The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211_proto.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Atsushi Onoe
    3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/10.2/sys/net80211/ieee80211_proto.c 262007 2014-02-17 01:36:53Z kevlo $");
   29 
   30 /*
   31  * IEEE 802.11 protocol support.
   32  */
   33 
   34 #include "opt_inet.h"
   35 #include "opt_wlan.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/kernel.h>
   39 #include <sys/systm.h>
   40 
   41 #include <sys/socket.h>
   42 #include <sys/sockio.h>
   43 
   44 #include <net/if.h>
   45 #include <net/if_media.h>
   46 #include <net/ethernet.h>               /* XXX for ether_sprintf */
   47 
   48 #include <net80211/ieee80211_var.h>
   49 #include <net80211/ieee80211_adhoc.h>
   50 #include <net80211/ieee80211_sta.h>
   51 #include <net80211/ieee80211_hostap.h>
   52 #include <net80211/ieee80211_wds.h>
   53 #ifdef IEEE80211_SUPPORT_MESH
   54 #include <net80211/ieee80211_mesh.h>
   55 #endif
   56 #include <net80211/ieee80211_monitor.h>
   57 #include <net80211/ieee80211_input.h>
   58 
   59 /* XXX tunables */
   60 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS       3       /* pkts / 100ms */
   61 #define HIGH_PRI_SWITCH_THRESH                  10      /* pkts / 100ms */
   62 
   63 const char *ieee80211_mgt_subtype_name[] = {
   64         "assoc_req",    "assoc_resp",   "reassoc_req",  "reassoc_resp",
   65         "probe_req",    "probe_resp",   "reserved#6",   "reserved#7",
   66         "beacon",       "atim",         "disassoc",     "auth",
   67         "deauth",       "action",       "action_noack", "reserved#15"
   68 };
   69 const char *ieee80211_ctl_subtype_name[] = {
   70         "reserved#0",   "reserved#1",   "reserved#2",   "reserved#3",
   71         "reserved#3",   "reserved#5",   "reserved#6",   "reserved#7",
   72         "reserved#8",   "reserved#9",   "ps_poll",      "rts",
   73         "cts",          "ack",          "cf_end",       "cf_end_ack"
   74 };
   75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
   76         "IBSS",         /* IEEE80211_M_IBSS */
   77         "STA",          /* IEEE80211_M_STA */
   78         "WDS",          /* IEEE80211_M_WDS */
   79         "AHDEMO",       /* IEEE80211_M_AHDEMO */
   80         "HOSTAP",       /* IEEE80211_M_HOSTAP */
   81         "MONITOR",      /* IEEE80211_M_MONITOR */
   82         "MBSS"          /* IEEE80211_M_MBSS */
   83 };
   84 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
   85         "INIT",         /* IEEE80211_S_INIT */
   86         "SCAN",         /* IEEE80211_S_SCAN */
   87         "AUTH",         /* IEEE80211_S_AUTH */
   88         "ASSOC",        /* IEEE80211_S_ASSOC */
   89         "CAC",          /* IEEE80211_S_CAC */
   90         "RUN",          /* IEEE80211_S_RUN */
   91         "CSA",          /* IEEE80211_S_CSA */
   92         "SLEEP",        /* IEEE80211_S_SLEEP */
   93 };
   94 const char *ieee80211_wme_acnames[] = {
   95         "WME_AC_BE",
   96         "WME_AC_BK",
   97         "WME_AC_VI",
   98         "WME_AC_VO",
   99         "WME_UPSD",
  100 };
  101 
  102 static void beacon_miss(void *, int);
  103 static void beacon_swmiss(void *, int);
  104 static void parent_updown(void *, int);
  105 static void update_mcast(void *, int);
  106 static void update_promisc(void *, int);
  107 static void update_channel(void *, int);
  108 static void update_chw(void *, int);
  109 static void ieee80211_newstate_cb(void *, int);
  110 
  111 static int
  112 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
  113         const struct ieee80211_bpf_params *params)
  114 {
  115         struct ifnet *ifp = ni->ni_ic->ic_ifp;
  116 
  117         if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
  118         m_freem(m);
  119         return ENETDOWN;
  120 }
  121 
  122 void
  123 ieee80211_proto_attach(struct ieee80211com *ic)
  124 {
  125         struct ifnet *ifp = ic->ic_ifp;
  126 
  127         /* override the 802.3 setting */
  128         ifp->if_hdrlen = ic->ic_headroom
  129                 + sizeof(struct ieee80211_qosframe_addr4)
  130                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
  131                 + IEEE80211_WEP_EXTIVLEN;
  132         /* XXX no way to recalculate on ifdetach */
  133         if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
  134                 /* XXX sanity check... */
  135                 max_linkhdr = ALIGN(ifp->if_hdrlen);
  136                 max_hdr = max_linkhdr + max_protohdr;
  137                 max_datalen = MHLEN - max_hdr;
  138         }
  139         ic->ic_protmode = IEEE80211_PROT_CTSONLY;
  140 
  141         TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
  142         TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
  143         TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
  144         TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
  145         TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
  146         TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
  147 
  148         ic->ic_wme.wme_hipri_switch_hysteresis =
  149                 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
  150 
  151         /* initialize management frame handlers */
  152         ic->ic_send_mgmt = ieee80211_send_mgmt;
  153         ic->ic_raw_xmit = null_raw_xmit;
  154 
  155         ieee80211_adhoc_attach(ic);
  156         ieee80211_sta_attach(ic);
  157         ieee80211_wds_attach(ic);
  158         ieee80211_hostap_attach(ic);
  159 #ifdef IEEE80211_SUPPORT_MESH
  160         ieee80211_mesh_attach(ic);
  161 #endif
  162         ieee80211_monitor_attach(ic);
  163 }
  164 
  165 void
  166 ieee80211_proto_detach(struct ieee80211com *ic)
  167 {
  168         ieee80211_monitor_detach(ic);
  169 #ifdef IEEE80211_SUPPORT_MESH
  170         ieee80211_mesh_detach(ic);
  171 #endif
  172         ieee80211_hostap_detach(ic);
  173         ieee80211_wds_detach(ic);
  174         ieee80211_adhoc_detach(ic);
  175         ieee80211_sta_detach(ic);
  176 }
  177 
  178 static void
  179 null_update_beacon(struct ieee80211vap *vap, int item)
  180 {
  181 }
  182 
  183 void
  184 ieee80211_proto_vattach(struct ieee80211vap *vap)
  185 {
  186         struct ieee80211com *ic = vap->iv_ic;
  187         struct ifnet *ifp = vap->iv_ifp;
  188         int i;
  189 
  190         /* override the 802.3 setting */
  191         ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
  192 
  193         vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
  194         vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
  195         vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
  196         callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
  197         callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
  198         TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
  199         TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
  200         /*
  201          * Install default tx rate handling: no fixed rate, lowest
  202          * supported rate for mgmt and multicast frames.  Default
  203          * max retry count.  These settings can be changed by the
  204          * driver and/or user applications.
  205          */
  206         for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
  207                 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
  208 
  209                 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
  210 
  211                 /*
  212                  * Setting the management rate to MCS 0 assumes that the
  213                  * BSS Basic rate set is empty and the BSS Basic MCS set
  214                  * is not.
  215                  *
  216                  * Since we're not checking this, default to the lowest
  217                  * defined rate for this mode.
  218                  *
  219                  * At least one 11n AP (DLINK DIR-825) is reported to drop
  220                  * some MCS management traffic (eg BA response frames.)
  221                  *
  222                  * See also: 9.6.0 of the 802.11n-2009 specification.
  223                  */
  224 #ifdef  NOTYET
  225                 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
  226                         vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
  227                         vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
  228                 } else {
  229                         vap->iv_txparms[i].mgmtrate =
  230                             rs->rs_rates[0] & IEEE80211_RATE_VAL;
  231                         vap->iv_txparms[i].mcastrate = 
  232                             rs->rs_rates[0] & IEEE80211_RATE_VAL;
  233                 }
  234 #endif
  235                 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
  236                 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
  237                 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
  238         }
  239         vap->iv_roaming = IEEE80211_ROAMING_AUTO;
  240 
  241         vap->iv_update_beacon = null_update_beacon;
  242         vap->iv_deliver_data = ieee80211_deliver_data;
  243 
  244         /* attach support for operating mode */
  245         ic->ic_vattach[vap->iv_opmode](vap);
  246 }
  247 
  248 void
  249 ieee80211_proto_vdetach(struct ieee80211vap *vap)
  250 {
  251 #define FREEAPPIE(ie) do { \
  252         if (ie != NULL) \
  253                 free(ie, M_80211_NODE_IE); \
  254 } while (0)
  255         /*
  256          * Detach operating mode module.
  257          */
  258         if (vap->iv_opdetach != NULL)
  259                 vap->iv_opdetach(vap);
  260         /*
  261          * This should not be needed as we detach when reseting
  262          * the state but be conservative here since the
  263          * authenticator may do things like spawn kernel threads.
  264          */
  265         if (vap->iv_auth->ia_detach != NULL)
  266                 vap->iv_auth->ia_detach(vap);
  267         /*
  268          * Detach any ACL'ator.
  269          */
  270         if (vap->iv_acl != NULL)
  271                 vap->iv_acl->iac_detach(vap);
  272 
  273         FREEAPPIE(vap->iv_appie_beacon);
  274         FREEAPPIE(vap->iv_appie_probereq);
  275         FREEAPPIE(vap->iv_appie_proberesp);
  276         FREEAPPIE(vap->iv_appie_assocreq);
  277         FREEAPPIE(vap->iv_appie_assocresp);
  278         FREEAPPIE(vap->iv_appie_wpa);
  279 #undef FREEAPPIE
  280 }
  281 
  282 /*
  283  * Simple-minded authenticator module support.
