The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211_proto.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Atsushi Onoe
    3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/9.1/sys/net80211/ieee80211_proto.c 224222 2011-07-20 00:36:47Z adrian $");
   29 
   30 /*
   31  * IEEE 802.11 protocol support.
   32  */
   33 
   34 #include "opt_inet.h"
   35 #include "opt_wlan.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/kernel.h>
   39 #include <sys/systm.h>
   40 
   41 #include <sys/socket.h>
   42 #include <sys/sockio.h>
   43 
   44 #include <net/if.h>
   45 #include <net/if_media.h>
   46 #include <net/ethernet.h>               /* XXX for ether_sprintf */
   47 
   48 #include <net80211/ieee80211_var.h>
   49 #include <net80211/ieee80211_adhoc.h>
   50 #include <net80211/ieee80211_sta.h>
   51 #include <net80211/ieee80211_hostap.h>
   52 #include <net80211/ieee80211_wds.h>
   53 #ifdef IEEE80211_SUPPORT_MESH
   54 #include <net80211/ieee80211_mesh.h>
   55 #endif
   56 #include <net80211/ieee80211_monitor.h>
   57 #include <net80211/ieee80211_input.h>
   58 
   59 /* XXX tunables */
   60 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS       3       /* pkts / 100ms */
   61 #define HIGH_PRI_SWITCH_THRESH                  10      /* pkts / 100ms */
   62 
   63 const char *ieee80211_mgt_subtype_name[] = {
   64         "assoc_req",    "assoc_resp",   "reassoc_req",  "reassoc_resp",
   65         "probe_req",    "probe_resp",   "reserved#6",   "reserved#7",
   66         "beacon",       "atim",         "disassoc",     "auth",
   67         "deauth",       "action",       "action_noack", "reserved#15"
   68 };
   69 const char *ieee80211_ctl_subtype_name[] = {
   70         "reserved#0",   "reserved#1",   "reserved#2",   "reserved#3",
   71         "reserved#3",   "reserved#5",   "reserved#6",   "reserved#7",
   72         "reserved#8",   "reserved#9",   "ps_poll",      "rts",
   73         "cts",          "ack",          "cf_end",       "cf_end_ack"
   74 };
   75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
   76         "IBSS",         /* IEEE80211_M_IBSS */
   77         "STA",          /* IEEE80211_M_STA */
   78         "WDS",          /* IEEE80211_M_WDS */
   79         "AHDEMO",       /* IEEE80211_M_AHDEMO */
   80         "HOSTAP",       /* IEEE80211_M_HOSTAP */
   81         "MONITOR",      /* IEEE80211_M_MONITOR */
   82         "MBSS"          /* IEEE80211_M_MBSS */
   83 };
   84 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
   85         "INIT",         /* IEEE80211_S_INIT */
   86         "SCAN",         /* IEEE80211_S_SCAN */
   87         "AUTH",         /* IEEE80211_S_AUTH */
   88         "ASSOC",        /* IEEE80211_S_ASSOC */
   89         "CAC",          /* IEEE80211_S_CAC */
   90         "RUN",          /* IEEE80211_S_RUN */
   91         "CSA",          /* IEEE80211_S_CSA */
   92         "SLEEP",        /* IEEE80211_S_SLEEP */
   93 };
   94 const char *ieee80211_wme_acnames[] = {
   95         "WME_AC_BE",
   96         "WME_AC_BK",
   97         "WME_AC_VI",
   98         "WME_AC_VO",
   99         "WME_UPSD",
  100 };
  101 
  102 static void beacon_miss(void *, int);
  103 static void beacon_swmiss(void *, int);
  104 static void parent_updown(void *, int);
  105 static void update_mcast(void *, int);
  106 static void update_promisc(void *, int);
  107 static void update_channel(void *, int);
  108 static void ieee80211_newstate_cb(void *, int);
  109 static int ieee80211_new_state_locked(struct ieee80211vap *,
  110         enum ieee80211_state, int);
  111 
  112 static int
  113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
  114         const struct ieee80211_bpf_params *params)
  115 {
  116         struct ifnet *ifp = ni->ni_ic->ic_ifp;
  117 
  118         if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
  119         m_freem(m);
  120         return ENETDOWN;
  121 }
  122 
  123 void
  124 ieee80211_proto_attach(struct ieee80211com *ic)
  125 {
  126         struct ifnet *ifp = ic->ic_ifp;
  127 
  128         /* override the 802.3 setting */
  129         ifp->if_hdrlen = ic->ic_headroom
  130                 + sizeof(struct ieee80211_qosframe_addr4)
  131                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
  132                 + IEEE80211_WEP_EXTIVLEN;
  133         /* XXX no way to recalculate on ifdetach */
  134         if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
  135                 /* XXX sanity check... */
  136                 max_linkhdr = ALIGN(ifp->if_hdrlen);
  137                 max_hdr = max_linkhdr + max_protohdr;
  138                 max_datalen = MHLEN - max_hdr;
  139         }
  140         ic->ic_protmode = IEEE80211_PROT_CTSONLY;
  141 
  142         TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
  143         TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
  144         TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
  145         TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
  146         TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
  147 
  148         ic->ic_wme.wme_hipri_switch_hysteresis =
  149                 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
  150 
  151         /* initialize management frame handlers */
  152         ic->ic_send_mgmt = ieee80211_send_mgmt;
  153         ic->ic_raw_xmit = null_raw_xmit;
  154 
  155         ieee80211_adhoc_attach(ic);
  156         ieee80211_sta_attach(ic);
  157         ieee80211_wds_attach(ic);
  158         ieee80211_hostap_attach(ic);
  159 #ifdef IEEE80211_SUPPORT_MESH
  160         ieee80211_mesh_attach(ic);
  161 #endif
  162         ieee80211_monitor_attach(ic);
  163 }
  164 
  165 void
  166 ieee80211_proto_detach(struct ieee80211com *ic)
  167 {
  168         ieee80211_monitor_detach(ic);
  169 #ifdef IEEE80211_SUPPORT_MESH
  170         ieee80211_mesh_detach(ic);
  171 #endif
  172         ieee80211_hostap_detach(ic);
  173         ieee80211_wds_detach(ic);
  174         ieee80211_adhoc_detach(ic);
  175         ieee80211_sta_detach(ic);
  176 }
  177 
  178 static void
  179 null_update_beacon(struct ieee80211vap *vap, int item)
  180 {
  181 }
  182 
  183 void
  184 ieee80211_proto_vattach(struct ieee80211vap *vap)
  185 {
  186         struct ieee80211com *ic = vap->iv_ic;
  187         struct ifnet *ifp = vap->iv_ifp;
  188         int i;
  189 
  190         /* override the 802.3 setting */
  191         ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
  192 
  193         vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
  194         vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
  195         vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
  196         callout_init(&vap->iv_swbmiss, CALLOUT_MPSAFE);
  197         callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
  198         TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
  199         TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
  200         /*
  201          * Install default tx rate handling: no fixed rate, lowest
  202          * supported rate for mgmt and multicast frames.  Default
  203          * max retry count.  These settings can be changed by the
  204          * driver and/or user applications.
  205          */
  206         for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
  207                 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
  208 
  209                 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
  210 
  211                 /*
  212                  * Setting the management rate to MCS 0 assumes that the
  213                  * BSS Basic rate set is empty and the BSS Basic MCS set
  214                  * is not.
  215                  *
  216                  * Since we're not checking this, default to the lowest
  217                  * defined rate for this mode.
  218                  *
  219                  * At least one 11n AP (DLINK DIR-825) is reported to drop
  220                  * some MCS management traffic (eg BA response frames.)
  221                  *
  222                  * See also: 9.6.0 of the 802.11n-2009 specification.
  223                  */
  224 #ifdef  NOTYET
  225                 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
  226                         vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
  227                         vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
  228                 } else {
  229                         vap->iv_txparms[i].mgmtrate =
  230                             rs->rs_rates[0] & IEEE80211_RATE_VAL;
  231                         vap->iv_txparms[i].mcastrate = 
  232                             rs->rs_rates[0] & IEEE80211_RATE_VAL;
  233                 }
  234 #endif
  235                 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
  236                 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
  237                 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
  238         }
  239         vap->iv_roaming = IEEE80211_ROAMING_AUTO;
  240 
  241         vap->iv_update_beacon = null_update_beacon;
  242         vap->iv_deliver_data = ieee80211_deliver_data;
  243 
  244         /* attach support for operating mode */
  245         ic->ic_vattach[vap->iv_opmode](vap);
  246 }
  247 
  248 void
  249 ieee80211_proto_vdetach(struct ieee80211vap *vap)
  250 {
  251 #define FREEAPPIE(ie) do { \
  252         if (ie != NULL) \
  253                 free(ie, M_80211_NODE_IE); \
  254 } while (0)
  255         /*
  256          * Detach operating mode module.
  257          */
  258         if (vap->iv_opdetach != NULL)
  259                 vap->iv_opdetach(vap);
  260         /*
  261          * This should not be needed as we detach when reseting
  262          * the state but be conservative here since the
  263          * authenticator may do things like spawn kernel threads.
  264          */
  265         if (vap->iv_auth->ia_detach != NULL)
  266                 vap->iv_auth->ia_detach(vap);
  267         /*
  268          * Detach any ACL'ator.
