The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211_proto.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2001 Atsushi Onoe
    5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
    6  * Copyright (c) 2012 IEEE
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211_proto.c 326737 2017-12-09 23:16:02Z adrian $");
   32 
   33 /*
   34  * IEEE 802.11 protocol support.
   35  */
   36 
   37 #include "opt_inet.h"
   38 #include "opt_wlan.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/kernel.h>
   43 #include <sys/malloc.h>
   44 
   45 #include <sys/socket.h>
   46 #include <sys/sockio.h>
   47 
   48 #include <net/if.h>
   49 #include <net/if_var.h>
   50 #include <net/if_media.h>
   51 #include <net/ethernet.h>               /* XXX for ether_sprintf */
   52 
   53 #include <net80211/ieee80211_var.h>
   54 #include <net80211/ieee80211_adhoc.h>
   55 #include <net80211/ieee80211_sta.h>
   56 #include <net80211/ieee80211_hostap.h>
   57 #include <net80211/ieee80211_wds.h>
   58 #ifdef IEEE80211_SUPPORT_MESH
   59 #include <net80211/ieee80211_mesh.h>
   60 #endif
   61 #include <net80211/ieee80211_monitor.h>
   62 #include <net80211/ieee80211_input.h>
   63 
   64 /* XXX tunables */
   65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS       3       /* pkts / 100ms */
   66 #define HIGH_PRI_SWITCH_THRESH                  10      /* pkts / 100ms */
   67 
   68 const char *mgt_subtype_name[] = {
   69         "assoc_req",    "assoc_resp",   "reassoc_req",  "reassoc_resp",
   70         "probe_req",    "probe_resp",   "timing_adv",   "reserved#7",
   71         "beacon",       "atim",         "disassoc",     "auth",
   72         "deauth",       "action",       "action_noack", "reserved#15"
   73 };
   74 const char *ctl_subtype_name[] = {
   75         "reserved#0",   "reserved#1",   "reserved#2",   "reserved#3",
   76         "reserved#4",   "reserved#5",   "reserved#6",   "control_wrap",
   77         "bar",          "ba",           "ps_poll",      "rts",
   78         "cts",          "ack",          "cf_end",       "cf_end_ack"
   79 };
   80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
   81         "IBSS",         /* IEEE80211_M_IBSS */
   82         "STA",          /* IEEE80211_M_STA */
   83         "WDS",          /* IEEE80211_M_WDS */
   84         "AHDEMO",       /* IEEE80211_M_AHDEMO */
   85         "HOSTAP",       /* IEEE80211_M_HOSTAP */
   86         "MONITOR",      /* IEEE80211_M_MONITOR */
   87         "MBSS"          /* IEEE80211_M_MBSS */
   88 };
   89 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
   90         "INIT",         /* IEEE80211_S_INIT */
   91         "SCAN",         /* IEEE80211_S_SCAN */
   92         "AUTH",         /* IEEE80211_S_AUTH */
   93         "ASSOC",        /* IEEE80211_S_ASSOC */
   94         "CAC",          /* IEEE80211_S_CAC */
   95         "RUN",          /* IEEE80211_S_RUN */
   96         "CSA",          /* IEEE80211_S_CSA */
   97         "SLEEP",        /* IEEE80211_S_SLEEP */
   98 };
   99 const char *ieee80211_wme_acnames[] = {
  100         "WME_AC_BE",
  101         "WME_AC_BK",
  102         "WME_AC_VI",
  103         "WME_AC_VO",
  104         "WME_UPSD",
  105 };
  106 
  107 
  108 /*
  109  * Reason code descriptions were (mostly) obtained from
  110  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
  111  */
  112 const char *
  113 ieee80211_reason_to_string(uint16_t reason)
  114 {
  115         switch (reason) {
  116         case IEEE80211_REASON_UNSPECIFIED:
  117                 return ("unspecified");
  118         case IEEE80211_REASON_AUTH_EXPIRE:
  119                 return ("previous authentication is expired");
  120         case IEEE80211_REASON_AUTH_LEAVE:
  121                 return ("sending STA is leaving/has left IBSS or ESS");
  122         case IEEE80211_REASON_ASSOC_EXPIRE:
  123                 return ("disassociated due to inactivity");
  124         case IEEE80211_REASON_ASSOC_TOOMANY:
  125                 return ("too many associated STAs");
  126         case IEEE80211_REASON_NOT_AUTHED:
  127                 return ("class 2 frame received from nonauthenticated STA");
  128         case IEEE80211_REASON_NOT_ASSOCED:
  129                 return ("class 3 frame received from nonassociated STA");
  130         case IEEE80211_REASON_ASSOC_LEAVE:
  131                 return ("sending STA is leaving/has left BSS");
  132         case IEEE80211_REASON_ASSOC_NOT_AUTHED:
  133                 return ("STA requesting (re)association is not authenticated");
  134         case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
  135                 return ("information in the Power Capability element is "
  136                         "unacceptable");
  137         case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
  138                 return ("information in the Supported Channels element is "
  139                         "unacceptable");
  140         case IEEE80211_REASON_IE_INVALID:
  141                 return ("invalid element");
  142         case IEEE80211_REASON_MIC_FAILURE:
  143                 return ("MIC failure");
  144         case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
  145                 return ("4-Way handshake timeout");
  146         case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
  147                 return ("group key update timeout");
  148         case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
  149                 return ("element in 4-Way handshake different from "
  150                         "(re)association request/probe response/beacon frame");
  151         case IEEE80211_REASON_GROUP_CIPHER_INVALID:
  152                 return ("invalid group cipher");
  153         case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
  154                 return ("invalid pairwise cipher");
  155         case IEEE80211_REASON_AKMP_INVALID:
  156                 return ("invalid AKMP");
  157         case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
  158                 return ("unsupported version in RSN IE");
  159         case IEEE80211_REASON_INVALID_RSN_IE_CAP:
  160                 return ("invalid capabilities in RSN IE");
  161         case IEEE80211_REASON_802_1X_AUTH_FAILED:
  162                 return ("IEEE 802.1X authentication failed");
  163         case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
  164                 return ("cipher suite rejected because of the security "
  165                         "policy");
  166         case IEEE80211_REASON_UNSPECIFIED_QOS:
  167                 return ("unspecified (QoS-related)");
  168         case IEEE80211_REASON_INSUFFICIENT_BW:
  169                 return ("QoS AP lacks sufficient bandwidth for this QoS STA");
  170         case IEEE80211_REASON_TOOMANY_FRAMES:
  171                 return ("too many frames need to be acknowledged");
  172         case IEEE80211_REASON_OUTSIDE_TXOP:
  173                 return ("STA is transmitting outside the limits of its TXOPs");
  174         case IEEE80211_REASON_LEAVING_QBSS:
  175                 return ("requested from peer STA (the STA is "
  176                         "resetting/leaving the BSS)");
  177         case IEEE80211_REASON_BAD_MECHANISM:
  178                 return ("requested from peer STA (it does not want to use "
  179                         "the mechanism)");
  180         case IEEE80211_REASON_SETUP_NEEDED:
  181                 return ("requested from peer STA (setup is required for the "
  182                         "used mechanism)");
  183         case IEEE80211_REASON_TIMEOUT:
  184                 return ("requested from peer STA (timeout)");
  185         case IEEE80211_REASON_PEER_LINK_CANCELED:
  186                 return ("SME cancels the mesh peering instance (not related "
  187                         "to the maximum number of peer mesh STAs)");
  188         case IEEE80211_REASON_MESH_MAX_PEERS:
  189                 return ("maximum number of peer mesh STAs was reached");
  190         case IEEE80211_REASON_MESH_CPVIOLATION:
  191                 return ("the received information violates the Mesh "
  192                         "Configuration policy configured in the mesh STA "
  193                         "profile");
  194         case IEEE80211_REASON_MESH_CLOSE_RCVD:
  195                 return ("the mesh STA has received a Mesh Peering Close "
  196                         "message requesting to close the mesh peering");
  197         case IEEE80211_REASON_MESH_MAX_RETRIES:
  198                 return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
  199                         "Peering Open messages, without receiving a Mesh "
  200                         "Peering Confirm message");
  201         case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
  202                 return ("the confirmTimer for the mesh peering instance times "
  203                         "out");
  204         case IEEE80211_REASON_MESH_INVALID_GTK:
  205                 return ("the mesh STA fails to unwrap the GTK or the values "
  206                         "in the wrapped contents do not match");
  207         case IEEE80211_REASON_MESH_INCONS_PARAMS:
  208                 return ("the mesh STA receives inconsistent information about "
  209                         "the mesh parameters between Mesh Peering Management "
  210                         "frames");
  211         case IEEE80211_REASON_MESH_INVALID_SECURITY:
  212                 return ("the mesh STA fails the authenticated mesh peering "
  213                         "exchange because due to failure in selecting "
  214                         "pairwise/group ciphersuite");
  215         case IEEE80211_REASON_MESH_PERR_NO_PROXY:
  216                 return ("the mesh STA does not have proxy information for "
  217                         "this external destination");
  218         case IEEE80211_REASON_MESH_PERR_NO_FI:
  219                 return ("the mesh STA does not have forwarding information "
  220                         "for this destination");
  221         case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
  222                 return ("the mesh STA determines that the link to the next "
  223                         "hop of an active path in its forwarding information "
  224                         "is no longer usable");
  225         case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
  226                 return ("the MAC address of the STA already exists in the "
  227                         "mesh BSS");
  228         case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
  229                 return ("the mesh STA performs channel switch to meet "
  230                         "regulatory requirements");
  231         case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
  232                 return ("the mesh STA performs channel switch with "
  233                         "unspecified reason");
  234         default:
  235                 return ("reserved/unknown");
  236         }
  237 }
  238 
  239 static void beacon_miss(void *, int);
  240 static void beacon_swmiss(void *, int);
  241 static void parent_updown(void *, int);
  242 static void update_mcast(void *, int);
  243 static void update_promisc(void *, int);
  244 static void update_channel(void *, int);
  245 static void update_chw(void *, int);
  246 static void vap_update_wme(void *, int);
  247 static void restart_vaps(void *, int);
  248 static void ieee80211_newstate_cb(void *, int);
  249 
  250 static int
  251 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
  252         const struct ieee80211_bpf_params *params)
  253 {
  254 
  255         ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
  256         m_freem(m);
  257         return ENETDOWN;
  258 }
  259 
  260 void
  261 ieee80211_proto_attach(struct ieee80211com *ic)
  262 {
  263         uint8_t hdrlen;
  264 
  265         /* override the 802.3 setting */
  266         hdrlen = ic->ic_headroom
  267                 + sizeof(struct ieee80211_qosframe_addr4)
  268                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
  269                 + IEEE80211_WEP_EXTIVLEN;
  270         /* XXX no way to recalculate on ifdetach */
  271         if (ALIGN(hdrlen) > max_linkhdr) {
  272                 /* XXX sanity check... */
  273                 max_linkhdr = ALIGN(hdrlen);
  274                 max_hdr = max_linkhdr + max_protohdr;
  275                 max_datalen = MHLEN - max_hdr;
  276         }
  277         ic->ic_protmode = IEEE80211_PROT_CTSONLY;
  278 
  279         TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
  280         TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
  281         TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
  282         TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
  283         TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
  284         TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
  285         TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
  286 
  287         ic->ic_wme.wme_hipri_switch_hysteresis =
  288                 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
  289 
  290         /* initialize management frame handlers */
  291         ic->ic_send_mgmt = ieee80211_send_mgmt;
  292         ic->ic_raw_xmit = null_raw_xmit;
  293 
  294         ieee80211_adhoc_attach(ic);
  295         ieee80211_sta_attach(ic);
  296         ieee80211_wds_attach(ic);
  297         ieee80211_hostap_attach(ic);
  298 #ifdef IEEE80211_SUPPORT_MESH
  299         ieee80211_mesh_attach(ic);
  300 #endif
  301         ieee80211_monitor_attach(ic);
  302 }
  303 
  304 void
  305 ieee80211_proto_detach(struct ieee80211com *ic)
  306 {
  307         ieee80211_monitor_detach(ic);
  308 #ifdef IEEE80211_SUPPORT_MESH
  309         ieee80211_mesh_detach(ic);
  310 #endif
  311         ieee80211_hostap_detach(ic);
  312         ieee80211_wds_detach(ic);
  313         ieee80211_adhoc_detach(ic);
  314         ieee80211_sta_detach(ic);
  315 }
  316 
  317 static void
  318 null_update_beacon(struct ieee80211vap *vap, int item)
  319 {
  320 }
  321 
  322 void
  323 ieee80211_proto_vattach(struct ieee80211vap *vap)
  324 {
  325         struct ieee80211com *ic = vap->iv_ic;
  326         struct ifnet *ifp = vap->iv_ifp;
  327         int i;
  328 
  329         /* override the 802.3 setting */
  330         ifp->if_hdrlen = ic->ic_headroom
  331                 + sizeof(struct ieee80211_qosframe_addr4)
  332                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
  333                 + IEEE80211_WEP_EXTIVLEN;
  334 
  335         vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
  336         vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
  337         vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
  338         callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
  339         callout_init(&vap->iv_mgtsend, 1);
  340         TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
  341         TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
  342         TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
  343         /*
  344          * Install default tx rate handling: no fixed rate, lowest
  345          * supported rate for mgmt and multicast frames.  Default
  346          * max retry count.  These settings can be changed by the
  347          * driver and/or user applications.