  284  */
  285 
  286 #define IEEE80211_AUTH_MAX      (IEEE80211_AUTH_WPA+1)
  287 /* XXX well-known names */
  288 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
  289         "wlan_internal",        /* IEEE80211_AUTH_NONE */
  290         "wlan_internal",        /* IEEE80211_AUTH_OPEN */
  291         "wlan_internal",        /* IEEE80211_AUTH_SHARED */
  292         "wlan_xauth",           /* IEEE80211_AUTH_8021X  */
  293         "wlan_internal",        /* IEEE80211_AUTH_AUTO */
  294         "wlan_xauth",           /* IEEE80211_AUTH_WPA */
  295 };
  296 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
  297 
  298 static const struct ieee80211_authenticator auth_internal = {
  299         .ia_name                = "wlan_internal",
  300         .ia_attach              = NULL,
  301         .ia_detach              = NULL,
  302         .ia_node_join           = NULL,
  303         .ia_node_leave          = NULL,
  304 };
  305 
  306 /*
  307  * Setup internal authenticators once; they are never unregistered.
  308  */
  309 static void
  310 ieee80211_auth_setup(void)
  311 {
  312         ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
  313         ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
  314         ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
  315 }
  316 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
  317 
  318 const struct ieee80211_authenticator *
  319 ieee80211_authenticator_get(int auth)
  320 {
  321         if (auth >= IEEE80211_AUTH_MAX)
  322                 return NULL;
  323         if (authenticators[auth] == NULL)
  324                 ieee80211_load_module(auth_modnames[auth]);
  325         return authenticators[auth];
  326 }
  327 
  328 void
  329 ieee80211_authenticator_register(int type,
  330         const struct ieee80211_authenticator *auth)
  331 {
  332         if (type >= IEEE80211_AUTH_MAX)
  333                 return;
  334         authenticators[type] = auth;
  335 }
  336 
  337 void
  338 ieee80211_authenticator_unregister(int type)
  339 {
  340 
  341         if (type >= IEEE80211_AUTH_MAX)
  342                 return;
  343         authenticators[type] = NULL;
  344 }
  345 
  346 /*
  347  * Very simple-minded ACL module support.
  348  */
  349 /* XXX just one for now */
  350 static  const struct ieee80211_aclator *acl = NULL;
  351 
  352 void
  353 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
  354 {
  355         printf("wlan: %s acl policy registered\n", iac->iac_name);
  356         acl = iac;
  357 }
  358 
  359 void
  360 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
  361 {
  362         if (acl == iac)
  363                 acl = NULL;
  364         printf("wlan: %s acl policy unregistered\n", iac->iac_name);
  365 }
  366 
  367 const struct ieee80211_aclator *
  368 ieee80211_aclator_get(const char *name)
  369 {
  370         if (acl == NULL)
  371                 ieee80211_load_module("wlan_acl");
  372         return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
  373 }
  374 
  375 void
  376 ieee80211_print_essid(const uint8_t *essid, int len)
  377 {
  378         const uint8_t *p;
  379         int i;
  380 
  381         if (len > IEEE80211_NWID_LEN)
  382                 len = IEEE80211_NWID_LEN;
  383         /* determine printable or not */
  384         for (i = 0, p = essid; i < len; i++, p++) {
  385                 if (*p < ' ' || *p > 0x7e)
  386                         break;
  387         }
  388         if (i == len) {
  389                 printf("\"");
  390                 for (i = 0, p = essid; i < len; i++, p++)
  391                         printf("%c", *p);
  392                 printf("\"");
  393         } else {
  394                 printf("0x");
  395                 for (i = 0, p = essid; i < len; i++, p++)
  396                         printf("%02x", *p);
  397         }
  398 }
  399 
  400 void
  401 ieee80211_dump_pkt(struct ieee80211com *ic,
  402         const uint8_t *buf, int len, int rate, int rssi)
  403 {
  404         const struct ieee80211_frame *wh;
  405         int i;
  406 
  407         wh = (const struct ieee80211_frame *)buf;
  408         switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  409         case IEEE80211_FC1_DIR_NODS:
  410                 printf("NODS %s", ether_sprintf(wh->i_addr2));
  411                 printf("->%s", ether_sprintf(wh->i_addr1));
  412                 printf("(%s)", ether_sprintf(wh->i_addr3));
  413                 break;
  414         case IEEE80211_FC1_DIR_TODS:
  415                 printf("TODS %s", ether_sprintf(wh->i_addr2));
  416                 printf("->%s", ether_sprintf(wh->i_addr3));
  417                 printf("(%s)", ether_sprintf(wh->i_addr1));
  418                 break;
  419         case IEEE80211_FC1_DIR_FROMDS:
  420                 printf("FRDS %s", ether_sprintf(wh->i_addr3));
  421                 printf("->%s", ether_sprintf(wh->i_addr1));
  422                 printf("(%s)", ether_sprintf(wh->i_addr2));
  423                 break;
  424         case IEEE80211_FC1_DIR_DSTODS:
  425                 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
  426                 printf("->%s", ether_sprintf(wh->i_addr3));
  427                 printf("(%s", ether_sprintf(wh->i_addr2));
  428                 printf("->%s)", ether_sprintf(wh->i_addr1));
  429                 break;
  430         }
  431         switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
  432         case IEEE80211_FC0_TYPE_DATA:
  433                 printf(" data");
  434                 break;
  435         case IEEE80211_FC0_TYPE_MGT:
  436                 printf(" %s", ieee80211_mgt_subtype_name[
  437                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
  438                     >> IEEE80211_FC0_SUBTYPE_SHIFT]);
  439                 break;
  440         default:
  441                 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
  442                 break;
  443         }
  444         if (IEEE80211_QOS_HAS_SEQ(wh)) {
  445                 const struct ieee80211_qosframe *qwh = 
  446                         (const struct ieee80211_qosframe *)buf;
  447                 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
  448                         qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
  449         }
  450         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
  451                 int off;
  452 
  453                 off = ieee80211_anyhdrspace(ic, wh);
  454                 printf(" WEP [IV %.02x %.02x %.02x",
  455                         buf[off+0], buf[off+1], buf[off+2]);
  456                 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
  457                         printf(" %.02x %.02x %.02x",
  458                                 buf[off+4], buf[off+5], buf[off+6]);
  459                 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
  460         }
  461         if (rate >= 0)
  462                 printf(" %dM", rate / 2);
  463         if (rssi >= 0)
  464                 printf(" +%d", rssi);
  465         printf("\n");
  466         if (len > 0) {
  467                 for (i = 0; i < len; i++) {
  468                         if ((i & 1) == 0)
  469                                 printf(" ");
  470                         printf("%02x", buf[i]);
  471                 }
  472                 printf("\n");
  473         }
  474 }
  475 
  476 static __inline int
  477 findrix(const struct ieee80211_rateset *rs, int r)
  478 {
  479         int i;
  480 
  481         for (i = 0; i < rs->rs_nrates; i++)
  482                 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
  483                         return i;
  484         return -1;
  485 }
  486 
  487 int
  488 ieee80211_fix_rate(struct ieee80211_node *ni,
  489         struct ieee80211_rateset *nrs, int flags)
  490 {
  491 #define RV(v)   ((v) & IEEE80211_RATE_VAL)
  492         struct ieee80211vap *vap = ni->ni_vap;
  493         struct ieee80211com *ic = ni->ni_ic;
  494         int i, j, rix, error;
  495         int okrate, badrate, fixedrate, ucastrate;
  496         const struct ieee80211_rateset *srs;
  497         uint8_t r;
  498 
  499         error = 0;
  500         okrate = badrate = 0;
  501         ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
  502         if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
  503                 /*
  504                  * Workaround awkwardness with fixed rate.  We are called
  505                  * to check both the legacy rate set and the HT rate set
  506                  * but we must apply any legacy fixed rate check only to the
  507                  * legacy rate set and vice versa.  We cannot tell what type
  508                  * of rate set we've been given (legacy or HT) but we can
  509                  * distinguish the fixed rate type (MCS have 0x80 set).
  510                  * So to deal with this the caller communicates whether to
  511                  * check MCS or legacy rate using the flags and we use the
  512                  * type of any fixed rate to avoid applying an MCS to a
  513                  * legacy rate and vice versa.
  514                  */
  515                 if (ucastrate & 0x80) {
  516                         if (flags & IEEE80211_F_DOFRATE)
  517                                 flags &= ~IEEE80211_F_DOFRATE;
  518                 } else if ((ucastrate & 0x80) == 0) {
  519                         if (flags & IEEE80211_F_DOFMCS)
  520                                 flags &= ~IEEE80211_F_DOFMCS;
  521                 }
  522                 /* NB: required to make MCS match below work */
  523                 ucastrate &= IEEE80211_RATE_VAL;
  524         }
  525         fixedrate = IEEE80211_FIXED_RATE_NONE;
  526         /*
  527          * XXX we are called to process both MCS and legacy rates;
  528          * we must use the appropriate basic rate set or chaos will
  529          * ensue; for now callers that want MCS must supply
  530          * IEEE80211_F_DOBRS; at some point we'll need to split this
  531          * function so there are two variants, one for MCS and one
  532          * for legacy rates.