  269          */
  270         if (vap->iv_acl != NULL)
  271                 vap->iv_acl->iac_detach(vap);
  272 
  273         FREEAPPIE(vap->iv_appie_beacon);
  274         FREEAPPIE(vap->iv_appie_probereq);
  275         FREEAPPIE(vap->iv_appie_proberesp);
  276         FREEAPPIE(vap->iv_appie_assocreq);
  277         FREEAPPIE(vap->iv_appie_assocresp);
  278         FREEAPPIE(vap->iv_appie_wpa);
  279 #undef FREEAPPIE
  280 }
  281 
  282 /*
  283  * Simple-minded authenticator module support.
  284  */
  285 
  286 #define IEEE80211_AUTH_MAX      (IEEE80211_AUTH_WPA+1)
  287 /* XXX well-known names */
  288 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
  289         "wlan_internal",        /* IEEE80211_AUTH_NONE */
  290         "wlan_internal",        /* IEEE80211_AUTH_OPEN */
  291         "wlan_internal",        /* IEEE80211_AUTH_SHARED */
  292         "wlan_xauth",           /* IEEE80211_AUTH_8021X  */
  293         "wlan_internal",        /* IEEE80211_AUTH_AUTO */
  294         "wlan_xauth",           /* IEEE80211_AUTH_WPA */
  295 };
  296 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
  297 
  298 static const struct ieee80211_authenticator auth_internal = {
  299         .ia_name                = "wlan_internal",
  300         .ia_attach              = NULL,
  301         .ia_detach              = NULL,
  302         .ia_node_join           = NULL,
  303         .ia_node_leave          = NULL,
  304 };
  305 
  306 /*
  307  * Setup internal authenticators once; they are never unregistered.
  308  */
  309 static void
  310 ieee80211_auth_setup(void)
  311 {
  312         ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
  313         ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
  314         ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
  315 }
  316 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
  317 
  318 const struct ieee80211_authenticator *
  319 ieee80211_authenticator_get(int auth)
  320 {
  321         if (auth >= IEEE80211_AUTH_MAX)
  322                 return NULL;
  323         if (authenticators[auth] == NULL)
  324                 ieee80211_load_module(auth_modnames[auth]);
  325         return authenticators[auth];
  326 }
  327 
  328 void
  329 ieee80211_authenticator_register(int type,
  330         const struct ieee80211_authenticator *auth)
  331 {
  332         if (type >= IEEE80211_AUTH_MAX)
  333                 return;
  334         authenticators[type] = auth;
  335 }
  336 
  337 void
  338 ieee80211_authenticator_unregister(int type)
  339 {
  340 
  341         if (type >= IEEE80211_AUTH_MAX)
  342                 return;
  343         authenticators[type] = NULL;
  344 }
  345 
  346 /*
  347  * Very simple-minded ACL module support.
  348  */
  349 /* XXX just one for now */
  350 static  const struct ieee80211_aclator *acl = NULL;
  351 
  352 void
  353 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
  354 {
  355         printf("wlan: %s acl policy registered\n", iac->iac_name);
  356         acl = iac;
  357 }
  358 
  359 void
  360 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
  361 {
  362         if (acl == iac)
  363                 acl = NULL;
  364         printf("wlan: %s acl policy unregistered\n", iac->iac_name);
  365 }
  366 
  367 const struct ieee80211_aclator *
  368 ieee80211_aclator_get(const char *name)
  369 {
  370         if (acl == NULL)
  371                 ieee80211_load_module("wlan_acl");
  372         return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
  373 }
  374 
  375 void
  376 ieee80211_print_essid(const uint8_t *essid, int len)
  377 {
  378         const uint8_t *p;
  379         int i;
  380 
  381         if (len > IEEE80211_NWID_LEN)
  382                 len = IEEE80211_NWID_LEN;
  383         /* determine printable or not */
  384         for (i = 0, p = essid; i < len; i++, p++) {
  385                 if (*p < ' ' || *p > 0x7e)
  386                         break;
  387         }
  388         if (i == len) {
  389                 printf("\"");
  390                 for (i = 0, p = essid; i < len; i++, p++)
  391                         printf("%c", *p);
  392                 printf("\"");
  393         } else {
  394                 printf("0x");
  395                 for (i = 0, p = essid; i < len; i++, p++)
  396                         printf("%02x", *p);
  397         }
  398 }
  399 
  400 void
  401 ieee80211_dump_pkt(struct ieee80211com *ic,
  402         const uint8_t *buf, int len, int rate, int rssi)
  403 {
  404         const struct ieee80211_frame *wh;
  405         int i;
  406 
  407         wh = (const struct ieee80211_frame *)buf;
  408         switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  409         case IEEE80211_FC1_DIR_NODS:
  410                 printf("NODS %s", ether_sprintf(wh->i_addr2));
  411                 printf("->%s", ether_sprintf(wh->i_addr1));
  412                 printf("(%s)", ether_sprintf(wh->i_addr3));
  413                 break;
  414         case IEEE80211_FC1_DIR_TODS:
  415                 printf("TODS %s", ether_sprintf(wh->i_addr2));
  416                 printf("->%s", ether_sprintf(wh->i_addr3));
  417                 printf("(%s)", ether_sprintf(wh->i_addr1));
  418                 break;
  419         case IEEE80211_FC1_DIR_FROMDS:
  420                 printf("FRDS %s", ether_sprintf(wh->i_addr3));
  421                 printf("->%s", ether_sprintf(wh->i_addr1));
  422                 printf("(%s)", ether_sprintf(wh->i_addr2));
  423                 break;
  424         case IEEE80211_FC1_DIR_DSTODS:
  425                 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
  426                 printf("->%s", ether_sprintf(wh->i_addr3));
  427                 printf("(%s", ether_sprintf(wh->i_addr2));
  428                 printf("->%s)", ether_sprintf(wh->i_addr1));
  429                 break;
  430         }
  431         switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
  432         case IEEE80211_FC0_TYPE_DATA:
  433                 printf(" data");
  434                 break;
  435         case IEEE80211_FC0_TYPE_MGT:
  436                 printf(" %s", ieee80211_mgt_subtype_name[
  437                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
  438                     >> IEEE80211_FC0_SUBTYPE_SHIFT]);
  439                 break;
  440         default:
  441                 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
  442                 break;
  443         }
  444         if (IEEE80211_QOS_HAS_SEQ(wh)) {
  445                 const struct ieee80211_qosframe *qwh = 
  446                         (const struct ieee80211_qosframe *)buf;
  447                 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
  448                         qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
  449         }
  450         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
  451                 int off;
  452 
  453                 off = ieee80211_anyhdrspace(ic, wh);
  454                 printf(" WEP [IV %.02x %.02x %.02x",
  455                         buf[off+0], buf[off+1], buf[off+2]);
  456                 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
  457                         printf(" %.02x %.02x %.02x",
  458                                 buf[off+4], buf[off+5], buf[off+6]);
  459                 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
  460         }
  461         if (rate >= 0)
  462                 printf(" %dM", rate / 2);
  463         if (rssi >= 0)
  464                 printf(" +%d", rssi);
  465         printf("\n");
  466         if (len > 0) {
  467                 for (i = 0; i < len; i++) {
  468                         if ((i & 1) == 0)
  469                                 printf(" ");
  470                         printf("%02x", buf[i]);
  471                 }
  472                 printf("\n");
  473         }
  474 }
  475 
  476 static __inline int
  477 findrix(const struct ieee80211_rateset *rs, int r)
  478 {
  479         int i;
  480 
  481         for (i = 0; i < rs->rs_nrates; i++)
  482                 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
  483                         return i;
  484         return -1;
  485 }
  486 
  487 int
  488 ieee80211_fix_rate(struct ieee80211_node *ni,
  489         struct ieee80211_rateset *nrs, int flags)
  490 {
  491 #define RV(v)   ((v) & IEEE80211_RATE_VAL)
  492         struct ieee80211vap *vap = ni->ni_vap;
  493         struct ieee80211com *ic = ni->ni_ic;
  494         int i, j, rix, error;
  495         int okrate, badrate, fixedrate, ucastrate;
  496         const struct ieee80211_rateset *srs;
  497         uint8_t r;
  498 
  499         error = 0;
  500         okrate = badrate = 0;
  501         ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
  502         if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
  503                 /*
  504                  * Workaround awkwardness with fixed rate.  We are called
  505                  * to check both the legacy rate set and the HT rate set
  506                  * but we must apply any legacy fixed rate check only to the
  507                  * legacy rate set and vice versa.  We cannot tell what type
  508                  * of rate set we've been given (legacy or HT) but we can
  509                  * distinguish the fixed rate type (MCS have 0x80 set).
  510                  * So to deal with this the caller communicates whether to
  511                  * check MCS or legacy rate using the flags and we use the
  512                  * type of any fixed rate to avoid applying an MCS to a
  513                  * legacy rate and vice versa.