  348          */
  349         for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
  350                 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
  351 
  352                 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
  353 
  354                 /*
  355                  * Setting the management rate to MCS 0 assumes that the
  356                  * BSS Basic rate set is empty and the BSS Basic MCS set
  357                  * is not.
  358                  *
  359                  * Since we're not checking this, default to the lowest
  360                  * defined rate for this mode.
  361                  *
  362                  * At least one 11n AP (DLINK DIR-825) is reported to drop
  363                  * some MCS management traffic (eg BA response frames.)
  364                  *
  365                  * See also: 9.6.0 of the 802.11n-2009 specification.
  366                  */
  367 #ifdef  NOTYET
  368                 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
  369                         vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
  370                         vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
  371                 } else {
  372                         vap->iv_txparms[i].mgmtrate =
  373                             rs->rs_rates[0] & IEEE80211_RATE_VAL;
  374                         vap->iv_txparms[i].mcastrate = 
  375                             rs->rs_rates[0] & IEEE80211_RATE_VAL;
  376                 }
  377 #endif
  378                 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
  379                 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
  380                 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
  381         }
  382         vap->iv_roaming = IEEE80211_ROAMING_AUTO;
  383 
  384         vap->iv_update_beacon = null_update_beacon;
  385         vap->iv_deliver_data = ieee80211_deliver_data;
  386 
  387         /* attach support for operating mode */
  388         ic->ic_vattach[vap->iv_opmode](vap);
  389 }
  390 
  391 void
  392 ieee80211_proto_vdetach(struct ieee80211vap *vap)
  393 {
  394 #define FREEAPPIE(ie) do { \
  395         if (ie != NULL) \
  396                 IEEE80211_FREE(ie, M_80211_NODE_IE); \
  397 } while (0)
  398         /*
  399          * Detach operating mode module.
  400          */
  401         if (vap->iv_opdetach != NULL)
  402                 vap->iv_opdetach(vap);
  403         /*
  404          * This should not be needed as we detach when reseting
  405          * the state but be conservative here since the
  406          * authenticator may do things like spawn kernel threads.
  407          */
  408         if (vap->iv_auth->ia_detach != NULL)
  409                 vap->iv_auth->ia_detach(vap);
  410         /*
  411          * Detach any ACL'ator.
  412          */
  413         if (vap->iv_acl != NULL)
  414                 vap->iv_acl->iac_detach(vap);
  415 
  416         FREEAPPIE(vap->iv_appie_beacon);
  417         FREEAPPIE(vap->iv_appie_probereq);
  418         FREEAPPIE(vap->iv_appie_proberesp);
  419         FREEAPPIE(vap->iv_appie_assocreq);
  420         FREEAPPIE(vap->iv_appie_assocresp);
  421         FREEAPPIE(vap->iv_appie_wpa);
  422 #undef FREEAPPIE
  423 }
  424 
  425 /*
  426  * Simple-minded authenticator module support.
  427  */
  428 
  429 #define IEEE80211_AUTH_MAX      (IEEE80211_AUTH_WPA+1)
  430 /* XXX well-known names */
  431 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
  432         "wlan_internal",        /* IEEE80211_AUTH_NONE */
  433         "wlan_internal",        /* IEEE80211_AUTH_OPEN */
  434         "wlan_internal",        /* IEEE80211_AUTH_SHARED */
  435         "wlan_xauth",           /* IEEE80211_AUTH_8021X  */
  436         "wlan_internal",        /* IEEE80211_AUTH_AUTO */
  437         "wlan_xauth",           /* IEEE80211_AUTH_WPA */
  438 };
  439 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
  440 
  441 static const struct ieee80211_authenticator auth_internal = {
  442         .ia_name                = "wlan_internal",
  443         .ia_attach              = NULL,
  444         .ia_detach              = NULL,
  445         .ia_node_join           = NULL,
  446         .ia_node_leave          = NULL,
  447 };
  448 
  449 /*
  450  * Setup internal authenticators once; they are never unregistered.
  451  */
  452 static void
  453 ieee80211_auth_setup(void)
  454 {
  455         ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
  456         ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
  457         ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
  458 }
  459 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
  460 
  461 const struct ieee80211_authenticator *
  462 ieee80211_authenticator_get(int auth)
  463 {
  464         if (auth >= IEEE80211_AUTH_MAX)
  465                 return NULL;
  466         if (authenticators[auth] == NULL)
  467                 ieee80211_load_module(auth_modnames[auth]);
  468         return authenticators[auth];
  469 }
  470 
  471 void
  472 ieee80211_authenticator_register(int type,
  473         const struct ieee80211_authenticator *auth)
  474 {
  475         if (type >= IEEE80211_AUTH_MAX)
  476                 return;
  477         authenticators[type] = auth;
  478 }
  479 
  480 void
  481 ieee80211_authenticator_unregister(int type)
  482 {
  483 
  484         if (type >= IEEE80211_AUTH_MAX)
  485                 return;
  486         authenticators[type] = NULL;
  487 }
  488 
  489 /*
  490  * Very simple-minded ACL module support.
  491  */
  492 /* XXX just one for now */
  493 static  const struct ieee80211_aclator *acl = NULL;
  494 
  495 void
  496 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
  497 {
  498         printf("wlan: %s acl policy registered\n", iac->iac_name);
  499         acl = iac;
  500 }
  501 
  502 void
  503 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
  504 {
  505         if (acl == iac)
  506                 acl = NULL;
  507         printf("wlan: %s acl policy unregistered\n", iac->iac_name);
  508 }
  509 
  510 const struct ieee80211_aclator *
  511 ieee80211_aclator_get(const char *name)
  512 {
  513         if (acl == NULL)
  514                 ieee80211_load_module("wlan_acl");
  515         return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
  516 }
  517 
  518 void
  519 ieee80211_print_essid(const uint8_t *essid, int len)
  520 {
  521         const uint8_t *p;
  522         int i;
  523 
  524         if (len > IEEE80211_NWID_LEN)
  525                 len = IEEE80211_NWID_LEN;
  526         /* determine printable or not */
  527         for (i = 0, p = essid; i < len; i++, p++) {
  528                 if (*p < ' ' || *p > 0x7e)
  529                         break;
  530         }
  531         if (i == len) {
  532                 printf("\"");
  533                 for (i = 0, p = essid; i < len; i++, p++)
  534                         printf("%c", *p);
  535                 printf("\"");
  536         } else {
  537                 printf("0x");
  538                 for (i = 0, p = essid; i < len; i++, p++)
  539                         printf("%02x", *p);
  540         }
  541 }
  542 
  543 void
  544 ieee80211_dump_pkt(struct ieee80211com *ic,
  545         const uint8_t *buf, int len, int rate, int rssi)
  546 {
  547         const struct ieee80211_frame *wh;
  548         int i;
  549 
  550         wh = (const struct ieee80211_frame *)buf;
  551         switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  552         case IEEE80211_FC1_DIR_NODS:
  553                 printf("NODS %s", ether_sprintf(wh->i_addr2));
  554                 printf("->%s", ether_sprintf(wh->i_addr1));
  555                 printf("(%s)", ether_sprintf(wh->i_addr3));
  556                 break;
  557         case IEEE80211_FC1_DIR_TODS:
  558                 printf("TODS %s", ether_sprintf(wh->i_addr2));
  559                 printf("->%s", ether_sprintf(wh->i_addr3));
  560                 printf("(%s)", ether_sprintf(wh->i_addr1));
  561                 break;
  562         case IEEE80211_FC1_DIR_FROMDS:
  563                 printf("FRDS %s", ether_sprintf(wh->i_addr3));
  564                 printf("->%s", ether_sprintf(wh->i_addr1));
  565                 printf("(%s)", ether_sprintf(wh->i_addr2));
  566                 break;
  567         case IEEE80211_FC1_DIR_DSTODS:
  568                 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
  569                 printf("->%s", ether_sprintf(wh->i_addr3));
  570                 printf("(%s", ether_sprintf(wh->i_addr2));
  571                 printf("->%s)", ether_sprintf(wh->i_addr1));
  572                 break;
  573         }
  574         switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
  575         case IEEE80211_FC0_TYPE_DATA:
  576                 printf(" data");
  577                 break;
  578         case IEEE80211_FC0_TYPE_MGT:
  579                 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
  580                 break;
  581         default:
  582                 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
  583                 break;
  584         }
  585         if (IEEE80211_QOS_HAS_SEQ(wh)) {
  586                 const struct ieee80211_qosframe *qwh = 
  587                         (const struct ieee80211_qosframe *)buf;
  588                 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
  589                         qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
  590         }
  591         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
  592                 int off;
  593 
  594                 off = ieee80211_anyhdrspace(ic, wh);
  595                 printf(" WEP [IV %.02x %.02x %.02x",
  596                         buf[off+0], buf[off+1], buf[off+2]);
  597                 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
  598                         printf(" %.02x %.02x %.02x",
  599                                 buf[off+4], buf[off+5], buf[off+6]);
  600                 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
  601         }
  602         if (rate >= 0)
  603                 printf(" %dM", rate / 2);
  604         if (rssi >= 0)
  605                 printf(" +%d", rssi);
  606         printf("\n");
  607         if (len > 0) {
  608                 for (i = 0; i < len; i++) {
  609                         if ((i & 1) == 0)
  610                                 printf(" ");
  611                         printf("%02x", buf[i]);
  612                 }
  613                 printf("\n");
  614         }
  615 }
  616 
  617 static __inline int
  618 findrix(const struct ieee80211_rateset *rs, int r)
  619 {
  620         int i;
  621 
  622         for (i = 0; i < rs->rs_nrates; i++)
  623                 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
  624                         return i;
  625         return -1;
  626 }
  627 
  628 int
  629 ieee80211_fix_rate(struct ieee80211_node *ni,
  630         struct ieee80211_rateset *nrs, int flags)
  631 {
  632         struct ieee80211vap *vap = ni->ni_vap;
  633         struct ieee80211com *ic = ni->ni_ic;
  634         int i, j, rix, error;
  635         int okrate, badrate, fixedrate, ucastrate;
  636         const struct ieee80211_rateset *srs;
  637         uint8_t r;
  638 
  639         error = 0;
  640         okrate = badrate = 0;
  641         ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
  642         if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
  643                 /*
  644                  * Workaround awkwardness with fixed rate.  We are called
  645                  * to check both the legacy rate set and the HT rate set
  646                  * but we must apply any legacy fixed rate check only to the
  647                  * legacy rate set and vice versa.  We cannot tell what type
  648                  * of rate set we've been given (legacy or HT) but we can
  649                  * distinguish the fixed rate type (MCS have 0x80 set).