  533          */
  534         if (flags & IEEE80211_F_DOBRS)
  535                 srs = (const struct ieee80211_rateset *)
  536                     ieee80211_get_suphtrates(ic, ni->ni_chan);
  537         else
  538                 srs = ieee80211_get_suprates(ic, ni->ni_chan);
  539         for (i = 0; i < nrs->rs_nrates; ) {
  540                 if (flags & IEEE80211_F_DOSORT) {
  541                         /*
  542                          * Sort rates.
  543                          */
  544                         for (j = i + 1; j < nrs->rs_nrates; j++) {
  545                                 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
  546                                         r = nrs->rs_rates[i];
  547                                         nrs->rs_rates[i] = nrs->rs_rates[j];
  548                                         nrs->rs_rates[j] = r;
  549                                 }
  550                         }
  551                 }
  552                 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
  553                 badrate = r;
  554                 /*
  555                  * Check for fixed rate.
  556                  */
  557                 if (r == ucastrate)
  558                         fixedrate = r;
  559                 /*
  560                  * Check against supported rates.
  561                  */
  562                 rix = findrix(srs, r);
  563                 if (flags & IEEE80211_F_DONEGO) {
  564                         if (rix < 0) {
  565                                 /*
  566                                  * A rate in the node's rate set is not
  567                                  * supported.  If this is a basic rate and we
  568                                  * are operating as a STA then this is an error.
  569                                  * Otherwise we just discard/ignore the rate.
  570                                  */
  571                                 if ((flags & IEEE80211_F_JOIN) &&
  572                                     (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
  573                                         error++;
  574                         } else if ((flags & IEEE80211_F_JOIN) == 0) {
  575                                 /*
  576                                  * Overwrite with the supported rate
  577                                  * value so any basic rate bit is set.
  578                                  */
  579                                 nrs->rs_rates[i] = srs->rs_rates[rix];
  580                         }
  581                 }
  582                 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
  583                         /*
  584                          * Delete unacceptable rates.
  585                          */
  586                         nrs->rs_nrates--;
  587                         for (j = i; j < nrs->rs_nrates; j++)
  588                                 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
  589                         nrs->rs_rates[j] = 0;
  590                         continue;
  591                 }
  592                 if (rix >= 0)
  593                         okrate = nrs->rs_rates[i];
  594                 i++;
  595         }
  596         if (okrate == 0 || error != 0 ||
  597             ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
  598              fixedrate != ucastrate)) {
  599                 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
  600                     "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
  601                     "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
  602                 return badrate | IEEE80211_RATE_BASIC;
  603         } else
  604                 return RV(okrate);
  605 #undef RV
  606 }
  607 
  608 /*
  609  * Reset 11g-related state.
  610  */
  611 void
  612 ieee80211_reset_erp(struct ieee80211com *ic)
  613 {
  614         ic->ic_flags &= ~IEEE80211_F_USEPROT;
  615         ic->ic_nonerpsta = 0;
  616         ic->ic_longslotsta = 0;
  617         /*
  618          * Short slot time is enabled only when operating in 11g
  619          * and not in an IBSS.  We must also honor whether or not
  620          * the driver is capable of doing it.
  621          */
  622         ieee80211_set_shortslottime(ic,
  623                 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  624                 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
  625                 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
  626                 ic->ic_opmode == IEEE80211_M_HOSTAP &&
  627                 (ic->ic_caps & IEEE80211_C_SHSLOT)));
  628         /*
  629          * Set short preamble and ERP barker-preamble flags.
  630          */
  631         if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  632             (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
  633                 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
  634                 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
  635         } else {
  636                 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
  637                 ic->ic_flags |= IEEE80211_F_USEBARKER;
  638         }
  639 }
  640 
  641 /*
  642  * Set the short slot time state and notify the driver.
  643  */
  644 void
  645 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
  646 {
  647         if (onoff)
  648                 ic->ic_flags |= IEEE80211_F_SHSLOT;
  649         else
  650                 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
  651         /* notify driver */
  652         if (ic->ic_updateslot != NULL)
  653                 ic->ic_updateslot(ic->ic_ifp);
  654 }
  655 
  656 /*
  657  * Check if the specified rate set supports ERP.
  658  * NB: the rate set is assumed to be sorted.
  659  */
  660 int
  661 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
  662 {
  663         static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
  664         int i, j;
  665 
  666         if (rs->rs_nrates < nitems(rates))
  667                 return 0;
  668         for (i = 0; i < nitems(rates); i++) {
  669                 for (j = 0; j < rs->rs_nrates; j++) {
  670                         int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
  671                         if (rates[i] == r)
  672                                 goto next;
  673                         if (r > rates[i])
  674                                 return 0;
  675                 }
  676                 return 0;
  677         next:
  678                 ;
  679         }
  680         return 1;
  681 }
  682 
  683 /*
  684  * Mark the basic rates for the rate table based on the
  685  * operating mode.  For real 11g we mark all the 11b rates
  686  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
  687  * 11b rates.  There's also a pseudo 11a-mode used to mark only
  688  * the basic OFDM rates.
  689  */
  690 static void
  691 setbasicrates(struct ieee80211_rateset *rs,
  692     enum ieee80211_phymode mode, int add)
  693 {
  694         static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
  695             [IEEE80211_MODE_11A]        = { 3, { 12, 24, 48 } },
  696             [IEEE80211_MODE_11B]        = { 2, { 2, 4 } },
  697                                             /* NB: mixed b/g */
  698             [IEEE80211_MODE_11G]        = { 4, { 2, 4, 11, 22 } },
  699             [IEEE80211_MODE_TURBO_A]    = { 3, { 12, 24, 48 } },
  700             [IEEE80211_MODE_TURBO_G]    = { 4, { 2, 4, 11, 22 } },
  701             [IEEE80211_MODE_STURBO_A]   = { 3, { 12, 24, 48 } },
  702             [IEEE80211_MODE_HALF]       = { 3, { 6, 12, 24 } },
  703             [IEEE80211_MODE_QUARTER]    = { 3, { 3, 6, 12 } },
  704             [IEEE80211_MODE_11NA]       = { 3, { 12, 24, 48 } },
  705                                             /* NB: mixed b/g */
  706             [IEEE80211_MODE_11NG]       = { 4, { 2, 4, 11, 22 } },
  707         };
  708         int i, j;
  709 
  710         for (i = 0; i < rs->rs_nrates; i++) {
  711                 if (!add)
  712                         rs->rs_rates[i] &= IEEE80211_RATE_VAL;
  713                 for (j = 0; j < basic[mode].rs_nrates; j++)
  714                         if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
  715                                 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
  716                                 break;
  717                         }
  718         }
  719 }
  720 
  721 /*
  722  * Set the basic rates in a rate set.
  723  */
  724 void
  725 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
  726     enum ieee80211_phymode mode)
  727 {
  728         setbasicrates(rs, mode, 0);
  729 }
  730 
  731 /*
  732  * Add basic rates to a rate set.
  733  */
  734 void
  735 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
  736     enum ieee80211_phymode mode)
  737 {
  738         setbasicrates(rs, mode, 1);
  739 }
  740 
  741 /*
  742  * WME protocol support.
  743  *
  744  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
  745  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
  746  * Draft 2.0 Test Plan (Appendix D).
  747  *
  748  * Static/Dynamic Turbo mode settings come from Atheros.