  514                  */
  515                 if (ucastrate & 0x80) {
  516                         if (flags & IEEE80211_F_DOFRATE)
  517                                 flags &= ~IEEE80211_F_DOFRATE;
  518                 } else if ((ucastrate & 0x80) == 0) {
  519                         if (flags & IEEE80211_F_DOFMCS)
  520                                 flags &= ~IEEE80211_F_DOFMCS;
  521                 }
  522                 /* NB: required to make MCS match below work */
  523                 ucastrate &= IEEE80211_RATE_VAL;
  524         }
  525         fixedrate = IEEE80211_FIXED_RATE_NONE;
  526         /*
  527          * XXX we are called to process both MCS and legacy rates;
  528          * we must use the appropriate basic rate set or chaos will
  529          * ensue; for now callers that want MCS must supply
  530          * IEEE80211_F_DOBRS; at some point we'll need to split this
  531          * function so there are two variants, one for MCS and one
  532          * for legacy rates.
  533          */
  534         if (flags & IEEE80211_F_DOBRS)
  535                 srs = (const struct ieee80211_rateset *)
  536                     ieee80211_get_suphtrates(ic, ni->ni_chan);
  537         else
  538                 srs = ieee80211_get_suprates(ic, ni->ni_chan);
  539         for (i = 0; i < nrs->rs_nrates; ) {
  540                 if (flags & IEEE80211_F_DOSORT) {
  541                         /*
  542                          * Sort rates.
  543                          */
  544                         for (j = i + 1; j < nrs->rs_nrates; j++) {
  545                                 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
  546                                         r = nrs->rs_rates[i];
  547                                         nrs->rs_rates[i] = nrs->rs_rates[j];
  548                                         nrs->rs_rates[j] = r;
  549                                 }
  550                         }
  551                 }
  552                 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
  553                 badrate = r;
  554                 /*
  555                  * Check for fixed rate.
  556                  */
  557                 if (r == ucastrate)
  558                         fixedrate = r;
  559                 /*
  560                  * Check against supported rates.
  561                  */
  562                 rix = findrix(srs, r);
  563                 if (flags & IEEE80211_F_DONEGO) {
  564                         if (rix < 0) {
  565                                 /*
  566                                  * A rate in the node's rate set is not
  567                                  * supported.  If this is a basic rate and we
  568                                  * are operating as a STA then this is an error.
  569                                  * Otherwise we just discard/ignore the rate.
  570                                  */
  571                                 if ((flags & IEEE80211_F_JOIN) &&
  572                                     (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
  573                                         error++;
  574                         } else if ((flags & IEEE80211_F_JOIN) == 0) {
  575                                 /*
  576                                  * Overwrite with the supported rate
  577                                  * value so any basic rate bit is set.
  578                                  */
  579                                 nrs->rs_rates[i] = srs->rs_rates[rix];
  580                         }
  581                 }
  582                 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
  583                         /*
  584                          * Delete unacceptable rates.
  585                          */
  586                         nrs->rs_nrates--;
  587                         for (j = i; j < nrs->rs_nrates; j++)
  588                                 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
  589                         nrs->rs_rates[j] = 0;
  590                         continue;
  591                 }
  592                 if (rix >= 0)
  593                         okrate = nrs->rs_rates[i];
  594                 i++;
  595         }
  596         if (okrate == 0 || error != 0 ||
  597             ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
  598              fixedrate != ucastrate)) {
  599                 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
  600                     "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
  601                     "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
  602                 return badrate | IEEE80211_RATE_BASIC;
  603         } else
  604                 return RV(okrate);
  605 #undef RV
  606 }
  607 
  608 /*
  609  * Reset 11g-related state.
  610  */
  611 void
  612 ieee80211_reset_erp(struct ieee80211com *ic)
  613 {
  614         ic->ic_flags &= ~IEEE80211_F_USEPROT;
  615         ic->ic_nonerpsta = 0;
  616         ic->ic_longslotsta = 0;
  617         /*
  618          * Short slot time is enabled only when operating in 11g
  619          * and not in an IBSS.  We must also honor whether or not
  620          * the driver is capable of doing it.
  621          */
  622         ieee80211_set_shortslottime(ic,
  623                 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  624                 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
  625                 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
  626                 ic->ic_opmode == IEEE80211_M_HOSTAP &&
  627                 (ic->ic_caps & IEEE80211_C_SHSLOT)));
  628         /*
  629          * Set short preamble and ERP barker-preamble flags.
  630          */
  631         if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
  632             (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
  633                 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
  634                 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
  635         } else {
  636                 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
  637                 ic->ic_flags |= IEEE80211_F_USEBARKER;
  638         }
  639 }
  640 
  641 /*
  642  * Set the short slot time state and notify the driver.
  643  */
  644 void
  645 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
  646 {
  647         if (onoff)
  648                 ic->ic_flags |= IEEE80211_F_SHSLOT;
  649         else
  650                 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
  651         /* notify driver */
  652         if (ic->ic_updateslot != NULL)
  653                 ic->ic_updateslot(ic->ic_ifp);
  654 }
  655 
  656 /*
  657  * Check if the specified rate set supports ERP.
  658  * NB: the rate set is assumed to be sorted.
  659  */
  660 int
  661 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
  662 {
  663 #define N(a)    (sizeof(a) / sizeof(a[0]))
  664         static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
  665         int i, j;
  666 
  667         if (rs->rs_nrates < N(rates))
  668                 return 0;
  669         for (i = 0; i < N(rates); i++) {
  670                 for (j = 0; j < rs->rs_nrates; j++) {
  671                         int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
  672                         if (rates[i] == r)
  673                                 goto next;
  674                         if (r > rates[i])
  675                                 return 0;
  676                 }
  677                 return 0;
  678         next:
  679                 ;
  680         }
  681         return 1;
  682 #undef N
  683 }
  684 
  685 /*
  686  * Mark the basic rates for the rate table based on the
  687  * operating mode.  For real 11g we mark all the 11b rates
  688  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
  689  * 11b rates.  There's also a pseudo 11a-mode used to mark only
  690  * the basic OFDM rates.
  691  */
  692 static void
  693 setbasicrates(struct ieee80211_rateset *rs,
  694     enum ieee80211_phymode mode, int add)
  695 {
  696         static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
  697             [IEEE80211_MODE_11A]        = { 3, { 12, 24, 48 } },
  698             [IEEE80211_MODE_11B]        = { 2, { 2, 4 } },
  699                                             /* NB: mixed b/g */
  700             [IEEE80211_MODE_11G]        = { 4, { 2, 4, 11, 22 } },
  701             [IEEE80211_MODE_TURBO_A]    = { 3, { 12, 24, 48 } },
  702             [IEEE80211_MODE_TURBO_G]    = { 4, { 2, 4, 11, 22 } },
  703             [IEEE80211_MODE_STURBO_A]   = { 3, { 12, 24, 48 } },
  704             [IEEE80211_MODE_HALF]       = { 3, { 6, 12, 24 } },
  705             [IEEE80211_MODE_QUARTER]    = { 3, { 3, 6, 12 } },
  706             [IEEE80211_MODE_11NA]       = { 3, { 12, 24, 48 } },
  707                                             /* NB: mixed b/g */
  708             [IEEE80211_MODE_11NG]       = { 4, { 2, 4, 11, 22 } },
  709         };
  710         int i, j;
  711 
  712         for (i = 0; i < rs->rs_nrates; i++) {
  713                 if (!add)
  714                         rs->rs_rates[i] &= IEEE80211_RATE_VAL;
  715                 for (j = 0; j < basic[mode].rs_nrates; j++)
  716                         if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
  717                                 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
  718                                 break;
  719                         }
  720         }
  721 }
  722 
  723 /*
  724  * Set the basic rates in a rate set.
  725  */
  726 void
  727 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
  728     enum ieee80211_phymode mode)
  729 {
  730         setbasicrates(rs, mode, 0);
  731 }
  732 
  733 /*
  734  * Add basic rates to a rate set.
  735  */
  736 void
  737 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
  738     enum ieee80211_phymode mode)
  739 {
  740         setbasicrates(rs, mode, 1);
  741 }
  742 
  743 /*
  744  * WME protocol support.
  745  *
  746  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
  747  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
  748  * Draft 2.0 Test Plan (Appendix D).
  749  *
  750  * Static/Dynamic Turbo mode settings come from Atheros.