  650                  * So to deal with this the caller communicates whether to
  651                  * check MCS or legacy rate using the flags and we use the
  652                  * type of any fixed rate to avoid applying an MCS to a
  653                  * legacy rate and vice versa.
  654                  */
  655                 if (ucastrate & 0x80) {
  656                         if (flags & IEEE80211_F_DOFRATE)
  657                                 flags &= ~IEEE80211_F_DOFRATE;
  658                 } else if ((ucastrate & 0x80) == 0) {
  659                         if (flags & IEEE80211_F_DOFMCS)
  660                                 flags &= ~IEEE80211_F_DOFMCS;
  661                 }
  662                 /* NB: required to make MCS match below work */
  663                 ucastrate &= IEEE80211_RATE_VAL;
  664         }
  665         fixedrate = IEEE80211_FIXED_RATE_NONE;
  666         /*
  667          * XXX we are called to process both MCS and legacy rates;
  668          * we must use the appropriate basic rate set or chaos will
  669          * ensue; for now callers that want MCS must supply
  670          * IEEE80211_F_DOBRS; at some point we'll need to split this
  671          * function so there are two variants, one for MCS and one
  672          * for legacy rates.
  673          */
  674         if (flags & IEEE80211_F_DOBRS)
  675                 srs = (const struct ieee80211_rateset *)
  676                     ieee80211_get_suphtrates(ic, ni->ni_chan);
  677         else
  678                 srs = ieee80211_get_suprates(ic, ni->ni_chan);
  679         for (i = 0; i < nrs->rs_nrates; ) {
  680                 if (flags & IEEE80211_F_DOSORT) {
  681                         /*
  682                          * Sort rates.
  683                          */
  684                         for (j = i + 1; j < nrs->rs_nrates; j++) {
  685                                 if (IEEE80211_RV(nrs->rs_rates[i]) >
  686                                     IEEE80211_RV(nrs->rs_rates[j])) {
  687                                         r = nrs->rs_rates[i];
  688                                         nrs->rs_rates[i] = nrs->rs_rates[j];
  689                                         nrs->rs_rates[j] = r;
  690                                 }
  691                         }
  692                 }
  693                 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
  694                 badrate = r;
  695                 /*
  696                  * Check for fixed rate.
  697                  */
  698                 if (r == ucastrate)
  699                         fixedrate = r;
  700                 /*
  701                  * Check against supported rates.
  702                  */
  703                 rix = findrix(srs, r);
  704                 if (flags & IEEE80211_F_DONEGO) {
  705                         if (rix < 0) {
  706                                 /*
  707                                  * A rate in the node's rate set is not
  708                                  * supported.  If this is a basic rate and we
  709                                  * are operating as a STA then this is an error.
  710                                  * Otherwise we just discard/ignore the rate.
  711                                  */
  712                                 if ((flags & IEEE80211_F_JOIN) &&
  713                                     (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
  714                                         error++;
  715                         } else if ((flags & IEEE80211_F_JOIN) == 0) {
  716                                 /*
  717                                  * Overwrite with the supported rate
  718                                  * value so any basic rate bit is set.
  719                                  */
  720                                 nrs->rs_rates[i] = srs->rs_rates[rix];
  721                         }
  722                 }
  723                 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
  724                         /*
  725                          * Delete unacceptable rates.
  726                          */
  727                         nrs->rs_nrates--;
  728                         for (j = i; j < nrs->rs_nrates; j++)
  729                                 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
  730                         nrs->rs_rates[j] = 0;
  731                         continue;
  732                 }
  733                 if (rix >= 0)
  734                         okrate = nrs->rs_rates[i];
  735                 i++;
  736         }
  737         if (okrate == 0 || error != 0 ||
  738             ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
  739              fixedrate != ucastrate)) {
  740                 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
  741                     "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
  742                     "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
  743                 return badrate | IEEE80211_RATE_BASIC;
  744         } else
  745                 return IEEE80211_RV(okrate);
  746 }
  747 
  748 /*
  749  * Reset 11g-related state.
  750  */
  751 void
  752 ieee80211_reset_erp(struct ieee80211com *ic)
  753 {
  754         ic->ic_flags &= ~IEEE80211_F_USEPROT;
  755         ic->ic_nonerpsta = 0;
  756         ic->ic_longslotsta = 0;
  757         /*
  758          * Short slot time is enabled only when operating in 11g
  759          * and not in an IBSS.  We must also honor whether or not
  760          * the driver is capable of doing it.
  761          */
  762         ieee80211_set_shortslottime(ic,
  763                 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  764                 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
  765                 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
  766                 ic->ic_opmode == IEEE80211_M_HOSTAP &&
  767                 (ic->ic_caps & IEEE80211_C_SHSLOT)));
  768         /*
  769          * Set short preamble and ERP barker-preamble flags.
  770          */
  771         if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  772             (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
  773                 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
  774                 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
  775         } else {
  776                 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
  777                 ic->ic_flags |= IEEE80211_F_USEBARKER;
  778         }
  779 }
  780 
  781 /*
  782  * Set the short slot time state and notify the driver.
  783  */
  784 void
  785 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
  786 {
  787         if (onoff)
  788                 ic->ic_flags |= IEEE80211_F_SHSLOT;
  789         else
  790                 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
  791         /* notify driver */
  792         if (ic->ic_updateslot != NULL)
  793                 ic->ic_updateslot(ic);
  794 }
  795 
  796 /*
  797  * Check if the specified rate set supports ERP.
  798  * NB: the rate set is assumed to be sorted.
  799  */
  800 int
  801 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
  802 {
  803         static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
  804         int i, j;
  805 
  806         if (rs->rs_nrates < nitems(rates))
  807                 return 0;
  808         for (i = 0; i < nitems(rates); i++) {
  809                 for (j = 0; j < rs->rs_nrates; j++) {
  810                         int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
  811                         if (rates[i] == r)
  812                                 goto next;
  813                         if (r > rates[i])
  814                                 return 0;
  815                 }
  816                 return 0;
  817         next:
  818                 ;
  819         }
  820         return 1;
  821 }
  822 
  823 /*
  824  * Mark the basic rates for the rate table based on the
  825  * operating mode.  For real 11g we mark all the 11b rates
  826  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
  827  * 11b rates.  There's also a pseudo 11a-mode used to mark only
  828  * the basic OFDM rates.
  829  */
  830 static void
  831 setbasicrates(struct ieee80211_rateset *rs,
  832     enum ieee80211_phymode mode, int add)
  833 {
  834         static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
  835             [IEEE80211_MODE_11A]        = { 3, { 12, 24, 48 } },
  836             [IEEE80211_MODE_11B]        = { 2, { 2, 4 } },
  837                                             /* NB: mixed b/g */
  838             [IEEE80211_MODE_11G]        = { 4, { 2, 4, 11, 22 } },
  839             [IEEE80211_MODE_TURBO_A]    = { 3, { 12, 24, 48 } },
  840             [IEEE80211_MODE_TURBO_G]    = { 4, { 2, 4, 11, 22 } },
  841             [IEEE80211_MODE_STURBO_A]   = { 3, { 12, 24, 48 } },
  842             [IEEE80211_MODE_HALF]       = { 3, { 6, 12, 24 } },
  843             [IEEE80211_MODE_QUARTER]    = { 3, { 3, 6, 12 } },
  844             [IEEE80211_MODE_11NA]       = { 3, { 12, 24, 48 } },
  845                                             /* NB: mixed b/g */
  846             [IEEE80211_MODE_11NG]       = { 4, { 2, 4, 11, 22 } },
  847                                             /* NB: mixed b/g */
  848             [IEEE80211_MODE_VHT_2GHZ]   = { 4, { 2, 4, 11, 22 } },
  849             [IEEE80211_MODE_VHT_5GHZ]   = { 3, { 12, 24, 48 } },
  850         };
  851         int i, j;
  852 
  853         for (i = 0; i < rs->rs_nrates; i++) {
  854                 if (!add)
  855                         rs->rs_rates[i] &= IEEE80211_RATE_VAL;
  856                 for (j = 0; j < basic[mode].rs_nrates; j++)
  857                         if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
  858                                 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
  859                                 break;
  860                         }
  861         }
  862 }
  863 
  864 /*
  865  * Set the basic rates in a rate set.
  866  */
  867 void
  868 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
  869     enum ieee80211_phymode mode)
  870 {
  871         setbasicrates(rs, mode, 0);
  872 }
  873 
  874 /*
  875  * Add basic rates to a rate set.
  876  */
  877 void
  878 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
  879     enum ieee80211_phymode mode)
  880 {
  881         setbasicrates(rs, mode, 1);
  882 }
  883 
  884 /*
  885  * WME protocol support.
  886  *
  887  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
  888  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
  889  * Draft 2.0 Test Plan (Appendix D).
  890  *
  891  * Static/Dynamic Turbo mode settings come from Atheros.