  749  */
  750 typedef struct phyParamType {
  751         uint8_t         aifsn;
  752         uint8_t         logcwmin;
  753         uint8_t         logcwmax;
  754         uint16_t        txopLimit;
  755         uint8_t         acm;
  756 } paramType;
  757 
  758 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
  759         [IEEE80211_MODE_AUTO]   = { 3, 4,  6,  0, 0 },
  760         [IEEE80211_MODE_11A]    = { 3, 4,  6,  0, 0 },
  761         [IEEE80211_MODE_11B]    = { 3, 4,  6,  0, 0 },
  762         [IEEE80211_MODE_11G]    = { 3, 4,  6,  0, 0 },
  763         [IEEE80211_MODE_FH]     = { 3, 4,  6,  0, 0 },
  764         [IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
  765         [IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
  766         [IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
  767         [IEEE80211_MODE_HALF]   = { 3, 4,  6,  0, 0 },
  768         [IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
  769         [IEEE80211_MODE_11NA]   = { 3, 4,  6,  0, 0 },
  770         [IEEE80211_MODE_11NG]   = { 3, 4,  6,  0, 0 },
  771 };
  772 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
  773         [IEEE80211_MODE_AUTO]   = { 7, 4, 10,  0, 0 },
  774         [IEEE80211_MODE_11A]    = { 7, 4, 10,  0, 0 },
  775         [IEEE80211_MODE_11B]    = { 7, 4, 10,  0, 0 },
  776         [IEEE80211_MODE_11G]    = { 7, 4, 10,  0, 0 },
  777         [IEEE80211_MODE_FH]     = { 7, 4, 10,  0, 0 },
  778         [IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
  779         [IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
  780         [IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
  781         [IEEE80211_MODE_HALF]   = { 7, 4, 10,  0, 0 },
  782         [IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
  783         [IEEE80211_MODE_11NA]   = { 7, 4, 10,  0, 0 },
  784         [IEEE80211_MODE_11NG]   = { 7, 4, 10,  0, 0 },
  785 };
  786 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
  787         [IEEE80211_MODE_AUTO]   = { 1, 3, 4,  94, 0 },
  788         [IEEE80211_MODE_11A]    = { 1, 3, 4,  94, 0 },
  789         [IEEE80211_MODE_11B]    = { 1, 3, 4, 188, 0 },
  790         [IEEE80211_MODE_11G]    = { 1, 3, 4,  94, 0 },
  791         [IEEE80211_MODE_FH]     = { 1, 3, 4, 188, 0 },
  792         [IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
  793         [IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
  794         [IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
  795         [IEEE80211_MODE_HALF]   = { 1, 3, 4,  94, 0 },
  796         [IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
  797         [IEEE80211_MODE_11NA]   = { 1, 3, 4,  94, 0 },
  798         [IEEE80211_MODE_11NG]   = { 1, 3, 4,  94, 0 },
  799 };
  800 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
  801         [IEEE80211_MODE_AUTO]   = { 1, 2, 3,  47, 0 },
  802         [IEEE80211_MODE_11A]    = { 1, 2, 3,  47, 0 },
  803         [IEEE80211_MODE_11B]    = { 1, 2, 3, 102, 0 },
  804         [IEEE80211_MODE_11G]    = { 1, 2, 3,  47, 0 },
  805         [IEEE80211_MODE_FH]     = { 1, 2, 3, 102, 0 },
  806         [IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
  807         [IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
  808         [IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
  809         [IEEE80211_MODE_HALF]   = { 1, 2, 3,  47, 0 },
  810         [IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
  811         [IEEE80211_MODE_11NA]   = { 1, 2, 3,  47, 0 },
  812         [IEEE80211_MODE_11NG]   = { 1, 2, 3,  47, 0 },
  813 };
  814 
  815 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
  816         [IEEE80211_MODE_AUTO]   = { 3, 4, 10,  0, 0 },
  817         [IEEE80211_MODE_11A]    = { 3, 4, 10,  0, 0 },
  818         [IEEE80211_MODE_11B]    = { 3, 4, 10,  0, 0 },
  819         [IEEE80211_MODE_11G]    = { 3, 4, 10,  0, 0 },
  820         [IEEE80211_MODE_FH]     = { 3, 4, 10,  0, 0 },
  821         [IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
  822         [IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
  823         [IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
  824         [IEEE80211_MODE_HALF]   = { 3, 4, 10,  0, 0 },
  825         [IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
  826         [IEEE80211_MODE_11NA]   = { 3, 4, 10,  0, 0 },
  827         [IEEE80211_MODE_11NG]   = { 3, 4, 10,  0, 0 },
  828 };
  829 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
  830         [IEEE80211_MODE_AUTO]   = { 2, 3, 4,  94, 0 },
  831         [IEEE80211_MODE_11A]    = { 2, 3, 4,  94, 0 },
  832         [IEEE80211_MODE_11B]    = { 2, 3, 4, 188, 0 },
  833         [IEEE80211_MODE_11G]    = { 2, 3, 4,  94, 0 },
  834         [IEEE80211_MODE_FH]     = { 2, 3, 4, 188, 0 },
  835         [IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
  836         [IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
  837         [IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
  838         [IEEE80211_MODE_HALF]   = { 2, 3, 4,  94, 0 },
  839         [IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
  840         [IEEE80211_MODE_11NA]   = { 2, 3, 4,  94, 0 },
  841         [IEEE80211_MODE_11NG]   = { 2, 3, 4,  94, 0 },
  842 };
  843 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
  844         [IEEE80211_MODE_AUTO]   = { 2, 2, 3,  47, 0 },
  845         [IEEE80211_MODE_11A]    = { 2, 2, 3,  47, 0 },
  846         [IEEE80211_MODE_11B]    = { 2, 2, 3, 102, 0 },
  847         [IEEE80211_MODE_11G]    = { 2, 2, 3,  47, 0 },
  848         [IEEE80211_MODE_FH]     = { 2, 2, 3, 102, 0 },
  849         [IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
  850         [IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
  851         [IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
  852         [IEEE80211_MODE_HALF]   = { 2, 2, 3,  47, 0 },
  853         [IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
  854         [IEEE80211_MODE_11NA]   = { 2, 2, 3,  47, 0 },
  855         [IEEE80211_MODE_11NG]   = { 2, 2, 3,  47, 0 },
  856 };
  857 
  858 static void
  859 _setifsparams(struct wmeParams *wmep, const paramType *phy)
  860 {
  861         wmep->wmep_aifsn = phy->aifsn;
  862         wmep->wmep_logcwmin = phy->logcwmin;    
  863         wmep->wmep_logcwmax = phy->logcwmax;            
  864         wmep->wmep_txopLimit = phy->txopLimit;
  865 }
  866 
  867 static void
  868 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
  869         struct wmeParams *wmep, const paramType *phy)
  870 {
  871         wmep->wmep_acm = phy->acm;
  872         _setifsparams(wmep, phy);
  873 
  874         IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
  875             "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
  876             ieee80211_wme_acnames[ac], type,
  877             wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
  878             wmep->wmep_logcwmax, wmep->wmep_txopLimit);
  879 }
  880 
  881 static void
  882 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
  883 {
  884         struct ieee80211com *ic = vap->iv_ic;
  885         struct ieee80211_wme_state *wme = &ic->ic_wme;
  886         const paramType *pPhyParam, *pBssPhyParam;
  887         struct wmeParams *wmep;
  888         enum ieee80211_phymode mode;
  889         int i;
  890 
  891         IEEE80211_LOCK_ASSERT(ic);
  892 
  893         if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
  894                 return;
  895 
  896         /*
  897          * Clear the wme cap_info field so a qoscount from a previous
  898          * vap doesn't confuse later code which only parses the beacon
  899          * field and updates hardware when said field changes.
  900          * Otherwise the hardware is programmed with defaults, not what
  901          * the beacon actually announces.
  902          */
  903         wme->wme_wmeChanParams.cap_info = 0;
  904 
  905         /*
  906          * Select mode; we can be called early in which case we
  907          * always use auto mode.  We know we'll be called when
  908          * entering the RUN state with bsschan setup properly
  909          * so state will eventually get set correctly
  910          */
  911         if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
  912                 mode = ieee80211_chan2mode(ic->ic_bsschan);
  913         else
  914                 mode = IEEE80211_MODE_AUTO;
  915         for (i = 0; i < WME_NUM_AC; i++) {
  916                 switch (i) {
  917                 case WME_AC_BK:
  918                         pPhyParam = &phyParamForAC_BK[mode];
  919                         pBssPhyParam = &phyParamForAC_BK[mode];
  920                         break;
  921                 case WME_AC_VI:
  922                         pPhyParam = &phyParamForAC_VI[mode];
  923                         pBssPhyParam = &bssPhyParamForAC_VI[mode];
  924                         break;
  925                 case WME_AC_VO:
  926                         pPhyParam = &phyParamForAC_VO[mode];
  927                         pBssPhyParam = &bssPhyParamForAC_VO[mode];
  928                         break;
  929                 case WME_AC_BE:
  930                 default:
  931                         pPhyParam = &phyParamForAC_BE[mode];
  932                         pBssPhyParam = &bssPhyParamForAC_BE[mode];
  933                         break;
  934                 }
  935                 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
  936                 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
  937                         setwmeparams(vap, "chan", i, wmep, pPhyParam);
  938                 } else {
  939                         setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
  940                 }       
  941                 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
  942                 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
  943         }
  944         /* NB: check ic_bss to avoid NULL deref on initial attach */
  945         if (vap->iv_bss != NULL) {
  946                 /*
  947                  * Calculate agressive mode switching threshold based
  948                  * on beacon interval.  This doesn't need locking since
  949                  * we're only called before entering the RUN state at
  950                  * which point we start sending beacon frames.
  951                  */
  952                 wme->wme_hipri_switch_thresh =
  953                         (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
  954                 wme->wme_flags &= ~WME_F_AGGRMODE;
  955                 ieee80211_wme_updateparams(vap);
  956         }
  957 }
  958 
  959 void
  960 ieee80211_wme_initparams(struct ieee80211vap *vap)
  961 {
  962         struct ieee80211com *ic = vap->iv_ic;
  963 
  964         IEEE80211_LOCK(ic);
  965         ieee80211_wme_initparams_locked(vap);
  966         IEEE80211_UNLOCK(ic);
  967 }
  968 
  969 /*
  970  * Update WME parameters for ourself and the BSS.
  971  */
  972 void
  973 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
  974 {
  975         static const paramType aggrParam[IEEE80211_MODE_MAX] = {
  976             [IEEE80211_MODE_AUTO]       = { 2, 4, 10, 64, 0 },
  977             [IEEE80211_MODE_11A]        = { 2, 4, 10, 64, 0 },
  978             [IEEE80211_MODE_11B]        = { 2, 5, 10, 64, 0 },
  979             [IEEE80211_MODE_11G]        = { 2, 4, 10, 64, 0 },
  980             [IEEE80211_MODE_FH]         = { 2, 5, 10, 64, 0 },
  981             [IEEE80211_MODE_TURBO_A]    = { 1, 3, 10, 64, 0 },
  982             [IEEE80211_MODE_TURBO_G]    = { 1, 3, 10, 64, 0 },
  983             [IEEE80211_MODE_STURBO_A]   = { 1, 3, 10, 64, 0 },
  984             [IEEE80211_MODE_HALF]       = { 2, 4, 10, 64, 0 },
  985             [IEEE80211_MODE_QUARTER]    = { 2, 4, 10, 64, 0 },
  986             [IEEE80211_MODE_11NA]       = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
  987             [IEEE80211_MODE_11NG]       = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
  988         };
  989         struct ieee80211com *ic = vap->iv_ic;
  990         struct ieee80211_wme_state *wme = &ic->ic_wme;
  991         const struct wmeParams *wmep;
  992         struct wmeParams *chanp, *bssp;
  993         enum ieee80211_phymode mode;
  994         int i;
  995         int do_aggrmode = 0;
  996 
  997         /*
  998          * Set up the channel access parameters for the physical
  999          * device.  First populate the configured settings.