  751  */
  752 typedef struct phyParamType {
  753         uint8_t         aifsn;
  754         uint8_t         logcwmin;
  755         uint8_t         logcwmax;
  756         uint16_t        txopLimit;
  757         uint8_t         acm;
  758 } paramType;
  759 
  760 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
  761         [IEEE80211_MODE_AUTO]   = { 3, 4,  6,  0, 0 },
  762         [IEEE80211_MODE_11A]    = { 3, 4,  6,  0, 0 },
  763         [IEEE80211_MODE_11B]    = { 3, 4,  6,  0, 0 },
  764         [IEEE80211_MODE_11G]    = { 3, 4,  6,  0, 0 },
  765         [IEEE80211_MODE_FH]     = { 3, 4,  6,  0, 0 },
  766         [IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
  767         [IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
  768         [IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
  769         [IEEE80211_MODE_HALF]   = { 3, 4,  6,  0, 0 },
  770         [IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
  771         [IEEE80211_MODE_11NA]   = { 3, 4,  6,  0, 0 },
  772         [IEEE80211_MODE_11NG]   = { 3, 4,  6,  0, 0 },
  773 };
  774 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
  775         [IEEE80211_MODE_AUTO]   = { 7, 4, 10,  0, 0 },
  776         [IEEE80211_MODE_11A]    = { 7, 4, 10,  0, 0 },
  777         [IEEE80211_MODE_11B]    = { 7, 4, 10,  0, 0 },
  778         [IEEE80211_MODE_11G]    = { 7, 4, 10,  0, 0 },
  779         [IEEE80211_MODE_FH]     = { 7, 4, 10,  0, 0 },
  780         [IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
  781         [IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
  782         [IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
  783         [IEEE80211_MODE_HALF]   = { 7, 4, 10,  0, 0 },
  784         [IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
  785         [IEEE80211_MODE_11NA]   = { 7, 4, 10,  0, 0 },
  786         [IEEE80211_MODE_11NG]   = { 7, 4, 10,  0, 0 },
  787 };
  788 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
  789         [IEEE80211_MODE_AUTO]   = { 1, 3, 4,  94, 0 },
  790         [IEEE80211_MODE_11A]    = { 1, 3, 4,  94, 0 },
  791         [IEEE80211_MODE_11B]    = { 1, 3, 4, 188, 0 },
  792         [IEEE80211_MODE_11G]    = { 1, 3, 4,  94, 0 },
  793         [IEEE80211_MODE_FH]     = { 1, 3, 4, 188, 0 },
  794         [IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
  795         [IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
  796         [IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
  797         [IEEE80211_MODE_HALF]   = { 1, 3, 4,  94, 0 },
  798         [IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
  799         [IEEE80211_MODE_11NA]   = { 1, 3, 4,  94, 0 },
  800         [IEEE80211_MODE_11NG]   = { 1, 3, 4,  94, 0 },
  801 };
  802 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
  803         [IEEE80211_MODE_AUTO]   = { 1, 2, 3,  47, 0 },
  804         [IEEE80211_MODE_11A]    = { 1, 2, 3,  47, 0 },
  805         [IEEE80211_MODE_11B]    = { 1, 2, 3, 102, 0 },
  806         [IEEE80211_MODE_11G]    = { 1, 2, 3,  47, 0 },
  807         [IEEE80211_MODE_FH]     = { 1, 2, 3, 102, 0 },
  808         [IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
  809         [IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
  810         [IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
  811         [IEEE80211_MODE_HALF]   = { 1, 2, 3,  47, 0 },
  812         [IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
  813         [IEEE80211_MODE_11NA]   = { 1, 2, 3,  47, 0 },
  814         [IEEE80211_MODE_11NG]   = { 1, 2, 3,  47, 0 },
  815 };
  816 
  817 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
  818         [IEEE80211_MODE_AUTO]   = { 3, 4, 10,  0, 0 },
  819         [IEEE80211_MODE_11A]    = { 3, 4, 10,  0, 0 },
  820         [IEEE80211_MODE_11B]    = { 3, 4, 10,  0, 0 },
  821         [IEEE80211_MODE_11G]    = { 3, 4, 10,  0, 0 },
  822         [IEEE80211_MODE_FH]     = { 3, 4, 10,  0, 0 },
  823         [IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
  824         [IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
  825         [IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
  826         [IEEE80211_MODE_HALF]   = { 3, 4, 10,  0, 0 },
  827         [IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
  828         [IEEE80211_MODE_11NA]   = { 3, 4, 10,  0, 0 },
  829         [IEEE80211_MODE_11NG]   = { 3, 4, 10,  0, 0 },
  830 };
  831 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
  832         [IEEE80211_MODE_AUTO]   = { 2, 3, 4,  94, 0 },
  833         [IEEE80211_MODE_11A]    = { 2, 3, 4,  94, 0 },
  834         [IEEE80211_MODE_11B]    = { 2, 3, 4, 188, 0 },
  835         [IEEE80211_MODE_11G]    = { 2, 3, 4,  94, 0 },
  836         [IEEE80211_MODE_FH]     = { 2, 3, 4, 188, 0 },
  837         [IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
  838         [IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
  839         [IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
  840         [IEEE80211_MODE_HALF]   = { 2, 3, 4,  94, 0 },
  841         [IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
  842         [IEEE80211_MODE_11NA]   = { 2, 3, 4,  94, 0 },
  843         [IEEE80211_MODE_11NG]   = { 2, 3, 4,  94, 0 },
  844 };
  845 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
  846         [IEEE80211_MODE_AUTO]   = { 2, 2, 3,  47, 0 },
  847         [IEEE80211_MODE_11A]    = { 2, 2, 3,  47, 0 },
  848         [IEEE80211_MODE_11B]    = { 2, 2, 3, 102, 0 },
  849         [IEEE80211_MODE_11G]    = { 2, 2, 3,  47, 0 },
  850         [IEEE80211_MODE_FH]     = { 2, 2, 3, 102, 0 },
  851         [IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
  852         [IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
  853         [IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
  854         [IEEE80211_MODE_HALF]   = { 2, 2, 3,  47, 0 },
  855         [IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
  856         [IEEE80211_MODE_11NA]   = { 2, 2, 3,  47, 0 },
  857         [IEEE80211_MODE_11NG]   = { 2, 2, 3,  47, 0 },
  858 };
  859 
  860 static void
  861 _setifsparams(struct wmeParams *wmep, const paramType *phy)
  862 {
  863         wmep->wmep_aifsn = phy->aifsn;
  864         wmep->wmep_logcwmin = phy->logcwmin;    
  865         wmep->wmep_logcwmax = phy->logcwmax;            
  866         wmep->wmep_txopLimit = phy->txopLimit;
  867 }
  868 
  869 static void
  870 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
  871         struct wmeParams *wmep, const paramType *phy)
  872 {
  873         wmep->wmep_acm = phy->acm;
  874         _setifsparams(wmep, phy);
  875 
  876         IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
  877             "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
  878             ieee80211_wme_acnames[ac], type,
  879             wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
  880             wmep->wmep_logcwmax, wmep->wmep_txopLimit);
  881 }
  882 
  883 static void
  884 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
  885 {
  886         struct ieee80211com *ic = vap->iv_ic;
  887         struct ieee80211_wme_state *wme = &ic->ic_wme;
  888         const paramType *pPhyParam, *pBssPhyParam;
  889         struct wmeParams *wmep;
  890         enum ieee80211_phymode mode;
  891         int i;
  892 
  893         IEEE80211_LOCK_ASSERT(ic);
  894 
  895         if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
  896                 return;
  897 
  898         /*
  899          * Clear the wme cap_info field so a qoscount from a previous
  900          * vap doesn't confuse later code which only parses the beacon
  901          * field and updates hardware when said field changes.
  902          * Otherwise the hardware is programmed with defaults, not what
  903          * the beacon actually announces.
  904          */
  905         wme->wme_wmeChanParams.cap_info = 0;
  906 
  907         /*
  908          * Select mode; we can be called early in which case we
  909          * always use auto mode.  We know we'll be called when
  910          * entering the RUN state with bsschan setup properly
  911          * so state will eventually get set correctly
  912          */
  913         if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
  914                 mode = ieee80211_chan2mode(ic->ic_bsschan);
  915         else
  916                 mode = IEEE80211_MODE_AUTO;
  917         for (i = 0; i < WME_NUM_AC; i++) {
  918                 switch (i) {
  919                 case WME_AC_BK:
  920                         pPhyParam = &phyParamForAC_BK[mode];
  921                         pBssPhyParam = &phyParamForAC_BK[mode];
  922                         break;
  923                 case WME_AC_VI:
  924                         pPhyParam = &phyParamForAC_VI[mode];
  925                         pBssPhyParam = &bssPhyParamForAC_VI[mode];
  926                         break;
  927                 case WME_AC_VO:
  928                         pPhyParam = &phyParamForAC_VO[mode];
  929                         pBssPhyParam = &bssPhyParamForAC_VO[mode];
  930                         break;
  931                 case WME_AC_BE:
  932                 default:
  933                         pPhyParam = &phyParamForAC_BE[mode];
  934                         pBssPhyParam = &bssPhyParamForAC_BE[mode];
  935                         break;
  936                 }
  937                 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
  938                 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
  939                         setwmeparams(vap, "chan", i, wmep, pPhyParam);
  940                 } else {
  941                         setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
  942                 }       
  943                 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
  944                 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
  945         }
  946         /* NB: check ic_bss to avoid NULL deref on initial attach */
  947         if (vap->iv_bss != NULL) {
  948                 /*
  949                  * Calculate agressive mode switching threshold based
  950                  * on beacon interval.  This doesn't need locking since
  951                  * we're only called before entering the RUN state at
  952                  * which point we start sending beacon frames.
  953                  */
  954                 wme->wme_hipri_switch_thresh =
  955                         (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
  956                 wme->wme_flags &= ~WME_F_AGGRMODE;
  957                 ieee80211_wme_updateparams(vap);
  958         }
  959 }
  960 
  961 void
  962 ieee80211_wme_initparams(struct ieee80211vap *vap)
  963 {
  964         struct ieee80211com *ic = vap->iv_ic;
  965 
  966         IEEE80211_LOCK(ic);
  967         ieee80211_wme_initparams_locked(vap);
  968         IEEE80211_UNLOCK(ic);
  969 }
  970 
  971 /*
  972  * Update WME parameters for ourself and the BSS.