  892  */
  893 typedef struct phyParamType {
  894         uint8_t         aifsn;
  895         uint8_t         logcwmin;
  896         uint8_t         logcwmax;
  897         uint16_t        txopLimit;
  898         uint8_t         acm;
  899 } paramType;
  900 
  901 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
  902         [IEEE80211_MODE_AUTO]   = { 3, 4,  6,  0, 0 },
  903         [IEEE80211_MODE_11A]    = { 3, 4,  6,  0, 0 },
  904         [IEEE80211_MODE_11B]    = { 3, 4,  6,  0, 0 },
  905         [IEEE80211_MODE_11G]    = { 3, 4,  6,  0, 0 },
  906         [IEEE80211_MODE_FH]     = { 3, 4,  6,  0, 0 },
  907         [IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
  908         [IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
  909         [IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
  910         [IEEE80211_MODE_HALF]   = { 3, 4,  6,  0, 0 },
  911         [IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
  912         [IEEE80211_MODE_11NA]   = { 3, 4,  6,  0, 0 },
  913         [IEEE80211_MODE_11NG]   = { 3, 4,  6,  0, 0 },
  914         [IEEE80211_MODE_VHT_2GHZ]       = { 3, 4,  6,  0, 0 },
  915         [IEEE80211_MODE_VHT_5GHZ]       = { 3, 4,  6,  0, 0 },
  916 };
  917 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
  918         [IEEE80211_MODE_AUTO]   = { 7, 4, 10,  0, 0 },
  919         [IEEE80211_MODE_11A]    = { 7, 4, 10,  0, 0 },
  920         [IEEE80211_MODE_11B]    = { 7, 4, 10,  0, 0 },
  921         [IEEE80211_MODE_11G]    = { 7, 4, 10,  0, 0 },
  922         [IEEE80211_MODE_FH]     = { 7, 4, 10,  0, 0 },
  923         [IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
  924         [IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
  925         [IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
  926         [IEEE80211_MODE_HALF]   = { 7, 4, 10,  0, 0 },
  927         [IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
  928         [IEEE80211_MODE_11NA]   = { 7, 4, 10,  0, 0 },
  929         [IEEE80211_MODE_11NG]   = { 7, 4, 10,  0, 0 },
  930         [IEEE80211_MODE_VHT_2GHZ]       = { 7, 4, 10,  0, 0 },
  931         [IEEE80211_MODE_VHT_5GHZ]       = { 7, 4, 10,  0, 0 },
  932 };
  933 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
  934         [IEEE80211_MODE_AUTO]   = { 1, 3, 4,  94, 0 },
  935         [IEEE80211_MODE_11A]    = { 1, 3, 4,  94, 0 },
  936         [IEEE80211_MODE_11B]    = { 1, 3, 4, 188, 0 },
  937         [IEEE80211_MODE_11G]    = { 1, 3, 4,  94, 0 },
  938         [IEEE80211_MODE_FH]     = { 1, 3, 4, 188, 0 },
  939         [IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
  940         [IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
  941         [IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
  942         [IEEE80211_MODE_HALF]   = { 1, 3, 4,  94, 0 },
  943         [IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
  944         [IEEE80211_MODE_11NA]   = { 1, 3, 4,  94, 0 },
  945         [IEEE80211_MODE_11NG]   = { 1, 3, 4,  94, 0 },
  946         [IEEE80211_MODE_VHT_2GHZ]       = { 1, 3, 4,  94, 0 },
  947         [IEEE80211_MODE_VHT_5GHZ]       = { 1, 3, 4,  94, 0 },
  948 };
  949 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
  950         [IEEE80211_MODE_AUTO]   = { 1, 2, 3,  47, 0 },
  951         [IEEE80211_MODE_11A]    = { 1, 2, 3,  47, 0 },
  952         [IEEE80211_MODE_11B]    = { 1, 2, 3, 102, 0 },
  953         [IEEE80211_MODE_11G]    = { 1, 2, 3,  47, 0 },
  954         [IEEE80211_MODE_FH]     = { 1, 2, 3, 102, 0 },
  955         [IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
  956         [IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
  957         [IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
  958         [IEEE80211_MODE_HALF]   = { 1, 2, 3,  47, 0 },
  959         [IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
  960         [IEEE80211_MODE_11NA]   = { 1, 2, 3,  47, 0 },
  961         [IEEE80211_MODE_11NG]   = { 1, 2, 3,  47, 0 },
  962         [IEEE80211_MODE_VHT_2GHZ]       = { 1, 2, 3,  47, 0 },
  963         [IEEE80211_MODE_VHT_5GHZ]       = { 1, 2, 3,  47, 0 },
  964 };
  965 
  966 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
  967         [IEEE80211_MODE_AUTO]   = { 3, 4, 10,  0, 0 },
  968         [IEEE80211_MODE_11A]    = { 3, 4, 10,  0, 0 },
  969         [IEEE80211_MODE_11B]    = { 3, 4, 10,  0, 0 },
  970         [IEEE80211_MODE_11G]    = { 3, 4, 10,  0, 0 },
  971         [IEEE80211_MODE_FH]     = { 3, 4, 10,  0, 0 },
  972         [IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
  973         [IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
  974         [IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
  975         [IEEE80211_MODE_HALF]   = { 3, 4, 10,  0, 0 },
  976         [IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
  977         [IEEE80211_MODE_11NA]   = { 3, 4, 10,  0, 0 },
  978         [IEEE80211_MODE_11NG]   = { 3, 4, 10,  0, 0 },
  979 };
  980 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
  981         [IEEE80211_MODE_AUTO]   = { 2, 3, 4,  94, 0 },
  982         [IEEE80211_MODE_11A]    = { 2, 3, 4,  94, 0 },
  983         [IEEE80211_MODE_11B]    = { 2, 3, 4, 188, 0 },
  984         [IEEE80211_MODE_11G]    = { 2, 3, 4,  94, 0 },
  985         [IEEE80211_MODE_FH]     = { 2, 3, 4, 188, 0 },
  986         [IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
  987         [IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
  988         [IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
  989         [IEEE80211_MODE_HALF]   = { 2, 3, 4,  94, 0 },
  990         [IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
  991         [IEEE80211_MODE_11NA]   = { 2, 3, 4,  94, 0 },
  992         [IEEE80211_MODE_11NG]   = { 2, 3, 4,  94, 0 },
  993 };
  994 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
  995         [IEEE80211_MODE_AUTO]   = { 2, 2, 3,  47, 0 },
  996         [IEEE80211_MODE_11A]    = { 2, 2, 3,  47, 0 },
  997         [IEEE80211_MODE_11B]    = { 2, 2, 3, 102, 0 },
  998         [IEEE80211_MODE_11G]    = { 2, 2, 3,  47, 0 },
  999         [IEEE80211_MODE_FH]     = { 2, 2, 3, 102, 0 },
 1000         [IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
 1001         [IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
 1002         [IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
 1003         [IEEE80211_MODE_HALF]   = { 2, 2, 3,  47, 0 },
 1004         [IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
 1005         [IEEE80211_MODE_11NA]   = { 2, 2, 3,  47, 0 },
 1006         [IEEE80211_MODE_11NG]   = { 2, 2, 3,  47, 0 },
 1007 };
 1008 
 1009 static void
 1010 _setifsparams(struct wmeParams *wmep, const paramType *phy)
 1011 {
 1012         wmep->wmep_aifsn = phy->aifsn;
 1013         wmep->wmep_logcwmin = phy->logcwmin;    
 1014         wmep->wmep_logcwmax = phy->logcwmax;            
 1015         wmep->wmep_txopLimit = phy->txopLimit;
 1016 }
 1017 
 1018 static void
 1019 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
 1020         struct wmeParams *wmep, const paramType *phy)
 1021 {
 1022         wmep->wmep_acm = phy->acm;
 1023         _setifsparams(wmep, phy);
 1024 
 1025         IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1026             "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
 1027             ieee80211_wme_acnames[ac], type,
 1028             wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
 1029             wmep->wmep_logcwmax, wmep->wmep_txopLimit);
 1030 }
 1031 
 1032 static void
 1033 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
 1034 {
 1035         struct ieee80211com *ic = vap->iv_ic;
 1036         struct ieee80211_wme_state *wme = &ic->ic_wme;
 1037         const paramType *pPhyParam, *pBssPhyParam;
 1038         struct wmeParams *wmep;
 1039         enum ieee80211_phymode mode;
 1040         int i;
 1041 
 1042         IEEE80211_LOCK_ASSERT(ic);
 1043 
 1044         if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
 1045                 return;
 1046 
 1047         /*
 1048          * Clear the wme cap_info field so a qoscount from a previous
 1049          * vap doesn't confuse later code which only parses the beacon
 1050          * field and updates hardware when said field changes.
 1051          * Otherwise the hardware is programmed with defaults, not what
 1052          * the beacon actually announces.
 1053          */
 1054         wme->wme_wmeChanParams.cap_info = 0;
 1055 
 1056         /*
 1057          * Select mode; we can be called early in which case we
 1058          * always use auto mode.  We know we'll be called when
 1059          * entering the RUN state with bsschan setup properly
 1060          * so state will eventually get set correctly
 1061          */
 1062         if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
 1063                 mode = ieee80211_chan2mode(ic->ic_bsschan);
 1064         else
 1065                 mode = IEEE80211_MODE_AUTO;
 1066         for (i = 0; i < WME_NUM_AC; i++) {
 1067                 switch (i) {
 1068                 case WME_AC_BK:
 1069                         pPhyParam = &phyParamForAC_BK[mode];
 1070                         pBssPhyParam = &phyParamForAC_BK[mode];
 1071                         break;
 1072                 case WME_AC_VI:
 1073                         pPhyParam = &phyParamForAC_VI[mode];
 1074                         pBssPhyParam = &bssPhyParamForAC_VI[mode];
 1075                         break;
 1076                 case WME_AC_VO:
 1077                         pPhyParam = &phyParamForAC_VO[mode];
 1078                         pBssPhyParam = &bssPhyParamForAC_VO[mode];
 1079                         break;
 1080                 case WME_AC_BE:
 1081                 default:
 1082                         pPhyParam = &phyParamForAC_BE[mode];
 1083                         pBssPhyParam = &bssPhyParamForAC_BE[mode];
 1084                         break;
 1085                 }
 1086                 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
 1087                 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
 1088                         setwmeparams(vap, "chan", i, wmep, pPhyParam);
 1089                 } else {
 1090                         setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
 1091                 }       
 1092                 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
 1093                 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
 1094         }
 1095         /* NB: check ic_bss to avoid NULL deref on initial attach */
 1096         if (vap->iv_bss != NULL) {
 1097                 /*
 1098                  * Calculate aggressive mode switching threshold based
 1099                  * on beacon interval.  This doesn't need locking since
 1100                  * we're only called before entering the RUN state at
 1101                  * which point we start sending beacon frames.
 1102                  */
 1103                 wme->wme_hipri_switch_thresh =
 1104                         (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
 1105                 wme->wme_flags &= ~WME_F_AGGRMODE;
 1106                 ieee80211_wme_updateparams(vap);
 1107         }
 1108 }
 1109 
 1110 void
 1111 ieee80211_wme_initparams(struct ieee80211vap *vap)
 1112 {
 1113         struct ieee80211com *ic = vap->iv_ic;
 1114 
 1115         IEEE80211_LOCK(ic);
 1116         ieee80211_wme_initparams_locked(vap);
 1117         IEEE80211_UNLOCK(ic);
 1118 }
 1119 
 1120 /*
 1121  * Update WME parameters for ourself and the BSS.