 1000          */
 1001         for (i = 0; i < WME_NUM_AC; i++) {
 1002                 chanp = &wme->wme_chanParams.cap_wmeParams[i];
 1003                 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
 1004                 chanp->wmep_aifsn = wmep->wmep_aifsn;
 1005                 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
 1006                 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
 1007                 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
 1008 
 1009                 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
 1010                 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
 1011                 chanp->wmep_aifsn = wmep->wmep_aifsn;
 1012                 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
 1013                 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
 1014                 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
 1015         }
 1016 
 1017         /*
 1018          * Select mode; we can be called early in which case we
 1019          * always use auto mode.  We know we'll be called when
 1020          * entering the RUN state with bsschan setup properly
 1021          * so state will eventually get set correctly
 1022          */
 1023         if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
 1024                 mode = ieee80211_chan2mode(ic->ic_bsschan);
 1025         else
 1026                 mode = IEEE80211_MODE_AUTO;
 1027 
 1028         /*
 1029          * This implements agressive mode as found in certain
 1030          * vendors' AP's.  When there is significant high
 1031          * priority (VI/VO) traffic in the BSS throttle back BE
 1032          * traffic by using conservative parameters.  Otherwise
 1033          * BE uses agressive params to optimize performance of
 1034          * legacy/non-QoS traffic.
 1035          */
 1036 
 1037         /* Hostap? Only if aggressive mode is enabled */
 1038         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1039              (wme->wme_flags & WME_F_AGGRMODE) != 0)
 1040                 do_aggrmode = 1;
 1041 
 1042         /*
 1043          * Station? Only if we're in a non-QoS BSS.
 1044          */
 1045         else if ((vap->iv_opmode == IEEE80211_M_STA &&
 1046              (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
 1047                 do_aggrmode = 1;
 1048 
 1049         /*
 1050          * IBSS? Only if we we have WME enabled.
 1051          */
 1052         else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
 1053             (vap->iv_flags & IEEE80211_F_WME))
 1054                 do_aggrmode = 1;
 1055 
 1056         /*
 1057          * If WME is disabled on this VAP, default to aggressive mode
 1058          * regardless of the configuration.
 1059          */
 1060         if ((vap->iv_flags & IEEE80211_F_WME) == 0)
 1061                 do_aggrmode = 1;
 1062 
 1063         /* XXX WDS? */
 1064 
 1065         /* XXX MBSS? */
 1066         
 1067         if (do_aggrmode) {
 1068                 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
 1069                 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
 1070 
 1071                 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
 1072                 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
 1073                     aggrParam[mode].logcwmin;
 1074                 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
 1075                     aggrParam[mode].logcwmax;
 1076                 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
 1077                     (vap->iv_flags & IEEE80211_F_BURST) ?
 1078                         aggrParam[mode].txopLimit : 0;          
 1079                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1080                     "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
 1081                     "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
 1082                     chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
 1083                     chanp->wmep_logcwmax, chanp->wmep_txopLimit);
 1084         }
 1085 
 1086 
 1087         /*
 1088          * Change the contention window based on the number of associated
 1089          * stations.  If the number of associated stations is 1 and
 1090          * aggressive mode is enabled, lower the contention window even
 1091          * further.
 1092          */
 1093         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1094             ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
 1095                 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
 1096                     [IEEE80211_MODE_AUTO]       = 3,
 1097                     [IEEE80211_MODE_11A]        = 3,
 1098                     [IEEE80211_MODE_11B]        = 4,
 1099                     [IEEE80211_MODE_11G]        = 3,
 1100                     [IEEE80211_MODE_FH]         = 4,
 1101                     [IEEE80211_MODE_TURBO_A]    = 3,
 1102                     [IEEE80211_MODE_TURBO_G]    = 3,
 1103                     [IEEE80211_MODE_STURBO_A]   = 3,
 1104                     [IEEE80211_MODE_HALF]       = 3,
 1105                     [IEEE80211_MODE_QUARTER]    = 3,
 1106                     [IEEE80211_MODE_11NA]       = 3,
 1107                     [IEEE80211_MODE_11NG]       = 3,
 1108                 };
 1109                 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
 1110                 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
 1111 
 1112                 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
 1113                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1114                     "update %s (chan+bss) logcwmin %u\n",
 1115                     ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
 1116         }
 1117 
 1118         /*
 1119          * Arrange for the beacon update.
 1120          *
 1121          * XXX what about MBSS, WDS?
 1122          */
 1123         if (vap->iv_opmode == IEEE80211_M_HOSTAP
 1124             || vap->iv_opmode == IEEE80211_M_IBSS) {
 1125                 /*
 1126                  * Arrange for a beacon update and bump the parameter
 1127                  * set number so associated stations load the new values.
 1128                  */
 1129                 wme->wme_bssChanParams.cap_info =
 1130                         (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
 1131                 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
 1132         }
 1133 
 1134         wme->wme_update(ic);
 1135 
 1136         IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1137             "%s: WME params updated, cap_info 0x%x\n", __func__,
 1138             vap->iv_opmode == IEEE80211_M_STA ?
 1139                 wme->wme_wmeChanParams.cap_info :
 1140                 wme->wme_bssChanParams.cap_info);
 1141 }
 1142 
 1143 void
 1144 ieee80211_wme_updateparams(struct ieee80211vap *vap)
 1145 {
 1146         struct ieee80211com *ic = vap->iv_ic;
 1147 
 1148         if (ic->ic_caps & IEEE80211_C_WME) {
 1149                 IEEE80211_LOCK(ic);
 1150                 ieee80211_wme_updateparams_locked(vap);
 1151                 IEEE80211_UNLOCK(ic);
 1152         }
 1153 }
 1154 
 1155 static void
 1156 parent_updown(void *arg, int npending)
 1157 {
 1158         struct ifnet *parent = arg;
 1159 
 1160         parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
 1161 }
 1162 
 1163 static void
 1164 update_mcast(void *arg, int npending)
 1165 {
 1166         struct ieee80211com *ic = arg;
 1167         struct ifnet *parent = ic->ic_ifp;
 1168 
 1169         ic->ic_update_mcast(parent);
 1170 }
 1171 
 1172 static void
 1173 update_promisc(void *arg, int npending)
 1174 {
 1175         struct ieee80211com *ic = arg;
 1176         struct ifnet *parent = ic->ic_ifp;
 1177 
 1178         ic->ic_update_promisc(parent);
 1179 }
 1180 
 1181 static void
 1182 update_channel(void *arg, int npending)
 1183 {
 1184         struct ieee80211com *ic = arg;
 1185 
 1186         ic->ic_set_channel(ic);
 1187         ieee80211_radiotap_chan_change(ic);
 1188 }
 1189 
 1190 static void
 1191 update_chw(void *arg, int npending)
 1192 {
 1193         struct ieee80211com *ic = arg;
 1194 
 1195         /*
 1196          * XXX should we defer the channel width _config_ update until now?
 1197          */
 1198         ic->ic_update_chw(ic);
 1199 }
 1200 
 1201 /*
 1202  * Block until the parent is in a known state.  This is
 1203  * used after any operations that dispatch a task (e.g.
 1204  * to auto-configure the parent device up/down).
 1205  */
 1206 void
 1207 ieee80211_waitfor_parent(struct ieee80211com *ic)
 1208 {
 1209         taskqueue_block(ic->ic_tq);
 1210         ieee80211_draintask(ic, &ic->ic_parent_task);
 1211         ieee80211_draintask(ic, &ic->ic_mcast_task);
 1212         ieee80211_draintask(ic, &ic->ic_promisc_task);
 1213         ieee80211_draintask(ic, &ic->ic_chan_task);
 1214         ieee80211_draintask(ic, &ic->ic_bmiss_task);
 1215         ieee80211_draintask(ic, &ic->ic_chw_task);
 1216         taskqueue_unblock(ic->ic_tq);
 1217 }
 1218 
 1219 /*
 1220  * Start a vap running.  If this is the first vap to be
 1221  * set running on the underlying device then we
 1222  * automatically bring the device up.
 1223  */
 1224 void
 1225 ieee80211_start_locked(struct ieee80211vap *vap)
 1226 {
 1227         struct ifnet *ifp = vap->iv_ifp;
 1228         struct ieee80211com *ic = vap->iv_ic;
 1229         struct ifnet *parent = ic->ic_ifp;
 1230 
 1231         IEEE80211_LOCK_ASSERT(ic);
 1232 
 1233         IEEE80211_DPRINTF(vap,
 1234                 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1235                 "start running, %d vaps running\n", ic->ic_nrunning);
 1236 
 1237         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1238                 /*
 1239                  * Mark us running.  Note that it's ok to do this first;
 1240                  * if we need to bring the parent device up we defer that
 1241                  * to avoid dropping the com lock.  We expect the device
 1242                  * to respond to being marked up by calling back into us
 1243                  * through ieee80211_start_all at which point we'll come
 1244                  * back in here and complete the work.
 1245                  */
 1246                 ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1247                 /*
 1248                  * We are not running; if this we are the first vap
 1249                  * to be brought up auto-up the parent if necessary.