  973  */
  974 void
  975 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
  976 {
  977         static const paramType aggrParam[IEEE80211_MODE_MAX] = {
  978             [IEEE80211_MODE_AUTO]       = { 2, 4, 10, 64, 0 },
  979             [IEEE80211_MODE_11A]        = { 2, 4, 10, 64, 0 },
  980             [IEEE80211_MODE_11B]        = { 2, 5, 10, 64, 0 },
  981             [IEEE80211_MODE_11G]        = { 2, 4, 10, 64, 0 },
  982             [IEEE80211_MODE_FH]         = { 2, 5, 10, 64, 0 },
  983             [IEEE80211_MODE_TURBO_A]    = { 1, 3, 10, 64, 0 },
  984             [IEEE80211_MODE_TURBO_G]    = { 1, 3, 10, 64, 0 },
  985             [IEEE80211_MODE_STURBO_A]   = { 1, 3, 10, 64, 0 },
  986             [IEEE80211_MODE_HALF]       = { 2, 4, 10, 64, 0 },
  987             [IEEE80211_MODE_QUARTER]    = { 2, 4, 10, 64, 0 },
  988             [IEEE80211_MODE_11NA]       = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
  989             [IEEE80211_MODE_11NG]       = { 2, 4, 10, 64, 0 },  /* XXXcheck*/
  990         };
  991         struct ieee80211com *ic = vap->iv_ic;
  992         struct ieee80211_wme_state *wme = &ic->ic_wme;
  993         const struct wmeParams *wmep;
  994         struct wmeParams *chanp, *bssp;
  995         enum ieee80211_phymode mode;
  996         int i;
  997 
  998         /*
  999          * Set up the channel access parameters for the physical
 1000          * device.  First populate the configured settings.
 1001          */
 1002         for (i = 0; i < WME_NUM_AC; i++) {
 1003                 chanp = &wme->wme_chanParams.cap_wmeParams[i];
 1004                 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
 1005                 chanp->wmep_aifsn = wmep->wmep_aifsn;
 1006                 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
 1007                 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
 1008                 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
 1009 
 1010                 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
 1011                 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
 1012                 chanp->wmep_aifsn = wmep->wmep_aifsn;
 1013                 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
 1014                 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
 1015                 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
 1016         }
 1017 
 1018         /*
 1019          * Select mode; we can be called early in which case we
 1020          * always use auto mode.  We know we'll be called when
 1021          * entering the RUN state with bsschan setup properly
 1022          * so state will eventually get set correctly
 1023          */
 1024         if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
 1025                 mode = ieee80211_chan2mode(ic->ic_bsschan);
 1026         else
 1027                 mode = IEEE80211_MODE_AUTO;
 1028 
 1029         /*
 1030          * This implements agressive mode as found in certain
 1031          * vendors' AP's.  When there is significant high
 1032          * priority (VI/VO) traffic in the BSS throttle back BE
 1033          * traffic by using conservative parameters.  Otherwise
 1034          * BE uses agressive params to optimize performance of
 1035          * legacy/non-QoS traffic.
 1036          */
 1037         if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1038              (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
 1039             (vap->iv_opmode == IEEE80211_M_STA &&
 1040              (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
 1041             (vap->iv_flags & IEEE80211_F_WME) == 0) {
 1042                 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
 1043                 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
 1044 
 1045                 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
 1046                 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
 1047                     aggrParam[mode].logcwmin;
 1048                 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
 1049                     aggrParam[mode].logcwmax;
 1050                 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
 1051                     (vap->iv_flags & IEEE80211_F_BURST) ?
 1052                         aggrParam[mode].txopLimit : 0;          
 1053                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1054                     "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
 1055                     "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
 1056                     chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
 1057                     chanp->wmep_logcwmax, chanp->wmep_txopLimit);
 1058         }
 1059         
 1060         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1061             ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
 1062                 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
 1063                     [IEEE80211_MODE_AUTO]       = 3,
 1064                     [IEEE80211_MODE_11A]        = 3,
 1065                     [IEEE80211_MODE_11B]        = 4,
 1066                     [IEEE80211_MODE_11G]        = 3,
 1067                     [IEEE80211_MODE_FH]         = 4,
 1068                     [IEEE80211_MODE_TURBO_A]    = 3,
 1069                     [IEEE80211_MODE_TURBO_G]    = 3,
 1070                     [IEEE80211_MODE_STURBO_A]   = 3,
 1071                     [IEEE80211_MODE_HALF]       = 3,
 1072                     [IEEE80211_MODE_QUARTER]    = 3,
 1073                     [IEEE80211_MODE_11NA]       = 3,
 1074                     [IEEE80211_MODE_11NG]       = 3,
 1075                 };
 1076                 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
 1077                 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
 1078 
 1079                 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
 1080                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1081                     "update %s (chan+bss) logcwmin %u\n",
 1082                     ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
 1083         }       
 1084         if (vap->iv_opmode == IEEE80211_M_HOSTAP) {     /* XXX ibss? */
 1085                 /*
 1086                  * Arrange for a beacon update and bump the parameter
 1087                  * set number so associated stations load the new values.
 1088                  */
 1089                 wme->wme_bssChanParams.cap_info =
 1090                         (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
 1091                 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
 1092         }
 1093 
 1094         wme->wme_update(ic);
 1095 
 1096         IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 1097             "%s: WME params updated, cap_info 0x%x\n", __func__,
 1098             vap->iv_opmode == IEEE80211_M_STA ?
 1099                 wme->wme_wmeChanParams.cap_info :
 1100                 wme->wme_bssChanParams.cap_info);
 1101 }
 1102 
 1103 void
 1104 ieee80211_wme_updateparams(struct ieee80211vap *vap)
 1105 {
 1106         struct ieee80211com *ic = vap->iv_ic;
 1107 
 1108         if (ic->ic_caps & IEEE80211_C_WME) {
 1109                 IEEE80211_LOCK(ic);
 1110                 ieee80211_wme_updateparams_locked(vap);
 1111                 IEEE80211_UNLOCK(ic);
 1112         }
 1113 }
 1114 
 1115 static void
 1116 parent_updown(void *arg, int npending)
 1117 {
 1118         struct ifnet *parent = arg;
 1119 
 1120         parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
 1121 }
 1122 
 1123 static void
 1124 update_mcast(void *arg, int npending)
 1125 {
 1126         struct ieee80211com *ic = arg;
 1127         struct ifnet *parent = ic->ic_ifp;
 1128 
 1129         ic->ic_update_mcast(parent);
 1130 }
 1131 
 1132 static void
 1133 update_promisc(void *arg, int npending)
 1134 {
 1135         struct ieee80211com *ic = arg;
 1136         struct ifnet *parent = ic->ic_ifp;
 1137 
 1138         ic->ic_update_promisc(parent);
 1139 }
 1140 
 1141 static void
 1142 update_channel(void *arg, int npending)
 1143 {
 1144         struct ieee80211com *ic = arg;
 1145 
 1146         ic->ic_set_channel(ic);
 1147         ieee80211_radiotap_chan_change(ic);
 1148 }
 1149 
 1150 /*
 1151  * Block until the parent is in a known state.  This is
 1152  * used after any operations that dispatch a task (e.g.
 1153  * to auto-configure the parent device up/down).
 1154  */
 1155 void
 1156 ieee80211_waitfor_parent(struct ieee80211com *ic)
 1157 {
 1158         taskqueue_block(ic->ic_tq);
 1159         ieee80211_draintask(ic, &ic->ic_parent_task);
 1160         ieee80211_draintask(ic, &ic->ic_mcast_task);
 1161         ieee80211_draintask(ic, &ic->ic_promisc_task);
 1162         ieee80211_draintask(ic, &ic->ic_chan_task);
 1163         ieee80211_draintask(ic, &ic->ic_bmiss_task);
 1164         taskqueue_unblock(ic->ic_tq);
 1165 }
 1166 
 1167 /*
 1168  * Start a vap running.  If this is the first vap to be
 1169  * set running on the underlying device then we
 1170  * automatically bring the device up.
 1171  */
 1172 void
 1173 ieee80211_start_locked(struct ieee80211vap *vap)
 1174 {
 1175         struct ifnet *ifp = vap->iv_ifp;
 1176         struct ieee80211com *ic = vap->iv_ic;
 1177         struct ifnet *parent = ic->ic_ifp;
 1178 
 1179         IEEE80211_LOCK_ASSERT(ic);
 1180 
 1181         IEEE80211_DPRINTF(vap,
 1182                 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1183                 "start running, %d vaps running\n", ic->ic_nrunning);
 1184 
 1185         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1186                 /*
 1187                  * Mark us running.  Note that it's ok to do this first;
 1188                  * if we need to bring the parent device up we defer that
 1189                  * to avoid dropping the com lock.  We expect the device
 1190                  * to respond to being marked up by calling back into us
 1191                  * through ieee80211_start_all at which point we'll come
 1192                  * back in here and complete the work.
 1193                  */
 1194                 ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1195                 /*
 1196                  * We are not running; if this we are the first vap
 1197                  * to be brought up auto-up the parent if necessary.