 1122  */
 1123 void
 1124 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
 1125 {
 1126         static const paramType aggrParam[IEEE80211_MODE_MAX] = {
 1127             [IEEE80211_MODE_AUTO]       = { 2, 4, 10, 64, 0 },
 1128             [IEEE80211_MODE_11A]        = { 2, 4, 10, 64, 0 },
 1129             [IEEE80211_MODE_11B]        = { 2, 5, 10, 64, 0 },
 1130             [IEEE80211_MODE_11G]        = { 2, 4, 10, 64, 0 },
 1131             [IEEE80211_MODE_FH]         = { 2, 5, 10, 64, 0 },
 1132             [IEEE80211_MODE_TURBO_A]    = { 1, 3, 10, 64, 0 },
 1133             [IEEE80211_MODE_TURBO_G]    = { 1, 3, 10, 64, 0 },
 1134             [IEEE80211_MODE_STURBO_A]   = { 1, 3, 10, 64, 0 },
 1135             [IEEE80211_MODE_HALF]       = { 2, 4, 10, 64, 0 },
 1136             [IEEE80211_MODE_QUARTER]    = { 2, 4, 10, 64, 0 },
 1137             [IEEE80211_MODE_11NA]       = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
 1138             [IEEE80211_MODE_11NG]       = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
 1139             [IEEE80211_MODE_VHT_2GHZ]   = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
 1140             [IEEE80211_MODE_VHT_5GHZ]   = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
 1141         };
 1142         struct ieee80211com *ic = vap->iv_ic;
 1143         struct ieee80211_wme_state *wme = &ic->ic_wme;
 1144         const struct wmeParams *wmep;
 1145         struct wmeParams *chanp, *bssp;
 1146         enum ieee80211_phymode mode;
 1147         int i;
 1148         int do_aggrmode = 0;
 1149 
 1150         /*
 1151          * Set up the channel access parameters for the physical
 1152          * device.  First populate the configured settings.
 1153          */
 1154         for (i = 0; i < WME_NUM_AC; i++) {
 1155                 chanp = &wme->wme_chanParams.cap_wmeParams[i];
 1156                 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
 1157                 chanp->wmep_aifsn = wmep->wmep_aifsn;
 1158                 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
 1159                 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
 1160                 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
 1161 
 1162                 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
 1163                 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
 1164                 chanp->wmep_aifsn = wmep->wmep_aifsn;
 1165                 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
 1166                 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
 1167                 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
 1168         }
 1169 
 1170         /*
 1171          * Select mode; we can be called early in which case we
 1172          * always use auto mode.  We know we'll be called when
 1173          * entering the RUN state with bsschan setup properly
 1174          * so state will eventually get set correctly
 1175          */
 1176         if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
 1177                 mode = ieee80211_chan2mode(ic->ic_bsschan);
 1178         else
 1179                 mode = IEEE80211_MODE_AUTO;
 1180 
 1181         /*
 1182          * This implements aggressive mode as found in certain
 1183          * vendors' AP's.  When there is significant high
 1184          * priority (VI/VO) traffic in the BSS throttle back BE
 1185          * traffic by using conservative parameters.  Otherwise
 1186          * BE uses aggressive params to optimize performance of
 1187          * legacy/non-QoS traffic.
 1188          */
 1189 
 1190         /* Hostap? Only if aggressive mode is enabled */
 1191         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1192              (wme->wme_flags & WME_F_AGGRMODE) != 0)
 1193                 do_aggrmode = 1;
 1194 
 1195         /*
 1196          * Station? Only if we're in a non-QoS BSS.
 1197          */
 1198         else if ((vap->iv_opmode == IEEE80211_M_STA &&
 1199              (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
 1200                 do_aggrmode = 1;
 1201 
 1202         /*
 1203          * IBSS? Only if we we have WME enabled.
 1204          */
 1205         else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
 1206             (vap->iv_flags & IEEE80211_F_WME))
 1207                 do_aggrmode = 1;
 1208 
 1209         /*
 1210          * If WME is disabled on this VAP, default to aggressive mode
 1211          * regardless of the configuration.
 1212          */
 1213         if ((vap->iv_flags & IEEE80211_F_WME) == 0)
 1214                 do_aggrmode = 1;
 1215 
 1216         /* XXX WDS? */
 1217 
 1218         /* XXX MBSS? */
 1219         
 1220         if (do_aggrmode) {
 1221                 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
 1222                 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
 1223 
 1224                 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
 1225                 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
 1226                     aggrParam[mode].logcwmin;
 1227                 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
 1228                     aggrParam[mode].logcwmax;
 1229                 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
 1230                     (vap->iv_flags & IEEE80211_F_BURST) ?
 1231                         aggrParam[mode].txopLimit : 0;          
 1232                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1233                     "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
 1234                     "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
 1235                     chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
 1236                     chanp->wmep_logcwmax, chanp->wmep_txopLimit);
 1237         }
 1238 
 1239 
 1240         /*
 1241          * Change the contention window based on the number of associated
 1242          * stations.  If the number of associated stations is 1 and
 1243          * aggressive mode is enabled, lower the contention window even
 1244          * further.
 1245          */
 1246         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1247             ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
 1248                 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
 1249                     [IEEE80211_MODE_AUTO]       = 3,
 1250                     [IEEE80211_MODE_11A]        = 3,
 1251                     [IEEE80211_MODE_11B]        = 4,
 1252                     [IEEE80211_MODE_11G]        = 3,
 1253                     [IEEE80211_MODE_FH]         = 4,
 1254                     [IEEE80211_MODE_TURBO_A]    = 3,
 1255                     [IEEE80211_MODE_TURBO_G]    = 3,
 1256                     [IEEE80211_MODE_STURBO_A]   = 3,
 1257                     [IEEE80211_MODE_HALF]       = 3,
 1258                     [IEEE80211_MODE_QUARTER]    = 3,
 1259                     [IEEE80211_MODE_11NA]       = 3,
 1260                     [IEEE80211_MODE_11NG]       = 3,
 1261                     [IEEE80211_MODE_VHT_2GHZ]   = 3,
 1262                     [IEEE80211_MODE_VHT_5GHZ]   = 3,
 1263                 };
 1264                 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
 1265                 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
 1266 
 1267                 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
 1268                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1269                     "update %s (chan+bss) logcwmin %u\n",
 1270                     ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
 1271         }
 1272 
 1273         /*
 1274          * Arrange for the beacon update.
 1275          *
 1276          * XXX what about MBSS, WDS?
 1277          */
 1278         if (vap->iv_opmode == IEEE80211_M_HOSTAP
 1279             || vap->iv_opmode == IEEE80211_M_IBSS) {
 1280                 /*
 1281                  * Arrange for a beacon update and bump the parameter
 1282                  * set number so associated stations load the new values.
 1283                  */
 1284                 wme->wme_bssChanParams.cap_info =
 1285                         (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
 1286                 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
 1287         }
 1288 
 1289         /* schedule the deferred WME update */
 1290         ieee80211_runtask(ic, &vap->iv_wme_task);
 1291 
 1292         IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1293             "%s: WME params updated, cap_info 0x%x\n", __func__,
 1294             vap->iv_opmode == IEEE80211_M_STA ?
 1295                 wme->wme_wmeChanParams.cap_info :
 1296                 wme->wme_bssChanParams.cap_info);
 1297 }
 1298 
 1299 void
 1300 ieee80211_wme_updateparams(struct ieee80211vap *vap)
 1301 {
 1302         struct ieee80211com *ic = vap->iv_ic;
 1303 
 1304         if (ic->ic_caps & IEEE80211_C_WME) {
 1305                 IEEE80211_LOCK(ic);
 1306                 ieee80211_wme_updateparams_locked(vap);
 1307                 IEEE80211_UNLOCK(ic);
 1308         }
 1309 }
 1310 
 1311 /*
 1312  * Fetch the WME parameters for the given VAP.
 1313  *
 1314  * When net80211 grows p2p, etc support, this may return different
 1315  * parameters for each VAP.
 1316  */
 1317 void
 1318 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
 1319 {
 1320 
 1321         memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
 1322 }
 1323 
 1324 /*
 1325  * For NICs which only support one set of WME paramaters (ie, softmac NICs)
 1326  * there may be different VAP WME parameters but only one is "active".
 1327  * This returns the "NIC" WME parameters for the currently active
 1328  * context.
 1329  */
 1330 void
 1331 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
 1332 {
 1333 
 1334         memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
 1335 }
 1336 
 1337 /*
 1338  * Return whether to use QoS on a given WME queue.
 1339  *
 1340  * This is intended to be called from the transmit path of softmac drivers
 1341  * which are setting NoAck bits in transmit descriptors.
 1342  *
 1343  * Ideally this would be set in some transmit field before the packet is
 1344  * queued to the driver but net80211 isn't quite there yet.
 1345  */
 1346 int
 1347 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
 1348 {
 1349         /* Bounds/sanity check */
 1350         if (ac < 0 || ac >= WME_NUM_AC)
 1351                 return (0);
 1352 
 1353         /* Again, there's only one global context for now */
 1354         return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
 1355 }
 1356 
 1357 static void
 1358 parent_updown(void *arg, int npending)
 1359 {
 1360         struct ieee80211com *ic = arg;
 1361 
 1362         ic->ic_parent(ic);
 1363 }
 1364 
 1365 static void
 1366 update_mcast(void *arg, int npending)
 1367 {
 1368         struct ieee80211com *ic = arg;
 1369 
 1370         ic->ic_update_mcast(ic);
 1371 }
 1372 
 1373 static void
 1374 update_promisc(void *arg, int npending)
 1375 {
 1376         struct ieee80211com *ic = arg;
 1377 
 1378         ic->ic_update_promisc(ic);
 1379 }
 1380 
 1381 static void
 1382 update_channel(void *arg, int npending)
 1383 {
 1384         struct ieee80211com *ic = arg;
 1385 
 1386         ic->ic_set_channel(ic);
 1387         ieee80211_radiotap_chan_change(ic);
 1388 }
 1389 
 1390 static void
 1391 update_chw(void *arg, int npending)
 1392 {
 1393         struct ieee80211com *ic = arg;
 1394 
 1395         /*
 1396          * XXX should we defer the channel width _config_ update until now?
 1397          */
 1398         ic->ic_update_chw(ic);
 1399 }
 1400 
 1401 /*
 1402  * Deferred WME update.
 1403  *
 1404  * In preparation for per-VAP WME configuration, call the VAP
 1405  * method if the VAP requires it.  Otherwise, just call the
 1406  * older global method.  There isn't a per-VAP WME configuration
 1407  * just yet so for now just use the global configuration.