 1250                  */
 1251                 if (ic->ic_nrunning++ == 0 &&
 1252                     (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1253                         IEEE80211_DPRINTF(vap,
 1254                             IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1255                             "%s: up parent %s\n", __func__, parent->if_xname);
 1256                         parent->if_flags |= IFF_UP;
 1257                         ieee80211_runtask(ic, &ic->ic_parent_task);
 1258                         return;
 1259                 }
 1260         }
 1261         /*
 1262          * If the parent is up and running, then kick the
 1263          * 802.11 state machine as appropriate.
 1264          */
 1265         if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
 1266             vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
 1267                 if (vap->iv_opmode == IEEE80211_M_STA) {
 1268 #if 0
 1269                         /* XXX bypasses scan too easily; disable for now */
 1270                         /*
 1271                          * Try to be intelligent about clocking the state
 1272                          * machine.  If we're currently in RUN state then
 1273                          * we should be able to apply any new state/parameters
 1274                          * simply by re-associating.  Otherwise we need to
 1275                          * re-scan to select an appropriate ap.
 1276                          */ 
 1277                         if (vap->iv_state >= IEEE80211_S_RUN)
 1278                                 ieee80211_new_state_locked(vap,
 1279                                     IEEE80211_S_ASSOC, 1);
 1280                         else
 1281 #endif
 1282                                 ieee80211_new_state_locked(vap,
 1283                                     IEEE80211_S_SCAN, 0);
 1284                 } else {
 1285                         /*
 1286                          * For monitor+wds mode there's nothing to do but
 1287                          * start running.  Otherwise if this is the first
 1288                          * vap to be brought up, start a scan which may be
 1289                          * preempted if the station is locked to a particular
 1290                          * channel.
 1291                          */
 1292                         vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
 1293                         if (vap->iv_opmode == IEEE80211_M_MONITOR ||
 1294                             vap->iv_opmode == IEEE80211_M_WDS)
 1295                                 ieee80211_new_state_locked(vap,
 1296                                     IEEE80211_S_RUN, -1);
 1297                         else
 1298                                 ieee80211_new_state_locked(vap,
 1299                                     IEEE80211_S_SCAN, 0);
 1300                 }
 1301         }
 1302 }
 1303 
 1304 /*
 1305  * Start a single vap.
 1306  */
 1307 void
 1308 ieee80211_init(void *arg)
 1309 {
 1310         struct ieee80211vap *vap = arg;
 1311 
 1312         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1313             "%s\n", __func__);
 1314 
 1315         IEEE80211_LOCK(vap->iv_ic);
 1316         ieee80211_start_locked(vap);
 1317         IEEE80211_UNLOCK(vap->iv_ic);
 1318 }
 1319 
 1320 /*
 1321  * Start all runnable vap's on a device.
 1322  */
 1323 void
 1324 ieee80211_start_all(struct ieee80211com *ic)
 1325 {
 1326         struct ieee80211vap *vap;
 1327 
 1328         IEEE80211_LOCK(ic);
 1329         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1330                 struct ifnet *ifp = vap->iv_ifp;
 1331                 if (IFNET_IS_UP_RUNNING(ifp))   /* NB: avoid recursion */
 1332                         ieee80211_start_locked(vap);
 1333         }
 1334         IEEE80211_UNLOCK(ic);
 1335 }
 1336 
 1337 /*
 1338  * Stop a vap.  We force it down using the state machine
 1339  * then mark it's ifnet not running.  If this is the last
 1340  * vap running on the underlying device then we close it
 1341  * too to insure it will be properly initialized when the
 1342  * next vap is brought up.
 1343  */
 1344 void
 1345 ieee80211_stop_locked(struct ieee80211vap *vap)
 1346 {
 1347         struct ieee80211com *ic = vap->iv_ic;
 1348         struct ifnet *ifp = vap->iv_ifp;
 1349         struct ifnet *parent = ic->ic_ifp;
 1350 
 1351         IEEE80211_LOCK_ASSERT(ic);
 1352 
 1353         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1354             "stop running, %d vaps running\n", ic->ic_nrunning);
 1355 
 1356         ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
 1357         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1358                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;  /* mark us stopped */
 1359                 if (--ic->ic_nrunning == 0 &&
 1360                     (parent->if_drv_flags & IFF_DRV_RUNNING)) {
 1361                         IEEE80211_DPRINTF(vap,
 1362                             IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1363                             "down parent %s\n", parent->if_xname);
 1364                         parent->if_flags &= ~IFF_UP;
 1365                         ieee80211_runtask(ic, &ic->ic_parent_task);
 1366                 }
 1367         }
 1368 }
 1369 
 1370 void
 1371 ieee80211_stop(struct ieee80211vap *vap)
 1372 {
 1373         struct ieee80211com *ic = vap->iv_ic;
 1374 
 1375         IEEE80211_LOCK(ic);
 1376         ieee80211_stop_locked(vap);
 1377         IEEE80211_UNLOCK(ic);
 1378 }
 1379 
 1380 /*
 1381  * Stop all vap's running on a device.
 1382  */
 1383 void
 1384 ieee80211_stop_all(struct ieee80211com *ic)
 1385 {
 1386         struct ieee80211vap *vap;
 1387 
 1388         IEEE80211_LOCK(ic);
 1389         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1390                 struct ifnet *ifp = vap->iv_ifp;
 1391                 if (IFNET_IS_UP_RUNNING(ifp))   /* NB: avoid recursion */
 1392                         ieee80211_stop_locked(vap);
 1393         }
 1394         IEEE80211_UNLOCK(ic);
 1395 
 1396         ieee80211_waitfor_parent(ic);
 1397 }
 1398 
 1399 /*
 1400  * Stop all vap's running on a device and arrange
 1401  * for those that were running to be resumed.
 1402  */
 1403 void
 1404 ieee80211_suspend_all(struct ieee80211com *ic)
 1405 {
 1406         struct ieee80211vap *vap;
 1407 
 1408         IEEE80211_LOCK(ic);
 1409         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1410                 struct ifnet *ifp = vap->iv_ifp;
 1411                 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
 1412                         vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
 1413                         ieee80211_stop_locked(vap);
 1414                 }
 1415         }
 1416         IEEE80211_UNLOCK(ic);
 1417 
 1418         ieee80211_waitfor_parent(ic);
 1419 }
 1420 
 1421 /*
 1422  * Start all vap's marked for resume.
 1423  */
 1424 void
 1425 ieee80211_resume_all(struct ieee80211com *ic)
 1426 {
 1427         struct ieee80211vap *vap;
 1428 
 1429         IEEE80211_LOCK(ic);
 1430         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1431                 struct ifnet *ifp = vap->iv_ifp;
 1432                 if (!IFNET_IS_UP_RUNNING(ifp) &&
 1433                     (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
 1434                         vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
 1435                         ieee80211_start_locked(vap);
 1436                 }
 1437         }
 1438         IEEE80211_UNLOCK(ic);
 1439 }
 1440 
 1441 void
 1442 ieee80211_beacon_miss(struct ieee80211com *ic)
 1443 {
 1444         IEEE80211_LOCK(ic);
 1445         if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 1446                 /* Process in a taskq, the handler may reenter the driver */
 1447                 ieee80211_runtask(ic, &ic->ic_bmiss_task);
 1448         }
 1449         IEEE80211_UNLOCK(ic);
 1450 }
 1451 
 1452 static void
 1453 beacon_miss(void *arg, int npending)
 1454 {
 1455         struct ieee80211com *ic = arg;
 1456         struct ieee80211vap *vap;
 1457 
 1458         IEEE80211_LOCK(ic);
 1459         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1460                 /*
 1461                  * We only pass events through for sta vap's in RUN state;
 1462                  * may be too restrictive but for now this saves all the
 1463                  * handlers duplicating these checks.
 1464                  */
 1465                 if (vap->iv_opmode == IEEE80211_M_STA &&
 1466                     vap->iv_state >= IEEE80211_S_RUN &&
 1467                     vap->iv_bmiss != NULL)
 1468                         vap->iv_bmiss(vap);
 1469         }
 1470         IEEE80211_UNLOCK(ic);
 1471 }
 1472 
 1473 static void
 1474 beacon_swmiss(void *arg, int npending)
 1475 {
 1476         struct ieee80211vap *vap = arg;
 1477         struct ieee80211com *ic = vap->iv_ic;
 1478 
 1479         IEEE80211_LOCK(ic);
 1480         if (vap->iv_state == IEEE80211_S_RUN) {
 1481                 /* XXX Call multiple times if npending > zero? */
 1482                 vap->iv_bmiss(vap);
 1483         }
 1484         IEEE80211_UNLOCK(ic);
 1485 }
 1486 
 1487 /*
 1488  * Software beacon miss handling.  Check if any beacons
 1489  * were received in the last period.  If not post a
 1490  * beacon miss; otherwise reset the counter.
 1491  */
 1492 void
 1493 ieee80211_swbmiss(void *arg)
 1494 {
 1495         struct ieee80211vap *vap = arg;
 1496         struct ieee80211com *ic = vap->iv_ic;
 1497 
 1498         IEEE80211_LOCK_ASSERT(ic);
 1499 
 1500         /* XXX sleep state? */
 1501         KASSERT(vap->iv_state == IEEE80211_S_RUN,
 1502             ("wrong state %d", vap->iv_state));
 1503 
 1504         if (ic->ic_flags & IEEE80211_F_SCAN) {
 1505                 /*
 1506                  * If scanning just ignore and reset state.  If we get a
 1507                  * bmiss after coming out of scan because we haven't had
 1508                  * time to receive a beacon then we should probe the AP
 1509                  * before posting a real bmiss (unless iv_bmiss_max has
 1510                  * been artifiically lowered).  A cleaner solution might
 1511                  * be to disable the timer on scan start/end but to handle
 1512                  * case of multiple sta vap's we'd need to disable the
 1513                  * timers of all affected vap's.