 1198                  */
 1199                 if (ic->ic_nrunning++ == 0 &&
 1200                     (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1201                         IEEE80211_DPRINTF(vap,
 1202                             IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1203                             "%s: up parent %s\n", __func__, parent->if_xname);
 1204                         parent->if_flags |= IFF_UP;
 1205                         ieee80211_runtask(ic, &ic->ic_parent_task);
 1206                         return;
 1207                 }
 1208         }
 1209         /*
 1210          * If the parent is up and running, then kick the
 1211          * 802.11 state machine as appropriate.
 1212          */
 1213         if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
 1214             vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
 1215                 if (vap->iv_opmode == IEEE80211_M_STA) {
 1216 #if 0
 1217                         /* XXX bypasses scan too easily; disable for now */
 1218                         /*
 1219                          * Try to be intelligent about clocking the state
 1220                          * machine.  If we're currently in RUN state then
 1221                          * we should be able to apply any new state/parameters
 1222                          * simply by re-associating.  Otherwise we need to
 1223                          * re-scan to select an appropriate ap.
 1224                          */ 
 1225                         if (vap->iv_state >= IEEE80211_S_RUN)
 1226                                 ieee80211_new_state_locked(vap,
 1227                                     IEEE80211_S_ASSOC, 1);
 1228                         else
 1229 #endif
 1230                                 ieee80211_new_state_locked(vap,
 1231                                     IEEE80211_S_SCAN, 0);
 1232                 } else {
 1233                         /*
 1234                          * For monitor+wds mode there's nothing to do but
 1235                          * start running.  Otherwise if this is the first
 1236                          * vap to be brought up, start a scan which may be
 1237                          * preempted if the station is locked to a particular
 1238                          * channel.
 1239                          */
 1240                         vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
 1241                         if (vap->iv_opmode == IEEE80211_M_MONITOR ||
 1242                             vap->iv_opmode == IEEE80211_M_WDS)
 1243                                 ieee80211_new_state_locked(vap,
 1244                                     IEEE80211_S_RUN, -1);
 1245                         else
 1246                                 ieee80211_new_state_locked(vap,
 1247                                     IEEE80211_S_SCAN, 0);
 1248                 }
 1249         }
 1250 }
 1251 
 1252 /*
 1253  * Start a single vap.
 1254  */
 1255 void
 1256 ieee80211_init(void *arg)
 1257 {
 1258         struct ieee80211vap *vap = arg;
 1259 
 1260         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1261             "%s\n", __func__);
 1262 
 1263         IEEE80211_LOCK(vap->iv_ic);
 1264         ieee80211_start_locked(vap);
 1265         IEEE80211_UNLOCK(vap->iv_ic);
 1266 }
 1267 
 1268 /*
 1269  * Start all runnable vap's on a device.
 1270  */
 1271 void
 1272 ieee80211_start_all(struct ieee80211com *ic)
 1273 {
 1274         struct ieee80211vap *vap;
 1275 
 1276         IEEE80211_LOCK(ic);
 1277         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1278                 struct ifnet *ifp = vap->iv_ifp;
 1279                 if (IFNET_IS_UP_RUNNING(ifp))   /* NB: avoid recursion */
 1280                         ieee80211_start_locked(vap);
 1281         }
 1282         IEEE80211_UNLOCK(ic);
 1283 }
 1284 
 1285 /*
 1286  * Stop a vap.  We force it down using the state machine
 1287  * then mark it's ifnet not running.  If this is the last
 1288  * vap running on the underlying device then we close it
 1289  * too to insure it will be properly initialized when the
 1290  * next vap is brought up.
 1291  */
 1292 void
 1293 ieee80211_stop_locked(struct ieee80211vap *vap)
 1294 {
 1295         struct ieee80211com *ic = vap->iv_ic;
 1296         struct ifnet *ifp = vap->iv_ifp;
 1297         struct ifnet *parent = ic->ic_ifp;
 1298 
 1299         IEEE80211_LOCK_ASSERT(ic);
 1300 
 1301         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1302             "stop running, %d vaps running\n", ic->ic_nrunning);
 1303 
 1304         ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
 1305         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1306                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;  /* mark us stopped */
 1307                 if (--ic->ic_nrunning == 0 &&
 1308                     (parent->if_drv_flags & IFF_DRV_RUNNING)) {
 1309                         IEEE80211_DPRINTF(vap,
 1310                             IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
 1311                             "down parent %s\n", parent->if_xname);
 1312                         parent->if_flags &= ~IFF_UP;
 1313                         ieee80211_runtask(ic, &ic->ic_parent_task);
 1314                 }
 1315         }
 1316 }
 1317 
 1318 void
 1319 ieee80211_stop(struct ieee80211vap *vap)
 1320 {
 1321         struct ieee80211com *ic = vap->iv_ic;
 1322 
 1323         IEEE80211_LOCK(ic);
 1324         ieee80211_stop_locked(vap);
 1325         IEEE80211_UNLOCK(ic);
 1326 }
 1327 
 1328 /*
 1329  * Stop all vap's running on a device.
 1330  */
 1331 void
 1332 ieee80211_stop_all(struct ieee80211com *ic)
 1333 {
 1334         struct ieee80211vap *vap;
 1335 
 1336         IEEE80211_LOCK(ic);
 1337         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1338                 struct ifnet *ifp = vap->iv_ifp;
 1339                 if (IFNET_IS_UP_RUNNING(ifp))   /* NB: avoid recursion */
 1340                         ieee80211_stop_locked(vap);
 1341         }
 1342         IEEE80211_UNLOCK(ic);
 1343 
 1344         ieee80211_waitfor_parent(ic);
 1345 }
 1346 
 1347 /*
 1348  * Stop all vap's running on a device and arrange
 1349  * for those that were running to be resumed.
 1350  */
 1351 void
 1352 ieee80211_suspend_all(struct ieee80211com *ic)
 1353 {
 1354         struct ieee80211vap *vap;
 1355 
 1356         IEEE80211_LOCK(ic);
 1357         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1358                 struct ifnet *ifp = vap->iv_ifp;
 1359                 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
 1360                         vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
 1361                         ieee80211_stop_locked(vap);
 1362                 }
 1363         }
 1364         IEEE80211_UNLOCK(ic);
 1365 
 1366         ieee80211_waitfor_parent(ic);
 1367 }
 1368 
 1369 /*
 1370  * Start all vap's marked for resume.
 1371  */
 1372 void
 1373 ieee80211_resume_all(struct ieee80211com *ic)
 1374 {
 1375         struct ieee80211vap *vap;
 1376 
 1377         IEEE80211_LOCK(ic);
 1378         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1379                 struct ifnet *ifp = vap->iv_ifp;
 1380                 if (!IFNET_IS_UP_RUNNING(ifp) &&
 1381                     (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
 1382                         vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
 1383                         ieee80211_start_locked(vap);
 1384                 }
 1385         }
 1386         IEEE80211_UNLOCK(ic);
 1387 }
 1388 
 1389 void
 1390 ieee80211_beacon_miss(struct ieee80211com *ic)
 1391 {
 1392         IEEE80211_LOCK(ic);
 1393         if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 1394                 /* Process in a taskq, the handler may reenter the driver */
 1395                 ieee80211_runtask(ic, &ic->ic_bmiss_task);
 1396         }
 1397         IEEE80211_UNLOCK(ic);
 1398 }
 1399 
 1400 static void
 1401 beacon_miss(void *arg, int npending)
 1402 {
 1403         struct ieee80211com *ic = arg;
 1404         struct ieee80211vap *vap;
 1405 
 1406         /* XXX locking */
 1407         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1408                 /*
 1409                  * We only pass events through for sta vap's in RUN state;
 1410                  * may be too restrictive but for now this saves all the
 1411                  * handlers duplicating these checks.
 1412                  */
 1413                 if (vap->iv_opmode == IEEE80211_M_STA &&
 1414                     vap->iv_state >= IEEE80211_S_RUN &&
 1415                     vap->iv_bmiss != NULL)
 1416                         vap->iv_bmiss(vap);
 1417         }
 1418 }
 1419 
 1420 static void
 1421 beacon_swmiss(void *arg, int npending)
 1422 {
 1423         struct ieee80211vap *vap = arg;
 1424 
 1425         if (vap->iv_state != IEEE80211_S_RUN)
 1426                 return;
 1427 
 1428         /* XXX Call multiple times if npending > zero? */
 1429         vap->iv_bmiss(vap);
 1430 }
 1431 
 1432 /*
 1433  * Software beacon miss handling.  Check if any beacons
 1434  * were received in the last period.  If not post a
 1435  * beacon miss; otherwise reset the counter.
 1436  */
 1437 void
 1438 ieee80211_swbmiss(void *arg)
 1439 {
 1440         struct ieee80211vap *vap = arg;
 1441         struct ieee80211com *ic = vap->iv_ic;
 1442 
 1443         /* XXX sleep state? */
 1444         KASSERT(vap->iv_state == IEEE80211_S_RUN,
 1445             ("wrong state %d", vap->iv_state));
 1446 
 1447         if (ic->ic_flags & IEEE80211_F_SCAN) {
 1448                 /*
 1449                  * If scanning just ignore and reset state.  If we get a
 1450                  * bmiss after coming out of scan because we haven't had
 1451                  * time to receive a beacon then we should probe the AP
 1452                  * before posting a real bmiss (unless iv_bmiss_max has
 1453                  * been artifiically lowered).  A cleaner solution might
 1454                  * be to disable the timer on scan start/end but to handle
 1455                  * case of multiple sta vap's we'd need to disable the
 1456                  * timers of all affected vap's.
