "%s: pending %s -> %s transition lost\n",
 2694                             __func__, ieee80211_state_name[vap->iv_state],
 2695                             ieee80211_state_name[vap->iv_nstate]);
 2696 #endif
 2697                 }
 2698         }
 2699 
 2700         nrunning = nscanning = 0;
 2701         /* XXX can track this state instead of calculating */
 2702         TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
 2703                 if (vp != vap) {
 2704                         if (vp->iv_state >= IEEE80211_S_RUN)
 2705                                 nrunning++;
 2706                         /* XXX doesn't handle bg scan */
 2707                         /* NB: CAC+AUTH+ASSOC treated like SCAN */
 2708                         else if (vp->iv_state > IEEE80211_S_INIT)
 2709                                 nscanning++;
 2710                 }
 2711         }
 2712         ostate = vap->iv_state;
 2713         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2714             "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__,
 2715             ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg,
 2716             nrunning, nscanning);
 2717         switch (nstate) {
 2718         case IEEE80211_S_SCAN:
 2719                 if (ostate == IEEE80211_S_INIT) {
 2720                         /*
 2721                          * INIT -> SCAN happens on initial bringup.
 2722                          */
 2723                         KASSERT(!(nscanning && nrunning),
 2724                             ("%d scanning and %d running", nscanning, nrunning));
 2725                         if (nscanning) {
 2726                                 /*
 2727                                  * Someone is scanning, defer our state
 2728                                  * change until the work has completed.
 2729                                  */
 2730                                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2731                                     "%s: defer %s -> %s\n",
 2732                                     __func__, ieee80211_state_name[ostate],
 2733                                     ieee80211_state_name[nstate]);
 2734                                 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 2735                                 return 0;
 2736                         }
 2737                         if (nrunning) {
 2738                                 /*
 2739                                  * Someone is operating; just join the channel
 2740                                  * they have chosen.
 2741                                  */
 2742                                 /* XXX kill arg? */
 2743                                 /* XXX check each opmode, adhoc? */
 2744                                 if (vap->iv_opmode == IEEE80211_M_STA)
 2745                                         nstate = IEEE80211_S_SCAN;
 2746                                 else
 2747                                         nstate = IEEE80211_S_RUN;
 2748 #ifdef IEEE80211_DEBUG
 2749                                 if (nstate != IEEE80211_S_SCAN) {
 2750                                         IEEE80211_DPRINTF(vap,
 2751                                             IEEE80211_MSG_STATE,
 2752                                             "%s: override, now %s -> %s\n",
 2753                                             __func__,
 2754                                             ieee80211_state_name[ostate],
 2755                                             ieee80211_state_name[nstate]);
 2756                                 }
 2757 #endif
 2758                         }
 2759                 }
 2760                 break;
 2761         case IEEE80211_S_RUN:
 2762                 if (vap->iv_opmode == IEEE80211_M_WDS &&
 2763                     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
 2764                     nscanning) {
 2765                         /*
 2766                          * Legacy WDS with someone else scanning; don't
 2767                          * go online until that completes as we should
 2768                          * follow the other vap to the channel they choose.
 2769                          */
 2770                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2771                              "%s: defer %s -> %s (legacy WDS)\n", __func__,
 2772                              ieee80211_state_name[ostate],
 2773                              ieee80211_state_name[nstate]);
 2774                         vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 2775                         return 0;
 2776                 }
 2777                 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 2778                     IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
 2779                     (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
 2780                     !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
 2781                         /*
 2782                          * This is a DFS channel, transition to CAC state
 2783                          * instead of RUN.  This allows us to initiate
 2784                          * Channel Availability Check (CAC) as specified
 2785                          * by 11h/DFS.
 2786                          */
 2787                         nstate = IEEE80211_S_CAC;
 2788                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2789                              "%s: override %s -> %s (DFS)\n", __func__,
 2790                              ieee80211_state_name[ostate],
 2791                              ieee80211_state_name[nstate]);
 2792                 }
 2793                 break;
 2794         case IEEE80211_S_INIT:
 2795                 /* cancel any scan in progress */
 2796                 ieee80211_cancel_scan(vap);
 2797                 if (ostate == IEEE80211_S_INIT ) {
 2798                         /* XXX don't believe this */
 2799                         /* INIT -> INIT. nothing to do */
 2800                         vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
 2801                 }
 2802                 /* fall thru... */
 2803         default:
 2804                 break;
 2805         }
 2806         /* defer the state change to a thread */
 2807         vap->iv_nstate = nstate;
 2808         vap->iv_nstate_arg = arg;
 2809         vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
 2810         ieee80211_runtask(ic, &vap->iv_nstate_task);
 2811         return EINPROGRESS;
 2812 }
 2813 
 2814 int
 2815 ieee80211_new_state(struct ieee80211vap *vap,
 2816         enum ieee80211_state nstate, int arg)
 2817 {
 2818         struct ieee80211com *ic = vap->iv_ic;
 2819         int rc;
 2820 
 2821         IEEE80211_LOCK(ic);
 2822         rc = ieee80211_new_state_locked(vap, nstate, arg);
 2823         IEEE80211_UNLOCK(ic);
 2824         return rc;
 2825 }

Cache object: 1c3d85791c8c28824e5164df1f6dc7ff


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.