 1514                  */
 1515                 vap->iv_swbmiss_count = 0;
 1516         } else if (vap->iv_swbmiss_count == 0) {
 1517                 if (vap->iv_bmiss != NULL)
 1518                         ieee80211_runtask(ic, &vap->iv_swbmiss_task);
 1519         } else
 1520                 vap->iv_swbmiss_count = 0;
 1521         callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
 1522                 ieee80211_swbmiss, vap);
 1523 }
 1524 
 1525 /*
 1526  * Start an 802.11h channel switch.  We record the parameters,
 1527  * mark the operation pending, notify each vap through the
 1528  * beacon update mechanism so it can update the beacon frame
 1529  * contents, and then switch vap's to CSA state to block outbound
 1530  * traffic.  Devices that handle CSA directly can use the state
 1531  * switch to do the right thing so long as they call
 1532  * ieee80211_csa_completeswitch when it's time to complete the
 1533  * channel change.  Devices that depend on the net80211 layer can
 1534  * use ieee80211_beacon_update to handle the countdown and the
 1535  * channel switch.
 1536  */
 1537 void
 1538 ieee80211_csa_startswitch(struct ieee80211com *ic,
 1539         struct ieee80211_channel *c, int mode, int count)
 1540 {
 1541         struct ieee80211vap *vap;
 1542 
 1543         IEEE80211_LOCK_ASSERT(ic);
 1544 
 1545         ic->ic_csa_newchan = c;
 1546         ic->ic_csa_mode = mode;
 1547         ic->ic_csa_count = count;
 1548         ic->ic_flags |= IEEE80211_F_CSAPENDING;
 1549         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1550                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
 1551                     vap->iv_opmode == IEEE80211_M_IBSS ||
 1552                     vap->iv_opmode == IEEE80211_M_MBSS)
 1553                         ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
 1554                 /* switch to CSA state to block outbound traffic */
 1555                 if (vap->iv_state == IEEE80211_S_RUN)
 1556                         ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
 1557         }
 1558         ieee80211_notify_csa(ic, c, mode, count);
 1559 }
 1560 
 1561 /*
 1562  * Complete the channel switch by transitioning all CSA VAPs to RUN.
 1563  * This is called by both the completion and cancellation functions
 1564  * so each VAP is placed back in the RUN state and can thus transmit.
 1565  */
 1566 static void
 1567 csa_completeswitch(struct ieee80211com *ic)
 1568 {
 1569         struct ieee80211vap *vap;
 1570 
 1571         ic->ic_csa_newchan = NULL;
 1572         ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
 1573 
 1574         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1575                 if (vap->iv_state == IEEE80211_S_CSA)
 1576                         ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
 1577 }
 1578 
 1579 /*
 1580  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
 1581  * We clear state and move all vap's in CSA state to RUN state
 1582  * so they can again transmit.
 1583  *
 1584  * Although this may not be completely correct, update the BSS channel
 1585  * for each VAP to the newly configured channel. The setcurchan sets
 1586  * the current operating channel for the interface (so the radio does
 1587  * switch over) but the VAP BSS isn't updated, leading to incorrectly
 1588  * reported information via ioctl.
 1589  */
 1590 void
 1591 ieee80211_csa_completeswitch(struct ieee80211com *ic)
 1592 {
 1593         struct ieee80211vap *vap;
 1594 
 1595         IEEE80211_LOCK_ASSERT(ic);
 1596 
 1597         KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
 1598 
 1599         ieee80211_setcurchan(ic, ic->ic_csa_newchan);
 1600         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1601                 if (vap->iv_state == IEEE80211_S_CSA)
 1602                         vap->iv_bss->ni_chan = ic->ic_curchan;
 1603 
 1604         csa_completeswitch(ic);
 1605 }
 1606 
 1607 /*
 1608  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
 1609  * We clear state and move all vap's in CSA state to RUN state
 1610  * so they can again transmit.
 1611  */
 1612 void
 1613 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
 1614 {
 1615         IEEE80211_LOCK_ASSERT(ic);
 1616 
 1617         csa_completeswitch(ic);
 1618 }
 1619 
 1620 /*
 1621  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
 1622  * We clear state and move all vap's in CAC state to RUN state.
 1623  */
 1624 void
 1625 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
 1626 {
 1627         struct ieee80211com *ic = vap0->iv_ic;
 1628         struct ieee80211vap *vap;
 1629 
 1630         IEEE80211_LOCK(ic);
 1631         /*
 1632          * Complete CAC state change for lead vap first; then
 1633          * clock all the other vap's waiting.
 1634          */
 1635         KASSERT(vap0->iv_state == IEEE80211_S_CAC,
 1636             ("wrong state %d", vap0->iv_state));
 1637         ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
 1638 
 1639         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1640                 if (vap->iv_state == IEEE80211_S_CAC)
 1641                         ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
 1642         IEEE80211_UNLOCK(ic);
 1643 }
 1644 
 1645 /*
 1646  * Force all vap's other than the specified vap to the INIT state
 1647  * and mark them as waiting for a scan to complete.  These vaps
 1648  * will be brought up when the scan completes and the scanning vap
 1649  * reaches RUN state by wakeupwaiting.
 1650  */
 1651 static void
 1652 markwaiting(struct ieee80211vap *vap0)
 1653 {
 1654         struct ieee80211com *ic = vap0->iv_ic;
 1655         struct ieee80211vap *vap;
 1656 
 1657         IEEE80211_LOCK_ASSERT(ic);
 1658 
 1659         /*
 1660          * A vap list entry can not disappear since we are running on the
 1661          * taskqueue and a vap destroy will queue and drain another state
 1662          * change task.
 1663          */
 1664         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1665                 if (vap == vap0)
 1666                         continue;
 1667                 if (vap->iv_state != IEEE80211_S_INIT) {
 1668                         /* NB: iv_newstate may drop the lock */
 1669                         vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
 1670                         IEEE80211_LOCK_ASSERT(ic);
 1671                         vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 1672                 }
 1673         }
 1674 }
 1675 
 1676 /*
 1677  * Wakeup all vap's waiting for a scan to complete.  This is the
 1678  * companion to markwaiting (above) and is used to coordinate
 1679  * multiple vaps scanning.
 1680  * This is called from the state taskqueue.
 1681  */
 1682 static void
 1683 wakeupwaiting(struct ieee80211vap *vap0)
 1684 {
 1685         struct ieee80211com *ic = vap0->iv_ic;
 1686         struct ieee80211vap *vap;
 1687 
 1688         IEEE80211_LOCK_ASSERT(ic);
 1689 
 1690         /*
 1691          * A vap list entry can not disappear since we are running on the
 1692          * taskqueue and a vap destroy will queue and drain another state
 1693          * change task.
 1694          */
 1695         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1696                 if (vap == vap0)
 1697                         continue;
 1698                 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
 1699                         vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
 1700                         /* NB: sta's cannot go INIT->RUN */
 1701                         /* NB: iv_newstate may drop the lock */
 1702                         vap->iv_newstate(vap,
 1703                             vap->iv_opmode == IEEE80211_M_STA ?
 1704                                 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
 1705                         IEEE80211_LOCK_ASSERT(ic);
 1706                 }
 1707         }
 1708 }
 1709 
 1710 /*
 1711  * Handle post state change work common to all operating modes.
 1712  */
 1713 static void
 1714 ieee80211_newstate_cb(void *xvap, int npending)
 1715 {
 1716         struct ieee80211vap *vap = xvap;
 1717         struct ieee80211com *ic = vap->iv_ic;
 1718         enum ieee80211_state nstate, ostate;
 1719         int arg, rc;
 1720 
 1721         IEEE80211_LOCK(ic);
 1722         nstate = vap->iv_nstate;
 1723         arg = vap->iv_nstate_arg;
 1724 
 1725         if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
 1726                 /*
 1727                  * We have been requested to drop back to the INIT before
 1728                  * proceeding to the new state.
 1729                  */
 1730                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1731                     "%s: %s -> %s arg %d\n", __func__,
 1732                     ieee80211_state_name[vap->iv_state],
 1733                     ieee80211_state_name[IEEE80211_S_INIT], arg);
 1734                 vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
 1735                 IEEE80211_LOCK_ASSERT(ic);
 1736                 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
 1737         }
 1738 
 1739         ostate = vap->iv_state;
 1740         if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
 1741                 /*
 1742                  * SCAN was forced; e.g. on beacon miss.  Force other running
 1743                  * vap's to INIT state and mark them as waiting for the scan to
 1744                  * complete.  This insures they don't interfere with our
 1745                  * scanning.  Since we are single threaded the vaps can not
 1746                  * transition again while we are executing.