 1457                  */
 1458                 vap->iv_swbmiss_count = 0;
 1459         } else if (vap->iv_swbmiss_count == 0) {
 1460                 if (vap->iv_bmiss != NULL)
 1461                         ieee80211_runtask(ic, &vap->iv_swbmiss_task);
 1462         } else
 1463                 vap->iv_swbmiss_count = 0;
 1464         callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
 1465                 ieee80211_swbmiss, vap);
 1466 }
 1467 
 1468 /*
 1469  * Start an 802.11h channel switch.  We record the parameters,
 1470  * mark the operation pending, notify each vap through the
 1471  * beacon update mechanism so it can update the beacon frame
 1472  * contents, and then switch vap's to CSA state to block outbound
 1473  * traffic.  Devices that handle CSA directly can use the state
 1474  * switch to do the right thing so long as they call
 1475  * ieee80211_csa_completeswitch when it's time to complete the
 1476  * channel change.  Devices that depend on the net80211 layer can
 1477  * use ieee80211_beacon_update to handle the countdown and the
 1478  * channel switch.
 1479  */
 1480 void
 1481 ieee80211_csa_startswitch(struct ieee80211com *ic,
 1482         struct ieee80211_channel *c, int mode, int count)
 1483 {
 1484         struct ieee80211vap *vap;
 1485 
 1486         IEEE80211_LOCK_ASSERT(ic);
 1487 
 1488         ic->ic_csa_newchan = c;
 1489         ic->ic_csa_mode = mode;
 1490         ic->ic_csa_count = count;
 1491         ic->ic_flags |= IEEE80211_F_CSAPENDING;
 1492         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1493                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
 1494                     vap->iv_opmode == IEEE80211_M_IBSS ||
 1495                     vap->iv_opmode == IEEE80211_M_MBSS)
 1496                         ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
 1497                 /* switch to CSA state to block outbound traffic */
 1498                 if (vap->iv_state == IEEE80211_S_RUN)
 1499                         ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
 1500         }
 1501         ieee80211_notify_csa(ic, c, mode, count);
 1502 }
 1503 
 1504 /*
 1505  * Complete the channel switch by transitioning all CSA VAPs to RUN.
 1506  * This is called by both the completion and cancellation functions
 1507  * so each VAP is placed back in the RUN state and can thus transmit.
 1508  */
 1509 static void
 1510 csa_completeswitch(struct ieee80211com *ic)
 1511 {
 1512         struct ieee80211vap *vap;
 1513 
 1514         ic->ic_csa_newchan = NULL;
 1515         ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
 1516 
 1517         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1518                 if (vap->iv_state == IEEE80211_S_CSA)
 1519                         ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
 1520 }
 1521 
 1522 /*
 1523  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
 1524  * We clear state and move all vap's in CSA state to RUN state
 1525  * so they can again transmit.
 1526  *
 1527  * Although this may not be completely correct, update the BSS channel
 1528  * for each VAP to the newly configured channel. The setcurchan sets
 1529  * the current operating channel for the interface (so the radio does
 1530  * switch over) but the VAP BSS isn't updated, leading to incorrectly
 1531  * reported information via ioctl.
 1532  */
 1533 void
 1534 ieee80211_csa_completeswitch(struct ieee80211com *ic)
 1535 {
 1536         struct ieee80211vap *vap;
 1537 
 1538         IEEE80211_LOCK_ASSERT(ic);
 1539 
 1540         KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
 1541 
 1542         ieee80211_setcurchan(ic, ic->ic_csa_newchan);
 1543         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1544                 if (vap->iv_state == IEEE80211_S_CSA)
 1545                         vap->iv_bss->ni_chan = ic->ic_curchan;
 1546 
 1547         csa_completeswitch(ic);
 1548 }
 1549 
 1550 /*
 1551  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
 1552  * We clear state and move all vap's in CSA state to RUN state
 1553  * so they can again transmit.
 1554  */
 1555 void
 1556 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
 1557 {
 1558         IEEE80211_LOCK_ASSERT(ic);
 1559 
 1560         csa_completeswitch(ic);
 1561 }
 1562 
 1563 /*
 1564  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
 1565  * We clear state and move all vap's in CAC state to RUN state.
 1566  */
 1567 void
 1568 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
 1569 {
 1570         struct ieee80211com *ic = vap0->iv_ic;
 1571         struct ieee80211vap *vap;
 1572 
 1573         IEEE80211_LOCK(ic);
 1574         /*
 1575          * Complete CAC state change for lead vap first; then
 1576          * clock all the other vap's waiting.
 1577          */
 1578         KASSERT(vap0->iv_state == IEEE80211_S_CAC,
 1579             ("wrong state %d", vap0->iv_state));
 1580         ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
 1581 
 1582         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 1583                 if (vap->iv_state == IEEE80211_S_CAC)
 1584                         ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
 1585         IEEE80211_UNLOCK(ic);
 1586 }
 1587 
 1588 /*
 1589  * Force all vap's other than the specified vap to the INIT state
 1590  * and mark them as waiting for a scan to complete.  These vaps
 1591  * will be brought up when the scan completes and the scanning vap
 1592  * reaches RUN state by wakeupwaiting.
 1593  */
 1594 static void
 1595 markwaiting(struct ieee80211vap *vap0)
 1596 {
 1597         struct ieee80211com *ic = vap0->iv_ic;
 1598         struct ieee80211vap *vap;
 1599 
 1600         IEEE80211_LOCK_ASSERT(ic);
 1601 
 1602         /*
 1603          * A vap list entry can not disappear since we are running on the
 1604          * taskqueue and a vap destroy will queue and drain another state
 1605          * change task.
 1606          */
 1607         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1608                 if (vap == vap0)
 1609                         continue;
 1610                 if (vap->iv_state != IEEE80211_S_INIT) {
 1611                         /* NB: iv_newstate may drop the lock */
 1612                         vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
 1613                         vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 1614                 }
 1615         }
 1616 }
 1617 
 1618 /*
 1619  * Wakeup all vap's waiting for a scan to complete.  This is the
 1620  * companion to markwaiting (above) and is used to coordinate
 1621  * multiple vaps scanning.
 1622  * This is called from the state taskqueue.
 1623  */
 1624 static void
 1625 wakeupwaiting(struct ieee80211vap *vap0)
 1626 {
 1627         struct ieee80211com *ic = vap0->iv_ic;
 1628         struct ieee80211vap *vap;
 1629 
 1630         IEEE80211_LOCK_ASSERT(ic);
 1631 
 1632         /*
 1633          * A vap list entry can not disappear since we are running on the
 1634          * taskqueue and a vap destroy will queue and drain another state
 1635          * change task.
 1636          */
 1637         TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
 1638                 if (vap == vap0)
 1639                         continue;
 1640                 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
 1641                         vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
 1642                         /* NB: sta's cannot go INIT->RUN */
 1643                         /* NB: iv_newstate may drop the lock */
 1644                         vap->iv_newstate(vap,
 1645                             vap->iv_opmode == IEEE80211_M_STA ?
 1646                                 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
 1647                 }
 1648         }
 1649 }
 1650 
 1651 /*
 1652  * Handle post state change work common to all operating modes.
 1653  */
 1654 static void
 1655 ieee80211_newstate_cb(void *xvap, int npending)
 1656 {
 1657         struct ieee80211vap *vap = xvap;
 1658         struct ieee80211com *ic = vap->iv_ic;
 1659         enum ieee80211_state nstate, ostate;
 1660         int arg, rc;
 1661 
 1662         IEEE80211_LOCK(ic);
 1663         nstate = vap->iv_nstate;
 1664         arg = vap->iv_nstate_arg;
 1665 
 1666         if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
 1667                 /*
 1668                  * We have been requested to drop back to the INIT before
 1669                  * proceeding to the new state.
 1670                  */
 1671                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1672                     "%s: %s -> %s arg %d\n", __func__,
 1673                     ieee80211_state_name[vap->iv_state],
 1674                     ieee80211_state_name[IEEE80211_S_INIT], arg);
 1675                 vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
 1676                 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
 1677         }
 1678 
 1679         ostate = vap->iv_state;
 1680         if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
 1681                 /*
 1682                  * SCAN was forced; e.g. on beacon miss.  Force other running
 1683                  * vap's to INIT state and mark them as waiting for the scan to
 1684                  * complete.  This insures they don't interfere with our
 1685                  * scanning.  Since we are single threaded the vaps can not
 1686                  * transition again while we are executing.
 1687                  *
 1688                  * XXX not always right, assumes ap follows sta
 1689                  */
 1690                 markwaiting(vap);
 1691         }
 1692         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1693             "%s: %s -> %s arg %d\n", __func__,
 1694             ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
 1695 
 1696         rc = vap->iv_newstate(vap, nstate, arg);
 1697         vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
 1698         if (rc != 0) {
 1699                 /* State transition failed */
 1700                 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
 1701                 KASSERT(nstate != IEEE80211_S_INIT,
 1702                     ("INIT state change failed"));
 1703                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1704                     "%s: %s returned error %d\n", __func__,
 1705                     ieee80211_state_name[nstate], rc);
 1706                 goto done;
 1707         }
 1708 
 1709         /* No actual transition, skip post processing */
 1710         if (ostate == nstate)
 1711                 goto done;
 1712 
 1713         if (nstate == IEEE80211_S_RUN) {
 1714                 /*
 1715                  * OACTIVE may be set on the vap if the upper layer
 1716                  * tried to transmit (e.g. IPv6 NDP) before we reach
 1717                  * RUN state.  Clear it and restart xmit.