 1408  */
 1409 static void
 1410 vap_update_wme(void *arg, int npending)
 1411 {
 1412         struct ieee80211vap *vap = arg;
 1413         struct ieee80211com *ic = vap->iv_ic;
 1414 
 1415         if (vap->iv_wme_update != NULL)
 1416                 vap->iv_wme_update(vap,
 1417                     ic->ic_wme.wme_chanParams.cap_wmeParams);
 1418         else
 1419                 ic->ic_wme.wme_update(ic);
 1420 }
 1421 
 1422 static void
 1423 restart_vaps(void *arg, int npending)
 1424 {
 1425         struct ieee80211com *ic = arg;
 1426 
 1427         ieee80211_suspend_all(ic);
 1428         ieee80211_resume_all(ic);
 1429 }
 1430 
 1431 /*
 1432  * Block until the parent is in a known state.  This is
 1433  * used after any operations that dispatch a task (e.g.
 1434  * to auto-configure the parent device up/down).
 1435  */
 1436 void
 1437 ieee80211_waitfor_parent(struct ieee80211com *ic)
 1438 {
 1439         taskqueue_block(ic->ic_tq);
 1440         ieee80211_draintask(ic, &ic->ic_parent_task);
 1441         ieee80211_draintask(ic, &ic->ic_mcast_task);
 1442         ieee80211_draintask(ic, &ic->ic_promisc_task);
 1443         ieee80211_draintask(ic, &ic->ic_chan_task);
 1444         ieee80211_draintask(ic, &ic->ic_bmiss_task);
 1445         ieee80211_draintask(ic, &ic->ic_chw_task);
 1446         taskqueue_unblock(ic->ic_tq);
 1447 }
 1448 
 1449 /*
 1450  * Check to see whether the current channel needs reset.
 1451  *
 1452  * Some devices don't handle being given an invalid channel
 1453  * in their operating mode very well (eg wpi(4) will throw a
 1454  * firmware exception.)
 1455  *
 1456  * Return 0 if we're ok, 1 if the channel needs to be reset.
 1457  *
 1458  * See PR kern/202502.
 1459  */
 1460 static int
 1461 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
 1462 {
 1463         struct ieee80211com *ic = vap->iv_ic;
 1464 
 1465         if ((vap->iv_opmode == IEEE80211_M_IBSS &&
 1466              IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
 1467             (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1468              IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
 1469                 return (1);
 1470         return (0);
 1471 }
 1472 
 1473 /*
 1474  * Reset the curchan to a known good state.
 1475  */
 1476 static void
 1477 ieee80211_start_reset_chan(struct ieee80211vap *vap)
 1478 {
 1479         struct ieee80211com *ic = vap->iv_ic;
 1480 
 1481         ic->ic_curchan = &ic->ic_channels[0];
 1482 }
 1483 
 1484 /*
 1485  * Start a vap running.  If this is the first vap to be
 1486  * set running on the underlying device then we
 1487  * automatically bring the device up.
 1488  */
 1489 void
 1490 ieee80211_start_locked(struct ieee80211vap *vap)
 1491 {
 1492         struct ifnet *ifp = vap->iv_ifp;
 1493         struct ieee80211com *ic = vap->iv_ic;
 1494 
 1495         IEEE80211_LOCK_ASSERT(ic);
 1496 
 1497         IEEE80211_DPRINTF(vap,
 1498                 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1499                 "start running, %d vaps running\n", ic->ic_nrunning);
 1500 
 1501         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1502                 /*
 1503                  * Mark us running.  Note that it's ok to do this first;
 1504                  * if we need to bring the parent device up we defer that
 1505                  * to avoid dropping the com lock.  We expect the device
 1506                  * to respond to being marked up by calling back into us
 1507                  * through ieee80211_start_all at which point we'll come
 1508                  * back in here and complete the work.
 1509                  */
 1510                 ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1511                 /*
 1512                  * We are not running; if this we are the first vap
 1513                  * to be brought up auto-up the parent if necessary.
 1514                  */
 1515                 if (ic->ic_nrunning++ == 0) {
 1516 
 1517                         /* reset the channel to a known good channel */
 1518                         if (ieee80211_start_check_reset_chan(vap))
 1519                                 ieee80211_start_reset_chan(vap);
 1520 
 1521                         IEEE80211_DPRINTF(vap,
 1522                             IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1523                             "%s: up parent %s\n", __func__, ic->ic_name);
 1524                         ieee80211_runtask(ic, &ic->ic_parent_task);
 1525                         return;
 1526                 }
 1527         }
 1528         /*
 1529          * If the parent is up and running, then kick the
 1530          * 802.11 state machine as appropriate.
 1531          */
 1532         if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
 1533                 if (vap->iv_opmode == IEEE80211_M_STA) {
 1534 #if 0
 1535                         /* XXX bypasses scan too easily; disable for now */
 1536                         /*
 1537                          * Try to be intelligent about clocking the state
 1538                          * machine.  If we're currently in RUN state then
 1539                          * we should be able to apply any new state/parameters
 1540                          * simply by re-associating.  Otherwise we need to
 1541                          * re-scan to select an appropriate ap.
 1542                          */ 
 1543                         if (vap->iv_state >= IEEE80211_S_RUN)
 1544                                 ieee80211_new_state_locked(vap,
 1545                                     IEEE80211_S_ASSOC, 1);
 1546                         else
 1547 #endif
 1548                                 ieee80211_new_state_locked(vap,
 1549                                     IEEE80211_S_SCAN, 0);
 1550                 } else {
 1551                         /*
 1552                          * For monitor+wds mode there's nothing to do but
 1553                          * start running.  Otherwise if this is the first
 1554                          * vap to be brought up, start a scan which may be
 1555                          * preempted if the station is locked to a particular
 1556                          * channel.
 1557                          */
 1558                         vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
 1559                         if (vap->iv_opmode == IEEE80211_M_MONITOR ||
 1560                             vap->iv_opmode == IEEE80211_M_WDS)
 1561                                 ieee80211_new_state_locked(vap,
 1562                                     IEEE80211_S_RUN, -1);
 1563                         else
 1564                                 ieee80211_new_state_locked(vap,
 1565                                     IEEE80211_S_SCAN, 0);
 1566                 }
 1567         }
 1568 }
 1569 
 1570 /*
 1571  * Start a single vap.
 1572  */
 1573 void
 1574 ieee80211_init(void *arg)
 1575 {
 1576         struct ieee80211vap *vap = arg;
 1577 
 1578         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1579             "%s\n", __func__);
 1580 
 1581         IEEE80211_LOCK(vap->iv_ic);
 1582         ieee80211_start_locked(vap);
 1583         IEEE80211_UNLOCK(vap->iv_ic);
 1584 }
 1585 
 1586 /*
 1587  * Start all runnable vap's on a device.
 1588  */
 1589 void
 1590 ieee80211_start_all(struct ieee80211com *ic)
 1591 {
 1592         struct ieee80211vap *vap;
 1593 
 1594         IEEE80211_LOCK(ic);
 1595         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1596                 struct ifnet *ifp = vap->iv_ifp;
 1597                 if (IFNET_IS_UP_RUNNING(ifp))   /* NB: avoid recursion */
 1598                         ieee80211_start_locked(vap);
 1599         }
 1600         IEEE80211_UNLOCK(ic);
 1601 }
 1602 
 1603 /*
 1604  * Stop a vap.  We force it down using the state machine
 1605  * then mark it's ifnet not running.  If this is the last
 1606  * vap running on the underlying device then we close it
 1607  * too to insure it will be properly initialized when the
 1608  * next vap is brought up.
 1609  */
 1610 void
 1611 ieee80211_stop_locked(struct ieee80211vap *vap)
 1612 {
 1613         struct ieee80211com *ic = vap->iv_ic;
 1614         struct ifnet *ifp = vap->iv_ifp;
 1615 
 1616         IEEE80211_LOCK_ASSERT(ic);
 1617 
 1618         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1619             "stop running, %d vaps running\n", ic->ic_nrunning);
 1620 
 1621         ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
 1622         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1623                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;  /* mark us stopped */
 1624                 if (--ic->ic_nrunning == 0) {
 1625                         IEEE80211_DPRINTF(vap,
 1626                             IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1627                             "down parent %s\n", ic->ic_name);
 1628                         ieee80211_runtask(ic, &ic->ic_parent_task);
 1629                 }
 1630         }
 1631 }
 1632 
 1633 void
 1634 ieee80211_stop(struct ieee80211vap *vap)
 1635 {
 1636         struct ieee80211com *ic = vap->iv_ic;
 1637 
 1638         IEEE80211_LOCK(ic);
 1639         ieee80211_stop_locked(vap);
 1640         IEEE80211_UNLOCK(ic);
 1641 }
 1642 
 1643 /*
 1644  * Stop all vap's running on a device.
 1645  */
 1646 void
 1647 ieee80211_stop_all(struct ieee80211com *ic)
 1648 {
 1649         struct ieee80211vap *vap;
 1650 
 1651         IEEE80211_LOCK(ic);
 1652         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1653                 struct ifnet *ifp = vap->iv_ifp;
 1654                 if (IFNET_IS_UP_RUNNING(ifp))   /* NB: avoid recursion */
 1655                         ieee80211_stop_locked(vap);
 1656         }
 1657         IEEE80211_UNLOCK(ic);
 1658 
 1659         ieee80211_waitfor_parent(ic);
 1660 }
 1661 
 1662 /*
 1663  * Stop all vap's running on a device and arrange
 1664  * for those that were running to be resumed.
 1665  */
 1666 void
 1667 ieee80211_suspend_all(struct ieee80211com *ic)
 1668 {
 1669         struct ieee80211vap *vap;
 1670 
 1671         IEEE80211_LOCK(ic);
 1672         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1673                 struct ifnet *ifp = vap->iv_ifp;
 1674                 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
 1675                         vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
 1676                         ieee80211_stop_locked(vap);
 1677                 }
 1678         }
 1679         IEEE80211_UNLOCK(ic);
 1680 
 1681         ieee80211_waitfor_parent(ic);
 1682 }
 1683 
 1684 /*
 1685  * Start all vap's marked for resume.
 1686  */
 1687 void
 1688 ieee80211_resume_all(struct ieee80211com *ic)
 1689 {
 1690         struct ieee80211vap *vap;
 1691 
 1692         IEEE80211_LOCK(ic);
 1693         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1694                 struct ifnet *ifp = vap->iv_ifp;
 1695                 if (!IFNET_IS_UP_RUNNING(ifp) &&
 1696                     (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
 1697                         vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
 1698                         ieee80211_start_locked(vap);
 1699                 }
 1700         }
 1701         IEEE80211_UNLOCK(ic);
 1702 }
 1703 
 1704 /*
 1705  * Restart all vap's running on a device.
 1706  */
 1707 void
 1708 ieee80211_restart_all(struct ieee80211com *ic)
 1709 {
 1710         /*
 1711          * NB: do not use ieee80211_runtask here, we will
 1712          * block & drain net80211 taskqueue.