 1747                  *
 1748                  * XXX not always right, assumes ap follows sta
 1749                  */
 1750                 markwaiting(vap);
 1751         }
 1752         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1753             "%s: %s -> %s arg %d\n", __func__,
 1754             ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
 1755 
 1756         rc = vap->iv_newstate(vap, nstate, arg);
 1757         IEEE80211_LOCK_ASSERT(ic);
 1758         vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
 1759         if (rc != 0) {
 1760                 /* State transition failed */
 1761                 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
 1762                 KASSERT(nstate != IEEE80211_S_INIT,
 1763                     ("INIT state change failed"));
 1764                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1765                     "%s: %s returned error %d\n", __func__,
 1766                     ieee80211_state_name[nstate], rc);
 1767                 goto done;
 1768         }
 1769 
 1770         /* No actual transition, skip post processing */
 1771         if (ostate == nstate)
 1772                 goto done;
 1773 
 1774         if (nstate == IEEE80211_S_RUN) {
 1775                 /*
 1776                  * OACTIVE may be set on the vap if the upper layer
 1777                  * tried to transmit (e.g. IPv6 NDP) before we reach
 1778                  * RUN state.  Clear it and restart xmit.
 1779                  *
 1780                  * Note this can also happen as a result of SLEEP->RUN
 1781                  * (i.e. coming out of power save mode).
 1782                  */
 1783                 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1784 
 1785                 /*
 1786                  * XXX TODO Kick-start a VAP queue - this should be a method!
 1787                  */
 1788 
 1789                 /* bring up any vaps waiting on us */
 1790                 wakeupwaiting(vap);
 1791         } else if (nstate == IEEE80211_S_INIT) {
 1792                 /*
 1793                  * Flush the scan cache if we did the last scan (XXX?)
 1794                  * and flush any frames on send queues from this vap.
 1795                  * Note the mgt q is used only for legacy drivers and
 1796                  * will go away shortly.
 1797                  */
 1798                 ieee80211_scan_flush(vap);
 1799 
 1800                 /*
 1801                  * XXX TODO: ic/vap queue flush
 1802                  */
 1803         }
 1804 done:
 1805         IEEE80211_UNLOCK(ic);
 1806 }
 1807 
 1808 /*
 1809  * Public interface for initiating a state machine change.
 1810  * This routine single-threads the request and coordinates
 1811  * the scheduling of multiple vaps for the purpose of selecting
 1812  * an operating channel.  Specifically the following scenarios
 1813  * are handled:
 1814  * o only one vap can be selecting a channel so on transition to
 1815  *   SCAN state if another vap is already scanning then
 1816  *   mark the caller for later processing and return without
 1817  *   doing anything (XXX? expectations by caller of synchronous operation)
 1818  * o only one vap can be doing CAC of a channel so on transition to
 1819  *   CAC state if another vap is already scanning for radar then
 1820  *   mark the caller for later processing and return without
 1821  *   doing anything (XXX? expectations by caller of synchronous operation)
 1822  * o if another vap is already running when a request is made
 1823  *   to SCAN then an operating channel has been chosen; bypass
 1824  *   the scan and just join the channel
 1825  *
 1826  * Note that the state change call is done through the iv_newstate
 1827  * method pointer so any driver routine gets invoked.  The driver
 1828  * will normally call back into operating mode-specific
 1829  * ieee80211_newstate routines (below) unless it needs to completely
 1830  * bypass the state machine (e.g. because the firmware has it's
 1831  * own idea how things should work).  Bypassing the net80211 layer
 1832  * is usually a mistake and indicates lack of proper integration
 1833  * with the net80211 layer.
 1834  */
 1835 int
 1836 ieee80211_new_state_locked(struct ieee80211vap *vap,
 1837         enum ieee80211_state nstate, int arg)
 1838 {
 1839         struct ieee80211com *ic = vap->iv_ic;
 1840         struct ieee80211vap *vp;
 1841         enum ieee80211_state ostate;
 1842         int nrunning, nscanning;
 1843 
 1844         IEEE80211_LOCK_ASSERT(ic);
 1845 
 1846         if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
 1847                 if (vap->iv_nstate == IEEE80211_S_INIT) {
 1848                         /*
 1849                          * XXX The vap is being stopped, do no allow any other
 1850                          * state changes until this is completed.
 1851                          */
 1852                         return -1;
 1853                 } else if (vap->iv_state != vap->iv_nstate) {
 1854 #if 0
 1855                         /* Warn if the previous state hasn't completed. */
 1856                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1857                             "%s: pending %s -> %s transition lost\n", __func__,
 1858                             ieee80211_state_name[vap->iv_state],
 1859                             ieee80211_state_name[vap->iv_nstate]);
 1860 #else
 1861                         /* XXX temporarily enable to identify issues */
 1862                         if_printf(vap->iv_ifp,
 1863                             "%s: pending %s -> %s transition lost\n",
 1864                             __func__, ieee80211_state_name[vap->iv_state],
 1865                             ieee80211_state_name[vap->iv_nstate]);
 1866 #endif
 1867                 }
 1868         }
 1869 
 1870         nrunning = nscanning = 0;
 1871         /* XXX can track this state instead of calculating */
 1872         TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
 1873                 if (vp != vap) {
 1874                         if (vp->iv_state >= IEEE80211_S_RUN)
 1875                                 nrunning++;
 1876                         /* XXX doesn't handle bg scan */
 1877                         /* NB: CAC+AUTH+ASSOC treated like SCAN */
 1878                         else if (vp->iv_state > IEEE80211_S_INIT)
 1879                                 nscanning++;
 1880                 }
 1881         }
 1882         ostate = vap->iv_state;
 1883         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1884             "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
 1885             ieee80211_state_name[ostate], ieee80211_state_name[nstate],
 1886             nrunning, nscanning);
 1887         switch (nstate) {
 1888         case IEEE80211_S_SCAN:
 1889                 if (ostate == IEEE80211_S_INIT) {
 1890                         /*
 1891                          * INIT -> SCAN happens on initial bringup.
 1892                          */
 1893                         KASSERT(!(nscanning && nrunning),
 1894                             ("%d scanning and %d running", nscanning, nrunning));
 1895                         if (nscanning) {
 1896                                 /*
 1897                                  * Someone is scanning, defer our state
 1898                                  * change until the work has completed.
 1899                                  */
 1900                                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1901                                     "%s: defer %s -> %s\n",
 1902                                     __func__, ieee80211_state_name[ostate],
 1903                                     ieee80211_state_name[nstate]);
 1904                                 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 1905                                 return 0;
 1906                         }
 1907                         if (nrunning) {
 1908                                 /*
 1909                                  * Someone is operating; just join the channel
 1910                                  * they have chosen.
 1911                                  */
 1912                                 /* XXX kill arg? */
 1913                                 /* XXX check each opmode, adhoc? */
 1914                                 if (vap->iv_opmode == IEEE80211_M_STA)
 1915                                         nstate = IEEE80211_S_SCAN;
 1916                                 else
 1917                                         nstate = IEEE80211_S_RUN;
 1918 #ifdef IEEE80211_DEBUG
 1919                                 if (nstate != IEEE80211_S_SCAN) {
 1920                                         IEEE80211_DPRINTF(vap,
 1921                                             IEEE80211_MSG_STATE,
 1922                                             "%s: override, now %s -> %s\n",
 1923                                             __func__,
 1924                                             ieee80211_state_name[ostate],
 1925                                             ieee80211_state_name[nstate]);
 1926                                 }
 1927 #endif
 1928                         }
 1929                 }
 1930                 break;
 1931         case IEEE80211_S_RUN:
 1932                 if (vap->iv_opmode == IEEE80211_M_WDS &&
 1933                     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
 1934                     nscanning) {
 1935                         /*
 1936                          * Legacy WDS with someone else scanning; don't
 1937                          * go online until that completes as we should
 1938                          * follow the other vap to the channel they choose.
 1939                          */
 1940                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1941                              "%s: defer %s -> %s (legacy WDS)\n", __func__,
 1942                              ieee80211_state_name[ostate],
 1943                              ieee80211_state_name[nstate]);
 1944                         vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 1945                         return 0;
 1946                 }
 1947                 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1948                     IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
 1949                     (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
 1950                     !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
 1951                         /*
 1952                          * This is a DFS channel, transition to CAC state
 1953                          * instead of RUN.  This allows us to initiate
 1954                          * Channel Availability Check (CAC) as specified
 1955                          * by 11h/DFS.
 1956                          */
 1957                         nstate = IEEE80211_S_CAC;
 1958                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1959                              "%s: override %s -> %s (DFS)\n", __func__,
 1960                              ieee80211_state_name[ostate],
 1961                              ieee80211_state_name[nstate]);
 1962                 }
 1963                 break;
 1964         case IEEE80211_S_INIT:
 1965                 /* cancel any scan in progress */
 1966                 ieee80211_cancel_scan(vap);
 1967                 if (ostate == IEEE80211_S_INIT ) {
 1968                         /* XXX don't believe this */
 1969                         /* INIT -> INIT. nothing to do */
 1970                         vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
 1971                 }
 1972                 /* fall thru... */
 1973         default:
 1974                 break;
 1975         }
 1976         /* defer the state change to a thread */
 1977         vap->iv_nstate = nstate;
 1978         vap->iv_nstate_arg = arg;
 1979         vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
 1980         ieee80211_runtask(ic, &vap->iv_nstate_task);
 1981         return EINPROGRESS;
 1982 }
 1983 
 1984 int
 1985 ieee80211_new_state(struct ieee80211vap *vap,
 1986         enum ieee80211_state nstate, int arg)
 1987 {
 1988         struct ieee80211com *ic = vap->iv_ic;
 1989         int rc;
 1990 
 1991         IEEE80211_LOCK(ic);
 1992         rc = ieee80211_new_state_locked(vap, nstate, arg);
 1993         IEEE80211_UNLOCK(ic);
 1994         return rc;
 1995 }

Cache object: cc7534970847531fe117498e066af765


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.