 1718                  *
 1719                  * Note this can also happen as a result of SLEEP->RUN
 1720                  * (i.e. coming out of power save mode).
 1721                  */
 1722                 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1723                 if_start(vap->iv_ifp);
 1724 
 1725                 /* bring up any vaps waiting on us */
 1726                 wakeupwaiting(vap);
 1727         } else if (nstate == IEEE80211_S_INIT) {
 1728                 /*
 1729                  * Flush the scan cache if we did the last scan (XXX?)
 1730                  * and flush any frames on send queues from this vap.
 1731                  * Note the mgt q is used only for legacy drivers and
 1732                  * will go away shortly.
 1733                  */
 1734                 ieee80211_scan_flush(vap);
 1735 
 1736                 /* XXX NB: cast for altq */
 1737                 ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
 1738         }
 1739 done:
 1740         IEEE80211_UNLOCK(ic);
 1741 }
 1742 
 1743 /*
 1744  * Public interface for initiating a state machine change.
 1745  * This routine single-threads the request and coordinates
 1746  * the scheduling of multiple vaps for the purpose of selecting
 1747  * an operating channel.  Specifically the following scenarios
 1748  * are handled:
 1749  * o only one vap can be selecting a channel so on transition to
 1750  *   SCAN state if another vap is already scanning then
 1751  *   mark the caller for later processing and return without
 1752  *   doing anything (XXX? expectations by caller of synchronous operation)
 1753  * o only one vap can be doing CAC of a channel so on transition to
 1754  *   CAC state if another vap is already scanning for radar then
 1755  *   mark the caller for later processing and return without
 1756  *   doing anything (XXX? expectations by caller of synchronous operation)
 1757  * o if another vap is already running when a request is made
 1758  *   to SCAN then an operating channel has been chosen; bypass
 1759  *   the scan and just join the channel
 1760  *
 1761  * Note that the state change call is done through the iv_newstate
 1762  * method pointer so any driver routine gets invoked.  The driver
 1763  * will normally call back into operating mode-specific
 1764  * ieee80211_newstate routines (below) unless it needs to completely
 1765  * bypass the state machine (e.g. because the firmware has it's
 1766  * own idea how things should work).  Bypassing the net80211 layer
 1767  * is usually a mistake and indicates lack of proper integration
 1768  * with the net80211 layer.
 1769  */
 1770 static int
 1771 ieee80211_new_state_locked(struct ieee80211vap *vap,
 1772         enum ieee80211_state nstate, int arg)
 1773 {
 1774         struct ieee80211com *ic = vap->iv_ic;
 1775         struct ieee80211vap *vp;
 1776         enum ieee80211_state ostate;
 1777         int nrunning, nscanning;
 1778 
 1779         IEEE80211_LOCK_ASSERT(ic);
 1780 
 1781         if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
 1782                 if (vap->iv_nstate == IEEE80211_S_INIT) {
 1783                         /*
 1784                          * XXX The vap is being stopped, do no allow any other
 1785                          * state changes until this is completed.
 1786                          */
 1787                         return -1;
 1788                 } else if (vap->iv_state != vap->iv_nstate) {
 1789 #if 0
 1790                         /* Warn if the previous state hasn't completed. */
 1791                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1792                             "%s: pending %s -> %s transition lost\n", __func__,
 1793                             ieee80211_state_name[vap->iv_state],
 1794                             ieee80211_state_name[vap->iv_nstate]);
 1795 #else
 1796                         /* XXX temporarily enable to identify issues */
 1797                         if_printf(vap->iv_ifp,
 1798                             "%s: pending %s -> %s transition lost\n",
 1799                             __func__, ieee80211_state_name[vap->iv_state],
 1800                             ieee80211_state_name[vap->iv_nstate]);
 1801 #endif
 1802                 }
 1803         }
 1804 
 1805         nrunning = nscanning = 0;
 1806         /* XXX can track this state instead of calculating */
 1807         TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
 1808                 if (vp != vap) {
 1809                         if (vp->iv_state >= IEEE80211_S_RUN)
 1810                                 nrunning++;
 1811                         /* XXX doesn't handle bg scan */
 1812                         /* NB: CAC+AUTH+ASSOC treated like SCAN */
 1813                         else if (vp->iv_state > IEEE80211_S_INIT)
 1814                                 nscanning++;
 1815                 }
 1816         }
 1817         ostate = vap->iv_state;
 1818         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1819             "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
 1820             ieee80211_state_name[ostate], ieee80211_state_name[nstate],
 1821             nrunning, nscanning);
 1822         switch (nstate) {
 1823         case IEEE80211_S_SCAN:
 1824                 if (ostate == IEEE80211_S_INIT) {
 1825                         /*
 1826                          * INIT -> SCAN happens on initial bringup.
 1827                          */
 1828                         KASSERT(!(nscanning && nrunning),
 1829                             ("%d scanning and %d running", nscanning, nrunning));
 1830                         if (nscanning) {
 1831                                 /*
 1832                                  * Someone is scanning, defer our state
 1833                                  * change until the work has completed.
 1834                                  */
 1835                                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1836                                     "%s: defer %s -> %s\n",
 1837                                     __func__, ieee80211_state_name[ostate],
 1838                                     ieee80211_state_name[nstate]);
 1839                                 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 1840                                 return 0;
 1841                         }
 1842                         if (nrunning) {
 1843                                 /*
 1844                                  * Someone is operating; just join the channel
 1845                                  * they have chosen.
 1846                                  */
 1847                                 /* XXX kill arg? */
 1848                                 /* XXX check each opmode, adhoc? */
 1849                                 if (vap->iv_opmode == IEEE80211_M_STA)
 1850                                         nstate = IEEE80211_S_SCAN;
 1851                                 else
 1852                                         nstate = IEEE80211_S_RUN;
 1853 #ifdef IEEE80211_DEBUG
 1854                                 if (nstate != IEEE80211_S_SCAN) {
 1855                                         IEEE80211_DPRINTF(vap,
 1856                                             IEEE80211_MSG_STATE,
 1857                                             "%s: override, now %s -> %s\n",
 1858                                             __func__,
 1859                                             ieee80211_state_name[ostate],
 1860                                             ieee80211_state_name[nstate]);
 1861                                 }
 1862 #endif
 1863                         }
 1864                 }
 1865                 break;
 1866         case IEEE80211_S_RUN:
 1867                 if (vap->iv_opmode == IEEE80211_M_WDS &&
 1868                     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
 1869                     nscanning) {
 1870                         /*
 1871                          * Legacy WDS with someone else scanning; don't
 1872                          * go online until that completes as we should
 1873                          * follow the other vap to the channel they choose.
 1874                          */
 1875                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1876                              "%s: defer %s -> %s (legacy WDS)\n", __func__,
 1877                              ieee80211_state_name[ostate],
 1878                              ieee80211_state_name[nstate]);
 1879                         vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
 1880                         return 0;
 1881                 }
 1882                 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
 1883                     IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
 1884                     (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
 1885                     !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
 1886                         /*
 1887                          * This is a DFS channel, transition to CAC state
 1888                          * instead of RUN.  This allows us to initiate
 1889                          * Channel Availability Check (CAC) as specified
 1890                          * by 11h/DFS.
 1891                          */
 1892                         nstate = IEEE80211_S_CAC;
 1893                         IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
 1894                              "%s: override %s -> %s (DFS)\n", __func__,
 1895                              ieee80211_state_name[ostate],
 1896                              ieee80211_state_name[nstate]);
 1897                 }
 1898                 break;
 1899         case IEEE80211_S_INIT:
 1900                 /* cancel any scan in progress */
 1901                 ieee80211_cancel_scan(vap);
 1902                 if (ostate == IEEE80211_S_INIT ) {
 1903                         /* XXX don't believe this */
 1904                         /* INIT -> INIT. nothing to do */
 1905                         vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
 1906                 }
 1907                 /* fall thru... */
 1908         default:
 1909                 break;
 1910         }
 1911         /* defer the state change to a thread */
 1912         vap->iv_nstate = nstate;
 1913         vap->iv_nstate_arg = arg;
 1914         vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
 1915         ieee80211_runtask(ic, &vap->iv_nstate_task);
 1916         return EINPROGRESS;
 1917 }
 1918 
 1919 int
 1920 ieee80211_new_state(struct ieee80211vap *vap,
 1921         enum ieee80211_state nstate, int arg)
 1922 {
 1923         struct ieee80211com *ic = vap->iv_ic;
 1924         int rc;
 1925 
 1926         IEEE80211_LOCK(ic);
 1927         rc = ieee80211_new_state_locked(vap, nstate, arg);
 1928         IEEE80211_UNLOCK(ic);
 1929         return rc;
 1930 }

Cache object: 9cba7af811c7d43f479e878221390973


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.