 1713          */
 1714         taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
 1715 }
 1716 
 1717 void
 1718 ieee80211_beacon_miss(struct ieee80211com *ic)
 1719 {
 1720         IEEE80211_LOCK(ic);
 1721         if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 1722                 /* Process in a taskq, the handler may reenter the driver */
 1723                 ieee80211_runtask(ic, &ic->ic_bmiss_task);
 1724         }
 1725         IEEE80211_UNLOCK(ic);
 1726 }
 1727 
 1728 static void
 1729 beacon_miss(void *arg, int npending)
 1730 {
 1731         struct ieee80211com *ic = arg;
 1732         struct ieee80211vap *vap;
 1733 
 1734         IEEE80211_LOCK(ic);
 1735         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1736                 /*
 1737                  * We only pass events through for sta vap's in RUN+ state;
 1738                  * may be too restrictive but for now this saves all the
 1739                  * handlers duplicating these checks.
 1740                  */
 1741                 if (vap->iv_opmode == IEEE80211_M_STA &&
 1742                     vap->iv_state >= IEEE80211_S_RUN &&
 1743                     vap->iv_bmiss != NULL)
 1744                         vap->iv_bmiss(vap);
 1745         }
 1746         IEEE80211_UNLOCK(ic);
 1747 }
 1748 
 1749 static void
 1750 beacon_swmiss(void *arg, int npending)
 1751 {
 1752         struct ieee80211vap *vap = arg;
 1753         struct ieee80211com *ic = vap->iv_ic;
 1754 
 1755         IEEE80211_LOCK(ic);
 1756         if (vap->iv_state >= IEEE80211_S_RUN) {
 1757                 /* XXX Call multiple times if npending > zero? */
 1758                 vap->iv_bmiss(vap);
 1759         }
 1760         IEEE80211_UNLOCK(ic);
 1761 }
 1762 
 1763 /*
 1764  * Software beacon miss handling.  Check if any beacons
 1765  * were received in the last period.  If not post a
 1766  * beacon miss; otherwise reset the counter.
 1767  */
 1768 void
 1769 ieee80211_swbmiss(void *arg)
 1770 {
 1771         struct ieee80211vap *vap = arg;
 1772         struct ieee80211com *ic = vap->iv_ic;
 1773 
 1774         IEEE80211_LOCK_ASSERT(ic);
 1775 
 1776         KASSERT(vap->iv_state >= IEEE80211_S_RUN,
 1777             ("wrong state %d", vap->iv_state));
 1778 
 1779         if (ic->ic_flags & IEEE80211_F_SCAN) {
 1780                 /*
 1781                  * If scanning just ignore and reset state.  If we get a
 1782                  * bmiss after coming out of scan because we haven't had
 1783                  * time to receive a beacon then we should probe the AP
 1784                  * before posting a real bmiss (unless iv_bmiss_max has
 1785                  * been artifiically lowered).  A cleaner solution might
 1786                  * be to disable the timer on scan start/end but to handle
 1787                  * case of multiple sta vap's we'd need to disable the
 1788                  * timers of all affected vap's.
 1789                  */
 1790                 vap->iv_swbmiss_count = 0;
 1791         } else if (vap->iv_swbmiss_count == 0) {
 1792                 if (vap->iv_bmiss != NULL)
 1793                         ieee80211_runtask(ic, &vap->iv_swbmiss_task);
 1794         } else
 1795                 vap->iv_swbmiss_count = 0;
 1796         callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
 1797                 ieee80211_swbmiss, vap);
 1798 }
 1799 
 1800 /*
 1801  * Start an 802.11h channel switch.  We record the parameters,
 1802  * mark the operation pending, notify each vap through the
 1803  * beacon update mechanism so it can update the beacon frame
 1804  * contents, and then switch vap's to CSA state to block outbound
 1805  * traffic.  Devices that handle CSA directly can use the state
 1806  * switch to do the right thing so long as they call
 1807  * ieee80211_csa_completeswitch when it's time to complete the
 1808  * channel change.  Devices that depend on the net80211 layer can
 1809  * use ieee80211_beacon_update to handle the countdown and the
 1810  * channel switch.
 1811  */
 1812 void
 1813 ieee80211_csa_startswitch(struct ieee80211com *ic,
 1814         struct ieee80211_channel *c, int mode, int count)
 1815 {
 1816         struct ieee80211vap *vap;
 1817 
 1818         IEEE80211_LOCK_ASSERT(ic);
 1819 
 1820         ic->ic_csa_newchan = c;
 1821         ic->ic_csa_mode = mode;
 1822         ic->ic_csa_count = count;
 1823         ic->ic_flags |= IEEE80211_F_CSAPENDING;
 1824         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1825                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
 1826                     vap->iv_opmode == IEEE80211_M_IBSS ||
 1827                     vap->iv_opmode == IEEE80211_M_MBSS)
 1828                         ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
 1829                 /* switch to CSA state to block outbound traffic */
 1830                 if (vap->iv_state == IEEE80211_S_RUN)
 1831                         ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
 1832         }
 1833         ieee80211_notify_csa(ic, c, mode, count);
 1834 }
 1835 
 1836 /*
 1837  * Complete the channel switch by transitioning all CSA VAPs to RUN.
 1838  * This is called by both the completion and cancellation functions
 1839  * so each VAP is placed back in the RUN state and can thus transmit.
 1840  */
 1841 static void
 1842 csa_completeswitch(struct ieee80211com *ic)
 1843 {
 1844         struct ieee80211vap *vap;
 1845 
 1846         ic->ic_csa_newchan = NULL;
 1847         ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
 1848 
 1849         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1850                 if (vap->iv_state == IEEE80211_S_CSA)
 1851                         ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
 1852 }
 1853 
 1854 /*
 1855  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
 1856  * We clear state and move all vap's in CSA state to RUN state
 1857  * so they can again transmit.
 1858  *
 1859  * Although this may not be completely correct, update the BSS channel
 1860  * for each VAP to the newly configured channel. The setcurchan sets
 1861  * the current operating channel for the interface (so the radio does
 1862  * switch over) but the VAP BSS isn't updated, leading to incorrectly
 1863  * reported information via ioctl.
 1864  */
 1865 void
 1866 ieee80211_csa_completeswitch(struct ieee80211com *ic)
 1867 {
 1868         struct ieee80211vap *vap;
 1869 
 1870         IEEE80211_LOCK_ASSERT(ic);
 1871 
 1872         KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
 1873 
 1874         ieee80211_setcurchan(ic, ic->ic_csa_newchan);
 1875         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1876                 if (vap->iv_state == IEEE80211_S_CSA)
 1877                         vap->iv_bss->ni_chan = ic->ic_curchan;
 1878 
 1879         csa_completeswitch(ic);
 1880 }
 1881 
 1882 /*
 1883  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
 1884  * We clear state and move all vap's in CSA state to RUN state
 1885  * so they can again transmit.
 1886  */
 1887 void
 1888 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
 1889 {
 1890         IEEE80211_LOCK_ASSERT(ic);
 1891 
 1892         csa_completeswitch(ic);
 1893 }
 1894 
 1895 /*
 1896  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
 1897  * We clear state and move all vap's in CAC state to RUN state.
 1898  */
 1899 void
 1900 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
 1901 {
 1902         struct ieee80211com *ic = vap0->iv_ic;
 1903         struct ieee80211vap *vap;
 1904 
 1905         IEEE80211_LOCK(ic);
 1906         /*
 1907          * Complete CAC state change for lead vap first; then
 1908          * clock all the other vap's waiting.
 1909          */
 1910         KASSERT(vap0->iv_state == IEEE80211_S_CAC,
 1911             ("wrong state %d", vap0->iv_state));
 1912         ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
 1913 
 1914         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1915                 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
 1916                         ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
 1917         IEEE80211_UNLOCK(ic);
 1918 }
 1919 
 1920 /*
 1921  * Force all vap's other than the specified vap to the INIT state
 1922  * and mark them as waiting for a scan to complete.  These vaps
 1923  * will be brought up when the scan completes and the scanning vap
 1924  * reaches RUN state by wakeupwaiting.
 1925  */
 1926 static void
 1927 markwaiting(struct ieee80211vap *vap0)
 1928 {
 1929         struct ieee80211com *ic = vap0->iv_ic;
 1930         struct ieee80211vap *vap;
 1931 
 1932         IEEE80211_LOCK_ASSERT(ic);
 1933 
 1934         /*
 1935          * A vap list entry can not disappear since we are running on the
 1936          * taskqueue and a vap destroy will queue and drain another state
 1937          * change task.
 1938          */
 1939         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1940                 if (vap == vap0)
 1941                         continue;
 1942                 if (vap->iv_state != IEEE80211_S_INIT) {
 1943                         /* NB: iv_newstate may drop the lock */
 1944                         vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
 1945                         IEEE80211_LOCK_ASSERT(ic);
 1946                         vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 1947                 }
 1948         }
 1949 }
 1950 
 1951 /*
 1952  * Wakeup all vap's waiting for a scan to complete.  This is the
 1953  * companion to markwaiting (above) and is used to coordinate
 1954  * multiple vaps scanning.
 1955  * This is called from the state taskqueue.
 1956  */
 1957 static void
 1958 wakeupwaiting(struct ieee80211vap *vap0)
 1959 {
 1960         struct ieee80211com *ic = vap0->iv_ic;
 1961         struct ieee80211vap *vap;
 1962 
 1963         IEEE80211_LOCK_ASSERT(ic);
 1964 
 1965         /*
 1966          * A vap list entry can not disappear since we are running on the
 1967          * taskqueue and a vap destroy will queue and drain another state
 1968          * change task.
 1969          */
 1970         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1971                 if (vap == vap0)
 1972                         continue;
 1973                 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
 1974                         vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
 1975                         /* NB: sta's cannot go INIT->RUN */
 1976                         /* NB: iv_newstate may drop the lock */
 1977                         vap->iv_newstate(vap,
 1978                             vap->iv_opmode == IEEE80211_M_STA ?
 1979                                 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
 1980                         IEEE80211_LOCK_ASSERT(ic);
 1981                 }
 1982         }
 1983 }
 1984 
 1985 /*
 1986  * Handle post state change work common to all operating modes.
 1987  */
 1988 static void
 1989 ieee80211_newstate_cb(void *xvap, int npending)
 1990 {
 1991         struct ieee80211vap *vap = xvap;
 1992         struct ieee80211com *ic = vap->iv_ic;
 1993         enum ieee80211_state nstate, ostate;
 1994         int arg, rc;
 1995 
 1996         IEEE80211_LOCK(ic);
 1997         nstate = vap->iv_nstate;
 1998         arg = vap->iv_nstate_arg;
 1999 
 2000         if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
 2001                 /*
 2002                  * We have been requested to drop back to the INIT before
 2003                  * proceeding to the new state.
 2004                  */
 2005                 /* Deny any state changes while we are here. */
 2006                 vap->iv_nstate = IEEE80211_S_INIT;
 2007                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2008                     "%s: %s -> %s arg %d\n", __func__,
 2009                     ieee80211_state_name[vap->iv_state],
 2010                     ieee80211_state_name[vap->iv_nstate], arg);
 2011                 vap->iv_newstate(vap, vap->iv_nstate, 0);
 2012                 IEEE80211_LOCK_ASSERT(ic);
 2013                 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
 2014                     IEEE80211_FEXT_STATEWAIT);
 2015                 /* enqueue new state transition after cancel_scan() task */
 2016                 ieee80211_new_state_locked(vap, nstate, arg);
 2017                 goto done;
 2018         }
 2019 
 2020         ostate = vap->iv_state;
 2021         if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
 2022                 /*
 2023                  * SCAN was forced; e.g. on beacon miss.  Force other running
 2024                  * vap's to INIT state and mark them as waiting for the scan to
 2025                  * complete.  This insures they don't interfere with our
 2026                  * scanning.  Since we are single threaded the vaps can not
 2027                  * transition again while we are executing.
 2028                  *
 2029                  * XXX not always right, assumes ap follows sta
 2030                  */
 2031                 markwaiting(vap);
 2032         }
 2033         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2034             "%s: %s -> %s arg %d\n", __func__,
 2035             ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
 2036 
 2037         rc = vap->iv_newstate(vap, nstate, arg);
 2038         IEEE80211_LOCK_ASSERT(ic);
 2039         vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
 2040         if (rc != 0) {
 2041                 /* State transition failed */
 2042                 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
 2043                 KASSERT(nstate != IEEE80211_S_INIT,
 2044                     ("INIT state change failed"));
 2045                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2046                     "%s: %s returned error %d\n", __func__,
 2047                     ieee80211_state_name[nstate], rc);
 2048                 goto done;
 2049         }
 2050 
 2051         /* No actual transition, skip post processing */
 2052         if (ostate == nstate)
 2053                 goto done;
 2054 
 2055         if (nstate == IEEE80211_S_RUN) {
 2056                 /*
 2057                  * OACTIVE may be set on the vap if the upper layer
 2058                  * tried to transmit (e.g. IPv6 NDP) before we reach
 2059                  * RUN state.  Clear it and restart xmit.
 2060                  *
 2061                  * Note this can also happen as a result of SLEEP->RUN
 2062                  * (i.e. coming out of power save mode).
 2063                  */
 2064                 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2065 
 2066                 /*
 2067                  * XXX TODO Kick-start a VAP queue - this should be a method!
 2068                  */
 2069 
 2070                 /* bring up any vaps waiting on us */
 2071                 wakeupwaiting(vap);
 2072         } else if (nstate == IEEE80211_S_INIT) {
 2073                 /*
 2074                  * Flush the scan cache if we did the last scan (XXX?)
 2075                  * and flush any frames on send queues from this vap.
 2076                  * Note the mgt q is used only for legacy drivers and
 2077                  * will go away shortly.
 2078                  */
 2079                 ieee80211_scan_flush(vap);
 2080 
 2081                 /*
 2082                  * XXX TODO: ic/vap queue flush
 2083                  */
 2084         }
 2085 done:
 2086         IEEE80211_UNLOCK(ic);
 2087 }
 2088 
 2089 /*
 2090  * Public interface for initiating a state machine change.
 2091  * This routine single-threads the request and coordinates
 2092  * the scheduling of multiple vaps for the purpose of selecting
 2093  * an operating channel.  Specifically the following scenarios
 2094  * are handled:
 2095  * o only one vap can be selecting a channel so on transition to
 2096  *   SCAN state if another vap is already scanning then
 2097  *   mark the caller for later processing and return without
 2098  *   doing anything (XXX? expectations by caller of synchronous operation)
 2099  * o only one vap can be doing CAC of a channel so on transition to
 2100  *   CAC state if another vap is already scanning for radar then
 2101  *   mark the caller for later processing and return without
 2102  *   doing anything (XXX? expectations by caller of synchronous operation)
 2103  * o if another vap is already running when a request is made
 2104  *   to SCAN then an operating channel has been chosen; bypass
 2105  *   the scan and just join the channel
 2106  *
 2107  * Note that the state change call is done through the iv_newstate
 2108  * method pointer so any driver routine gets invoked.  The driver
 2109  * will normally call back into operating mode-specific
 2110  * ieee80211_newstate routines (below) unless it needs to completely
 2111  * bypass the state machine (e.g. because the firmware has it's
 2112  * own idea how things should work).  Bypassing the net80211 layer
 2113  * is usually a mistake and indicates lack of proper integration
 2114  * with the net80211 layer.
 2115  */
 2116 int
 2117 ieee80211_new_state_locked(struct ieee80211vap *vap,
 2118         enum ieee80211_state nstate, int arg)
 2119 {
 2120         struct ieee80211com *ic = vap->iv_ic;
 2121         struct ieee80211vap *vp;
 2122         enum ieee80211_state ostate;
 2123         int nrunning, nscanning;
 2124 
 2125         IEEE80211_LOCK_ASSERT(ic);
 2126 
 2127         if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
 2128                 if (vap->iv_nstate == IEEE80211_S_INIT ||
 2129                     ((vap->iv_state == IEEE80211_S_INIT ||
 2130                     (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
 2131                     vap->iv_nstate == IEEE80211_S_SCAN &&
 2132                     nstate > IEEE80211_S_SCAN)) {
 2133                         /*
 2134                          * XXX The vap is being stopped/started,
 2135                          * do not allow any other state changes
 2136                          * until this is completed.
 2137                          */
 2138                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2139                             "%s: %s -> %s (%s) transition discarded\n",
 2140                             __func__,
 2141                             ieee80211_state_name[vap->iv_state],
 2142                             ieee80211_state_name[nstate],
 2143                             ieee80211_state_name[vap->iv_nstate]);
 2144                         return -1;
 2145                 } else if (vap->iv_state != vap->iv_nstate) {
 2146 #if 0
 2147                         /* Warn if the previous state hasn't completed. */
 2148                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2149                             "%s: pending %s -> %s transition lost\n", __func__,
 2150                             ieee80211_state_name[vap->iv_state],
 2151                             ieee80211_state_name[vap->iv_nstate]);
 2152 #else
 2153                         /* XXX temporarily enable to identify issues */
 2154                         if_printf(vap->iv_ifp,
 2155                             "%s: pending %s -> %s transition lost\n",
 2156                             __func__, ieee80211_state_name[vap->iv_state],
 2157                             ieee80211_state_name[vap->iv_nstate]);
 2158 #endif
 2159                 }
 2160         }
 2161 
 2162         nrunning = nscanning = 0;
 2163         /* XXX can track this state instead of calculating */
 2164         TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
 2165                 if (vp != vap) {
 2166                         if (vp->iv_state >= IEEE80211_S_RUN)
 2167                                 nrunning++;
 2168                         /* XXX doesn't handle bg scan */
 2169                         /* NB: CAC+AUTH+ASSOC treated like SCAN */
 2170                         else if (vp->iv_state > IEEE80211_S_INIT)
 2171                                 nscanning++;
 2172                 }
 2173         }
 2174         ostate = vap->iv_state;
 2175         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2176             "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
 2177             ieee80211_state_name[ostate], ieee80211_state_name[nstate],
 2178             nrunning, nscanning);
 2179         switch (nstate) {
 2180         case IEEE80211_S_SCAN:
 2181                 if (ostate == IEEE80211_S_INIT) {
 2182                         /*
 2183                          * INIT -> SCAN happens on initial bringup.
 2184                          */
 2185                         KASSERT(!(nscanning && nrunning),
 2186                             ("%d scanning and %d running", nscanning, nrunning));
 2187                         if (nscanning) {
 2188                                 /*
 2189                                  * Someone is scanning, defer our state
 2190                                  * change until the work has completed.
 2191                                  */
 2192                                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2193                                     "%s: defer %s -> %s\n",
 2194                                     __func__, ieee80211_state_name[ostate],
 2195                                     ieee80211_state_name[nstate]);
 2196                                 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 2197                                 return 0;
 2198                         }
 2199                         if (nrunning) {
 2200                                 /*
 2201                                  * Someone is operating; just join the channel
 2202                                  * they have chosen.
 2203                                  */
 2204                                 /* XXX kill arg? */
 2205                                 /* XXX check each opmode, adhoc? */
 2206                                 if (vap->iv_opmode == IEEE80211_M_STA)
 2207                                         nstate = IEEE80211_S_SCAN;
 2208                                 else
 2209                                         nstate = IEEE80211_S_RUN;
 2210 #ifdef IEEE80211_DEBUG
 2211                                 if (nstate != IEEE80211_S_SCAN) {
 2212                                         IEEE80211_DPRINTF(vap,
 2213                                             IEEE80211_MSG_STATE,
 2214                                             "%s: override, now %s -> %s\n",
 2215                                             __func__,
 2216                                             ieee80211_state_name[ostate],
 2217                                             ieee80211_state_name[nstate]);
 2218                                 }
 2219 #endif
 2220                         }
 2221                 }
 2222                 break;
 2223         case IEEE80211_S_RUN:
 2224                 if (vap->iv_opmode == IEEE80211_M_WDS &&
 2225                     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
 2226                     nscanning) {
 2227                         /*
 2228                          * Legacy WDS with someone else scanning; don't
 2229                          * go online until that completes as we should
 2230                          * follow the other vap to the channel they choose.
 2231                          */
 2232                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2233                              "%s: defer %s -> %s (legacy WDS)\n", __func__,
 2234                              ieee80211_state_name[ostate],
 2235                              ieee80211_state_name[nstate]);
 2236                         vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 2237                         return 0;
 2238                 }
 2239                 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 2240                     IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
 2241                     (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
 2242                     !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
 2243                         /*
 2244                          * This is a DFS channel, transition to CAC state
 2245                          * instead of RUN.  This allows us to initiate
 2246                          * Channel Availability Check (CAC) as specified
 2247                          * by 11h/DFS.
 2248                          */
 2249                         nstate = IEEE80211_S_CAC;
 2250                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 2251                              "%s: override %s -> %s (DFS)\n", __func__,
 2252                              ieee80211_state_name[ostate],
 2253                              ieee80211_state_name[nstate]);
 2254                 }
 2255                 break;
 2256         case IEEE80211_S_INIT:
 2257                 /* cancel any scan in progress */
 2258                 ieee80211_cancel_scan(vap);
 2259                 if (ostate == IEEE80211_S_INIT ) {
 2260                         /* XXX don't believe this */
 2261                         /* INIT -> INIT. nothing to do */
 2262                         vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
 2263                 }
 2264                 /* fall thru... */
 2265         default:
 2266                 break;
 2267         }
 2268         /* defer the state change to a thread */
 2269         vap->iv_nstate = nstate;
 2270         vap->iv_nstate_arg = arg;
 2271         vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
 2272         ieee80211_runtask(ic, &vap->iv_nstate_task);
 2273         return EINPROGRESS;
 2274 }
 2275 
 2276 int
 2277 ieee80211_new_state(struct ieee80211vap *vap,
 2278         enum ieee80211_state nstate, int arg)
 2279 {
 2280         struct ieee80211com *ic = vap->iv_ic;
 2281         int rc;
 2282 
 2283         IEEE80211_LOCK(ic);
 2284         rc = ieee80211_new_state_locked(vap, nstate, arg);
 2285         IEEE80211_UNLOCK(ic);
 2286         return rc;
 2287 }

Cache object: a079df7a8a0981f746d374b0db52a1f7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.